用户名: 密码: 验证码:
环境中类固醇类内分泌干扰物的检测技术及其降解行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究类固醇新的分析检测方法,降解行为及其环境分布,着重研究污水处理厂的污水样品的新萃取方法及各种新的联用技术,全文分为六章:
     第一章概述了内分泌干扰物与活性最强的类固醇激素的研究热点,介绍了几种主要类固醇激素的生物功能、存在形式、环境命运和主要分析手段,对我国内分泌干扰物的研究状况进行了综述。
     第二章将Triton X-114非离子表面活性剂作为浊点萃取溶剂应用于水样中雌激素类化合物的萃取富集,并与高效液相色谱结合,建立了这类化合物新的小体积,高富集效率的分析方法。该方法首先使一定浓度的Triton X-114非离子表面活性剂与待富集的样品盐溶液混合并在水浴中平衡,离心分离,而后弃去上层水溶液,取下层表面活性剂富集相20μL直接进样,进入液相色谱分离测定。实验优化了萃取过程中的影响因素如表面活性剂浓度、盐浓度、平衡温度平衡时间和离心时间等。该方法对于雌激素类化合物雌酮,雌二醇,雌三醇和孕酮的检测限分别为0.25、0.32、0.23和5.0 ng mL~(-1)。应用该方法测定了几种环境水样如自来水、养鱼水和生活污水中雌激素类化合物的含量。四类水样中均未测出雌激素类化合物,对雌激素进行加标回收,回收率分别为81.2—99.5%。Triton X-114作为浊点萃取剂具有浊点温度低,密度较高,有利于离心分离,价格低廉等优点。与传统液液萃取,固相萃取比较,整个萃取过程不需要任何有机溶剂,是一种绿色、高效的分析方法,适合大批量、小体积样品的快速检测。
     第三章在浊点萃取雌激素的基础上继续探索浊点萃取在内分泌干扰物-酞酸酯中的应用。预期能够在相同条件下同时富集多种内分泌干扰物。并用于环境样品的处理。将Triton X-114非离子表面活性剂作为浊点萃取溶剂应用于水样中酞酸酯类化合物的萃取富集,并与高效液相色谱结合,建立了这类化合物新的分析方法。实验考察优化了萃取过程中的影响因素如表面活性剂浓度,盐浓度,平衡温度和平衡时间等。该方法对于酞酸酯类化合物邻苯二甲酸乙酯(DEP)、邻苯二甲酸乙基己酯(DEHP)和邻苯二甲酸环己酯(DCP)的检测限分别为2.0,3.8,1.0 ng.mL~(-1)。应用该方法测定了环境水样如包装塑料薄膜碎片溶出液和生活污水中酞酸酯类化合物的含量。水样中均未测出酞酸酯类化合物,对酞酸酯进行加标回收,回收率分别为85.8-103.2%。结果表明,可以用同样的条件同时萃取多种内分泌干扰物,达到同时快速检测的目的。
     第四章建立了一种新的超高效液相色谱(UPLC)与紫外光谱联用技术分离检测水中雌酮,雌二醇,雌三醇和炔雌醇的方法。四种化合物在1.7分钟内可以完全达到基线分离,采用的反相色谱柱(50×2.1mm)填料粒径为1.7μm。样品先用固相萃取富集,浓缩后直接进样分析,四种雌激素化合物的回收率都大于90%,检测限在12.5-23.7 ng/L间,相对标准偏差介于7-11%之间。该方法成功应用于模拟自然水降解过程中雌二醇和炔雌醇的分析检测,48小时的连续监测结果显示,在该条件下,雌二醇的半衰期大约30小时,炔雌醇的半衰期大约为36小时。相对常规液相色谱方法,该方法具有灵敏度高、准确性好、操作方便的优点。适合大批量样品的快速检测和各种突发事件。对E2和EE2的动力学实验为我们的毒理实验提供了精确可靠的数据,可以指导实验室条件下开展雌激素暴露实验的投毒剂量和频率,以提供表观浓度与实际浓度相符的暴露环境。
     第五章建立了高效、灵敏、可靠的HPLC-MS-MS联用技术分离检测污水中类固醇激素的方法,并对高碑店污水处理厂进水,出水及通惠河中类固醇污染状况及季节变化进行了为期半年的调查研究。类固醇的含量通过高灵敏度的HPLC-MS-MS进行测定,所建方法加标回收率在73-91%之间,检测限在0.1-1 ng/L。结果表明,采集的夏、秋、冬三个季节6批样品中,进水中所有类固醇化合物含量都很高,浓度在30-60 ng/L之间,但是经过二级处理后的所有出水和河水中的类固醇浓度明显降低,雌酮雌三醇和睾酮是最常被检出的物质,其浓度随季节变化呈现出规律性变化,孕酮没有检出,雌二醇、炔雌醇和雄烯二酮也分别有几次检出。浓度在几个ng/L水平,这一浓度已经高于雌激素对水生生物造成影响的最低浓度(<0.1 ng/L)。由于类固醇激素化合物易通过食物链生物富集,因此对排放水要严格控制,不得作为渔业用水,以避免类固醇激素化合物的污染。此外,分析结果还说明现有的污水处理工艺还不能完全去除污水中的类固醇激素化合物,处理工艺还有待于进一步改进。长期暴露在类固醇下的通惠河中生物体的生长、发育和繁殖有深远的影响,应该结合毒理实验进行深入研究。
     第六章由于HPLC-MS-MS价格昂贵,不能成为实验室常规仪器配置。因此期望能够建立一套适合普通实验室操作的分析方法。基于此目的,建立了大体积进样(Large volume injection,LVI)与GC-MS在线联用技术分离测定污水中雌激素的方法,本工作利用大体积进样技术程序升温气化的原理,对测定污水样中雌激素类化合物的效果进行了研究,选用N-O-bis-(trimethylsilyl)-trifluoroacetamide(含1%trimethylchlorosilane)作为衍生试剂,吡啶作反应介质,检测限在0.1 ng/L到0.33 ng/L之间,与传统分流/不分流进样技术进行了对比,灵敏度可高达10-50倍。同时优化了雌激素的衍生条件。研究表明,使用大体积进样方式,在不影响色谱分离度的同时,大大提高了仪器分析灵敏度,检测环境中的雌激素一直是繁琐,复杂的工作,要求高灵敏度的检测器,一般普通的GC-MS无法完成,运用该方法只需要在普通的GC-MS前加一个大体积进样器,就能够成功地检测到实际水样中的雌激素物质。可对环境水样中的痕量雌激素进行准确测定。用HPLC-MS-MS验证,结果吻合。
This paper studies the new analytical techniques for the determination of steroid hormones in water sample from the Sewage Treatment Plant (STP), which is focused on the new extraction procedures and new instrumental hyphenated techniques. It mainly consists of the following six parts.
     In the first part, the definition of Endocrine disrupting compounds (EDC) and the most potent EDC categories --steroid hormones and their analytical techniques, environmental fate were introduced based on 110 previous references.
     In the second part, a method based on cloud point extraction was developed to determine estrogens (estrone, estradiol, estriol, and progesterone) in environmental water samples by high-performance liquid chromatography separation and ultraviolet detection (HPLC-UV). The non-ionic surfactant Triton X-114 was chosen as extraction solvent. The parameters affecting extraction efficiency, such as concentrations of Triton X-114 and Na_2SO_4, equilibration temperature, equilibration time and centrifugation time were evaluated and optimized. Under the optimum conditions, preconcentration factors of 99, 73, 152, 86 and detection of limits of 0.23, 0.32, 0.25, 5.0 ng/mL for E3, E2, E1, P were obtained for 10-ml water sample. The proposed method was successfully applied to the determination of trace amount of estrogens in effluent water of the wastewater treatment plant (WWTP).
     In the third part, based on the method for extraction of estrogens by cloud point extraction, a method was developed to determine phthalate esters (di-ethyl-phthalate, di-(2-ethylhexyl)-phthalate and di-cyclohexyl-phthalate) in environmental water samples by high-performance liquid chromatography separation and ultraviolet detection (HPLC-UV). The non-ionic surfactant Triton X-114 was chosen as extraction solvent. The parameters affecting extraction efficiency, such as concentrations of Triton X-114 and Na_2SO_4, equilibration temperature, equilibration time and centrifugation time were evaluated and optimized. Under the optimum conditions, preconcentration factors of 35, 88, 111 and detection of limits of 2.0, 3.8, 1.0 ng.ml~(-1) were obtained for DEP, DEHP and DCP in 10-ml water sample. The proposed method was successfully applied to the determination of trace amount of phathalate esters in effluent water of the wastewater treatment plant (WWTP) and the lixivium of plastic fragments.
     In the fourth part, a new method for the determination of four estrogens, estriol, 17β-estradiol, 17α-ethynyl-estrodiol and estrone in water was established. The method involves solid-phase extraction of water samples and subsequent analysis of the extract by ultra-performance liquid chromatography (UPLC) coupled with an ultraviolet detector (UVD). Baseline separation was achieved for all the studied estrogens using a column (50×2.1mm) packed with 1.7 urn particle size stationary phase. The recoveries (>90%), detection limits (12.5-23.7 ng/L) and RSDs (7-11%) for the four estrogens were all satisfactory. The proposed method was successfully applied in determining the decrease of E2 and EE2 in simulative natural water. It was found that within 48 hours, the concentration of E2 decreased to 30% of its initial level (with a half-life of about 30 h), whereas EE2 decreased to 45% of its initial level (with a half-life of about 36 h). Low levels of E1 were found, while E3 was undetectable during the process.
     In the fifth part, concentrations of natural and synthetic estrogens (estriol, 17β-estradiol, 17α-ethynyl-estrodiol, estrone, 17α-hydroxyprogesterone and progesterone) and androgens (testosterone, epitestosterone, methyltestosterone, 4-androstene-3, 17-dione) in the influent and effluent of the Gaobeidian sewage treatment plant (Beijing, China) and along the receiving river, the Tonghuihe River were determined by HPLC-MS-MS. The samples were collected during six months, so the seasonal variations of steroids were studied in the river. Estrone, estriol and testosterone were the dominant compounds (detected in all effluent samples), while estradiol, 17α-ethynylestradiol and 4-androstene-3, 17-dione were detected in two samples, and progesterone wasn't detected in all the effluent and receiving water samples. The recoveries of the analytes ranged from 73% to 91%, and the limits of quantification were in the range of 0.1-1 ng/L. The results indicated that the concentrations of steroids in winter were obviously higher than those in summer, which might be caused by temperature as the major factor in biodegradation process.
     In the sixth part, a sensitive and automated method was presented for the determination of four estrogens (El, E2, E3, EE2) in wastewater by GC-MS equipped with a programmable temperature vaporizer (PTV-LV) injection port. N-O-bis-(trimethylsilyl)-trifluoroacetamide in pyridine containing 1% trimethylchlorosilane was chosen as derivatization reagent. The PTV-LV injection settings used herein could greatly improve the sensitivity of the analytical method. The proposed method offered detection limits ranging from 0.1 ng/L to 0.33 ng/L for four tested compounds, which was about 10 to 50 times more sensitive than the results achieved by the conventional 1μl splitless injection. The improved method was successfully applied to the analysis of estrogens in the wastewater, the result was proved by HPLC-MS-MS.
引文
[1] J. Pelley, Estrogen knocks out fish in whole-lake experiment, Environ. Sci. Technol., 2003, 313A-314A.
    [2] R. J. Golden, K. L. Noller, L. Titus-Ernstoff, R. H. Kaufman, R. Mittendorf, R. Stillman, E. Reese,. Environmental endocrine modulators and human health: an assessment of the biological evidence. Crit. Rev. Toxicol. 1998, 2, 101-227.
    [3] C.R. Tyler, S. Jobling, J. P. Sumpter, Endocrine disruption in wildlife: A critical review of the evidence. Crit. Rev. Toxicol. 1998a, 28, 319-361.
    [4] L.J. Guillette, T. S. Gross, G. R. Masson, J. M. Matter, H. F. Percival, A. R. Woodward, Developmental abnormalities of the gonad and abnormal sex hormone concentrations in juvenile alligators from contaminated and control lakes in Florida. Environ. Health Perspect. 1994, 102, 680-688.
    [5] R. Stone, Environmental estrogens stir debate. Science 1994, 265, 308-310.
    [6] T.M. Crisp, E. D. Clegg, R. L. Cooper, W. P. Wood, D. G.. Anderson, K. P. Baetcke, J. L. Hoffmann, M. S. Morrow, D. J. Rodier, J. E. Schaeffer, L. W. Touart, M. G.. Zeeman, Y. M. Patel, Environmental endocrine disruption: An effects assessment and analysis. Environ. Health Perspec. 1998, 106, 11-56.
    [7] 周庆祥,江桂斌,浅谈环境内分泌干扰物质.科技术语研究,2001,3,12-14.
    [8] L.W. Reiter, C. DeRosa, R. J. Kavlock, G. Lueier, M. J. Mac, J. Melillo, R. L. Melnick, T. Sinks, B. T. Walton, The US federal framework for research on endocrine disruptors and an analysis of research programs supported during fiscal year 1996. Environ. Health Perspect. 1998, 106, 105-113.
    [9] T.D. Colbon, Our stolen future [M]. New York: Penguin Books, 1996,
    [10] T. Christiansen, B. Korsgaard, A. Jespersen, Effects of nonylphenol and 17β-estradiol on vitellogenin synthesis, testicular structure and cytology in male eelpout Zoarces viviparous. J. Exp. Biol. 1998, 201, 179-192.
    [11] P. J. Patyna, R. A. Davi, T. F. Parkerton, R. P. Brown, K. R. Cooper, A proposed multigeneration protocol for Japanese medaka (Oryzias latipes) to evaluate effects of endocrine disrupters, Sci. Total Environ. 1999, 233, 211-220.
    [12] L. C. Folmar, N. D. Denslow, V. Rao, M. Chow, D. A. Crain, J. Enblom, J. Marcino, L. J. Guillette, Vitellogenin Induction and Reduced Serum Testosterone Concentrations in Feral Male Carp (Cyprinus carpio) Captured Near a Major Metropolitan Sewage Treatment Plant. Environ. Health Perspect. 1996, 104 1096-1101.
    [13] J. E. Harries, D. A. Sheahan, S. Jobling, P. Matthiessen, P. Neall, J. P. Sumpter, T. Tylor, N. Zaman, Estrogenic Activity in five United Kingdom Rivers Detected by Measurement of Vitellogenesis in Caged Male Trout. Environ. Toxicol. Chem. 16(3), 1997, 534-542.
    [14] S. Jobling; M. Nolan, C. R. Tyler, G. Brighty, J. P. Sumpter, Widespread Sexual Disruption in Wild Fish, Environ. Sci. Technol. 1998; 32 (17), 2498-2506.
    [15] J. E. Harries, A. Janbakhsh, S. Jobling, P. Matthiessen, J. P. Sumpter, C. R. Tyler, Estrogenic Potency of Effluent from two Sewage Treatment Works in The United Kingdom. Environ. Toxicol. Chem. 1999, 18 (5), 932-937.
    [16] W. Korner, V. Hanf, W. Schuller, C. Kempter, J. Metzger, H. Hagenmaier, Development of a sensitive E-screen assay for quantitative analysis of estrogenic activity in municipal sewage plant effluents. Science of The Total Environment, 1999, 225(1-2), 33-48.
    [17] D. G. J. Larsson, M. Adolfsson-Erici, J. Parkkonen, M. Pettersson, A. H. Berg, P.-E. Olsson, L. Forlin, Ethinyloestradiol—an undesired fish contraceptive? Aquatic Toxicology, 1999, 45 (2-3), 91-97.
    [18] R. J. Williams; A. C. Johnson; J. J. L. Smith; R. Kanda, Steroid Estrogens Profiles along River Stretches Arising from Sewage Treatment Works Discharges. Environ. Sci. Technol. 2003; 37(9), 1744-1750.
    [19] A. K. Sarmah, G. L. Northcott, F. D. L. Leusch, L. A. Tremblay, A survey of endocrine disrupting chemicals (EDCs) in municipal sewage and animal waste effluents in the Waikato region of New Zealand. Science of The Total Environment, 2006, 355 (1-3), 135-144.
    [20] A. Turan, Excretion of natural and synthetic estrogens and their metabolites: Occurrentce and behaviour in water. In expert Round: Endocrinitically Active Chemicals in the Environment, ed. A. Gies. Umweltbundesamt (German Environment Agency), 1996, TEXTE 3/96, Berlin.
    [21] C. Baronti, R. Curini; G.D'Ascenzo; A. Di Corcia; A.Gentili; R. Samperi, Monitoring Natural and Synthetic Estrogens at Activated Sludge Sewage Treatment Plants and in a Receiving River Water. Environ. Sci. Technol. 2000, 34(24), 5059-5066.
    [22] T. A. Ternes, M. Stumpf, J. Mueller, K. Haberer, R. D. Wilken and M. Servos, Behavior and occurrence of estrogens in municipal sewage treatment plants—Ⅰ. Investigations in Germany, Canada and Brazil. The Science of The Total Environment, 1999, 225(1-2) 81-90.
    [23] L.特雷格 著,邹继超 翻译,《类固醇激素》一生物合成代谢作用,科学出版社,160-183。
    [24] 中国化学制药工业协会,中国医药工业公司。一九九九年化学医药工业统计资料[M],2000.
    [25] C. Desbrow, E. J. Routledge, Brighty, G. C.; Sumpter, J. P.; Waldock, M., Identification of Estrogenic Chemicals in STW Effluent. 1. Chemical Fractionation and in Vitro Biological Screening, Environ. Sci. Technol. 1998, 32(11), 1549-1558.
    [26] E. P. Kolodziej; T. Harter; D. L. Sedlak, Dairy Wastewater, Aquaculture, and Spawning Fish as Sources of Steroid Hormones in the Aquatic Environment. Environ. Sci. Technol. 2004, 38 (23), 6377-6384.
    [27] O. Finlay-Moore, P. G. Hartel, M. L. Cabrera, 17β-estradiol and testosterone in soil and runoff from grasslands amended with broiler litter, J. Environ. Qual. 2000, 29, 1604-1611.
    [28] C. M. Lye, C. L. J. Frid, M. E. Gill, D. McCormick, Abnormalities in the reproductive health of flounder Platichthys flesus exposed to effluent from a sewage treatment works. Marine pollution bulletin 1997, 34(1), 34-41.
    [29] P. -D. Hansen, H. Dizer, B. Hock, A. Marx, J. Sherry, M. McMaster and Ch. Blaise Gansen, Vitellogenin-a biomarker for endocrine disruptors. Trends Anal Chem. 1998, 17 (7), 448-451.
    [30] L. S. Lee; T. J. Strock; A. K. Sarmah; P. S. C. Rao, Sorption and Dissipation of Testosterone, Estrogens, and Their Primary Transformation Products in Soils and Sediment. Environ. Sci. Technol. 2003, 37 (18), 4098-4105.
    [31] K. M. Lai, K. L. Johnson, M. D. Scrimshaw, J. N. Lester, Binding of Waterborne Steroid Estrogens to Solid Phases in River and Estuarine Systems. Environ. Sci. Technol. 2000, 34 (18) 3890-3894.
    [32] A. C. Belfroid, A. Van der Horst, A. D. Vethaak, A. J. Schafer, G. B. J. Rijs, J. Wegener, W. P. Cofino, Analysis and occurrence of estrogenic hormones and their glucuronides in surface water and waste water in The Netherlands. Sci. Total Environ. 1999, 225, 101-108.
    [33] M. D. Jurgens, R. J. Williams, A. C. Johnson, Fate and Behaviour of Steroid Oestrogens in Rivers: A Scoping Study, Technical Report P161, 1999, Environmental Agency, Bristol.
    [34] L. S. Shore, M. Gurevitz, M. Shemesh, Estrogen as an environmental pollutant. Bull. Environ. Contam. Yoxicol. 1993, 51,361-366.
    [35] M. P. Fernandez, M. G. Ikonomou, I. Buchanan, An assessment of estrogenic organic contaminants in Canadian wastewaters. Science of The Total Environment, 2007, 373 (1), 250-269.
    [36] A. Yamarnoto; N. Kakutani; K. Yamamoto, T. Kamiura; H. Miyakoda, Steroid Hormone Profiles of Urban and Tidal Rivers Using LC/MS/MS Equipped with Electrospray Ionization and Atmospheric Pressure Photoionization Sources. Environ. Sci. Technol. 2006, 40 (13), 4132-4137.
    [37] J. Y. Hu, H. F. Zhang, H. Chang, Improved method for analyzing estrogens in water by liquid chromatography-electrospray mass spectrometry. J. Chromatogra. A, 2005, 1070 (1-2), 221-224.
    [38] O. Braga, G. A. Smythe, A. I. Schafer, A. J. Feitz, Steroid estrogens in ocean sediments. Chemsphere, 2005, 61,827-833.
    [39] M. Esperanza, M. T. Suidan, R. Marfil-Vega, C. Gonzalez, G. A. Sorial, P. McCauley, R. Brenner, Fate of hormones in two pilot-scale municipal wastewater treatment plants: Conventional treatment. Chemsphere 2007, 66 1535-1544.
    [40] F X. M. Casey; G. L. Larsen; H. Hakk; J. Simunek, Fate and Transport of 17β-Estradiol in Soil-Water Systems. Environ. Sci. Technol. 2003, 37 (11), 2400-2409.
    [41] F. X. M. Casey; H. Hakk; J. Simunek; G. L. Larsen, Fate and Transport of Testosterone in Agricultural Soils. Environ. Sci. Technol.; 2004, 38 (3), 790-798.
    [42] T. Schicksnus, C. C. Mueller-Goymann, 1713-estradiol solubility in aqueous systems-influence of ionic strength, pH and adsorption to packaging material. Arch. Pharm. Pharm. Med. Chem. 2000, 333, 66-71.
    [43] G. G. Ying, R. S. Kookanaa, Y. J. Ru, Occurrence and fate of hormone steroids in the environment. Environ. Int. 2002, 28 (6) 545-551.
    [44] A. M. Jacobsen, A. Lorenzen, R. Chapman, E. Topp, Persistence of Testosterone and 17β-Estradiol in Soils Receiving Swine Manure or Municipal Biosolids. J Environ. Qual. 2005, 34 (3), 861-871.
    [45] M. D. Jurgens, K. I. E. Holthaus, A. C. Johnson, J. J. L. Smith, M. Hetheridge and R. J. Williams, The Potential For Estradiol And Ethinylestradiol Degradation In English Rivers. Environ. Toxicol. Chem. 2002, 21,480-488.
    [46] R. J. William, M. D. Jurgens, A. C. Johnson, Initial predictions of the concentrations and distribution of 17β-estradiol, oestrone and ethinyl oestradiol in 3 English Rivers. Water Res. 1999, 33, 1663-1671.
    [47] H. Hakk, P. Millner, G. Larsen, Decrease in Water-Soluble 17B-Estradiol and Testosterone in Composted Poultry Manure with Time. J. Environ. Qual. 2005, 34 (3), 943-950.
    [48] Z. S. Fan, F. X. M. Casey, H. Hakk, G. L. Larsen, Persistenceand fate of 17β-estradiol and Testosterone in agricultural soils. Chemsphere 2007, 67, 886-895.
    [49] S. E. Jorgensen, B. Halling-Sorensen, H. Mahler, Handbook of Estimation Methods in Ecotoxicology and Environmental Chemistry. Lewis Publishers, Boca Raton, Florida, 1998.
    [50] K. L. Froese, D. A. Verbrugge, G.. T. Ankley, G. J. Niemi, C. P. Larsen, J. P. Giesy, Bioaccumulation of polychlorinated biphenyls from sediments to aquatic insects and tree swallow eggs and nestings in Saginaw Bay, Michigan, USA. Environ. Toxicol. Chem. 1998, 17, 484-492.
    [51] L. P. Burkhard, Comparison of two models for predicting bioaccumulation of hydrophobic organic chemicals in a great lakes food web. Environ. Toxicol. Chem. 1998, 17, 383-393.
    [52] M. Haitzer, G. Abbt-Braun, W. Traunspurger, C. E. W. Steinberg, Effects of Humic substances of the bioconcentration of polycyclic aromatic hydrocarbons: Correlations with spectroscopic and chemical properties of humic substances. Environ. Toxicol. Chem. 1999, 18, 2782-2788.
    [53] K. M. Lai; M. D. Scrimshaw; Lester, Prediction of the bioaccumulation factors and body burden of natural and synthetic estrogens in aquatic organisms in the river systems. The Science of the Total Environment, 2002, 289, (1-3) 159-168.
    [54] S. A. Snyder; T. L. Keith; D. A. Verbrugge; E. M. Snyder; T. S. Gross; K. Kannan; J. P. Giesy, Analytical Methods for Detection of Selected Estrogenic Compounds in Aqueous Mixtures. Environ. Sci. Technol. 1999, 33 (16), 2814-2820.
    [55] A. C. Belfroid, A. Van der Horst, A. D. Vethaak, A. J. Schafer, G. B. J. Rijs, J. Wegener and W. P. Cofino, Analysis and occurrence of estrogenic hormones and their glucuronides in surface water and waste water in The Netherlands. The Science of The Total Environment, 1999, 225 (1-2), 101-108.
    [56] T. P. Rodgers-Gray; S. Jobling; S. Morris; C. Kelly; S. Kirby; A. Janbakhsh; J. E. Harries; M. J. Waldock; J. P. Sumpter; C. R. Tyler, Long-Term Temporal Changes in the Estrogenic Composition of Treated Sewage Effluent and Its Biological Effects on Fish. Environ. Sci. Technol., 2000, 34 (8), 1521-1528.
    [57] P. Labadie; H. Budzinski, Determination of Steroidal Hormone Profiles along the Jalle d'Eysines River (near Bordeaux, France). Environ. Sei. Technol. 2005, 39 (14), 5113-5120.
    [58] J. Maria, L6pez de Alda, D. Barcel6, Determination of steroid sex hormones and related synthetic compounds considered as endocrine disrupters in water by liquid chromatography-diode array detection-mass spectrometry. J. Chromatogra. A, 2000, 892(1-2) 391-406.
    [59] J. T. Trevors, Sterilization and inhibition of microbial activity in soil. J. Microbiol. Meth., 1996, 26, 53-59.
    [60] N. Cullum, P. Zavitsanos, Determination of steroid Estrogens in River Water, Final Effluents and Crude Sewage by Validated APPI-LC/MS-TOF Method—Application Note. 5989-4858EN, Agilent Technologies, inc., May 15, 2006.
    [61] C. H. Huang, D. L. Sedlak, Analysis Of Estrogenic Hormones In Municipal Wastewater Effluent And Surface Water Using Enzyme-Linked Immunosorbent Assay And Gas Chromatography/Tandem Mass Spectrometry. Environ. Toxicol. Chem., 2001, 20,(1), 133-139.
    [62] Laurence S. Shore, Michael Gurevitz and Mordechai Shemesh, Estrogen as an environmental pollutant. Bulletin of Environmental Contamination and T oxicology., 1993, 51 (3), 325-478.
    [63] L. H. Yang, T. G. Luan, C. Y. Lan, Solid-phase microextraction with on-fiber silylation for simultaneous determinations of endocrine disrupting chemicals and steroid hormones by gas chromatography-mass spectrometry. J. Chromatogr. A 2006, 1104(1-2), 23-32.
    [64] C. Kelly, Analysis of steroids in environmental water samples using solid-phase extraction and ion-trap gas chromatography-mass spectrometry and gas chromatography-tandem mass spectrometry. J. Chromatogr. A 2000, 872 (1-2), 309-314.
    [65] K. Shishida, S. Echigo, K. Kosaka, M. Tabasaki, T. Matsuda, H. Takigami, H. Yamada, Y. Shimizu & S. Matsui (USA, Japan), Evaluation of Advanced Sewage Treatment Processes for Reuse of Wastewater using Bioassays. Environmental Technology, 2000, 21 (5), 553-560.
    [66] A. C. Johnson, A. Belfroid and A. Di Corcia, Estimating steroid oestrogen inputs into activated sludge treatment works and observations on their removal from the effluent. The Science of the Total Environment 2000, 256 (2-3), 163-173.
    [67] A. Lagana, A. Bacaloni, G. Fago, A. Marino, Trace analysis of estrogenic chemicals in sewage effluent using liquid chromatography combined with tandem mass spectrometry. Rapid Communications in Mass Spectrometry, 2000, 14 (6), 401-407.
    [68] H. M. Kuch, K. Ballschmiter, Determination of endogenous and exogenous estrogens in effluents from sewage treatment plants at the ng/L-level. Fresenius J. Anal. Chem. 2000, 366(4), 392-395.
    [69] J. B. Quintana, J. Carpinteiro, I. Rodriguez, R. A. Lorenzo, A. M. Carro and R. Cela, Determination of natural and synthetic estrogens in water by gas chromatography with mass spectrometric detection. J. Chromatogr. A, 2004, 1024 (1-2), 177-185.
    [70] T. Isobe, S. Serizawa, T. Horiguchi, Y. Shibata, S. Managaki, H. Takada, M. Morita, H. Shiraishi, Horizontal distribution of steroid estrogens in surface sediments in Yokyo Bay. Environmental Pollution, 2006, 1-7.
    [71] O. Braga; G. A. Smythe; A. I. Schafer; A. J. Feitz, Fate of Steroid Estrogens in Australian Inland and Coastal Wastewater Treatment Plants. Environ. Sci. Technol. 2005, 39 (9, 3351-3358.
    [72] H. Andersen; H. Siegrist; B. Halling-Sorensen; T. A.Ternes, Fate of Estrogens in a Municipal Sewage Treatment Plant. Environ. Sci. TechnoI. 2003, 37 (18),4021-4026.
    [73] J. Tschmelak, G. Proll, G. Gauglitz, Optical biosensor for pharmaceuticals, antibiotics, hormones, endocrine disrupting chemicals and pesticides in water: Assay optimization process for estrone as example. Talanta, 2005, 65 (2), 313-323.
    [74] M. I. Churchwell, N. C. Twaddle, L. R. Meeker, D. R. Doerge, Improving LC-MS sensitivity through increases in chromatographic performance: Comparisons of UPLC-ES/MS/MS to HPLC-ES/MS/MS. J. Chromatogr. B 2005, 825 (2), 134-143.
    [75] L. Novakowt, L. Matysova, P. Solich, Advantages of application of UPLC in pharmaceutical analysis. Talanta, 2006, 68 (3), 908-918.
    [76] R. Plumb, J. Castro-Perez, J. Granger, I. Beattie, K. Joncour, A. Wright, Ultra-performance liquid chromatography coupled to quadrupole-orthogonal time-of-flight mass spectrometry. Rapid. Commun. Mass Spectrom. 2004, 18, 2331-2337.
    [77] K. A. Johnson, R. Plumb, Investigating the human metabolism of acetaminophen using UPLC and exact mass oa-TOF MS. Journal of Pharmaceutical and Biomedical Analysis, 2005, 39 (3-4), 805-810.
    [78] C. C. Leandro, P. Hancock, R. J. Fussell, B. J. Keely, Ultra-performance liquid chromatography for the determination of pesticide residues in foods by tandem quadrupole mass spectrometry with polarity switching. J. Chromatogra. A, 2007, 1144 (2), 161-169.
    [79] A. Kaufmann, P. Butcher, K. Maden, M. Widmer, Ultra-performance liquid chromatography coupled to time of flight mass spectrometry (UPLC-TOF): A novel tool for multiresidue screening of veterinary drugs in urine. Anal. Chim. Acta, 2007, 586 (1-2), 13-21.
    [80] M. E. Touber, M. C. van Engelen, C. Georgakopoulus, J. A. van Rhijn, M. W. F. Nielen, Multi-detection of corticosteroids in sports doping and veterinary control using high-resolution liquid chromatography/time-of-flight mass spectrometry. Anal. Chim. Acta, 2007, 586 (1-2), 137-146.
    [81] Y. Y. Ma, F. Qin, X. H. Sun, X. M. Lu, F. M. Li, Determination and pharmacokinetic study of amlodipine in human plasma by ultra performance liquid chromatography-electrospray ionization mass spectrometry. Journal of Pharmaceutical and Biomedical Analysis, 2007, 43 (4), 1540-1545.
    [82] Y. P. Ren, Y. Zhang, S. L. Shao, Z. X. Cai, L. Feng, H. F. Pan, Z. G. Wang, Simultaneous determination of multi-component mycotoxin contaminants in foods and feeds by ultra-performance liquid chromatography tandem mass spectrometry. J. Chromatogra. A, 2007, 1143 (1-2), 48-64.
    [83] H. Kawanishi, T. Toyo'oka, K. Ito, M. Maeda, T. Hamada, T. Fukushima, M. Kato, S. Inagaki, Hair analysis of histamine and several metabolites in C3H/HeNCrj mice by ultra performance liquid chromatography with electrospray ionization time-of-flight mass spectrometry (UPLC-ESI-TOF-MS): Influence of hair cycle and age. Cliniea Chimica Acta, 2007, 378 (1-2), 122-127.
    [84] J. Mensch, M. Noppe, J. Adriaensen, A. Melis, C. Mackie, P. Augustijns, M. E Brewster, Novel generic UPLC/MS/MS method for high throughput analysis applied to permeability assessment in early Drug Discovery. J. Chromatogra. B, 2007, 847 (2), 182-187.
    [85] Y. Zhang, J. J. Jiao, Z. X. Cai, Y. Zhang, Y. P. Ren, An improved method validation for rapid determination of acrylamide in foods by ultra-performance liquid chromatography combined with tandem mass spectrometry. J. Chromatogra. A, 2007, 1142 (2), 194-198.
    [86] B. Y. Lu, Y. Zhang, X. Q. Wu, J.Y. Shi, Separation and determination of diversiform phytosterols in food materials using SCE and UPLC-APCI-MS. Anal. Chim. Acta, In Press, Corrected Proof, Available online 4 February 2007.
    [87] J. Olsovska, M. Jelinkowt, P. Man, M. Koberska, J. Janata, M. Flieger, High-throughput quantification of lincomycin traces in fermentation broth of genetically modified Streptomyces spp.: Comparison of ultra-performance liquid chromatography and high-performance liquid chromatography with UV detection. J. Chromatogra. A 2007, 1139 (2), 214-220.
    [88] H. Licea-Perez, S. Wang, C. L. Bowen, E. Yang, A semi-automated 96-well plate method for the simultaneous determination of oral contraceptives concentrations in human plasma using ultra performance liquid chromatography coupled with tandem mass spectrometry. Journal of Chromatography B, In Press, Corrected Proof, Available online 13 January 2007.
    [89] K. Y. Li, Y. G. Zhou, H.Y. Ren, F. Wang, B. K. Zhang, H. D. Li, Ultra-performance liquid chromatography-tandem mass spectrometry for the determination of atypical antipsychotics and some metabolites in in vitro samples. Journal of Chromatography B, In Press, Corrected Proof, Available online 12 January 2007.
    [90] G. F. Wang, Y. S. Hsieh, K. C. Cheng, R. A. Morrison, S. Venkatraman, F. G. Njoroge, L. Heimark, W. A. Korfmacher, Ultra-performance liquid chromatography/tandem mass spectrometric determination of diastereomers of SCH 503034 in monkey plasma. Journal of Chromatography B, In Press, Corrected Proof, Available online 10 January 2007.
    [91] T. Wiesemeier, G. Pohnert, Direct quantification of dimethylsulfonio-propionate (DMSP) in marine micro-and macroalgae using HPLC or UPLC/MS. Journal of Chromatography B, In Press, Corrected Proof, Available online 30 December 2006.
    [92] B. Shao, R. Zhao, J. Meng, Y. Xue, G. H. Wu, J. Y. Hu, X. M. Tu, Simultaneous determination of residual hormonal chemicals in meat, kidney, liver tissues and milk by liquid chromatography-tandem mass spectrometry. Anal. Chim. Acta, 2005, 548(1-2), 41-50.
    [93] S. Rodriguez-Mozaz, J. Maria, L6pez de Alda, D. Barcel6, Monitoring of estrogens, pesticides and bisphenol A in natural waters and drinking water treatment plants by solid-phase extraction-liquid chromatography-mass spectrometry. J. Chromatogr. A, 2004, 1045 (1-2), 85-92.
    [94] Y. D. Guo, R. L. Taylor, R. J. Singh, S. J. Soldin, Simultaneous determination of 12 steroids by isotope dilution liquid chromatography-photospray ionization tandem mass spectrometry. Clinica Chimica Acta, 2006, 372(1-2), 76-82.
    [95] N. H. Yu, E. N. M. Ho, D. K. K. Leung, T. S. M. Wan, Screening of anabolic steroids in horse urine by liquid chromatography-tandem mass spectrometry. Journal of Pharmaceutical and Biomedical Analysis, 2005, 37 (5), 1031-1038.
    [96] R. L. Gomes, E. Avcioglu, M. D. Scrimshaw, J. N. Lester, Steroid-estrogen determination in sediment and sewage sludge: a critique of sample preparation and chromatographic/mass spectrometry considerations, incorporating a case study in method development. Trends in Analytical Chemistry, 2004, 23 (10-11), 737-744.
    [97] H. Noppe, K. Verheyden, W. Gillis, D. Courtheyn, P. Vanthemsche and H.F. De Brabander, Multi-analyte approach for the determination of ng.L~(-1) levels of steroid hormones in unidentified aqueous samples. Anal. Chim. Acta, 2007, 586 (1-2), 22-29.
    [98] M. W. F. Nielen, J. J. P. Lasaroms, M. L. Essers, M. B. Sanders, H. H. Heskamp, T. F. H. Bovee, J. (Hans) van Rhijn, M. J. Groot, The ultimate veal calf reference experiment: Hormone residue analysis data obtained by gas and liquid chromatography tandem mass spectrometry. Anal. Chim. Aeta, 2007, 586 (1-2), 30-34.
    [99] M. Grung, R. Lichtenthaler, M. Abel, K. E. Tollefsen, K. Langford, K. V. Thomas, Effects-directed analysis of organic toxicants in wastewater effluent from Zagreb, Croatia. Chemosphere, 2007, 67 (1), 108-120.
    [100] A. Salvador, C. Moretton, A. Piram, R. Faure, On-line solid-phase extraction with on-support derivatization for high-sensitivity liquid chromatography tandem mass spectrometry of estrogens in influent/effiuent of wastewater treatment plants. J. Chromatogr. A, In Press, Corrected Proof, Available online 21 January 2007.
    [101] L.B. Barber, G. K. Brown, S. D. Zaugg, ACS Syrup Ser (Analysis of Environmental Endocrine Disruptors) 2000, 747, 97-123.
    [102] K. Zhang, Y. G. Zuo, Pitfalls and solution for simultaneous determination of estrone and 17e-ethinylestradiol by gas chromatography-mass spectrometry after derivation with N, O-bis(trimethylsilyl) trifluoroacetamide. Anal. Chim. Acta 2005, 554, 190-196.
    [103] A. Shareef, M. J. Angove, J. D. Wells, Optimization of silylation using N-methyl-N-(trimethylsilyl)-trifluoroacetamide, N, O-bis-(trimethylsilyl)-trifluoroacetamide and N-(tert-butyldimethylsilyl)-N-methyltrifluoro-acetamide for the determination of the estrogens estron and 17a-ethinylestradiol by gas chromatography-mass spectrometry. J. Chromatogr. A, 2006, 1108, 121-128.
    [104] Y. G. Zuo, K. Zhang, Suitability of N, O-bis(trimethylsilyl)-trifluoroacetamide as derivatization reagent for the determination of the estrogens estrone and 17a-ethinylestradiol by gas chromatography-mass spectrometry. J. Chromatogr. A, 2005,1095, 201-202.
    [105] H.G.J. Mol, S. Sunarto, O. M. Steijger, Determination of endocrine disruptors in water after derivatization with N-methyl-N-(tert.-butyl-dimethyltrifluoroacetamide) using gas chromatography with mass spectrometric detection. J. Chromatogr. A, 2000, 879 (1), 97-112.
    [106] R. Jeannot, H. Sabik, E. Sauvard, T. Dagnac, K. Dohrendorf, Determination of endocrine-disrupting compounds in environmental samples using gas and liquid chromatography with mass spectrometry. J. Chromatogr. A, 2002, 974, 143-159.
    [107] M. Pettersson, M. Adolfsson-Eriei, J. Parkkonen, L. Forlin, L. Asplund, Fish bile used to detect estrogenic substances in treated sewage water. Science of the Total Environment. 2006, 366(1), 174-186.
    [108] R. Liu, J. L. Zhou, A. Wilding, Simultaneous determination of endocrine disrupting phenolic compounds and steroids in water by solid-phase extraction-gas chromatography-mass spectrometry. Journal of Chromatogr. A, 2004, 1022, 179-189.
    [109] X. Z Peng, Z. D. Wang, C. Yang, F. R. Chen, B. X. Mai, Simultaneous determination of endocrine-disrupting phenols and steroid estrogens in sediment by gas chromatography-mass spectrometry. Journal of Chromatogr. A, 2006, 1116 (1-2), 51-56.
    [110] L.W. Reiter, C. Derosa, R. J. Kavlock. The US federal framework for research on endocrine disrupters and analysis of research programs supported during fiscal year 1996. Environ Health Perspeet, 1998, 106: 105-113.
    [111] I. Steiner, L. Scharf, F. Fiala, J. Washuttl, Migration of Di(2-Ethylhexyl) Phthalate from PVC Child Article into Saliva and Saliva Simulant. Food Addit. Contam., 1998, 15, 812-820.
    [112] M. Castillo, A. Oubina, D. Bareelo, Carbon Particles in Dated Sediments from Lake Michigan, Green Bay, and Tributaries, Environ. Sci. Technol., 1998, 32, 225-231.
    [113] L.H. Keith, Environmental Endocrine disruptors-A Handbook of Property Data, Wiley-Interscience: New York, 1997.
    [114] S. Amir, M. Hafidi, G. Merlina, H. Hamdi, A. Jouraiphy, M. E. Gharous, J. C. Revel, Fate of phthalic acid esters during composting of both lagooning and activated sludges. Process Biochemistry, 2005, 40, 2183-2190.
    [115] J. Toppari, J.C. Larsen, P. Christiansen, A. Giwercman, P. Grandjean, L.J. uillette, B. Jegou, T.K. Jensen, P. Jouannet, N. Keiding, K. Leffers, J.A. McLachlan, O. Meyer, J. Muller, E. Rajpert De Meyts, T. Scheike, R. Sharpe, J. Sumpter, N.E. Skakkebaek, Male Reproductive Health and Environmental Xenoestrogens. Environ. Health Perspect., 1996, 104, 741-749.
    [116] K. Holadova, J. Hajslova, Comparison of Different Ways of Sample Preparation for the Determination of Phthalic Acid Esters in Water and Plant Matrixes. Int. J. Environ. Anal. Chem., 1995, 59, 43-57.
    [117] A. Yasuhara, H. Shiraishi, M. Nishikawa, T. Yamamoto, T. Uehiro, O. Nakasugi, T. Okumura, K. Kenmotsu, H. Fukui, M. Nagase, Y. Ono, Y. Kawagoshi, K. Baba, Y. Noma, Determination of organic components in leachates from hazardous waste disposal sites in Japan by gas chromatography-mass spectrometry, J. Chromatogr. A, 1997, 774: 321-332.
    [118] S. Jobling, T. Reynolds, R. White, M.G. Parker, J.P. Sumpter, A Variety of Environmentally Persistent Chemicals, Including Some Phthalate Plasticizers, Are Weakly Estrogenic. Environ Health Perspect., 1995, 103, 582-589.
    [119] M. Castillo, A. Oubifia, D. Barcelo, Evaluation of ELISA Kits Followed by Liquid Chromatography-Atmospheric Pressure Chemical Ionization-Mass Spectrometry for the Determination of Organic Pollutants in Industrial Effluents. Environ. Sci. Technol., 1998, 32, 2180-2184.
    [120] S. Jara, C. Lysebo, T. Greinbrokk, E. Lundanes, Determination of Phthalates in Water Samples Using Polystyrene Solid-Phase Extraction and Liquid Chromatography Quiantification. Anal. Chim. Acta, 2000, 407, 165-170.
    [121] Susanne Jonsson, Hans Boren, Analysis of mono-and diesters of o-phthalic acid by solid-phase extractions with polystyrene-divinylbenzene-based polymers, J. Chromatogr. A, 2002, 963: 393-400.
    [122] A. Penalver, E. Borrull, R. M. Marce, Determination of Phthalate esters in Water Samples by solid-phase Microextraction and Gas-Chromatography with Mass Spectrometric Detedtion. J. Chromatogra. A, 2000.872, 191-198.
    [123] A. Penalver, E. Borrull, R. M. Marce, Comparision of Different Fibers for the Solid-Phase Microextaction of Phthalate esters from water. J. Chromatogr. A 2001, 922, 377-340.
    [124] G. Prokupkova, K. Holadova, J. Poustka, J. Hajslova, Devolopment of a Solid-phase Microextraction Method for the Determination of Phthalic Acid Esters in Water. Anal. Chim. Acta, 2002, 457, 211-218.
    [125] M.T. Kelly, M. Larroque, Trace Determination of Diethylphthalate in Aqueous Media by Solid-phase Microextraction-Liquid Chromatography. J. Chromatogr. A, 1999,841,177-182.
    [126] Y. Yuan, C. Liu, C.S. Liao, B.V. Chang, Occurrence and microbial degradation of phthalate esters in Taiwan river sediments. Chemosphere 2002, 49, 1295-1299.
    [127] Casero, D. Sieilia, S. Rubio, D. Perez-Bendito, An Acid-Induced Phase Cloud Point Separation Approach Using Anionic Surfactants for the Extraction and Preconcentration of Organic Compounds. Anal. Chem, 1999, 71, 4519-4526.
    [128] R. Carabias-Martinex, E. Rodriguez-Gonzalo, J. Dominguez-Alvarez, J. Hernandez-Mendez, Cloud Point Extraction as a Preconcentration Step Prior to Capillary Electrophoresis. Anal. Chem, 1999, 71, 2468-2474.
    [129] J.R. Chen, K.C. Teo, Determination of cobalt and nickel in water samples by flame atomic absorption spectrometry after cloud point extraction. Anal. Chim. Acta, 2001, 434, 325-330.
    [130] J.L. Manzoori, G. Karim-Nezhad, Selective cloud point extraction and preconcentration of trace amounts of silver as a dithizone complex prior to flame atomic absorption spectrometric determination. Anal. Chim. Aeta, 2003, 484, 155-161.
    [131] Ch.G. Yuan, Jiang G B, He B et al., Preconcentration and Determination of Tin in Water Samples by Using Cloud Point Extraction and Graphite Furnace Atomic Absorption Spectrometry. Microchim. Acta, 2005, 150, 329-334.
    [132] Fernandez A E, Ferrera Z S, Rodriguez J J S,. Application of cloud-point methodology to the determination of polychlorinated dibenzofurans in sea water by high-performance liquid chromatography. Analyst, 1999, 124, 487-491.
    [133] J. Li, B. Chen, Equilibrium partition of polycyclie aromatic hydrocarbons in a cloud-point extraction process.Journal of Colloid Interface Science 2003, 263,625-632.
    [134] R. Carabias-Martinez, E. Rodriguez-Gonzalo, B. Moreno-Cordero, J. L. Perez-Pavon, C. Garcia-Pinto, E. Fernandez Laespada, Surfactant cloud point extraction and preconcentration of organic compounds prior to chromatography and capillary electrophoresis. J. Chromatogr. A, 2000, 902, 251-265.
    [135] B. Delgado, V. Pino, J. H. Ayala, V. Gonzalez, A. M. Afonso, Nonionic surfactant mixtures: a new cloud-point extraction approach for the determination of PAHs in seawater using HPLC with fluorimetric detection Anal. Chim. Acta, 2004, 518: 165-172.
    [136] V. Pino, J. H. Ayala, A. M. Afonso, V. Gonzalez, Determination of polycyclic aromatic hydrocarbons in seawater by high-performance liquid chromatography with fluorescence detection following micelle-mediated preconcentration. J. Chromatogr. A, 2002, 949, 291-299.
    [137] S.R. Sirimarme, J.R. Barr, D.G. Patterson, L. Ma, Quantification of Polycyclic Aromatic Hydrocarbons and Polychlorinated Dibenzo-p-dioxins in Human Serum by Combined Micelle-Mediated Extraction (Cloud-Point Extraction) and HPLC Anal. Chem, 1996, 68, 1556-1560.
    [138] A. Eiguren-Fernandez, Z. Sosa-Ferrera, J.J.Santana-Rodriguez, Application of cloud-point methodology to the determination of polychlorinated dibenzofurans in sea water by high-performance liquid chromatography. Analyst, 1999, 124, 487-491.
    [139] C. Garcia-Pinto, J.L. Perez-Pav6n, B. Moreno-cordero, Cloud Point Preconcentration and High-Performance Liquid Chromatographic Analysis with Electrochemical Detection Anal. Chem, 1992, 64, 2334-2338.
    [140] T. Saitoh, W.L. Hinze, Concentration of Hydrophobic Organic Compounds and Extraction of Protein Using Alkylammoniosulfate Zwitterionic Surfactant Mediated Phase Separations (Cloud Point Extractions)Anal. Chem, 1991, 63, 2520-2525.
    [141] K.Toerne, R. Rogers, R.V.Wandruszka, Fluctuating Clouding Behavior in Mixed Micellar Solutions Langmuir, 2000, 16, 2141-2144.
    [142] F. Shemirani, M. Baghdadi, M. Ramezani, M.R. Jamali, Determination of ultra trace amounts of bismuth in biological and water samples by electrothermal atomic absorption spectrometry (ET-AAS) after cloud point extraction Anal. Chim. Acta, 2005, 534, 163-169.
    [143] R. Carabias-Martynez, E. Rodryguez-Gonzalo, B. Moreno-Cordero, J.L. rez-Pavon,C. Garcya-Pinto, E. Fernandez Laespada, Surfactant cloud point extraction and preconcentration of organic compounds prior to chromatography and capillary electrophoresis J. Chromatogra. A, 2000, 902, 251-265.
    [144] M.K. Purkait, S.S. Vijay, S.DasGupta, S. De, Separation of congo red by surfactant mediated cloud point extraction Dyes and Pigments, 2004, 63, 151-159.
    [145] R.P. Frankewich, W.L. Hinze, Evaluation and Optimization of the Factors Affecting Nonionic Surfactant-Mediated Phase Separations. Anal. Chem, 1994, 66 (7), 944-954.
    [146] U.D.Neue, J. R. Mazzeo, A theoretical study of the optimization of gradients at elevated temperature, J. Sep. Sci. 2002, 24 (12), 921-929.
    [147] I.D. Wilson, J. K. Nicholson, J. Castro-Perez, J. H. Granger, K. A. Johnson, B. W. Smith, R.S. Plumb, High Resolution "Ultra Performance" Liquid Chromatography Coupled to oa-TOF Mass Spectrometry as as a Tool for Differential Metabolic Pathway Profiling in Functional Genomic Studies. J. Proteome Res. 2005, 4, 591-598.
    [148] H. M. Coleman, M. I. AbduUah, B. R. Eggins, F. L. Palmer, Photocatalytic degradation of 17 β-oestradiol, oestriol and 17α-ethynyloestradiol in water monitored using fluorescence spectroscopy, Appl. Catal. B-Environ., 2005, 55, 23-30.
    [149] X.H. Feng, S. M. Ding, J. F. Tu, F. Wu, N.S. Deng, Degradation of estrone in aqueous solution by photo-Fenton system, Sci. Total Environ., 2005, 345 (1-3), 229-237.
    [150] U. D. Neue. HPLC Columns: Theory, Technology and Practice. Wiley-VVCH: New York, 1997.
    [151] Y. G. Zuo. K. Zhang, Y. W. Deng, Occurrence and photochemical degradation of 17α-ethinylestradiol in Acushnet River Estuary, Chemosphere, 2006, 63 (9), 1583-1590.
    [152] Zhiqiang Yu, Baohua Xiao, Weilin Huang, and Ping'an Peng, Sorption of steroid estrogens to soils and sediments. Environ. Toxicol. Chem., 2004, 23(3)531-539.
    [153] C.W. Thorstensen, O. Lode, A. L. Christiansen, Development of a Solid-Phase Extraction Method for Phenoxy Acids and Bentazone in Water and Comparision to a liquid-liquid Extraction Method.J. Agric. Food Chem., 2000, 48, 5829-5833.
    [154] Dennis R. Rooyakkers, Hans M. H. van Eijk and Nicolaas E. R Deutz, Simple and sensitive multi-sugar-probe gut permeability test by high-performance liquid chromatography with fluorescence labeling. J. Chromatogr. A, 1996, 726(1-2), 99-105.
    [155] T. Benijts, R. Dams, W. Gunther, W. Lambert and A. Leenheer, Analysis of estrogenic contaminations in river water using liquid chromatography coupled to ion trap based mass spectrometry.Rapid commun. Mass Spectrom. 2002, 16(14), 1358-1364.
    [156] W. Korner; U. Bolz; W. Sussmuth; G. Hiller; W. Schuller; V. Hanf; H. Hagenmaier, Input/output balance of estrogenic active compounds in a major municipal sewage plant in Germany. Chemosphere, 2000, 24, 5059-5066.
    [157] K. Thomas; M. R. Hurst; P. Matthiessen; M. J.Waldock, Characterization of estrogenic compounds in water samples collected from united kingdom estuaries. Environ. Toxicol. Chem. 2001, 20, 2165-2170.
    [158] A. Gentili; D. Perret; S. Marchese; R. Mastropasqua; R. Curini, A. Di Corcia, Analysis of free estrogens and their conjugates in sewage and river waters by solid-phase extraction then liquid chromatography-electrospray-tandem mass spectrometry. Chromatographia., 2002, 56, 25-32.
    [159] P. L. Ferguson; C. R. Iden; A. E. McElroy; B. J. Brownawell, Determination of steroid estrogens in wastewater by immunoaffinity extraction coupled with HPLC-electrospray-MS. Anal. Chem. 2001, 73, 3890-3895.
    [160] G. D'Ancenzo; A. Di Corcia; A. Gentili; R. Mancini; R. Mastropasqua, M. Nazzari,; R. Samperi, Fate of natural strogen conjugates in municipal sewage transport and treatment facilities. Sci. Total Environ. 2002, 302, 199-209.
    [161] S. Rodriguez-Mozaz; M. J. Lo'pez de Alda; D. Barcelo', Picogram per liter level determination of estrogens in natural waters and waterworks by a fully automated on-line solid-phase extractionliquid chromatography-electrospray tandem mass spectrometry method. Anal. Chem. 2004, 76, 6998-7006.
    [162] H.M. Kuch; K. Ballschmiter, Detection of endocrine-disrupting phenolic compounds and estrogens in surface and drinking water by HRGC-(NCI)-MS in the picogram per liter range. Environ. Sci. Technol. 2001, 35, 3201-3206.
    [163] V. Ingrand; G. Herry; J. Beausse; M. R. de Roubin, Analysis of steroid hormones in effluents of wastewater treatment plants by liquid chromatography-tandem mass spectrometry. J. Chromatogr. A 2003, 1020, 99-104.
    [164] S. Nakamura, T. H. Sian, S. Daishima, Determination of estrogens in river water by gas chromatography-negative-ion chemical-ionization mass spectrometry, J. Chromatogr. A, 919 (2001) 275-282.
    [165] B.L.L. Tan, D. W, Hawker, J. F. Muller, F. D.L. Leusch, Louis A. Tremblay, Heather F. Chapman, Comprehensive study of endocrine disrupting compounds using grab and passive sampling at selected wastewater treatment plants in South East Queensland, Australia. Environment International ⅹⅹ (2007) ⅹⅹⅹ-ⅹⅹⅹ.
    [166] J. Olejniczak, J. Staniewski, Enrichment of phenols from water with in-situ derivatization by in-tube solid phase microextraetion-solvent desorption prior to off-line gas chromatographic determination with large-volume injection. Anal. Chim. Acta, 2007, 588 (1), 64-72.
    [167] M. Schellin, P. Popp, Application of a polysiloxane-based extraction method combined with large volume injection-gas chromatography-mass spectrometry of organic compounds in water samples. J. Chromatogra. A, In Press, Corrected Proof, Available online 30 January 2007.
    [168] V. Yusa, G. Quintas, O. Pardo, A. Pastor and M. de Ia Guardia, Determination of PAHs in airborne particles by accelerated solvent extraction and large-volume injection-gas chromatography-mass spectrometry. Talanta, 2006, 69 (4), 807-815.
    [169] L. F. Zhang, R. K. Hu, Z. G. Yang, Routine analysis of off-flavor compounds in water at sub-part-per-trillion level by large-volume injection GC/MS with programmable temperature vaporizing inlet. Water Research, 2006, 40 (4), 699-709.
    [170] V. Yusa, O. Pardo, A. Pastor and M. de la Guardia, Optimization of a microwave-assisted extraction large-volume injection and gas chromatography-ion trap mass spectrometry procedure for the determination of polybrominated diphenyl ethers, polybrominated biphenyls and polychlorinated naphthalenes in sediments. Anal. Chim. Acta, 2006, 557 (1-2), 304-313.
    [171] E. Korenkova, E. Matisova, J. Slobodnik, Application of large volume injection GC-MS to analysis of organic compounds in the extracts and leachates of municipal solid waste incineration fly ash. Waste Management, 2006, 26 (9), 1005-1016.
    [172] S. Insa, E. Antico and V. Ferreira, Highly selective solid-phase extraction and large volume injection for the robust gas chromatography-mass spectrometric analysis of TCA and TBA in wines. J. Chromatogr. A, 2005, 1089, (1-2), 235-242.
    [173] M. Sehellin, P. Popp, Membrane-assisted solvent extraction of seven phenols combined with large volume injection-gas chromatography-mass spectrometric detection. J. Chromatogra. A, 2005, 1072 (1), 37-43.
    [174] E. Maria Kristenson, Silvia Angioi, Rene J. J. Vreuls, Maria Carla Gennaro and Udo A. Th. Brinkrnan, Miniaturised pressurised liquid extraction of chloroanilines from soil with subsequent analysis by large-volume injection-gas chromatography-mass spectrometry. J. Chromatogr. A, 2004, 1058 (1-2), 243-249.
    [175] 刘玲.程序升温汽化大体积进样GC/MS分析痕量氯霉素.分析仪器,2005,16—19。
    [176] Neil C,Pete S.采用大气压电喷雾(API-ESI)质谱和液体样品直接大体积进样技术检测饮用水和地下水中的苯基脲类和三嗪类除草剂。环境化学,2005,24,223—226。
    [177] 姜俊,郝苗,佟克兴,郭宏艳。大体积进样气相色谱法测定空气中的痕量苯。化学分析计量,2004,13,42—43。
    [178] 廖华勇,吴雪梅,曾红惠,徐碧珠,麦伯成。大体积进样气质联用法同时检测毒鼠强和氟乙酰胺。色谱,2003,21,414—417。
    Bai D S, Li J L, Chen S B et al., 2001. A Novel Cloud-Point Extraction Process for Preconcentrating Selected Polycyclic Aromatic Hydrocarbons in Aqueous Solution[J]. Environ. Sci. Technol, 35: 3936-3940.
    Carabias-Martinez R, Rodriguez-Gonzalo E., Dominguez-Alvarez J et al.,1999. Cloud Point Extraction as a Preconcentration Step Prior to Capillary Electrophoresis[J]. Anal. Chem, 71: 2468-2474.
    Carabias-Martmez R, Rodriguez-Gonzalo E, Moreno-Cordero B et al, 2000. Surfactant cloud point extraction and preconcentration Of organic compounds prior to chromatography and capillary electrophoresis[J] J. Chromatogra. A, 902: 251-265.
    Casero I, Sicilia D, Rubio Set al., 1999. An Acid-Induced Phase Cloud Point Separation Approach Using Anionic Surfactants for the Extraction and Preconeentration of Organic Compounds[J]. Anal. Chem, 71: 4519-4526.
    Chen J R, Teo K C, 2001. Determination of cobalt and nickel in water samples by flame atomic absorption spectrometry after cloud point extraction[J]. Anal. Chim. Acta, 434: 325-330.
    Collen A, Persson J, Linder M et al., 2002. A novel two-step extraction method with detergent/polymer systems for primary recovery of the fusion protein endoglucanase Ⅰ-hydrophobin Ⅰ [J]. Biochim. Biophys. Acta, 1569:139-150
    Delgado B, Pino V, Ayala J H, 2004. Nonionic surfactant mixtures: a new cloud-point extraction approach for the determination of PAHs in seawater using HPLC with fluorimetric detection[J]. Analy. Chim. Acta 518:165-172.
    Fernandez A E, Ferrera Z S, Rodriguez J J S, 1999. Application of cloud-point methodology to the determination of polychlorinated dibenzofurans in sea water by high-performance liquid chromatography[J]. Analyst, 124: 487-491.
    Li J L, Chen B H, 2003. Equilibrium partition of polycyclic aromatic hydrocarbons in a cloud-point extraction process[J]. J.Colloid. Interf. Sci, 263:625-632.
    Li X J, Zeng Z R, Chen Yet al., 2004. Determination of phthalate acid esters plasticizers in plastic by ultrasonic solvent extraction combined with solid-phase microextraction using calix[4]arene fiber[J]. Talanta 63: 1013-1019.
    Manzoori J L, Karim-Nezhad G, 1998. Determination of polychlorinated biphenyls by liquid chromatography following cloud-point extraction [J]. Analy. Chim. Acta, 358: 145-155.
    Manzoori J L, Karim-Nezhad G, 2003. Selective cloud point extraction and preconcentration of trace amounts of silver as a dithizone complex prior to flame atomic absorption spectrometric determination[J]. Anal. Chim. Acta, 484: 155-161.
    Pino V, Ayala J H, Afonso A M et al., 2002. Determination of polycyclic aromatic hydrocarbons in seawater by high-performance liquid chromatography with fluorescence detection following micelle-mediated preconcentration[J]. J. Chromatogra. A, 949: 291-299.
    Pinto C G, Luis J, Pavon Pet al, 1992. Cloud Point Preconcentration and High-Performance Liquid Chromatographic Analysis with Electrochemical Detection[J]. Anal. Chem, 64:2334-2338.
    Polo M, Llompart M, Garcia-Jares C et al., 2005. Multivariate optimization of a solid-phase microextraction method for the analysis of phthalate esters in environmental waters[J]. J. Chromatogra. A, 1072: 63-72.
    Prokupkova G, Holadova K, Poustka Jet al., 2002. Development of a solid-phase microextraction method for the determination of phthalic acid esters in water[J]. Anal. Chim. Acta, 457:211-223.
    Purkait M K, DasGupta S S, De S, 2004. Separation of congo red by surfactant mediated cloud point extraction[J]. Dyes and Pigments 63:151-159.
    Raymond P, Frankewlcht, Hinze W L, 1994, Evaluation and Optimization of the Factors Affecting Nonionic Surfactant-Mediated Phase Separations[J]. Anal. Chem, 66: 944-954.
    Rodenbrock A, SelberK, Egmond M R et al., 2000. Extraction of peptide tagged cutinase in detergent-based aqueous two-phase systems[J]. Bioseparation, 9: 269-276.
    Saitoh T, Hime W L, 1991. Concentration of Hydrophobic Organic Compounds and Extraction of Protein Using Alkylammoniosulfate Zwitterionic Surfactant Mediated Phase Separations (Cloud Point Extractions)[J]. Anal Chem., 63:2520-2525
    Saitoh T, Matsushima S, Hiraide M, 2004. Aerosol-OT-γ-alumina admicelles for the concentration of hydrophobic organic compounds in water[J]. J. Chromatogra. A, 1040: 185-191.
    Shemirani F, Baghdadi M, Ramezani M et al., 2005. Determination of ultra trace amounts of bismuth in biological and water samples by electrothermal atomic absorption spectrometry (ET-AAS) after cloud point extraction[J]. Analy. Chim. Acta 534:163-169
    Sirimanne S R, Barr J R, Patterson D G, 1996. Quantification of Polycyclic Aromatic Hydrocarbons and Polychlorinated Dibenzo-p-dioxins in Human Serum by Combined Micelle-Mediated Extraction (Cloud-Point Extraction) and HPLC[J]. Anal. Chem, 68: 1556-1560.
    Toerne K, Rogers R, Wandruszka R, 2000. Fluctuating Clouding Behavior in Mixed Micellar Solutions[J]. Langmuir 16:2141-2144.
    Wezel A P, Vlaardingen P, Posthumus R et al., 2000. Environmental Risk Limits for Two Phthalates, with Special Emphasis on Endocrine Disruptive Properties[J]. Ecotoxicol. Environ. Saf, 46: 305-321.
    Yuan C G, Jiang G B, He B et al., 2005. Preconcentration and Determination of Tin in Water Samples by Using Cloud Point Extraction and Graphite Furnace Atomic Absorption Spectrometry[J]. Microchim. Acta, 150: 329-334.
    Yuan S Y, Liu C, Liao C S et al.,2002. Occurrence and microbial degradation of phthalate esters in Taiwan river sediments[J]. Chemosphere 49: 1295-1299.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700