用户名: 密码: 验证码:
基于地脉动的近地表三维速度结构探测和建模成像
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
场地条件对地震动和震害有十分显著的影响,相关研究一直是工程地震和地震学领域的重要内容。地震动研究中的众多疑难问题归根结底是由于对场地条件缺乏了解造成的。利用地脉动观测推断工程场地近地表三维速度结构,会为地球科学这一分支的发展提供有力的技术手段。本文利用地脉动方法进行场地近地表三维速度结构探测与建模成像研究,主要取得了如下成果。
     1.发展了一套适用于不同工况下的利用瑞利波频散曲线推算剪切波速度结构的免疫启发遗传反演策略,以浮点数编码、轮盘赌选择、实数均匀交换与变异算子相互匹配为基本遗传反演框架,以免疫启发为局部搜索强化策略,免重复计算为加速策略,多次运行,经模拟退火算法局部化后取最优为最终结果。
     借助虚拟反演思路,通过对各种遗传算子和编码方式不同匹配方式的比较研究,指出对于频散曲线反演浮点数编码与轮盘赌选择的匹配方式离线性能最好,提出利用浮点数编码、轮盘赌选择、浮点数均匀交换与变异算子匹配组成基本遗传算法框架。
     本文算法在基本遗传框架基础上施加了免疫启发策略和免重复计算加速策略。前者充分利用最佳个体的信息加速进化进程,通过对每代的最佳个体施加一服从标准正态分布的随机数来加强对邻近区域的局部搜索,同时通过标准差的调整也兼顾了对邻近区域以外区域的搜索,将局部搜索和全局搜索有机地结合起来,最大限度地降低了对遗传算法自身进化进程的干扰;通过施加免重复计算策略,大大减少了正演计算次数,节约了计算成本,提高了反演效率。
     通过对复杂工况的分析,指出了等厚薄层策略的不足,设计了固定层数、以土层厚度和波速为待反演参数的策略。同时,建议了多次运行,对每次运行结果继续施加模拟退火算法使其至少达到局部最优,最后取最优解的作法,避免了多次平均法的缺陷,提高了反演结果的稳定性和精度,降低了非唯一性。
     2.提出了一种多个场地联合、地脉动台阵方法和单点谱比法联合的区域速度结构探测方法,设计了多个子群体同步独立进化,定时交换进化成果的伪并行遗传反演策略。
     针对区域近地表三维速度结构的探测,提出了地脉动联合反演方法。联合反演包含多场地的联合、地脉动台阵方法与单点谱比法的联合。多场地联合反演,假设所有场地相应土层具有相同的剪切波速,考虑了各场地土层结构的共性和生成上的联系,同时减弱了单个场地观测、频散曲线提取和反演等误差的影响;各土层的剪切波速和在每个场地中的厚度通过台阵方法和单点谱比法联合反演获得,充分利用单点谱比的基阶频率信息与覆盖层厚度的良好对应关系,弥补了台阵方法对基岩深度不敏感的弱点,很好地反映了每个场地的自身特殊性。
     联合反演中利用了已达成共识的基阶卓越周期,比已有研究中采用有争议的瑞利波椭圆率要更为合理。
     针对联合反演中,反演参数大幅增加,反演效率降低和多解可能性增加等问题,设计了伪并行遗传反演方法,采取多个子群体同步进化,运行参数各不相同,对解空间“探测”和“开采”各有侧重,充分保持了种群的多样性,有效降低了早熟现象的发生。同时,子群体相互之间还定时交换最新进化成果,提高了反演效率。
     3.建立了一种根据分布稀疏且不均匀的探测数据进行区域场地近地表三维速度结构成像的双调和格林张力样条函数方法和克里金方法相结合的两步空间预测方法,根据地脉动探测数据实现了唐山及周边地区近地表三维速度结构成像。
     本文发展了两步空间预测方法。首先,固定各土层的平均波速,利用双调和格林函数作为样条函数进行研究区域各土层间界面的空间预测,保证界面的相对光滑性;提出了一种基于地脉动单点谱比法的张力系数确定方法,在充分利用地脉动单点谱比信息的同时避免了张力系数取值的随意性。第二步,利用克里金方法深刻发掘速度结构作为区域化变量的变异本质,充分考虑结构特性,通过高精度的空间外推和预测,很好地模拟了界面间速度结构的空间连续分布格局,最终形成空间二维、三维体精细结构模型。这种两步空间预测方法,充分考虑了场地速度结构自身区域化变量特点和地脉动探测数据相对稀疏和分布不均匀的特点,除用于地脉动探测成果外,还可以方便地吸纳其它各种方法速度结构探测的成果。
     4.通过参加ESG2006盲比测验、唐山26个联合观测场地的数据分析,与国际领先的地脉动和表面波谱分析方法的比较验证,评价了本文发展的地脉动分析方法的测试精度,通过对结果的分析,得出诸多有益结论和认识。作为一种在实践中发展起来的方法,在实用中检验是至关重要的。通过在唐山26个场地与表面波谱分析方法的国际领先水平比较和参加ESG2006组织的盲比测验,全面地检验了本文整套方法的精度。结果表明,不论人工合成记录还是实际观测记录,不论是速度还是加速度记录,本文方法得到的场地瑞利波频散曲线,均能够为后续反演研究提供可靠的目标曲线;可以根据仪器实际情况自由选择观测加速度或速度。人工合成数据分析中,有两例频散曲线受到了高阶振型影响,在实际观测数据中影响不明显。通过对前人结论的分析,结合唐山26个场地和ESG2006盲比测验结果,提出空间自相关方法的可探测波长范围为Rm in <λ< 4Rmax,为观测台阵的设计提供了指导依据。反演的速度结构可以达到与目前工程勘察中广泛应用的表面波谱分析方法的国际领先水平相同的精度,且在探测深度上有优势。
     总之,本文从频散曲线提取、反演策略和三维速度结构成像等三方面入手,先分头研究,再整合提高,发展了一套完整的场地近地表三维速度结构的地脉动探测和成像方法。
Site condition governed distribution of strong ground motion and earthquake damage significantly. The studies on this issue have been important in the areas of engineering seismology and seismology for decades. Many problems on ground motion are associated with in the lack of site condition information of the observation stations. To detect 3D subsurface Vs structure of engineering site by observing microtremors, must be a powerful tool for development in this subject of Earth Science. In this thesis, the exploration and imaging of the 3D subsurface Vs structure by means of microtremor approaches are studied. The main achievements are summarized as follow.
     1. An immune-heuristic genetic inverse strategy for deducing Vs structure from the dispersion curves of Rayleigh wave is developed, which combines float coding with roulette selection, arithmetical uniform crossover and mutation into a basic genetic inversion frame, adds the immune heuristic method as local maximum searching scheme and adopts no-repeating forward calculation as speedup scheme, and determines the final structure from the best one of the local optimum by conducting Simulation Annealing algorithm to the result of each individual run. Various combinations of genetic operator and codings are examined by the virtual inversion, as the result it is pointed out that the offline capability is best in dispersion curves inversion by combining float coding with roulette selection. It’s suggested to integrate the above two with arithmetical uniform crossover and mutation into a basic genetic inversion frame.
     In this inversion strategy, the immune heuristic method and the no-repeating forward calculation method are added to the above basic frame. The immune heuristic method speeds up the evolution by adopting the best individual’s information, enhances the local search in its neighboring space by adding one random number with normal distribution, while giving attention to the search in other areas else by rectifying the distribution deviation. The local search and global search are linked effectively, the disturbance to evolution of the genetic algorithm is minimized. The times of forward caculation are reduced greatly, the calculating cost is saved and the evolution efficiency is increased, from no-repeating forward calculation.
     According to simulation results for complex soil layered condition, the deficiency in assumption of equal small thickness layers in inversion is pointed out, and the scheme to assume the number of layers and take the Vs and thickness of each layer as parameters to be inversed is proposed. The final result is determined from the best of the local optimum by conducting Simulation Annealing algorithm to the result of each individual run, is proposed. The shortage of averaging the results of all individual runs is avoided. The stability and precision of inversion is increased and the non-uniqueness is reduced.
     2. An exploration approach for regional Vs structure is developed, by jointly inversion of multiple sites and of microtremors array method with H/V method. A pseudo-Parallel Genetic inversion strategy is designed, in which sub-populations with different running parameters are evolved simultaneously and results in evolution are exchanged timely. A jointly microtremors exploration approach for regional Vs structure is developed. The joint inversion includes the joint of multiple sites and the joint of the microtremors array method and H/V method. The Vs of each soil layer keeps the same at the all sites, to consider the commonness of the soil structure and the depositing connection in the region, and the influence of the errors in observation and in dispersion curves extraction and inversion in individual site can be trailed off. The Vs of each layer in the region and the thicknesses of soil layers in each site are inversed jointly by combination of the microtremor array method and H/V method. By this way, the excellent correlation between the fundamental frequency of microtremors H/V and the thickness of sediment is fully exerted to make up the shortage in array method which is not sensitive with the depth of the buried rock surface, and the speciality of Vs structure at each site is well described. In the inversion procedure, H/V fundamental frequency, which is commonly recognized as an index of soil depth, rather than the ellipticity of Rayleigh wave which remains in dispute, is adopted as the target reasonably.
     A pseudo-Parallel Genetic algorithm is designed, against the number of parameters to be determined increasing greatly and the inversion efficiency reducing and the possibility of non-unique increasing, in the inversion. In the pseudo-Parallel Genetic algorithm, sub-populations are evolved simultaneously with different running parameters to emphasizing respectively on‘exploration’or‘exploitation’. The diversity of the population is holding while the premature is avoided. The inversion efficiency is improved, by exchanging results in evolution timely.
     3. A two–step approach for 3D Vs structure imaging from sparsely and non-uniformly distributed data by means of integrating the interpolation method of biharmonic Green function as spline in tension with Kriging method, is established. 3D subsurface Vs structure in Tangshan and surrounding region is imaged by microtremors survey data.
     A two-step space prediction approach is developed in the dissertation. Firstly the average Vs of each layer are fixed, the interfaces between each two soils layers are predicted by the interpolation method of biharmonic Green function as spline in tension, to keep soil interfaces varying smoothly in space. Furthermore, a method to determine tension coefficient is proposed based on microtremor H/V method, which makes most use of H/V information and avoids the determination of the tension coefficient at will.
     Secondly, the variance essence of the Vs structure as a regional variable is deeply excavated by Kriging method and its structural characteristic is taken into account. The spatial successive distribution of the Vs structure between soil interfaces is simulated by high precision space extrapolation and prediction, and finally the detailed 2D or 3D model is constructed.
     The two-step space prediction approach describes the characteristic of Vs structure as a regional variable from the sparsely and non-uniformly distributed microtremors data. Obviously, it also can easily make good use of the other exploration method.
     4. The microtremor method proposed in this dissertation is validated by comparing with the international advanced microtremor methods and SASW methods via ESG2006 Noise Blind Test and results of microtremors observations at 26 sites in Tangshan region. Some understandings and conclusions crucial for guiding microtremors array observation are also drawn.
     As an exploration method developed in practice, it is necessary to be validated in test. The method presented in the paper is tested with results from the international advanced approach of SASW at 26 sites in Tangshan region and ESG2006 Noise Blind Test. The results show that the method obtains reliable results either from artificial records or in-situ observation records in acceleration or velocity . Either of them can be chosen in observation contingent on the capability of instruments. Although high mode of dispersion curves are observed in 2 cases in artificial records analysis, but in microtremors records observed in-situ it is not notable. Based on analysis of the former researchers’conclusion and the above results, the reliable wave length range of SPAC is proposed as Rm in <λ< 4Rmaxto instruct microtremor array design. The Vs structure inverted may reach deeper with the same precision as the international advanced approach of SASW, well applied in geotechnical exploration.
     In conclusions, an integrated microtremors method to explore and image 3D subsurface Vs structure is developed in this dissertation. The dispersion curve extraction, inversion strategy and 3D structure imaging are studied separately, then integrated and improved.
引文
[1] 场地微振动测量技术规程,中国工程建设标准化协会标准,建设部综合勘察研究院,1995.
    [2] 陈颙,李丽,地震科学的几个发展趋势,国际地震动态,01 期,2003.
    [3] 程红杰,胡祥云,田米玛,龚强,地震数据网格化方法研究,工程地球物理学报,3(1),28-32,2006.
    [4] 崔建文,利用面波资料反演波速剖面的全局优化方法,中国地震局工程力学研究所博士学位论文,1998.
    [5] 崔建文,一种改进的全局优化算法及其在面波频散曲线反演中的应用,地球物理学报,47(3),2004.
    [6] 邓曙光,李婉,曲线光滑的张力样条插值法 VC 实现,工程地球物理学报,2(5),387-390,2005.
    [7] 地基动力特性测试规范(GB/T 50269-97),中国计划出版社,1998.
    [8] 杜修力、曾迪,一种高效的数值优化方法:演化——单纯形法,新世纪地震工程与防震减灾,地震出版社,2002.
    [9] 多通道大容量同步数据采集仪硬件使用手册,哈尔滨北奥振动技术有限责任公司,2003(内部).
    [10] 凡友华,层状介质中瑞利波频散曲线的正反演研究,哈尔滨工业大学博士学位论文,2001.
    [11] 方鸿琪、王锺琦等,唐山强震区地震工程地质研究,建筑科学研究报告,中国建筑科学研究院,1981
    [12] 管宇、徐宝文,基于模式迁移策略的并行遗传算法,计算机学报,26(3),2003.
    [13] 郭良辉,孟小红,郭志宏,位场数据网格化的反插值法,地球物理学报,49(4):1183-1190,2006.
    [14] 韩炜,一种全局—局部优化算法及其在桩基承载力反演中的应用,中国地震局工程力学研究所博士学位论文,2000
    [15] 胡家富,段永康,影响面波勘探精度的因素探讨,地震研究,23 (3) ,2000.
    [16] 江瑞、罗予频等,一种基于种群熵估计的自适应遗传算法,42(3),358-361,2002.
    [17] 金 聪,启发式遗传算法及其应用,数值计算与计算机应用,1,2003.
    [18] 敬荣中,鲍光淑,陈绍裘,地球物理联合反演研究综述,地球物理学进展,第 18卷第 3 期,2003.
    [19] 李建军,刘鸿福,应用瞬态瑞利波技术跟踪探测煤层夹矸的变化,太原理工大学学报,Vol.35(1),2004.
    [20] 李小军,工程场地地震安全性评价工作回顾与思考,新世纪地震工程与防震减灾,地震出版社,2002.
    [21] 李亦纲,曲国胜,陈建强,城市钻孔数据地下三维地质建模软件的实现,地质通报,24(5),470-475,2005.
    [22] 刘恢先,唐山大地震震害,地震出版社,1985
    [23] 邱颖,任青文,瞬态瑞利波勘探技术及其应用述评,水利水电科技进展,第 24 卷第3 期,2004.
    [24] 师黎静,利用地脉动台阵观测反演工程场地剪切波速结构,中国地震局工程力学研究所硕士论文,2002
    [25] 师黎静,陶夏新.利用竖向地脉动台阵记录反演场地浅层速度结构. 现代地震工程进展论文集. 东南大学出版社. 获恢先地震工程基金会第六届全国地震工程会议优秀论文三等奖),2002
    [26] 师黎静,陶夏新等,场地瑞利波频散特性测试方法研究,地震工程与工程振动,25卷 6 期,24-29,2005
    [27] 师黎静,陶夏新等,地脉动台阵方法的有效性分析,岩石力学与工程学报, 25 卷8 期,1683-1690,2006.
    [28] 宋宪海,肖柏勋,用等厚薄层权重自适应迭代阻尼最小二乘法反演瑞利波频散曲线,物探与化探,27 卷第 3 期,2003
    [29] 陶夏新, 师黎静等,中日地脉动台阵联合观测,世界地震工程,18 卷 2 期,24-31,2002.
    [30] 陶夏新,师黎静.利用地脉动台阵观测推断场地速度结构的虚拟反演. 《新世纪地震工程与防震减灾》. 地震出版社,443-452,2002.
    [31] 陶夏新、刘曾武、郭明珠、师黎静、董连成.工程场地条件评定中的地脉动研究,地震工程与工程振动,21 卷 4 期,18-23,2001.
    [32] 王 凌,智能优化算法及其应用,清华大学出版社、施普林格出版社,2001.
    [33] 王家行,胡振荣,DLS 型高精度多功能拾振器的设计与应用,地震工程与工程振动,25 卷 6 期,194-197, 2005.
    [34] 王延坤,刘江平,王万合,甘文兵,对缺失频段的瑞雷波频散曲线反演的误差分析,工程地球物理学报,3(1),38-44,2006.
    [35] 肖柏勋,高模式瑞雷面波及其正反演研究,中南大学博士学位论文,2000.
    [36] 许建聪,简文彬,地脉动在福州市区地基土层场地评价中的应用,岩石力学与工程学报,23(17): 3014-3020,2004.
    [37] 杨晓春、李小凡、张美根,地震波反演方法研究的某些进展及其数学基础,地球物理学进展,第 16 卷第 4 期,2001.
    [38] 杨学林,吴世明,周亚刚.利用短周期地脉动推断深层地基 S 波速度.振动工程学报, 16(4),2000.
    [39] 岳文泽, 徐建华, 徐丽华,基于地统计方法的气候要素空间插值研究, 高原气象,24(6),974-980,2005.
    [40] 张碧星,鲁来玉,鲍光淑,瑞利波勘探中“之”字形频散曲线研究,地球物理学报,Vol.45(2),2002.
    [41] 张新兵, 王家林, 吴健生,混合最优化算法在地球物理学中的应用现状与前景,地球物理学进展,第 18 卷第 2 期,(218-223),2003.
    [42] 赵明旺, 基于牛顿法和遗传算法求解非线性方程组的混合计算智能方法, 小型微型计算机系统,18(11),13-18,1997.
    [43] 赵明旺, 基于遗传算法和最速下降法的函数优化混合数值算法,系统工程理论与实践,7,59-64,1999.
    [44] 中国地震活动断层探测技术系统技术规程,JSGC-04,中国地震局,2005.
    [45] 周明、孙树栋等,遗传算法原理及应用,国防工业出版社,1999.
    [46] 周远晖、陆玉昌、石纯一,基于克服过早收敛的自适应并行遗传算法,清华大学学报(自然科学版),38(3),1998.
    [47] A. Panou, C. Cornou, N. Theodulidis, P. Hatzidimitriou, P.-Y. Bard, and C.B. Papazachos, Modelling of ambient noise horizontal-to-vertical spectral ratio in laterally varying structures: the case of the city of Thessaloniki (Northern Greece). XXIXth European Seismological Commission, Session F3, September 2004.
    [48] A. Panou, N. Theodulidis, P. Hatzidimitriou, K.Stylianidis, and C.B. Papazachos, Ambient noise horizontal-to-vertical spectral ratio in site effects estimation and correlation with seismic damage distribution in urban environment:the case of the city of Thessaloniki (Northern Greece). Soil Dynamic and earthquake Engineering,Vol.25,161-274,2005.
    [49] Abdolhossein FALLAHI,Reza ALAGHEBANDIAN,Microtremor Measurements and Building Damage during the Changureh-Avaj, Iran Earthquake of June 2002,Journal of Natural Disaster Science, Volume 25, Number 1, pp37-46, 2003.
    [50] Aki,k. Space and time spectra of stationary stochastic waves, with special reference to microtremors, Bull. Earthquake Res. Inst. Tokyo Univ. . 25,415-457. 1957.
    [51] Arai H., Tokimatsu K. “Effects of Rayleigh and Love waves on microtremor H/V spectra” Proc. 12th World Conf. Earthq. Eng. Paper No. 2232 ,2000.
    [52] Asten, M. W.,Henstridge J. D. “Array estimators and the use of microseisms for reconnaissance of sedimentary basin” Geophysics49, 1828-1837 ,1984.
    [53] Asten,M. W.,Boore,D.M.,Blind comparisons of shear-wave velocities at closely spaced sites in San Jose, California: U.S. Geological Survey Open-File Report -1169,2005.
    [54] Asten,M. W.,Resolving a velocity inversion at geotechnical scale using the microtremor (passive seismic) survey method,Exploration Geophysics,v35,14-18, 2004.
    [55] Atakan K., A.-M. Duval, N. Theodulidis, B.Guillier, J.-L. Chatelain, P.-Y. Bard and SESAME-Team, The H/V spectral ratio technique: experimental conditions, data processing and empirical reliability assessment. Proceedings of the 13th World Conference on Earthquake Engineering, Vancouver, August 2004, Paper #2268.
    [56] Atakan K., P.-Y. Bard, F. Kind, B. Moreno, P. Roquette, A. Tento and SESAME-Team, J-SESAME: a standardized software solution for the H/V spectral ration technique. Proceedings of the 13th World Conference on Earthquake Engineering, Vancouver, August 2004, Paper #2270.
    [57] Atakan K., P-Y. Bard, F. Cara, J-L. Chatelain, G. Cultrera, A.M. Duval, B. Guillier, F. Kind, B. Moreno, P.Roquette, A. Tento, P. Teves-Costa, J-SESAME: a dedicated software for H/V spectral ratios.Proceedings of the XXIX Assembly of the European Seismological Commission, Potsdam, September 12-17,2004.
    [58] Bard P.-Y. and SESAME participants, The SESAME project: an overview and main results. Proceedings of the 13th World Conference in Earthquake Engineering, Vancouver, August 2004, Paper # 2207.
    [59] Bard P-Y. “Microtremor measurement: A tool for site effect estimation?” The Effects of Surface Geology on Seismic Motion(ed. Irikura, Kudo, Okada, Sasatani), Balkema, 3,P1251-1279,1999.
    [60] Bard, P-Y. “Effects of surface geology on ground motion: recent results and remaining issues”, Proc.10th Europ. Conf. Eartq. Eng., Vienna; 1,P305-323, 1994.
    [61] Bettig B., Bard P.-Y., Scherbaum F., Riepl J., and Cotton F. “Analysis of dense array noise measurements using the modified spatial auto-correlation method (SPAC). Application to the Grenoble area”. Bolletino di Geofisica Teorica ed Applicata: 42(4), P281-304 ,2003.
    [62] Bonnefoy-Claudet S., C. Cornou, J. Kristek, M. Ohrnberger, M Wathelet, P.-Y. Bard, P. Moczo, D. F?h, and F.Cotton, Simulation of seismic ambient noise: I H/V and array techniques on canonical models.Proceedings of the 13th World Conference on Earthquake Engineering, Vancouver, Canada, August 2004,Paper # 1120.
    [63] Boore D.M. and Brown L.T “Comparing shear-wave velocity profiles from inversion of surface-wave phase velocities with downhole measurements: systematic differences between CXW method and downhole measurements at six USC strong-motion sites”, Seismol. Res. Lett: 69(3), 222-229,1998.
    [64] Boore, D. M., W. B. Joyner, and T. E. Fumal, Equations for estimating horizontal response spectra and peak acceleration from western North American earthquakes: A summary of recent work, Seism. Research Letters 68, 128-153,1997.
    [65] Capon J. “High-resolution frequency-wavenumber spectrum analysis” Proc. IEEE; 57,P1408-1418,1969.
    [66] Cécile Cornou,Matthias Ohrnberger, David M. Boore, Kazuyoshi Kudo, Pierre-Yves Bard,Derivation Of Structural Models From Ambient Vibration Array Recordings: Results From An International Blind Test ( Draft Version ),http://quake.wr.usgs.gov/~boore/pubs_online/esg2006_nbt_1006.pdf,2007
    [67] Choi, Y. and J. P. Stewart,Nonlinear site amplification as function of 30 m shear wavevelocity, Earthquake Spectra 21, 1-30,2005.
    [68] Cornou C., G. Di Giulio, M Ohrnberger, J. Kristek and M. Wathelet, Simulated versus observed seismic ambient noise in the Colfiorito basin: site effects estimation and noise wavefield characteristics. Proceedings of the XXIX Assembly of the European Seismological Commission, Potsdam, September 12-17, 2004.
    [69] Cornou C., J. Kristek, M. Ohrnberger , G. Di Giulio, E. Schissele, B. Guillier, S. Bonnefoy-Claudet, M. Wathelet, D. F?h, P.-Y. Bard, P. Moczo, Simulation of seismic ambient vibrations: II. H/V and array techniques for real sites. Proceedings of the 13th World Conference on Earthquake Engineering, Vancouver, Canada, August 2004, Paper # 1130.
    [70] Cultrera G., R. Azzara, F. Cara, R. d’Anna, G. Di Giulio, M. S. Giammarinaro, G. Passafiume, A. Rovelli and P.Vallone, Microtremor Measurements in Palermo, Italy: a comparison with macroseismic intensity and earthquake ground motion. Proceedings of the 13th World Conference on Earthquake Engineering, Vancouver, August 2004, Paper # 915.
    [71] Donat Fa¨h, Fortunat Kind and Domenico Giardini,A theoretical investigation of average H/V ratios,Geophys. J. Int.,145, 535–549,2001.
    [72] Duval A.-M., Bard P-Y., LeBrun B., Lacave-Lachet C., Riepl J., Hatzheld D. “H/V technique for site response analysis. Synthesis of data from various surveys” Boll. Geof. Teor. Appl. 42, 267-280, 2001.
    [73] Duval A.-M., J.-L. Chatelain, B. Guillier and SESAME Project WP02 Team, Influence of experimental conditions on H/V determination using ambient vibrations (noise), Proceedings of the 13th World Conference on Earthquake Engineering, Vancouver, August 2004, Paper # 306.
    [74] F. Luzon, a numerical experiment on the horizontal to vertical spectral ratio in flat sedimentary basins, Pure and applied geophysics,158, 2451-2461,2001.
    [75] Field E. H. Jacob K. H. “A comparison and test of various site response estimation techniques, including three that are not reference site dependent”, Bull. Seism. Soc. Am. 85, 1127–1143,1995.
    [76] Finn,L. Geotechnical engineering aspects of microzonation, Proc. 4Th Int’l Conf. On Seismic zonation, Vol.1, 199-259,1991.
    [77] Francisco J. Chavez-Garcia, Miguel Rodriguez and William R. Stephenson, An alternative approach to the SPAC analysis of microtremors: exploiting stationarity of noise, Bull. Seism. Soc. Am. 95(1), 277–293,2005.
    [78] Henstridge J.D. “A signal processing method for circular arrays” Geophysics, 44, 179-1, 1979.
    [79] Hiroaki Yamanaka, Exploration of basin structure by microtremor array technique for estimation of long-period ground motion. 12th WCEE, 2000.
    [80] Hiroshi Arai and Kohji Tokimatsu , S-Wave Velocity Profiling by Inversion of Microtremor H/V Spectrum,Bulletin of the Seismological Society of America, Vol. 94, No. 1, pp. 53–63 , 2004.
    [81] Hitoshi Morikawa, Sumio Sawada and Junpei Akamatsu, A method to estimate phase velocities of Rayleigh waves using microseisms simultaneously observed at two sites, Bull. Seism. Soc. Am. 94(3), 961–976,2004.
    [82] Horike M. “Study on microtremors” Zisin 2; 46, 343-350,1993.
    [83] Horike M., Zhao B., Kawase H. “Comparison of site response characteristics inferred from microtremors and earthquake shear waves” ,Bull. Seism. Soc. Am. 91, 1526–1536,2001.
    [84] James Roberts,Michael Asten,Estimating the shear velocity profile of Quaternary silts using microtremor array (SPAC) measurements , Exploration Geophysics,36, 34–40,2005.
    [85] Javier Almendros, Francisco Luzon, Microtremor Analyses at Teide Volcano (Canary Islands, Spain):Assessment of Natural Frequencies of Vibration Using Time-dependent Horizontal-to-vertical Spectral Ratios,Pure appl. geophys. 161,1579–1596,2004.
    [86] Koichi Hayashi, Tomio Inazaki, Buried channel delineation using microtremor array measurements,75th SEG/Houston 2005 Annual Meeting,Nov.9,2005.
    [87] Koller M., J.-L. Chatelain, B. Guillier, A.-M. Duval, K. Atakan, C. Lacave, P.-Y. Bard and the SESAME participants, Practical user guidelines and software for the implementation of the H/V ratio technique: measuring conditions, processing method and results interpretation, Proceedings of the 13th World Conference on Earthquake Engineering, Vancouver, Paper #3132.
    [88] Kristeková M. and D. F?h, 2004. Computation of the h/v ratio using time-frequency analysis with continuous wavelet transform. Proceedings of the XXIX Assembly of the European Seismological Commission, Potsdam, September 12-17, 2004.
    [89] Kudo, K.,“Practical estimates of site response-state of the art report-”, Proc. 5th Int. Conf. On Seismic Zonation, Nice; 3, 1878-1907,1995.
    [90] Kudo,K., Yoshihiro SAWADA and Masanori HORIKE,Current Studies In Japan On H/V And Phase Velocity Dispersion of Microtremors For Site Characterization, 13th WCEE,Vancouver, B.C., Canada, August 1-6, 2004.
    [91] Kvaerna T. and Ringdahl F. “Stability of various f-k estimation techniques”. Semmiannual technical summary, 1 October 1985 – 31 March 1986, NORSAR Scientific Report, 1-86/87, Kjeller, Norway, 29-40, 1986.
    [92] Lacave C. and J. Rey, Is the phase of the one-sided autocorrelogram of the horizontal components of ambient vibrations (Tokeshi's method) able to reveal the fondamental resonance frequency of a site ? Proceedings of the 13th World Conference on Earthquake Engineering, Vancouver,2004, Paper # 3120.
    [93] Lacoss, R.T., Kelly, E.J. and Toks?z, M.N. “Estimation of seismic noise structure using arrays:Geophysics; 34, 21-38, 1969.
    [94] LeBrun B., Hatzheld D., Bard P-Y. “Site effect study in urban area: experimental results in Grenoble (France)”, Pure Appl. Geophys. (PAGEOPH), 158, 2543-2557, 2001.
    [95] Lermo J., Chavez-Garcia F. J. “Site effects evaluation using spectral ratios with only one station”,Bull. Seism. Soc. Am, 83, 1574–1594, 1993.
    [96] Liu Huixian, The Great Tangshan Earthquake of 1976, Earthquake Engineering Research Laboratory, California Institute of Technology, Pasadena, California, 2002.
    [97] Liu, Y., Luke, B., “Combining active- and passive source measurements to profile shear wave velocities for seismic microzonation.” ,Geo-Frontiers2005, Am. Soc.Civil Eng. Geotechnical Spec. Pub. 130-142, 977-990,2005.
    [98] Longuet-Higgins M. S., “A theory of the origin of microseisms”, Philos. Trans. R. Soc. London, Ser. A,243, 1–35,1950.
    [99] Louie, J.. "Faster, better: shear-wave velocity to 100 meters depth from refraction microtremor arrays.",Bull. Seismological Soc. America, 91 (2), 347-364,2001.
    [100] M. Ohrnberger, E. Schissele, C. Cornou, M. Wathelet, Reliability of dispersion curve estimates obtained from ambient vibration array analysis. XXIXth European Seismological Commission, Session F3, September 2004.
    [101] Masanori Horike. Inversion of phase velocity of long-period microtremors to the S-wave-velocity structure down to the basement in urbanized areas. J. Phys. Earth.,33,59-96,1985.
    [102] Matsuoka, T., Shiraish, H., and Hachinohe, S., Estimation of three-dimensional S-wave velocity structure using microtremor array observations in the central Kanto Plain, Japan. Proceedings of the 6th SEGJ International Symposium, 429-436, Tokyo, Japan, 2003.
    [103] Matsushima, T, Okada, H. “Determination of deep geological structures under urban areas: Butsuri-Tansa (Geophys Explor.); 43, 21-33, 1990.
    [104] Miyakoshi, k, A range of wavelengths possible to estimate phase velocities of surface wave in microtremors. Proc. 94th Soc. Exploration Geophysicists of Japan. 178-182 ,1995. (in Japanese)
    [105] Mucciarelli M., Gallipoli M.R. “A critical review of 10 years of microtremor HVSR technique”, Boll. Geof. Teor. Appl. 42, 255-266 ,2001.
    [106] Nakamura, Y. “A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface”, Q. Rev. RTRI, 30, 25–33,1989.
    [107] Nazarian, S. and Stokoe, K. In Situ Shear Wave Velocities from Spectral Analysis of Surface Waves, Proceedings, Eighth World Conference on Earthquake Engineering, San Francisco, California,Vol. III, pp. 31-39, 1984.
    [108] Ohrnberger M, E. Schissele, C. Cornou, S. Bonnefoy-Claudet, M. Wathelet, A.Savvaidis, F. Scherbaum and D. Jongmans, 2004b. Frequency wavenumber and spatial autocorrelation methods for dispersion curve determination from ambient vibration recordings. Proceedings of the 13th World Conference on Earthquake Engineering, Vancouver, August 2004, Paper # 946.
    [109] Ohrnberger, M., E. Schissele, C. Cornou, M. Wathelet, A. Savvaidis, F. Scherbaum, D. Jongmans, and F. Kind, Microtremor array measurements for site effect investigations: comparison of analysis methods for field data crosschecked by simulated wavefields. Proceedings of the 13th World Conference on Earthquake Engineering, Vancouver, August 2004, Paper # 940.
    [110] Okada, H. “Microtremors as exploration method” in Geo-exploration Handbook, Soc. Exploration Geophysicists of Japan; 203-211,1998. (in Japanese)
    [111] Okada, H. “The microtremor survey method” Geophysical monograph series, No. 12, Society of Exploration Geophysicists 2003.
    [112] Okada,H.,T. Matsushima,An exploration technique using long-period microtremors for determination of deep geological structures under urbanized areas,Butsuri-Tansa 43,402-417,1990. (in Japanese)
    [113] Rahmian M., Seo K., Nagai T. “Fundamental Characteristics of the microtremors in Yokohama city measured on shallow sediment and soft rock simultaneously” Proc. The 11th Japan Earthq. Eng. Symp; Paper No. 74, 379-384,2002.
    [114] Riepl, J., Bard, P-Y., Hatzheld D., Papaionnou, C., Nechtschein, S. “Detail evaluation of site response estimation methods across and along the sedimentary valley of Volvi (EURO-SEISTEST)”, Bull. Seism.Soc. Am., 88, 488-502, 1998.
    [115] Roberts, J. and Asten, M., Resolving a velocity inversion at the geotechnical scale using the microtremor (passive seismic) survey method: Exploration Geophysics,35, 14–18, 2004.
    [116] Roten D., C. Cornou, S. Steimen, D. F?h, and D. Giardini, 2D Resonances in Alpine Valleys Identified from Ambient Vibration Wavefields. Proceedings of the 13th World Conference on Earthquake Engineering, Vancouver, August 2004, Paper # 845.
    [117] Sambridge M S. Geophysical inversion with a neighbourhood algorithm-I. Searching a parameter space. Geophys. J. Int.,138;479-494,1999.
    [118] Sambridge M S. Geophysical inversion with a neighbourhood algorithm-II. Appraising the ensemble. Geophys. J. Int.,138;727-746,1999.
    [119] Sawada Y. Nagumo H. “Earthquake observation using hot spring borehole at San-no, Nagoya and ground structure model of the Nobi plain, Proc. The 11th Japan Earthq. Eng. Symp. Paper No.51, 2002.
    [120] Sawada Y., Taga M.,Watanabe M., Nagumo H., Nagumo H. et al. “Applicability of microtremor H/V method for Kik-net strong motion observation sites and Nobi plain” Proc. 13th WCEE, No.855 , 2004.
    [121] Seekins L. C., Wennerberg L., Margheriti L., Liu H.-P. “Site amplification at five locations in San Francisco, California: a comparison of S-waves, codas, and microtremor”, Bull. Seism. Soc. Am. 86, 627–635, 1996.
    [122] Seiji TSUNO,On The Efficiency And Precision Of Array Analysis Of Microtremors By The Spac Method In Practical Engineering Use, Proceedings of the 13th World Conference on Earthquake Engineering, Vancouver, August 2004, Paper # 345.
    [123] SHI Lijing, TAO Xiaxin, Robert Kayen, SHI Hailiang , Estimation Of Site Characteristic By Microtremors And Sasw Testing,the 3rd International Continental Earthquakes-Mechanism,Prediction,Emergency Management & Insurance,Beijing,China,July 12-14,2004.
    [124] SHI Lijing, TAO Xiaxin, Robert Kayen, SHI Hailiang,Site Characteristics by a Joint Surface Wave Investigation , 2004 ANCER Annual Meeting-Networking of Young Earthquake Engineering Researchers and Professionals,July 28-30, 2004,The Sheraton Princess Kaiulani,Honolulu, Hawaii.
    [125] SHI Lijing, TAO Xiaxin, ZHAO Jisheng,Validation Of Shallow S-Wave Velocity Structure Inversed By Microtremors Array Observation,13th World Conference on Earthquake Engineering,Vancouver, B.C., Canada,August 1-6, 2004.
    [126] TAO Xiaxin, Robert Kayen, SHI Lijing, SHI Hailiang,China-Us Joint Surface Wave Investigation,the 3rd International Continental Earthquakes-Mechanism,Prediction,Emergency Management & Insurance,Beijing,China,July 12-14,2004.
    [127] Tatsuya NOGUCHI and Ryohei NISHIDA,Determination of Subsurface Structure of Tottori Plain Using Microtremors and Gravity Anomaly,Journal of Natural Disaster Science, Vol.24, (1), pp1-13, 2002.
    [128] Teves-Costa P., L. Senos and C.S. Oliveira, Correlation between damage distribution and soil behaviour estimated with ambient vibrations. Proceedings of the 13th World Conference on Earthquake Engineering, Vancouver, August 2004, Paper # 1004.
    [129] Theodulidis N., G. Cultrera, Empirical evaluation of the horizontal-to-vertical spectral ratio technique: results from the SESAME project. Proceedings of the 13th World Conference on Earthquake Engineering, Vancouver, August 2004, Paper #2323.
    [130] Toshimi Satoh, Estimation of S-wave Velocity Structures in and around the Sendai Basin, Japan, Using Array Records of Microtremors, BSSA, Vol.91(2),P206-218, 2001b.
    [131] Toshimi Satoh, Hiroshi Kawase, Differences Between Site Characteristics Obtained From Microtremors,S-wave,P-waves and Codas, BSSA, Vol.91(2),P313-334,2001a.
    [132] Toshimi Satoh, Hiroshi Kawase,S-wave Velocity Structures of the Taichung Basin, Taiwan, Estimated from Array and Single-Station Records of Microtrmors,BSSA, Vol.91(5), P1267-1282,2001.
    [133] Toshimi Satoh, Three-Dimensional Finite-Difference Waveform Modeling of StrongMotions Observed in the Sendai Basin, Japan, BSSA, Vol.91(4),P812-825,2001c.
    [134] Toshinawa T., Matsuoka M, Yamazaki Y. “ Ground-motion characteristics in Sanciago, Chile,obtained by microtremor measurements”, Proc. 10th World Conf. Earthq. Eng., Paper No. 1764, 2000.
    [135] Uebayashi , H. , “Extrapolation of irregular subsurface structures using the horizontal-to-vertical spectral ratio of long-period microtremors”,Bull. Seism. Soc. Am.; 93, 570-582, 2003.
    [136] Wessel, P., and D. Bercovici, nterpolation with Splines in Tension : A Green function Approach, Math. Geol.,Vol.30(I),77-93, 1998.
    [137] Wills C.J. “Differences in Shear-Wave Velocity due to Measurement Methods: A Cautionary Note”. Seism. Res. Lett.: 69(3), 217-221, 1998.
    [138] Xia Jianghai and Richard D. Miller, Estimation of near-surface shear-wave velocity by inversion of Rayleigh waves, Geophysics, Vol.64, No.3, 1999.
    [139] Xia, J., Miller, R. D., Park, C. B., Hunter, J. A., Harris, J. B., and Ivanov, J. “Comparing shear-wave velocity profiles from multichannel analysis of surface wave with borehole measurements.” Soil Dyn.and Earthquake Eng.,.22 (3), 181-190,2002.
    [140] Yamamoto T., Enomoto T., Hattori H., Iwatate T. “Long-time fluctuation and stability of H/V spectra using short period microtremors” Proc. The 11th Japan Earthq. Eng. Symp.;Paper No.75, 385-390, 2002.
    [141] Yamamoto, H. Analytical and Experimental approaches to the method for estimation of phase velocities using the data of microtremors with three components, PH.D. Thesis Hokkaido University,1998. (in Japanese)
    [142] Yamanaka H., Ishida H., “Application of genetic algorithms to an inversion of surface wave dispersion data”, Bull. Seism. Soc. Am.; 86, 436–444,1996.
    [143] Yamanaka H., Takemura M., Ishida H., Niwa M., “Characteristics of long-period microtremors and their applicability in exploration of deep sedimentary layers”, Bull. Seism. Soc. Am.; 84, 1831–1841,1994.
    [144] Yoshihiro Sawada, Masahiro Taga,Applicability Of Microtremor H/V Method For Kik-Net Strong Motion Observtion Sites And Nobi Plain,13th World Conference on Earthquake Engineering,Vancouver, B.C., Canada,August 1-6, 2004.
    [145] Yutaka Nakamura, A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface, QR of RTRI, Vol.30, No.1,1989.
    [146] Zakaria Al Yuncha and Francisco Luzon, on the horizontal-to-vertical ratio in sedimentary basins, BSSA, 90(4), P.1101-1106,2000.
    [147] Zhao B. Horike M. “Simulation of high-frequency strong vertical motions using microtremor horizontal-to-vertical ratios, Bull. Seism. Soc. Am. 93: 2546-2553,2003.
    [148] Zywicki D. J. “Advanced signal processing methods applied to engineering analysis of surface waves”, PhD. Thesis Georgia institute of technology, 1999.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700