用户名: 密码: 验证码:
XH_n(X=N,P,O和S)分子对Si(111)-7×7表面化学修饰的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为集成电路及半导体元器件的最主要的功能材料,半导体硅材料的发展倍受关注,而其中硅表面的化学修饰一直是表面化学研究中较为活跃的领域。为了满足微电子工业发展的需要,人们已通过大量的研究实现了多种硅表面化学修饰,从而使硅材料在光、电、机械等诸多方面具备更优异的性能。然而,在硅材料功能化的研究进程中,人们率先掌握的往往是其工业上的生产工艺,而对于整个反应的中间历程和反应机制却了解甚少,这对新型硅材料的发展造成了一定的阻碍。本文采用密度泛函理论和簇模型方法,对NH_3、PH_3、H_2O和H_2S在Si(111)-7×7表面上的吸附解离机理进行了系统而详尽的理论探讨,而这四种小分子正是硅半导体材料进行功能化修饰的常用气体源,相应的研究结果如下:
     (1) NH_3通过adatom-rest atom原子对解离为NH_2(a)和H(a)是一个容易发生的过程,且优先在rest atom(Si_r)位上进行。进一步的N-H键解离需要通过高温来实现,它始于NH_x(x=2,1)的插入。在高温下,H_2(g)脱附是可以发生的,这样N原子与表面Si形成Si=N单元或与次表面Si形成Si_3N单元,两者均为氮化硅的结构单元。
     (2) PH_3在Si(111)-7×7面上的初始解离表现出与NH_3相同的位选择性,但第一个P-H键的解离是一个无能垒的过程。进一步的P-H键解离可以经由两种途径来实现。一方面,在高温下PH_x(x=2,1)可插入Si-Sibackbond,继而经过脱H_2(g)步骤形成表面Si=P单元或次表面Si_3P单元;另一方面,吸附在Si_r位上的PH_2(a)也可能在相邻的另两个Si adatom(Si_a)上实现后两个P-H键的解离,在高温下,吸附在Si_r位上的P(a)可能以P_2(g)的形式脱附。
     (3) H_2O通过adatom-rest atom原子对解离为-OH和-H并不是唯一的反应机理。随着H_2O覆盖度的增加,O原子可逐步插入到Si_a-Si_s键中,从而进一步氧化Si(111)-7×7表面,这致使Si_a的氧化态逐渐升高,直到Si~(4+)氧化态形成,且热稳定性越来越高。对于先经过OH迁移致使O原子插入Si_a-Si_s backbond的氧化途径,OH迁移所克服的能垒依次为58.4、65.3和79.2 kcal/mol,而H_2O以O原子进攻Si_a位来打开Si_a-Si_s键进而使O原子插入的能垒则相对较低,仅为19.0、16.7和24.8 kcal/mol。相对于前者,后者在动力学上更为有利。
     (4)不同于NH_3、PH_3和H_2O,H_2S在Si(111)-7×7上的初始吸附是一个不需要经过分子前驱体的快速解离过程,其本质应在于H_2S的碱性最弱,酸性最强。
     (5)类似于H_2O对Si(111)-7×7的氧化历程,S原子逐步插入Si_a-Si_s键是可以发生的,且H_2S直接打开Si_a-Si_s键进而使S原子插入的途径仍是动力学上较为有利的,但H_2S以S或H原子进攻Si_a位从而打开Si_a-Si_s键的两种反应机制在动力学和热力学上并没有表现出明显的差别,而当H_2O以O原子进攻Si_a位时,Si_a-Si_s键则较容易断裂,这应归因于O的电负性比S大。
Chemical modification of silicon surface has been an active field in surface chemistry study because of its potential applications in integrated circuits and semiconductor device manufacture.In order to satisfy the neeed for microelectronic industry evolution,various chemical modification techniques,which makes silicon material possess more excellent properties,such as light,electricity,mechanics and so on,have been achieved after numerous studies.However,during the course of exploration for endowing silicon material with extra functions,industrial production processes are usually what people first master,and little is known about the corresponding intermediate processes and reaction mechanisms,which may be helpful in designing and developing new silicon materials.In this paper,based on our density functional cluster model calculations,we report the dissociative adsorption mechanisms of NH_3,PH_3,H_2O,and H_2S on the Si(111)-7×7 surface,whereas these four simple molecules are the very common gas resources that are used to modify silicon.The relevant results are as follows:
     (1) The dissociation of NH_3 to NH_2(a) and H(a) easily occurs across an adatom-rest atom pair,and the rest atom(Si_r) is more reactive than the adatom(Si_a) toward NH_3.Further N-H bond dissociation can be facilitated by the elevated temperature.It starts by an NH_x(x=2,1) insertion.H_2 desorptions can be achieved at high temperature to form a surface Si=N or a subsurface Si_3N unit,both of which are the building blocks in silicon nitride.
     (2) The intial dissociation of PH_3 on the Si(111)-7×7 surface exhibits the same site selectivity as NH_3.Further P-H bond dissociation can be accomplished by two pathways.On the one hand,PH_x(x=2,1) can insert into the Si-Si backbond at elevated temperature,and a surface Si=P or a subsurface Si_3P unit was formed via subsequent H_2 liberations.On the other hand,the PH_2 species adsorbed on the Si_r site may completely dissociate across the other two unsaturated adatoms,and P adsorbed on the Si_r site may desorb in P_2 gas form at high temperature.
     (3) The dissociation of water across an adatom-rest atom pair is not the only reaction mechanism.With increasing exposures to water,oxygen atoms are gradually accumulated around the Si_a site,up to the formation of Si_a~(4+) oxidation state,and the thermal stability of these oxidation species gets higher and higher.For the oxidation channel from OH group migration to O atom insertion,the activation energy barriers for OH migration are 58.4,65.3, and 79.2 kcal/mol,respectively,whereas those for O atom insertions beginning with directly destroying Si_a-Si_s backbonds by a foreign H_2O molecule are much lower,the respective values are 19.0,16.7,and 24.8 kcal/mol.Hence,kinetically,the latter is more favorable than the fomer.
     (4) Being distinct from NH_3,PH_3,and H_2O,the initial dissociation of H_2S on Si(111)-7×7 is a very fast reaction not via molecular precursor.It should be attributed to the fact that H_2S possesses the weakest basicity among these molecules.
     (5) Similar to the oxidation process of Si(111)-7×7 by water,the gradual insertion of S atom into Si_a-Si_s backbond is possible to occur,and the insertion pathway,which begins with directly destroying Si_a-Si_s backbonds by a foreign H_2S molecule,remains more favorable.However,when H_2S attacks at the Si_a site to split Si_a-Si_s backbond with its S or H atom,there is no distinct thermodynamical and kinetical difference between these two attacking behaviors,whereas Si_a-Si_s backbond is easilier broken when H_2O attacks at the Si_a site with its O atom.This mainly lies in the fact that the electronegativity of oxygen is larger than that of sulfur.
引文
[1] 马春,上海有色金属, 2005, 26, 145.
    
    [2]蒋荣华,肖顺诊,张建新,杨卫东,新材料产业,2004, 124, 30.
    
    [3] Waltenburg, H. N.; Yates, J. T. Chem. Rev. 1995, 95, 1589.
    
    [4] Haneman, Q. Phys.Rev. 1961, 121, 1093.
    
    [5] Pandey, K. C; Philips, J. C. Phys. Rev. Lett. 1975. 34,1450.
    
    [6] Appelbaum, J. A.; Hamann, D. R. Phys. Rev. 1975, B12, 1410.
    
    [7] White, C. T.; Nagai, K. L. Phys. Rev. Lett. 1978, 41, 885.
    
    [8] Himpsel, F. J.; Heimann, P.; Eastman, D. E. Phys. Rev. 1981, B24, 2003.
    
    [9] Hanson, G. V.; Bacharach, R. Z.; Bauer, R. S.; Chadi, D. J.; Gopel, W. Surf. Sci. 1980, 99, 13.
    
    [10]Schlier, R. E.; Farnsworth, H. E. J. Chem. Phys. 1959, 30, 917.
    
    [11]Haneman, D. Rep. Prog. Phys. 1987, 50, 1045.
    
    [12]Takayanagi, K:; Tanishiro, Y.; Takahashi, S.; Takahashi, M. Surf. Sci. 1985, 164, 367.
    
    [13]Northrup, J.E. Phys. Rev. Lett. 1986, 57, 154.
    
    [14]Hamers, R.J.; Tromp, R.M.; Demuth, J. E. Phys. Rev. Lett. 1986, 56, 1972.
    
    [15]Stauffer, L.; Bolmont, S. Van D.; Koulmann, J.J.; Minot, C. Solid State Commun. 1993, 85,935.
    
    [16]Wokow, R.; Avouris, Ph. Phys. Rev. Lett. 1988, 60, 1049.
    [17]Cao, X..P.; Hamers, R.S.J. Am. Chem. Soc. 2001, 123, 10988.
    [18]Cao, Y.; Wei, X. M.; Chin, W.S.; Lai, Y.H.; Deng, J.F.; Bernasek, S.L.; Xu, G.Q. J.
    [19]Cao, Y.; Yong, K.S.; Wang, Z.Q.; Chin, W.S.; Lai, Y.H.; Deng, J.F.; Xu,G.Q. J. Am. Chem. Soc. 2000, 122, 1812.
    [20]Carey, F. A.; Sundberg, R. J. Advanced Organic Chemistry, Plenum Publishing Corporation,2001.
    
    [21]Wu, C. J.; Carter, E. A. Chem. Phys. Lett. 1991, 185, 172.
    [22]Mui, C; Bent, S. F.; Musgrave, C. B. J. Phys. Chem. A 2000, 104, 2457.
    [23]Levine, J. D. Surf. Sci. 1973, 34, 90.
    [24]Chadi, D. J. Phys. Rev. Lett. 1979, 43, 43.
    [25]Jedrecy, N.; Sauvage-Simkin, M.; Pinchaux, R.; Massies, J.; Greiser, N.; Etgens, V. H. Surf. Sci. 1990,230, 197.
    
    [26]Lin, D.-S.; Miller, T.; Chiang, T.-C. Phys. Rev. Lett. 1991, 67, 2187.
    [27]Landemark, E.; Karlsson, C. J.; Chao, Y.-C; Uhrberg, R. I. G. Phys. Rev. Lett. 1992, 69,1588.
    
    [28]Landemark, E.; Karlsson, C. J.; Chao, Y.-C; Uhrberg, R. I. G. Phvs. Reu. Lett. 1992, 69, 588.
    [29]Weakliem, P. C; Smith, G. W.; Carter, E. A. Surf. Sci. 1990, 232, L219.
    [30]Dabrowski, J.; Scheffler, M. Appl. Surf. Sci. 1992, 56-58, 1519.
    [31]Roberts, N.; Needs, R. J. Surf. Sci. 1990, 236, 112.
    [32]Kruger, P.; Pollmann, J. Phys. Rev. B 1993, 47, 1898.
    [33]Tabata,T.;Aruga,T.;Murata,Y.Surf Sci.1987,179,L63-L70.
    [34]Wolkow,R.A.Phys.Rev.Lett.1992,68,2636.
    [35]LGdemark,E.;Karlsson,C.J.;Chao,Y.-C.;Uhrberg,R.I.G.Surf.Sci.1993,287/288,529.
    [36]Hamers,R.J.;Tromp.R.M.;Demuth,J.E.Phys.Rev.B 1986,34,5343.
    [37]Wiesendanger,R.;Burgler,D.;Tarrach,G.;Guntherodt,H.-J.Surf.Sci.1990,232,1.
    [38]Wiesendanger,R.;Burgler,D.;Tarrach,G.;Guntherodt,H.-J.;Shvets,L.V.;Coey,J.M.D.Surf Sci.1992,274,93.
    [39]Paulus,B.Surf.Sci.1998,408,195.
    [40]Shoemaker,J.;Burggraf,L.W.;Gordon,M.S.J.Chem.Phys.2000,112,2994.
    [41]Lu,X.;Zhu,M.P.;Wang,X.L.;Zhang,Q.E.J.Phys.Chem.B 2004,108,4478.
    [42]Koch,W and Holthausen,M.C.,A Chemist's Guide to Density Functional Theory(Second Edition).Wiley:Weinheim,2001.
    [43]傅钢,厦门大学理学博士论文,2003
    [44]谢希德,陆栋,《固体能带理论》,复旦大学出版社:上海,1998
    [45]Hohnberg,P.;Kohn,W.Phys.Rev.1964,136,B864.
    [46]Kohn,W.;Sham,L.J.Phys.Rev.Lett.1965,140,A1133.
    [47]Kohn,W.;Becke,A.D.;Parr,R.G.J.Phys.Chem.1996,100,12974.
    [48]Vosko,S.H.;Wilk,L and Nusair,M.J.Phys.1980,58,1200.
    [49]Langreth,D.C.;Mehl,M.J.Phys.Rev.Lett.1981,47,446.
    [50]Perdew,J.P.;Wang,Y.Phys.Rev.B.1986,33,8800.
    [51]Perdew,J.P.;Wang,Y.Phys.Rev.B.1991,45,13244.
    [52]Becke,A.D.Phys.Rev.A.1988,38,3098.
    [53]Lee,C.;Yang,W.;Parr,R.C.Phys.Rev.B.1988,37,785.
    [54]Perdew,J.P.;Burke,K.;Ernzerhof,M.Phys.Rev.Lett.1999,83,5455.
    [55]Stephens,P.J.;Devlin,J.F.;Chabalowski,C.F.J.Phys.Chem.1994,98,11623.
    [56]Schmider,H.L.;Becke,A.D.J.Chem.Phys.1998,108,9624.
    [57]Burke,K.;Ernzerhof,M.;Perdew,M.Chem.Phys.Lett.1997,265,115.
    [58]Kang,J.K.;Musgrave,C.B.;J.Chem.Phys.2001,115,11040.
    [59]Xu,X.;Goddard Ⅲ,W.A.J.Phys.Chem.A.2004,108(40):8495.
    [60]吕鑫,“簇—表面类比:金属氧化物簇模型探讨”厦门大学理学博士论文,1996.
    [61]万惠霖等,《固体表面物理化学若干研究前沿》,厦门大学出版社:厦门,2006
    [62]Konecny,R.;Hoffmann,R.J.Am.Chem.Soc.1999,121,7918.
    [63]Wang,G.T.;Mui,C.;Musgrave,C.B.;Bent,S.F.J.Am.Chem.Soc.2002,124,8990.
    [64]Foraker,A.;Doren,D.J.Phys.Chem.B 2003,107,8507.
    [65]Xu.X.;Wang,C.J.;Xie,Z.X.;Lu,X.;Chen,M.S.;Tanaka,K.Chem.Phys.Lett.2004,388,190.
    [1] VLSI Technology (Ed.: S. M. Sze), McGraw-Hill, Singapore, 1984.
    
    [2] Sze, S. M. Semiconductor Devices, Physics and Technology, Wiley, New York, 1985.
    
    [3] Beiyi, V. I.; Vasil'evich, A. Silicon Nitride in Electronics, in Materials Science Monographs Vol. 34, Elsevier, New York, 1988.
    [4] Fujisawa, M.; Taguchi, Y.; Kuwahara,Y.; Onchi, M.; M. Nishijima. Phys. Rev. B. 1989, 39, 12918.
    [5] Dresser, M. J.; Taylor, P. A.; Wallace, R. M.; Choyke, W. J.; Yates, J. T. Surf. Sci. 1989, 218,75.
    
    [6] Bischoff, J. L.; Lutz, F.; Bolmont, D.; Kubler, L. Surf. Sci. 1991, 248, L240.
    [7] Franco, N.; Avila, J.; Davila, M. E.; Asensio, M. C; Woodruff, D. P.; Schaff, O.; Fernandez, V.; Schindler, K. M.; Fritzsche, V.; Bradshaw, A. M. Phys. Rev. Lett. 1997, 79, 673.
    [8] Queeney, K. T.; Chabal,Y. J.; Raghavachari, K. Phys. Rev. Lett. 2001, 86, 1046.
    [9] Lee, S. H.; Kang, M. H. Phys. Rev. B. 1998, 58, 4903.
    [10]Miotto, R.; Srivastava, G. P.; Ferraz, A. C. Phys. Rev. B. 1998, 58, 7944.
    [11]Cho, J. H.; Kim, K. S. Phys. Rev. B. 2000, 62, 1607.
    
    [12]Widjaja,Y.; Mysinger, M. M.; Musgrave, C. B. J. Phys. Chem. B. 2000, 104, 2527.
    [13] Widjaja Y.; Musgrave, C. B. Surf. Sci. 2000, 469, 9.
    [14]Stober, J.; Eisenhut, B.; Rangelov, G.; Fauster, T. Surf. Sci. 1994, 321, 111.
    [15]Cherif, S. M.; Lacharme, J. P.; Sebenne, C. A. Appl. Surf. Sci. 1992, 56, 777.
    [16]Chen, P. J.; Colaianni, M. L.; Yates, J. T. Surf. Sci. 1992, 274, L605.
    [17] Widjaja Y.; Musgrave, C. B. Phys. Rev. B. 2001, 64, 205303.
    [18]Xu, X.; Kang, S.Y.; Yamabe, T. Phys. Rev. Lett. 2002, 88, 076106.
    [19]Kim, H. J.; Cho, J. H.; Phys. Rev. B. 2004, 69, 233402.
    [20]Avouris, Ph.; Wolkov, R. Phys. Rev. B. 1989, 39, 5091.
    [21]Wokow, R.; Avouris, Ph. Phys. Rev. Lett. 1988, 60, 1049.
    [22]Kubler, L.; Hlil, E. K.; Bolmont, D.; Gewinner, G. Surf. Sci. 1987, 183, 503.
    [23]Kubler, L.; Hlil, E. K.; Bolmont, D.; Peruchetti, J. C. Thin Solid Films. 1987, 149, 385.
    [24]Tanaka, S.; Onchi, M.; Nishijma, M. Surf. Sci. 1987, 191, L756.
    [25]Bozso, F.; Avouris, Ph. Phys. Rev. B. 1988, 38, 3937.
    [26]Cherif, S. M.; Lacharme, J. P.; Sebenne, C. A. Surf. Sci. 1991, 243, 113.
    
    [27]Bischoff, J. L.; Lutz, F.; Bolmont, D.; Kubler, L. Surf. Sci. 1991, 251/252,170.
    
    [28]Colaianni, M. L.; Chen, P. J.; Yates, J. T. J. Chem. Phys. 1992, 96, 7826.
    
    [29]Dufour, G.; Rochet, F.; Roulet, H.; Sirotti, F. Surf. Sci. 1994, 304, 33.
    
    [30]Bjrkqvist, M.; Gthelid, M.; Grehk, T. M.; Karlsson, U. O. Phys. Rev. B. 1998, 57, 2327.
    
    [31]Bengio, S.; Ascolani, H.; Franco, N.; Avila, J.; Asensio, M. C; Bradshaw, A. M.; Woodruff, D. P. Phys. Rev B. 2004, 69, 125340.
    
    [32]Zaibi, M. A.; Lacharme, J. P.; Sebenne, C. A. Surf. Sci. 1998, 206-210, 402.
    [33]Kubler, L.; Bischoff, J. L.; Bolmont, D. Phys. Rev. B. 1998, 38, 13113.
    [34]Lu. X.; Xu, X.; Wang, N. Q.; Zhang, Q. Z.; Lin, M. C. Chem. Phys. Lett. 2002, 355, 365.
    [35]Ezzehar, H.; Sonnet, Ph.; Minot, C; Stauffer, L. Surf. Sci. 2000, 454-456, 358.
    [36]Kang, M. H. Phys. Rev. B. 2003, 68, 205307.
    
    [37]Ferullo, R. M; Fuente, S. A.; Belelli, P. G; Castellani, N. J. Surf. Sci. 2007, 607, 1870.
    [38]Carbone, M.; Zanoni, R.; Piancastelli, M. N.; Cometet, G; Dujardin, G; Hellner, nL. Surf. Sci.1996,352-354,391.
    [39]Piancastelli, M. N.; Paggel, J. J.; Weindel, Chr.; Hasselblatt, M.; Horn, K. Phys. Rev. B. 1997, 57, 12737.
    
    [40]Xie, Z. X.; Uematsu, Y; Lu, X.; Tanaka, K. Phys. Rev. B. 2002, 66, 125306.
    [41]Northrup, J. E. Phys. Rev. Lett. 1986, 57, 154.
    
    [42]Hamers, R. J.; Tromp, R. M.; Demuth, J. E. Phys. Rev. Lett. 1986, 56, 1972.
    [43]Stauffer, L.; Bolmont, S. Van D.; KoulmannJ . J.; Minot, C. Solid State Commun. 1993, 85.935.
    
    [44]Wokow, R.; Avouris, Ph. Phys. Rev. Lett. 1988, 60, 1049.
    [45]Cao, X. P.; Hamers, R. J. J. Am. Chem. Soc. 2001, 123, 10988.
    [46]Xu, X.; Wang, C. J.; Xie, Z. X.; Lu, X.; Chen, M. S.; Tanaka, K. Chem. Phys. Lett. 2004, 388,190.
    
    [47]Xu, X.; Kang, S.Y.; Yamabe, T. Chem. Eur. J. 2002, 8 ,5351.
    [48]Becke, A. D. J. Chem. Phys., 1993, 98, 5648.
    [49]Stephens, P. J.; Devlin, F. J.; Frisch, M. J.; Chabalowski, C. F. J. Phys. Chem. 1994, 98,11623.
    [50]Slater, J. C. The Self-consistent Field for Molecules and Solids, in Quantum Theory of Molecules and Solids. Mc-Graw Hill: New York, 1974.
    [51]Becke, A. D. Phys. Rev. A. 1988, 38 ,3098.
    [52]Vosko, S. H.; Wilk, L.; Nusair, M.; Can. J. Phys. 1980, 58, 1200.
    [53]Lee, C; Yang, W.; Parr, R. G. Phys. Rev. B. 1998, 37, 785.
    [54]Francl, M. M.; Pietro, W. J.; Hehre,W. J.; Binkley, J. S.; Gorden, M. S.; Defrees, D. J.; Pople, J. A. J. Chem. Phys. 1982, 77, 3654.
    
    [55]Hariharan, P. C.; Pople, J. A. Theor. Chim. Acta, 1973, 28, 213.
    [56]Gaussian 98 (Revision A.5), Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A.; Stratmann, Jr. R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas,O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Stefanov, B. B.; Liu, G.; Liashenko,A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.;Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Andres, J. L.; Gonzalez, C.;Head-Gordon, M.; Replogle, E. S.; Pople, J. A. Gaussian, Inc., Pittsburgh PA, 1998.
    [57]Lu, X.; Wang, X. L.; Yuan, Q. H.; Zhang, Q. E. J. Am. Chem. Soc. 2003, 125, 7923.
    [58]Weinberg, W. H. in: M. Grunze, H.J. Kreuzer (Eds.), Kinetics of Interface Reactions, Springer, New York, 1987, p. 84.
    
    [59]Gorte, R.; Schmidt, L. D. Surf. Sci. 1978, 76, 599.
    [60]CRC Handbook of Chemistry and Physics, 76th ed, (Ed: D. R. Lide), CRC Press, New York,1995.
    [1] Tsukidate,Y. and Suemitsu, M. Appl. Surf. Sci. 1999, 151, 148 .
    
    [2] Xie, M. H.; Zhang, J.; Fernandez, J. M.; Lees, A. K. and Joyce, B. A. Surf. Sci. 1998, 397, 164.
    
    [3] van Bommel, A.J.; Crombeen, J. E. Surf. Sci. 1973, 36, 773.
    [4] (a) Wallace, R. M.; Taylor, P. A.; Choyke, W. J.; Yates Jr, J. T. J. Appl. Phys. 1990, 68, 3669; (b) Taylor, P. A.; Wallace, R. M.; Choyke, W. J.; Yates Jr, J. T. Surf. Sci. 1990, 238, 1.
    [5] Chen, P. I.; Colaianni M. L.;Wallace, R. M. and Yates, Jr. J. T. Surf. Sci. 1991, 244, 177.
    [6] Bozso, F.; Avouris, Ph. Phys. Rev. B 1991, 43, 1847.
    [7] (a) Wolkow, R.; Avouris, Ph. Phys. Rev. Lett. 1988, 60, 1049; (b) Wolkow, R. Phys. Rev. B 1989,39,5091.
    
    [8] Cao, P. L.; Lee, L. Q.; Dai, J. J.; Zhou, R. H. J. Phys. Condens. Matter. 1994, 6, 6103.
    [9] Young Ji, J.; Shen, J. C. Surf. Sci. 2007, 601, 1768.
    [10]Xu, X.; Wang, C. J.; Xie, Z. X.; Lu, X.; Chen, M. S.; Tanaka, K. Chem. Phys. Lett. 2004, 388, 190.
    
    [11] Wang, X. L.; Xu, X., J. Phys. Chem.C 2007, 111, 16974.
    [12]Becke, A. D. J. Chem. Phys., 1993, 98, 5648.
    
    [13]Stephens, P. J.; Devlin, F. J.; Frisch, M. J.; Chabalowski, C. F. J. Phys. Chem. 1994, 98, 11623.
    [14]Slater, J. C. The Self-consistent Field for Molecules and Solids, in Quantum Theory of Molecules and Solids. Mc-Graw Hill: New York, 1974.
    [15]Becke, A. D. Phys. Rev. A. 1988, 38 ,3098.
    [16]Vosko, S. H.; Wilk, L.; Nusair, M.; Can. J. Phys. 1980, 58, 1200.
    [17]Lee, C; Yang, W.; Parr, R. G. Phys. Rev. B. 1998, 37, 785.
    [18]Francl, M. M.; Pietro, W. J.; Hehre,W. J.; Binkley, J. S.; Gorden, M. S.; Defrees, D. J.; Pople, J. A. J. Chem. Phys. 1982, 77, 3654.
    
    [19]Hariharan, P. C; Pople, J. A. Theor. Chim. Acta, 1973, 28, 213.
    [20]Gaussian 98 (Revision A.5), Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A.; Stratmann, Jr. R. E.; Burant, J. C; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C; Farkas, O.;Tomasi,J.;Barone,V.;Cossi,M.;Cammi,R.;Mennucci,B.;Pomelli,C.;Adamo,C.;Clifford,S.;Ochterski,J.;Petersson,G.A.;Ayala,P.Y.;Cui,Q.;Morokuma,K.;Malick,D.K.;Rabuck,A.D.;Raghavachari,K.;Foresman,J.B.;Cioslowski,J.;Ortiz,J.V.;Stefanov,B.B.;Liu,G.;Liashenko,A.;Piskorz,P.;Komaromi,I.;Gomperts,R.;Martin,R.L.;Fox,D.J.;Keith,T.;Al-Laham,M.A.;Peng,C.Y.;Nanayakkara,A.;Gonzalez,C.;Challacombe,M.;Gill,P.M.W.;Johnson,B.;Chen,W.;Wong,M.W.;Andres,J.L.;Gonzalez,C.;Head-Gordon,M.;Replogle,E.S.;Pople,J.A.Gaussian,Inc.,Pittsburgh PA,1998.
    [21]罗渝然,《化学键能数据手册》,科学出版社:北京,2005
    [1] Pierret, R. F. Semiconductor Device Fundamentals, Addison-Wesley, New York, 1996.
    
    [2] Wang, X. L.; Xu, X., J. Phys. Chem.C 2007, 111, 16974.
    
    [3] Meyer, F., Surf. Sci. 1971, 27, 107.
    
    [4] Meyer, F.; Vrakking, J. J.; Surf. Sci. 1973, 38, 275.
    
    [5] Fujiwara, K.; Ogata, H.; Nishijima, M.; Solid State Commun. 1977, 21, 895.
    
    [6] Fujiwara, K., J. Chem. Phys. 1981, 75, 5172.
    
    [7] Ciraci, S.; Erkoc, S.; Ellialtioglu, S., Solid State Commun. 1983, 45, 35.
    
    [8] Ciraci S.; Wagner, H., Phys. Rev. B. 1983, 28, 5180.
    
    [9] Ibach, H.; Wagner, H.; Bruchmann, D., Solid State Commun. 1982, 42, 457.
    
    [10]Kobayashi, H.; Kubota, T.; Onchi, M.; Nishijima, M., Phys. Lett. A. 1983, 95, 345.
    
    [11]Ranke, W.; Xing, Y. R., Surf. Sci. 1985, 157, 339.
    
    [12]Schmeisser, D.; Demuth, J. E., Phys. Rev. B. 1986, 33, 4233.
    
    [13]Avouris, Ph.; Lyo, I. W., Surf. Sci. 1991, 242, 1.
    
    [14]Stich, I.; Payne, M. C; King-Smith, R. D.; Lin, J. S.; Clarke, L. J., Phys. Rev. Lett. 1992, 68,1351.
    
    [15]Wokow, R.; Avouris, Ph., Phys. Rev. Lett. 1988, 60, 1049.
    [16]Poncey, C; Rochet, F.; Dufour, G; Roulet, H.; Sirotti, F.; Panaccione. G, Surf. Sci. 1995, 338,143.
    
    [17]Ezzehar, H.; Stauffer, L.; Leconte, J.; Minot, C, Surf. Sci. 1997, 388, 220.
    [18]Flowers, M. C; Jonathan, N. B. H.; Morris, A.; Flowers, S., Surf. Sci. 1996, 351, 87.
    [19]Self, K. W.; Yan, C; Weinberg, W. H., Surf. Sci. 1997, 380, 408.
    [20] Yamada, T.; Ohtsuka, Y, Okuyama, H.; Aruga, T., Phys. Rev. B. 2005, 72, 233306.
    [21]Zaibi, M. A.; Lacharme, J. P.; Sebenne, C. A., Surf. Sci. 1997, 377, 639.
    [22]Lo, R. L.; Hwang, I. S.; Tsong, T. T., Surf. Sci. 2003, 530, L302.
    [23]Nishijima, M.; Edamoto, K.; Kubota, Y.; Tanaka, S.; Onchi, M., J. Chem. Phys. 1986, 84,6458.
    
    [24]Oellig, E. M.; Butz, R.; Wagner, H.; Ibach, H., Solid State Commun. 1984, 51, 7.
    [25]Lo, R. L.; Chang, C. M.; Hwang, I. S.; Tsong, T. T., Phys. Rev. B. 2006, 73, 075427.
    [26]Stephens, P. J.; Devlin, F. J.; Frisch, M. J.; Chabalowski, C. F., J. Phys. Chem. 1994, 98, 11623.
    [27] Slater, J. C. The Self-consistent Field for Molecules and Solids, in Quantum Theory of Molecules and Solids. Mc-Graw Hill: New York, 1974.
    [28]Gaussian 98 (Revision A.5), Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A.; Stratmann, Jr. R. E.; Burant, J. C; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C; Adamo, C; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Stefanov,B. B.; Liu, G.; Liashenko,A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D.J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C; Challacombe,M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Andres, J. L.; Gonzalez, C;Head-Gordon, M; Replogle, E. S.; Pople, J. A. Gaussian, Inc., Pittsburgh PA, 1998.
    
    [29]Xu, X.; Wang, C. J.; Xie, Z. X.; Lu, X.; Chen, M. S.; Tanaka, K. Chem. Phys. Lett. 2004, 388,190.
    
    [30]Hariharan, P. C; Pople, J. A. Theor. Chim. Acta, 1973, 28, 213.
    
    [31]Watanabe, H.; Nanbu, S.; Wang, Z. H.; Aoyagi, M., Chem. Phys. Lett. 2006, 424, 133.
    [1] Kaxiras,E., Phys. Rev. B. 1991,43, 6824.
    
    [2] Papageorgopoulos, A.; Kamaratos, M., Surf. Sci. 1996, 352-354, 364.
    
    [3] Luo, Y.; Slater, D.; Han, M.; Moryl, J. E.; Osgood Jr, R. M, Appl. Phys. Lett. 1997, 71, 3799.
    
    [4] Hahn,Th.; Metzner, H.; Plikat, B.; Seibt, M., Apply. Phys. Lett. 1997, 72, 2733.
    
    [5] Hung, W. H.; Chen, H. C; Chang, C. C; Hsieh, J. T.; Hwang, H. L., J. Phys. Chem. B. 1999,103,3663.
    
    [6] Schroder-Bergen, E.; Ranke, W., Surf. Sci. 1990, 236, 103.
    [7] Rezaei, M.A.; Stipe, B.C.; Ho, W., J. Chem. Phys. 1999, 110, 3548.
    [8] Barone, V., Surf. Sci. 1987, 189/190, 106.
    
    [9] Han, M.; Luo, Y.; Camillone, Ⅲ, N.; Osgood Jr. R. M., J.Phys. Chem. B. 2000, 104, 6576.
    [10]Lai, Y. H.; Yeh, C. T.; Lin, Y. H.; Hung, W. H., Surf. Sci. 2002, 519, 150.
    [11]Smardon, R. D.; Srivastava, G. P., Surf. Sci. 2005, 584, 161.
    [12]Chakarov, D. V.; Ho, W., Surf. Sci. 1995, 323, 57.
    [13]Rezaei, M. A.; Stipe, B. C; Ho, W., J. Phys. Chem. B. 1998, 102, 10941.
    [14] Stephens, P. J.; Devlin, F. J.; Frisch, M. J.; Chabalowski, C. F. J. Phys. Chem., 1994, 98,11623.
    [15] Slater, J. C. The Self-consistent Field for Molecules and Solids, in Quantum Theory of Molecules and Solids. Mc-Graw Hill: New York, 1974.
    [16] Gaussian 98 (Revision A.5), Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.;Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A.; Stratmann, Jr. R. E.; Burant, J. C; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C; Adamo, C; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Stefanov, B. B.; Liu, G.; Liashenko,A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Andres, J. L.; Gonzalez, C; Head-Gordon, M.; Replogle, E. S.; Pople, J. A. Gaussian, Inc., Pittsburgh PA, 1998.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700