用户名: 密码: 验证码:
利用DEMETER卫星数据提取地震异常的方法初探
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中国是一个多地震的国家,而当前的地震预报尚处在探索阶段,地震监测预测仍然是世界性科学难题。发展新的观测手段,能够为提取地震异常提供更丰富全面的观测资料,从而为地震预测研究提供支撑。卫星电磁探测技术正在日益兴起,利用其数据提取地震电离层前兆也成为地震预测研究中越来越受到关注的新方法。
     本文基于中国地震电磁试验卫星项目的实际需要,充分利用DEMETER(Detection of Electro-Magnetic Emissions Transmitted from Earthquake Regions)卫星四年来获得的观测数据研究地震电离层效应,积累经验,总结教训,为日后中国地震电磁卫星数据处理工作奠定基础。
     论文首先调研了国内外地震电离层效应的研究现状,回顾了国外在地震电离层效应研究方面所做的震例研究和统计研究的案例;总结了地震电磁卫星发展历程和主要阶段;并介绍了地震电离层耦合机理。另外,文中还给出了前人研究中归纳的地震电离层异常的各类特征,并根据回顾的震例对异常的表现特征进行了概括。
     介绍了DEMETER卫星的基本情况,包括载荷和产出数据及产品。重点关注其应用于地震研究方面的进展,对2006年DEMETER国际研讨会上有关其数据处理和应用的报告作了详细调研,此外对文献中比较有特色的报导作了介绍。
     以普洱地震为例,探讨了DEMETER卫星观测数据的地震应用研究。论文遵循2级图像初步解译→1级数据深入分析的思路。通过初步解译后,得出升轨和降轨各自不同的表现特征,发现扰动绝大多数发生在升轨轨道(即地方时的夜间)。挑选了2个具有扰动异常的升轨和1个无异常升轨,同时还选定了1个无异常的降轨进行对比研究。采用追踪其一年内重访轨道的方式,分析了朗缪尔探针(ISL)测得的电子密度(Ne)和电子温度(Te)、电场探测仪(ICE)测量的VLF电场频谱数据。
     最后,归纳了电子密度、电子温度和电场频谱三种参量所表现出的背景特征及异常现象,并提出了论文的不足之处和未来需要深入研究的问题。
     论文取得的主要进展和初步成果如下:
     1研究方法
     基于DEMETER卫星1级观测数据,本文探索了几种数据处理及异常提取方法,取得了较好的结果,总结如下:
     (1)重访轨道对比方法:根据DEMETER卫星轨道设计特点,将每隔16天的轨道进行对比,虽然间隔时间比较长,但这种方法可以保证卫星在同一位置观测数据的对比,相当于剔除空间变化的影响。对于研究背景场信息提供了有效的方法。同时通过对比,也更有利于发现震前微弱的电离层扰动信息。
     (2)不同参量的相关分析:通过分析电子密度和电子温度变化曲线,发现了他们之间的相关关系。初步研究认为他们在局部范围内呈现正相关关系,但在地震震前一定区域范围内,则表现为负相关。利用这一方法或许可以提取潜在的异常信息。
     (3)时空演化图像对比:将震前至震后一段时间内、一定区域内的卫星观测数据进行对比,得到各参量的时空演化图像,便于分析震前电离层扰动的变化过程。
     (4)电场单频信息提取方法:从多个电场频谱数据中提取某一固定频率的变化曲线,便于分析震前异常信号的突出频段。
     2普洱地震电离层扰动特征
     针对普洱地震,采用了2级图像初步解译→1级数据深入分析的研究思路。通过分析电子密度、电子温度、电场频谱的背景变化规律并提取异常信息,得到了以下认识:
     (1)通过普洱地区电离层电子密度(Ne)重访轨道对比分析,发现本区电离层Ne背景场存在明显的季节、昼夜和区域的差别。夜间Ne的变化形态主要有三种类型,即单峰、马鞍和平缓状;其在四个季节有不同的变化特征:冬季南半球Ne整体比较高,峰值分布在南半球低纬度区;而春秋两季为对称形状;夏季北半球整体Ne偏高,峰值一般也迁移到20°N左右。白天Ne在四个季节的整体变化形态很类似,峰值出现的位置都在10°N附近,峰值的大小也很接近。白天平均电子密度整体高于夜间。
     利用重访轨道的数据对比方法获得了很明显的前兆异常,震前9天的异常增幅达到77%左右,但其中可能包含了一定的背景变化信息,不完全是地震引起的异常,重访轨道数据对比可以为异常提取提供一定的背景基础。普洱地震前,DEMETER卫星记录的升轨的扰动现象明显优于降轨,证明电离层等离子体扰动不连续分时段出现的特点,并且上午时段扰动信号不明显。
     (2)震前2个月的电子密度(Ne)空间图像反映了地震异常在震前1个月左右开始在震中区呈现高值,震前10-20天异常达到最大,临震前10天内异常区域存在一定漂移,而且幅度减弱,震后异常消失。
     (3)利用电场单频信息提取的方法,发现震前异常信息集中在200Hz以下频段,高频段异常不明显。震前40Hz电场频谱的时空演化图反映了震前4天震中附近的夜间频谱值开始出现异常增强现象,震前两天异常更加集中,震后异常消失。
     (4)利用电子密度(Ne)与电子温度(Te)相关分析的方法,震前6小时的一条轨道在震中纬度偏北10°的区域内得到了Ne与Te之间异常的强负相关系数。这一异常在时间上和空间上都与普洱地震对应得很好,很可能异常来源于此次地震。
     (5)本研究获得的结果与以往研究结果具有对比性,包括异常参量、异常时间、异常位置和异常幅度等。
Numerous earthquakes have occurred in China. Meanwhile, earthquake prediction is still in the exploration stage at present. Earthquake monitoring and prediction are world-wide scientific problems all the same. To develop new techniques of observation can obtain more comprehensive data for extracting earthquake-related anomalies, so as to provide support for promoting earthquake prediction research. Satellite electromagnetic detection techniques spring up increasingly, and extracting seismo-ionospheric precursors from satellite data draws more and more attention. It becomes a new way in the earthquake prediction research.
     This paper is based on actual needs of the project named China Seismo-electromagnetic test Satellite. To study on seismo-ionospheric effect by making full use of DEMETER (Detection of Electro-Magnetic Emissions Transmitted from Earthquake Regions) satellite observations in the past more than four years can sum up experience and lessons for laying the foundation of satellite data processing in future.
     First of all, we investigate the research status of seismo-ionospheric effects at home and abroad. We introduce the mechanism of the seismo-ionosphere coupling; review the case studies and statistics studies about seismo-ionospheric effect abroad; and sum up the history and the main stages of the development of seismo-electromagnetic satellite. In addition, the paper gives the various characteristics of seismo-ionospheric anomalies summarized by previous research. And according to case studies reviewed, we also generalize the features of seimo-ionospheric anomalies.
     Secondly, we introduce the basic situation of DEMETER satellite, including its payloads, data and products. And we focus its applied research progress. We investigate the report of data processing and application on the 2006 international conference of DEMETER satellite in detail, and give a presentation of relevant typical research in literature.
     Then, we study on Pu’er earthquake using DEMETER satellite observations. The thesis adopts the idea from preliminary interpretation of level-2 images to in-depth analysis of level-1 data. Through preliminary interpretation, we conclude different characteristics of ascending and descending orbits, and find that the majority of disturbances occurred in ascending orbits. We select two ascending half orbits with perturbations, one ascending and one descending half orbits without perturbation. For these four half orbits, we analyze the electron density (Ne), electron temperature (Te) and Power spectrum of the VLF Electric Field (VLFe“SP”) data recorded in their revisited orbits during a year before Pu’er earthquake.
     Finally, we summarize background characteristics and anomalies of the electron density (Ne), electron temperature (Te) and Power spectrum of the VLF Electric Field (VLFe“SP”), and propose inadequacy of thesis and the problems which need be further studied.
     The major progress and preliminary results of this thesis include:
     1 Research methods
     On the basis of level-1 data observed by DEMETER satellite, we explore several methods achieving preferable results and summarize them as follows:
     (1) Comparison of revisited orbits: according to orbit designing features of DEMETER satellite, we compared the orbits every 16 days. Despite of long interval of time, this method can guarantee the comparison of the observations of satellite in the same location, the equivalent of excluding the impact of spatial changes. At the same time, it is easier to find the weak ionospheric disturbance information before earthquake by the comparison.
     (2) Relevant analyses of different parameters: we find the correlation between electron density (Ne) and electron temperature (Te) by analyzing their curves. On preliminary study, we consider they show a positive correlation in a local region, but they perform the negative correlation in certain area coverage before earthquake. This method can be used to extract information of potential anomalies.
     (3) Comparison of space-time evolution images: It is easier to analyze the variation process of ionospheric disturbances before earthquake by the comparison of the observations of satellite in a period time and certain area from pre-earthquake to post-earthquake and the extraction of the abnormal variations of them.
     (4) Extraction of single-frequency of Power spectrum of the VLF Electric Field (VLFe“SP”): It is facilitated to analyse the prominent single band of anomaly before earthquake by extracting single-frequency of power spectrum of VLF electric field.
     2 The features of seismo-ionospheric disturbances of Pu’er earthquake
     We adopt the idea from preliminary interpretation of level-2 images to in-depth analysis of level-1 data for Pu’er earthquake. Through analyzing the law of background variations of Ne, Te and VLFe“SP”and extracting earthquake-related anomalies, we have acquired information as follows.
     (1) Through the analysis of the characteristics of Ne, Te and VLFe“SP”in Pu’er region, we find that there are significant differences of the ionospheric background in season, day and night, and regions. There are three main types of Ne variations in night time: single-peak, saddle-shaped and even-shaped. There are different variation characteristics in four seasons also in night time: in winter, Ne of southern hemisphere is wholly higher whose peak distributes in the low-latitude of southern hemisphere. In spring and autumn, the shape of Ne is symmetrical whose peak distributes in northern hemisphere. In summer, Ne of northern hemisphere is wholly higher whose peak moves to about 20°N generally. At daytime, the whole variation shapes of Ne are similar in every season, and the peaks appear near 10°N around, whose values are also very similar.The average of Ne in daytime is higher than that of nighttime.
     We extract significant Ne precursors by comparison of the revisited orbits, finding the amplitude of anomaly increase to around 77%. But there may be certain background information, and it is not entirely caused by the earthquake. This method can provide a background basis for extracting anomalies. The disturbance of ascending orbits is superior to those of descending orbits recorded by DEMETER satellite. It can prove that ionospheric plasma disturbance appears discontinuously at times, and disturbed signal is not obvious during the morning.
     (2) Ne time-space images of two months before the earthquake show that a high-value anomaly begins to appear near the area of epicenter one month before the earthquake, and arrive at maximum 10-20 days before the earthquake, and there is a certain drift of abnormal region and weakened amplitude in impending 10 days. Anomalies disappear after the earthquake.
     (3) In addition, we find out abnormal enhancement of VLFe“SP”concentrate at frequency below 200Hz, and the anomaly is not obvious at high frequency. Temporal and spatial images of VLFe“SP”at 40Hz in 10 days before the earthquake show that abnormal enhancement begins from 4 days before and it is more focused before 2 days. Anomalies disappear after the earthquake.
     (4) Through the correlation analysis of Te and Ne, we find out the strong negative correlation characteristics between them in the region of 10°north of the epicenter recorded in a half orbit flying over the epicenter six hours before the earthquake. This anomaly corresponds well with Pu’er earthquake in terms of time and space, and it is likely to come from this earthquake.
     (5) The results of the thesis are comparable with those of previous studies, including parameters, time, location and amplitude of anomalies.
引文
丁鉴海, 卢振业, 黄雪香. 1994. 地震地磁学. 地震出版社
    丁鉴海, 申旭辉, 潘威炎等, 2006. 地震电磁前兆研究进展[J]. 电波科学学报, 21(5): 791-801
    王建, 白世彪, 陈晔. 2004. Surfer 地理信息制图. 中国地图出版社
    张国民, 傅征祥, 桂燮泰等. 2001. 地震预报引论. 科学出版社
    朱荣. 2007. 从卫星观测数据提取地震电离层前兆信息的初探[朱荣学位论文]. 中国地震局地球物理研究所
    朱荣, 杨冬梅, 荆凤等, 2008. DEMETER 卫星观测到的云南普洱地震前的电离层扰动[J]. 地震学报, 30(1): 76-81
    卓贤军, 赵国泽, 王继军等, 2005. 地震预测中的电磁卫星[J]. 大地测量与地球动力学, 25(2): 1-5
    Bhattacharya S, Sarkar S, Gwal A K, et al. 2007. Satellite and ground-based ULF/ELF emissions observed before Gujarat earthquake in March 2006. CURRENT SCIENCE, VOL.93, NO.1.
    Buchachenko A L, Oraevskii V N, Pokhotelov O A, et al.1996. Ionospheric precursors to earthquakes, Physics-Uspekhi, 39(9), 959-965.
    Chmyrev V M, Isaev N V, Bilichenko S V, et al. 1989. Observation by space-borne detectors of electric fields and hydromagnetic waves in the ionosphere over an earthquake centre, Physics of the Earth and Planetary Interiors, 57, 110-114.
    Craig J, Richard L, Neil R. 1999. Observations of Electromagnetic Activity Associated with Earthquakes by Low-Altitude Satellites, Atmospheric and Ionospheric Electromagnetic Phenomena Associated with Earthquakes, Ed. M. Hayakawa, pp.697-710.
    Davies K, Baker D M, 1965. Ionospheric effects observed around the time of the Alaskan earthquake of March 28 1964. J. Geophys. Res. 70:2251-2253.
    Fitterman D.V., 1978. Electrokinetic and magnetic anomalies associated with dilatant regions in a layered earth, J. Geophys. Res., 83, 5923.
    Gokhberg M B, Morgunov V A, Yoshino T, et al. 1982. Experimental measurement of electromagnetic emissions possibly related to earthquakes in Japan. J. Geophys. Res. 87: 7824-7828.
    Gokhberg M B, Buloshnikov A M, Gufel’d I L, et al. 1985a. Resonant phenomena accompanying seismic-ionospheric interaction, Izv. Russ. Acad. Sci. Phys. Solid Earth, 21, 413.
    Gokhberg M B, Gufel’d I L, Gershenzon N I, et al. 1985b. Electromagnetic effects during rupture of the Earth’s crust, Izv. Russ. Acad. Sci. Phys. Solid Earth, 21, 52.
    Henderson T R, Sonwalkar V S, Helliwell R A, et al. 1993. A search for ELF/VLF emissions induced by earthquake as observed in the ionosphere by the DE 2 satellite, Journal of Geophysical Research, 98, 9503-9514.
    Isaev N V, Serebryakova O N, 2001. Electromagnetic and plasma effects of seismic activity in the earth ionosphere, Chem.Phys.Reports, 19(6), 1177-1188.
    Ishido T., Mizutani H., et al. 1981. Experimental and theoretical basis of electrokinetic phenomena in rock-water systems and its applications to geophysics, J. Geophys. Res., 86,1763.
    Larkina V I, Migulin V V, Nalivaiko A V, et al. 1983. Observation of VLF emissions, related with seismic activity, on the Intercosmos-19 satellite. Geomagn. Aeronom. 23: 684-687.
    Larkina V I, Migulin V V, Molchanov O A, et al. 1989. Some statistical results on very low frequency radiowave emissions in the upper ionosphere over earthquake zones, Physics of the Earth and Planetary Interiors, 57, 100-109.
    Lockner D.A., Johnston M.J.S., and Byerlee J.D. 1983. A mechanism to explain the generation of earthquake lights, Nature, 302, 28.
    Mathews J P, Lebreton J P. 1985. A search for seismic related wave activity in the micropulsation and ULF frequency ranges using GOES-2 data. Annales Geophysicae, 3, 6, 749-754.
    Mizutani H., Ishido T., Yokokura T., et al. 1976. Electrokinetic phenomena associated with earthquakes, Geophys. Res. Lett., 3,365.
    Parrot M and Lefeuvre F, 1985. Correlation between GEOS VLF emissions and earthquakes, Annales Geophysicae, 3, 6, 737-748.
    Parrot M, and Mogilevsky M M. 1989. VLF emissions associated with earthquakes and observed in the ionosphere and the magnetosphere, Physics of the Earth and Planetary Interiors, 57, 86-99.
    Parrot M, Achache J, Berthelier J J, et al. 1993. High-frequency seismo-electromagnetic effects, Physics of the Earth and Planetary Interiors, 77, 65-83.
    Parrot M, 1995. Electromagnetic Noise Due to Earthquakes, Handbook of Atmospheric Electrodynamics, Volume Ⅱ, 95-116.
    Parrot M., 1999. Statistical studies with satellite observations of seismogenic effects, Atmospheric and ionospheric electromagnetic phenomena associated with earthquake, ed. M. Hayakawa, pp.685-695.
    Parrot M, Berthelier J J, Lebreton J P, et al. 2006. Examples of unusual ionospheric observations made by the DEMETER satellite over seismic regions. Physics and Chemistry of the Earth, 31:486-495.
    Rozhnoi A, Molchanov O, Solovieva M, et al. 2007. Possible seismo-ionosphere perturbations revealed by VLF signals collected on ground and on a satellite. Nat. Hazards Earth Syst. Sci., 7, 617-624.
    Santolik O., Parrot M., 1999. Case studies on the wave propagation and polarization of ELF emissions observed by Freja around the local proton gyrofrequency, J. Geophys. Res., 104, 2459-2475.
    Santolik O., 2001. Propagation Analysis of Staff-SA Data with Coherency Tests, LPCE/NTS/073.C, Lab. Phys. Chimie Environ./CNRS, Orleans, France.
    Santolik, O., Lefeuvre, F., Parrot, M., et al. 2001. Complete wave-vector directions of electromagnetic emissions : Application to INTERBALL-2 measurements in the nightside auroral zone, J. Geophys. Res., 106, 13, 191-13, 201.
    Santolik O., Parrot M., Lefeuvre F., 2003. Singular value decomposition methods for wave propagation analysis, Radio. Sci. 38(1), 1010, doi: 10. 1029/2000RS002523.
    Santolik O., Nemec F., Parrot M., et al. 2006. Analysis methods for multi-component wave measurements on board the DEMETER spacecraft, Planetary and Space Science, 54: 512-527.
    Sarkar S, Gwal A K, Parrot M, 2007. Ionospheric variations observed by the DEMETER satellite in the mid-latitude region during strong earthquakes. Journal of Atmospheric and Solar-Terrestrial Physics, 69, 1524-1540.
    Scholz C H, Sykes L R, and Aggarwal Y P, 1973. Earthquake prediction: A physical basis, Science, 181, 803.
    Pulinets S., and Boyarchuk K., 2004. Ionospheric Precursors of Earthquakes. pp.50-52.
    Serebryakova O N, Bilichenko S V, Chmyrev V M, et al. 1992. Electromagnetic ELF radiation from earthquake regions as observed by low-altitude satellites, Geophysical research letters, 19, 91-94.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700