用户名: 密码: 验证码:
土壤自净化特性及公路导排系统关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
公路路面的径流污染是交通运输引起的环境污染的一个重要方面,其严重影响周边环境与水体的安全,破坏周边的生态环境,对人类的健康和安全构成威胁,部分污染物甚至会严重影响周边环境的动植物的生存。目前利用土壤自净化特性设计公路导排系统可对其影响进行有效削减,为此,本文对土壤自净化特性及公路导排系统的关键技术进了理论与试验研究,获得了一些有益的结论,为设计更为有效的公路导排系统以削减路面径流污染,保护公路周边生态环境提供一定的理论基础。
     首先,本文以前人的研究成果为基础,探讨了土壤自净化特性的机理,同时结合导排系统的构造特点得到了其净化路面径流污染物的机制,并开展了土壤自净化特性的土柱单元体模型试验。在此基础上,引入土壤溶质运移理论对导排系统进行理论分析并用HYDRUS系列软件对其数值仿真模拟,其中数值模拟包括土柱单元体模拟和导排系统的模拟。在数值模拟中,先验证了HYDRUS-1D模型的可靠性,再用HYDRUS-1D得到的第二期试验出水口氨氮模拟值与实测值对比,从对比结果得到HYDRUS-1D模型能较好地模拟土壤溶质运移过程,接下来用HYDRUS-1D模型分析溶质运移的三个主要参数—(弥散系数、吸附因子、速率反应参数)对土壤溶质运移的影响。最后用HYDRUS(2D/3D)程序模拟了导排系统中溶质运移过程,得到了溶质在导排系统中的迁移与转化特征,并通过该软件分析了坡角与坡长对导排系统净化功能的影响。
     由本文试验与理论分析结果可知:①土壤类型是影响污染物迁移与转化的主要原因之一,粉质粘土柱对污染物指标(CODcr、NH4-N、TN)的去除情况优于粉土柱和砂土柱;②含有粘粒组的土柱对氨氮的去除率达到58%以上,而不含粘粒组的土柱不到20%,粘粒组行为对化学耗氧量和总氮的去除的影响相对较小;③红土对TN和CODcr净化效果随孔隙比增大而增大,而孔隙比条件对净化NH4-N的效果影响较小;④从变化趋势来看,孔隙比条件对净化CODcr效果的影响较大;⑤三个溶质运移关键参数中,一级反应参数对处理水浓度影响最大,吸附因子次之,弥散系数最小;⑥溶质沿公路导排系统坡面方向向下运移速度逐渐减小,越靠近坡面顶端,溶质峰值浓度越大,达到平衡时间越短;⑦坡度变化对导排系统中的溶质运移无影响,坡长在一定范围内对导排系统溶质运移影响较大,达到一定值后影响较小,其中存在一个最佳坡长值使导排系统净化效果最好。
With the continuous increase of highway mileage and the rapid development of automototive industry,the environmental pollution caused by highway transportation is more and more got attentions of people. The runoff pollution of road surface is an important aspect of environmental pollution caused by transportation.Presently the road guid-drainage system devised with soil's self-purification can effectively reduce its impact. The paper does the experimental and theoretical research for the key technologies of Road's Guided-drainage System's and the characteristic of soil's self-purification,and acquires some useful conclusions.It provides the theoretical basis for the design of road drainage systems to more effectively reduced runoff pollution, and protect the surrounding ecological environment of roads.
     Firstly, this paper acquries the mechanism of its purification runoff pollutants, and carries out the soil column unit model test of the characteristics of the soil's self-purification based on the previous research results to discuss the mechanism of the soil self-purification characteristics, and combined with the structural features of guided-drainage systems.On this basis,the introduction of soil solute transport theory conducts the theoretical analysis for guided-drainage systems and carries out numerical simulation with HYDRUS series software,which includes soil column element numerical simulation and physical modeling simulation of guided-drainage systems.In the numerical simulation,it first verifies the reliability of the model HYDRUS-1D,then gets the comparing results between the simulated value and the measured value of ammonia in the second test the outlet with HYDRUS-1D.The comparing results shows the HYDRUS-1D model can better simulate soil solute transport process. Then it analyzes the impact of three main parameters(diffusion coefficient, absorption factor, the rate of reaction parameters) of solute transport on soil solute transport with HYDRUS-1D model.Finally,it simulates the solute transport process of guided-drainage systems with HYDRUS (2D/3D) program,then obtains the migration and transformation characteristics of solute in the guided-drainage systems,and analyzes the impacts of slope angle and slope length on the purification of the guided-drainage systems.
     The tests and theoretical results shows:①the type of soil is one of the main indicators affecting pollutant migration and transformation, the silty clay column (CODcr, NH4-N, TN) is better for the removal of pollutants than silt and sand column;②The removal rate of soil column group with cosmid for the NH4-N reached more than 58%,while the non-cosmid soil column group is less than 20%.The removal effect of clay on chemical oxygen demand and total nitrogen was relatively small.③While purifying effect of red soil for CODcr and TN increases with void ratio increasing,the effect of the void ratio conditions on the purification of NH4-N is small.④From the trend of change,the effect of the void ratio conditions on the purification of CODcr is large.⑤The impact of the first reaction parameters on water treatment concentration is maximum in three key parameters of solute transport,followed by absorption factor,diffusion coefficient is minimum;⑥The movement speed of solute along the direction of slope of the road guided-drainage system decreases,the closer to the top of slope,the greater the concentration of the solute peak,and the shorter the time to reach equilibrium;⑦The change of slope has no effect on the solute transport of guided-drainage system,the impact of slope length on the solute transport of guided-drainage system is maximum within a certain range,the impact is small after a certain value,which there is an optimum slope length values making the purification efficiency of guided-drainage system best.
引文
[1] G. Stotz. Investigations of the properities of the surface water run-off from federal highways in the FRG. The Science of the Total Environment. 1987,Vol. 59,329-337
    [2] Y. A. Yousel, T. Hitved—Jacobsen et al. Removal of Contaminants in Highway Runoff Flowing Through Swales. The Science of thr Total Environment, 1987, Vol. 59:391-399
    [3]曹凤中,戴天有等编译.地表水污染及其控制(M).北京:中国环境科学出版社,1993
    [4] Ellis, J.B. Revitt, D. M. dt al, The contribution of highway surfaces to urban stormwater sediments and metal loadings, the Science of the Toal Enviroment, 1987 ,vol. 59, 339-349
    [5]张玉芬等.交通运输与环境保护(M).北京:人民交通出版社,2003
    [6]赵剑强.城市地表径流污染与控制(M).北京:中国环境科学出版社,2002
    [7]Karen J. Comings,Derek B. Booth and Richard R. Horner. Stormwater Pollution Reoval by Two Wet Poods in Bellevue, Washington. J.of Envir. Engrg, ASCE2000, 126(4), 321-330
    [8] Alexandre Gordine and Barry J. Adams. Performance Anaysis of Urban Runoff Quality Contral Ponds by Continuous Simulation. Current Practieces in Modelling the Management of Stormwater Impact. 121-139
    [9] Pascal Piguet, Aurele Parriaux, Michael Bensimon. The diffuse infiltration of road runoff: An environmental improvement[J]. Science of the total environment, 2008, 397(): 13-23 .
    [10]高拯民,李宪法.城市污水土地处理利用手册[K].北京:中国标准出版社,1991.
    [11]曾扬,安贞煜.土地处理技术在污水资源化中的作用.环境污染治理技术与设备,2003 ,4(9):77-80.
    [12]王书文,刘庆玉,焦银珠等.生活污水土壤渗滤就地处理技术研究进展[J].水处理技术,2006,32(3):5-10.
    [13]刘晓宁.地下渗滤系统处理生活污水的实验研究[D]:[西安理工大学硕士学位论文].西安:西安理工大学,2005.
    [14]杨健,严群,阙愿林等.分层填料土地毛管渗滤系统处理生活污水的研究[J].环境科学与技术,2008,31(6):107-110.
    [15]刘传,田媛,杨昕.复合快渗系统处理生活污水的模拟试验研究[J].北京工商大学学报(自然科学版),2008,26(3):1-4.
    [16]马立民,刘丛,崔程颖,等.人工土地快速渗滤系统处理城镇污水工艺化[J].2008,34(6):47-51.
    [17]李丽,陆兆华,王昊等.新型混合填料人工快速渗滤系统处理污染河水的试验研究[J].2007,23(11):86-89.
    [18]刘文辉,赵晓光,刘增超等.土地处理池塘污水影响因素的实验研究[J].环境科学与技术,2008,31(6):26-29.
    [19]陈晓华.河流污水土地处理试验研究[D]:[河海大学硕士学位论文].南京:河海大学环境科学与工程学院,2006.
    [20]张金炳,汤鸣,汤呜皋等.人工快渗系统处理洗浴污水的试验研究[J].岩石矿物学杂志,2001,20(4):539-543.
    [21]顾丽,冯骞等.人工快速渗滤系统处理小区洗衣废水的试验研究.环境科学与技术,2006,29(10):4-7.
    [22]李淑杰.霍林河矿区污水的慢速渗滤土地处理[J].露天采煤技术,1996,(增刊):43-46.
    [23]谢家恕,谢松高,廖先凤.商丘啤酒厂污水土地处理与利用[J].农业环境与发展,1997,14(1). 28-23.
    [24]张国臣,陈鸿汉,何江涛.人工快速渗滤系统在城市雨水资源化中的作用[J].工程技术,2008,76-78.
    [25]吴蓓.人工快速渗滤系统削减城市初雨径流污染运用性研究[D]:[河海大学硕士学位论文].南京:河海大学环境科学与工程学院,2007.
    [26]杨敦,徐丽花,周琪.潜流式人工湿地在暴雨径流污染控制中运用[J].农业环境保护,2002,21(4): 334-336.
    [27]黄玮.人工土快速渗滤系统削减城市面污染负荷的试验研究[D]:[河海大学硕士学位论文].南京:河海大学环境科学与工程学院,2005.
    [28] uttner F.Efficacy of bank filtration for the removal of fragrance compounds and aromatic hydrocarbons.Wat.Sci.Tech.,1999,40(6):123-128.
    [29] Bosma T.N.P.,Ballaemans E.M.W.,et al.Biotransformation of organics in soil columns and an infiltration area. Ground Water,q996,34(1):49-56.
    [30]田光明.人工土快速渗滤滤床对耗氧有机污染物的去除机制[J].土壤学报,2002,39(1):127-144.
    [31]张明,胡瑞林,刘长礼等.利用北调江水回渗地下的除氮实验研究[J].工程勘察,2007,(7):32-36.
    [32]郑艳侠,刘征,宋保平等.人工快速渗滤系统去除氨氮研究[J].安徽农业科学,2008,36(19):8240-8242.
    [33] TANIK A ,COMAKOGLUF B. Nutrient removal from domestic wastewater by rapid infiltration system [J ]. Journal of Arid Environments ,1996 ,34 :379 -390.
    [34]易秀,黄土类对铬、砷的净化机理及地下水防污安全埋深的研究[D]:[长安大学博士学位论文].西安:长安大学,2003.
    [35]王春燕,郭劲松,王飞等.紫色土构建快速渗滤系统对污水氮去除性能的影响[J].2008,31(6):688-695.
    [36]郭伟,李培军,台培东等.人工土层快滤系统主要设计参数优化研究[J].2005,24(8):930-934
    [37]刘志强,苗群,毕学军等.复合床快速渗滤系统的研究[J].青岛建筑工程学院学报,1995,16(3):37-44
    [38]李培军,孙铁珩,郭治兴等.快速渗滤生态工程冬季运行热平研究及其在系统设计中的运用[J].应用生态学报,1993,4(2):182-186
    [39]郝火凡.污水土地处理系统中干湿周期的室内模拟试验研究[J]. 2001,14(2):72-73
    [40]莫慧栋.农业试验设计[M].北京:中国农业出版社,1992.第2版
    [41] Carlon RR,Lindelt KD,et al.Rapid infiltration treantment of primary and secondary effluent[J].J.Water Poll.Control.Fed,1982,549(1):270-280.
    [42]张金炳,污水处理人工快速渗滤系统研究[D]:[中国地质大学博士学位论文].北京:中国地质大学,2005.
    [43] Gale P M ,ReddyKR ,Graetz D A.Nitrogen removalfrom reclaimed water applied to constructed and natural wetland microcosms[J]. Water Environ Res,1993,65: 162-168
    [44]Kemp M C ,George D B.Subsurface flow constructedwetlands treating municipal waster for nitrigentrans-formation and removal[J]. Water Environ Res,1997,69: 1254-1262.
    [45]叶剑锋,徐祖信,李怀正.垂直潜流人工湿地中有机物去除动态规律研究[J].环境科学,2008,29(8): 2166-2171.
    [46]李雄勇,张帆,袁英兰等.对人工湿地污水处理系统工艺设计技术关键的探讨[J].环境保护科学,2009,35(1): 42-44.
    [47]何强,万杰,翟俊等.复合型人工湿地及其在小城镇污水处理中的应用[J].土木建筑与环境,2009,31(5): 122-126
    [48]黄少雄,衷平,石翔.人工湿地在路面径流污水处理中的应用[J].公路,2006,228(7): 228-234.
    [49]衷平,陈济丁,孔亚平等.人工湿地处理路面径流的试验研究[J].公路,2007,(3): 165-170.
    [50]李保国,胡克林,黄元仿等.土壤溶质运移模型的研究及运用[J].土壤,2005,37(4): 345-352.
    [51] Coats JC,Smith BD.Dead—end pore volume and dispersion in porous andunsaturated sandstone.Soil Sci.Soc.Am.Proc.,1964,27:258~262
    [52] Van Genuchten MTh, Wagenet RJ. Two-site/two-region models for pestecide transport and degradation; theoretical development and analytical solutions. Soil .Soc.Am.j., 1985,53: 1303-1310
    [53]冯绍元,张瑜芳,沈荣开,等.非饱和土壤中氮素运移与转化试验及其数值模拟[J].水利学报,1996,(8): 8-15.
    [54]罗阳,张增阁,霍家明,等.灌溉施肥条件下田间氮素在土壤中迁移情况的研究[J].水资源保护,2000,9(4):7-l1.
    [55]刘凌,陆桂华.含氮污水灌溉实验研究及污染风险分析[J].水科学进展2002,l3(3):313.320.
    [56]陈效民,邓建才,张佳宝等.黄淮海平原主要土类中硝态氮水平运移规律[J].环境科学,2002,23(5):96.99.
    [57]郝芳华,孙雯,曾阿妍等. HYDRUS-1D模型对河套灌区不同灌施情景下氮素迁移的模拟[J].环境科学学报,2008,28(5): 853-858.
    [58]刘培斌,丁跃元,张瑜芳.田间一维饱和—非饱和土壤中氮素运移与转化的动力学模式研究[J].土壤学报,2000,37(4):490-498.
    [59]张丹蓉,A.MERMOUD,管仪庆.莠去津在填土柱中的运移[J].河海大学学报(科学自然版),2005,33(5): 525-529.
    [60]冯绍元,齐志明,王亚平.排水条件下饱和土壤中镉运移实验及其数值模拟[J].水利学报,2004,(10): 89-94.
    [61]何俊,何世秀,胡其志.有机物污染物在完好复合衬垫中的迁移[J].岩土力学,2009,30(6): 1653-1657.
    [62]杨大文,李诗秀.农药在土壤中迁移及其影响因素的初步研究[J].土壤学报. 1992,29(4): 383-391.
    [63]李桂花.大肠杆菌和沙雷菌在砂土和砂质壤土中的运移特性(D):[中国农业大学硕士学位论文].北京:中国农业大学,2002.
    [64]赵剑强.路面径流污染特性及排污规律的研究[D]:[西安建筑科技大学博士学位论文].西安:西安建筑科技大学. 2000.
    [65]陈莹.公路路面径流污染特性及其对受纳水体水质影响的探讨[D]:[长安大学硕士学位论文].西安:长安大学
    [66]华勒尔(D.Hillel)著,华孟、叶和才译.土壤和水物理原理和过程[M].北京:农业出版社,1981
    [67]王绍文,秦华.城市污泥资源利用与污水土地处理技术[M].北京:中国建筑工业出版社,2007
    [68]李法云,曲向荣,吴龙华等.污染土壤生物修复理论基础与技术[M].北京:化学工业出版社,2005
    [69]钱天伟,刘春国.饱和—非饱和土壤污染物运移[M].北京:中国环境科学出版社,2007
    [70]仲彦卿.多孔介质污染物迁移动力学[M].上海:上海交通大学出版社,2007
    [71]李保国,李韵珠.土壤溶质运移[M].北京:科学出版社,1998
    [72]公路工程土工试验规程[S].北京:人民交通出版社,2007
    [73]城镇污水处理厂污染物排放标准[S].北京:中国环境科学出版社,2003.
    [74]黄永江,熊耀湘.渗流作用下土质边坡稳定性分析[J].水利科技与经济. 2005,11(8): 464-466
    [75]曹巧红,龚元石.应用Hydrus—1D模型模拟分析冬小麦农田水分氮素运移特征[J].植物营养与肥料学,2003,9(2):139-145
    [76]李久生,张建君,饶敏杰.滴管施肥灌溉的水氮运移数学模型及试验验证[J].水利学报. 2005,36(8): 932-938
    [77]石云.污水土地处理的数值模拟[D];[湖南师范大学硕士学位论文].长沙:湖南师范大学,2008
    [78] Ji?í?im?nek. HYDRUS Code Modification: Modeling Overland Flow. Department of Environmental Sciences University of California Riverside. 2009,3-5
    [79] J. ?im?nek, M. Th. van Genuchten, M. ?ejna. Modeling Subsurface Water Flow and Solute Transport with HYDRUS and Related Numerical Software Packages. Taylor & Francis Group, London, 2008, 95-115

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700