用户名: 密码: 验证码:
铣削Ti6Al4V刀具刃口钝化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钛合金Ti6Al4V具有比强度高、耐热性和耐蚀性好等优良性能,被广泛应用于航空航天工业,然而由于其导热系数低、化学活性高、弹性模量小等特点使其成为典型的难加工材料。在铣削Ti6Al4V过程中,由于Ti6Al4V材料的导热系数低,而且切屑与前刀面的接触长度极短,切削时产生的热不易传出,集中在切削变形区和切削刃附近的较小范围内,切削刃刃口处会产生极高的切削温度,而且铣削时切削刃所受到的负载是不连续的,从而导致刀具刃口快速磨损破损。刀具刃口钝化结构成为保证刀具寿命、提高加工效率的一个十分重要的因素。
     本文以铣削Ti6Al4V刀具切削刃刃口钝化结构为研究对象,通过有限元仿真方法,以最低切削温度为优化指标,对适合铣削Ti6Al4V刀具的刃口钝化结构进行了优化;并通过铣削Ti6Al4V过程中切削力、切削温度、切屑形貌、刀具寿命、表面质量完整性分析,研究了不同刃口钝化结构对铣削Ti6Al4V加工过程的影响。
     1.基于Power-Law模型建立Ti6Al4V的本构关系模型,并对三维铣削过程进行了二维简化,建立了能够反映刃口特点的刀片模型,并通过仿真切削力与实验结果的对比,验证了有限元模型的正确性。
     2.通过切削力、切削温度的对比,研究了不同刃口钝圆半径及不同刃口复合结构对铣削Ti6Al4V的影响规律,并以最低切削温度为优化指标,对适合铣削Ti6Al4V的刃口钝圆半径及刃口复合结构进行了优化。
     3.通过不同刃口钝圆半径的刀具铣削Ti6Al4V的刀具寿命试验研究,发现在相同切削条件下,当切削路程相同时,不同钝圆半径的刀具磨损速度是不同的,切削力的大小也是不同的。
     4.通过刃口钝化型式为钝圆刃的刀具与刃口未钝化刀具铣削Ti6Al4V试验,揭示刃口钝化刀具对于铣削Ti6Al4V表面质量完整性的影响规律及作用机理。
Ti6A14V are extensively used in aerospace industry because of their excellent properties of high specific strength (strength-to-weight ratio), fracture resistant characteristics, and their exceptional resistance to corrosion. However, Ti6A14V are considered as typical difficult-to-cut materials due to their high temperature strength, high chemical reactivity and its low modulus of elasticity. During milling Ti6A14V, as a result of low conductivity and short contact length between chip and rake face, the cutting heat can not diffuse easily and only concentrate around the deformation area and the cutting edge. Thus, the temperature of the cutting edge should be very high. What's more, the load on the cutting edge is discontinuous as milling Ti6A14V, so the cutting edge could be easily worn. Cutting tool's structure, especially its tool edge preparation, becomes one of the key factors that influence the tool life and improve machining efficiency. In this paper, some researches were carried out on the tool edge preparation by FEM analysis and the edge preparation size for milling Ti6A14V was optimized aimed at the lowest cutting temperature. The influence of different edge preparation on milling Ti6A14V was investigated by analysis the cutting force, cutting temperature, chip geometries, tool life and surface quality integrity.
     1. The constitutive material model of Ti6A14V was built based on Power-Law.3D milling process was simplified into 2D and the model of insert was also built to reflect the characteristics of the cutting edge. At last, the FEM model was verified to be accurate due to FEM cutting forces and experiment forces.
     2. By comparison of cutting force and cutting temperature, the influences of different edge radius and edge composite structures on milling Ti6A14V were investigated. Aimed at the lowest cutting temperature, edge radius and edge composite structure were optimized for milling Ti6A14V.
     3. In the experiment about tool life of milling Ti6A14V with different edge radius, it can be seen that when the cutting length is the same the tool wear rate is different with the variation of edge radius and the cutting force is different too.
     4. The influence of edge preparation tool on the surface quality integrity of milling Ti6A14V was investigated in experiments of milling Ti6A14V with tools of edge preparation and edge unpreparation.
引文
[1]张春江等.钛合金切削加工技术[M].西安:西北工业大学出版社,1986
    [2]张喜燕,赵永庆,白晨光.钛合金及应用[M].北京:化学工业出版社,2005
    [3]李梁,孙健科,孟祥军.钛合金的应用现状及发展前景[J].钛工业发展.2004,9(21):19-25
    [4]C.莱茵斯.皮特尔斯.钛与钛合金[M].北京:化学工业出版社,2003
    [5]陶春虎,刘庆(?)等.航空用钛合金的失效及其预防[M].北京:国防工业出版社,2003
    [6]成木编著.钛及钛合金铸造[M].北京:机械工业出版社,2005,5.
    [7]C.Leyens, M.peters. Titanium and Titanium alloys [M].2nd ed.,Wiley-VCH Verlag GmbH&Co.KGaA,weinheim,2003
    [8]杨冠军.钛合金研究和加工技术的新进展[J].钛工业进展,2001(3):1-5
    [9]艾兴,刘战强.高速切削刀具材料的进展和未来[J].制造技术与机床,2001,(8):21-25
    [10]艾兴.高速切削加工技术[M].国防工业出版社,2003.
    [11]李友生,邓建新,石磊.高速切削加工钛合金的刀具材料[J].高速加工与装备,2007(8):24-27
    [12]Ezugwu, E.O., Wang, Z.M. Titanium alloys and their Machinability-A Review [J]. Journal of Materials Processing Technology,1997(68):262-274.
    [13]Zoya Z A, Krishnamurthy R. The performance of CBN tools in the maching of titanium alloys [J]. Journal of Materials Processing Technology,2000,100(1-3):80-86
    [14]Vigneau, J., Derrien, S., High speed milling of difficult to machine alloys [C]. First French and German Conference on High Speed Machining.1997.
    [15]刘春生,刘雨辰.从航空工业需求看未来刀具的发展[J],航空制造技术.2009(9):62-66
    [16]刘战强.先进刀具设计技术:刀具结构、刀具材料与涂层技术[J].航空制造技术.2006(7):38-42.
    [17]Liu C R, Liu T M.Automated chatter suppression by tool geometry control [J].ASME J. Engg.Ind.1985,107:95-98.
    [18]Tarng Y S, Young H T, Lee B Y. Analytical model of chatter vibration in metal cutting [J]. Int.J Mach.Tools Manuf.1994,34(2):183-197
    [19]桂育鹏.刀具刃口钝化技术的探讨[J].数控机床市场.2005.12
    [20]J.D.安格纽.金属切削刀具的刃区参数选择[J].Toolong&Froduction.1973.2
    [21]J. Rech, Y. C. Yen, M.J.Schaff, et al. Influence of cutting edge radius on the wear resistance of PM-HSS milling inserts [J]. Wear,2005 (259):1168-1176
    [22]Yung-Chang Yen, Anurag Jain, Taylan Altan. A finite element analysis of orthogonal machining using different tool edge geometries [J]. Journal of Materials Processing Technology,2004(146): 72-81
    [23]K. Shintani, M. Ueki, Y. Fujimura. Optimum tool geometry of CBN tool for continuous turning of carburized steel [J]. International Journal of Machine Tools and Manufacture,1989,29(3): 403-413
    [24]Jeffrey D, Thiele, Shreyes N. Effect of cutting edge geometry and workpiece hardness on surface generation in the finish hard turning of AISI 52100 steel [J]. Journal of Materials Process Technology,1999(94):216-226
    [25]Jiang Hua, Rajiv Shivpuri, Xiaomin Cheng, et al. Effect of feed rate, workpiece hardness and cutting edge on subsurface residual stress in the hard turning of bearing steel using chamfer+hone cutting edge geometry [J]. Materials Science and Engineering A,2005,394(1): 238-248
    [26]N. Fang, Q. Wu. The effects of chamfered and honed tool edge geometry in machining of three aluminum alloys [J]. International Journal of Machine Tools & Manufacture,2005 (45): 1178-1187
    [27]M. R. Movahhedy, Y Altintas, M. S. Gadala. Numerical analysis of metal cutting with chamfered and blunt tools [J]. ASME,2002 (124):178-188
    [28]K.-D.Bouzakis, N. ichailidis, G. Skordaris, et al. Optimisation of the cutting edge roundness and its manufacturing procedures of cemented carbide inserts, to improve their milling performance after a PVD coating deposition [J]. Surface and Coatings Technology,2003(163-164):625-630
    [29]E.勒兹D.莫斯可威兹,J.E.小麦叶尔,D.J.斯道菲.金属切削刀具的刃区参数与耐用度的关系[J].American Society of Mechanical Engineers
    [30]M.E.Mechant. Basic Mechanics of the Metal Cutting Process [J]. J. Appl. Mech,1944 (11): A168-A175.
    [31]M.E.Mechant. Mechanics of Metal Cutting Process [J]. J.Appl. Phys,1951 (16):5-6
    [32]V.Piispanen. Theory of Formation of Metal Cutting Process [J]. J.Appl.Phys,1945 (16): 267-318.
    [33]E.H.Lee, B.W.Shaffer. The Theory of Plasticity Applied to a Problem of Machining [J]. J.Appl.Mech,1951 (18):405-413.
    [34]Zienkiewicz O C. Analysis of the mechanism of orthogonal machining by the finite element
    method [J]. Journal of the Japan Society for Precision Engineering,1971,37(7):503-508.
    [35]Shih, A. J., Yang, H.T.Y., Experimental and finite element predictions on the residual stresses due to orthogonal metal cutting [J]. International Journal for Numerical Methods in Engineering, 1993,36(8):1487-1507
    [36]Manuich, T. D., Ortiz, M. Modeling and simulation of high speed machining [J]. International Journal of Numerical Methods In Engineering,1995,38(21):3675-3694.
    [37]Lin Zone-Ching, Lai Wun-Ling, Lin H Y, Liu C R. The study of ultra-precision machining and residual stress for NiP alloy with different cutting speeds and depth of cut [J]. Journal of Materials Processing Technology,2000,97(3):200-210.
    [38]方刚,曾攀.金属正交切削工艺的有限元模拟[J].机械科学与技术.2003,22(4):641-645.
    [39]杨勇,柯映林,董辉跃.金属切削加工中航空铝合金板材的本构模型[J].中国有色金属学报.2005,15(6):854-859.
    [40]黄志刚,柯映林,王立涛.金属切削加工的热力耦合模型及有限元模拟研究[J].航空学报.2004,25(6):317-320.
    [41]董辉跃.航空整体结构件加工过程的数值仿真[D].浙江大学博士学位论文,2004,6.
    [42]董辉跃.铝合金高速加工及整体结构件加工变形的试验与仿真研究[D].浙江大学博士后学位论文,2006,1.
    [43]孙杰.航空整体结构件数控加工变形校正理论和方法研究[D].浙江大学博士学位论文,2004,6.
    [44]王立涛.关于航空框类结构件铣削加工残余应力和变形机理的研究[D].浙江大学博士学位论文,2003,10.
    [45]Bodner S R, Partom Y. Constitutive equations for elastic±viscoplastic strain-hardening materials [J]. Journal of Applied Mechanics.1975 (6):385-389.
    [46]Follansbee P S, Kocks. A constitutive description of the deformation of copper based on the use of the mechanical threshold stress as an internal state variable [J]. Acta Metall.1988, 36(1):81-93.
    [47]Zerilli F J, Armstrong R W. Dislocation-mechanics-based constitutive relations for material dynamics calculations [J]. Journal of Applied Physics.1987,61(5):1816-1825.
    [48]Khan A S, Huang S. Experimental and theoretical study of mechanical behavior of 1100 aluminum in the strain rate range 10-5-104s-1 [J]. International Journal of Plasticity.1992, (8):397-424.
    [49]Huang S, Khan A S. Modeling the mechanical behavior of 1100-0 aluminum at different strain rates by the Bodner-Partom model [J]. International Journal of Plasticity.1992, (8):501-517.
    [50]Johnson G R, Cook W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures [C]. Proceedings of the Seventh International Symposium on Ballistic, Hague, Netherlands,1983.541-547.
    [51]Aoura Y, Ollivier D, Ambari A, et al. Determination of material parameters for 7475 A1 alloy from bulge forming tests at constant stress [J]. Journal of Materials Processing Technology. 2004,145(3):352-359.
    [52]姜峰.不同冷却润滑条件Ti6Al4V高速加工机理研究[D].山东大学博士学位论文,2009,12.
    [53]Third Wave Systems I. AdvantEdge User's Manual [M].5.3 Edition. Third Wave Systems, Inc., 2008
    [54]Su Y, He N, Li L, et al. An experimental investigation of effects of cooling/lubrication conditions on tool wear in high-speed end milling of Ti-6A1-4V [J]. Wear.2006, 261(7-8):760-766.
    [55]Shaw M C. Metal Cutting Principle [M]. second Edition. Oxford University Press,2005
    [56]Seo S, Min O, Yang H. Constitutive equation for Ti-6A1-4V at high temperatures measured using the SHPB technique [J]. International Journal of Impact Engineering.2005, 31(6):735-754.
    [57]Shaw M C. Metal Cutting Principle [M]. second Edition. Oxford University Press,2005
    [58]牟涛.高速铣削钛合金Ti6Al4V的刀具磨损研究[D].山东大学硕士学位论文,2009,06.
    [59]仇启源,庞思勤.现代金属切削技术[M].机械工业出版社,1989.
    [60]太原市金属切削刀具协会.金属切削实用刀具技术[M].机械工业出版社,1993.
    [61]刘杰华,任昭蓉.金属切削与刀具实用技术[M].国防工业出版社,2006.
    [62]韩克筠.金属材料可切削性与刀具[M].江苏科学技术出版社,1979.
    [63]李凯岭,宋强.机械制造技术基础[M].山东科学技术出版社,2005.
    [64]司马琼.金属切削原理及应用[M].湖南科学技术出版社,1982.
    [65]陈建岭.钛合金高速铣削加工机理及铣削参数优化研究[D].山东大学博士学位论文,2009,06.
    [66]米古茂[日].残余应力的产生和对策[M].朱荆璞,邵会孟,译.北京:机械工业出版社,1983:181-190.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700