用户名: 密码: 验证码:
高速旋转阴极微小孔电解加工技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电解加工(electrochemical machining, ECM)是利用电极在电解液中发生电化学阳极溶解从而对金属材料进行加工的一种特种加工方法。电解加工由于其具有工具无损耗、加工材料范围广、加工后工件无残余应力和变形的特点,成为航空航天、国防工业生产中的关键技术之一。电解加工技术由于其是以离子形式去除材料,具有微细加工技术的潜在能力,成为近年来研究的热点之一。本论文结合制造业中广泛使用的微小孔结构,对微小孔电解加工以及其后处理中的关键技术进行研究,采用最高达40000rpm转速的高速旋转电极在四轴联动的微细电解加工机床进行微小孔电解加工试验。
     使用带有螺旋沟槽的微细电极作为工具电极,并在其高速旋转的条件下,利用电极上的螺旋沟槽将电解加工产物及时排出并快速补充新鲜电解液的特点进行微小孔电解加工试验,对微小孔电解加工的性能进行研究。分析不同的电极进给速度、电解液浓度对微小孔加工精度的影响规律,以及不同的电极转速对电解加工的稳定性和进给速度的影响情况。微小孔电解加工试验表明,在电极高速转动条件下,通过采用高的电极进给速度,低浓度的电解液等加工参数,可以减小侧向间隙;当电极转速由低变高时,保持稳定加工的电极最大进给速度得到提高,但当电极转速超过25000rpm后,保持稳定加工的电极最大进给速度反而有所下降。
     为了提高微小孔的加工精度,采用球形磨头电极进行微小孔电解磨削扩孔加工试验,分析了电解磨削加工中加工电压和进给速度对微小孔的加工精度、加工表面粗糙度和加工稳定性的影响规律,同时对金刚石磨头电极的使用寿命及其对孔精度的影响情况进行了研究。试验结果表明,选择合适的加工参数,合理搭配电解磨削中的电解作用和磨削作用,并在牺牲层的保护下,电解磨削扩孔加工后孔的尺寸精度达到9μm,加工表面粗糙度为Ra0.25μm,并且孔的锥度非常小。
Electrochemical machining (ECM) is a non-traditional machining method for the metal material based on electrochemical anodic dissolution of electrodes in electrolyte. Compared with traditional machining methods, ECM takes many advantages in applicability such as no tool wear, no residual stress and the ability to machine complex shapes regardless of material hardness. Owing to these characteristics, ECM has been a key technology in aerospace, aviation and national defense industry. By virtue of its ability to remove material ion by ion, ECM should in theory be able to produce micro-precision parts. In this paper, some key technologies of micro-hole processing are studied. The experiment of micro-hole machining is finished on the four-axis CNC micro-ECM machine tool with the rotating electrode whose speed is up to 40000 rpm in the research.
     Under the condition of the high-speed rotation of the electrode with the helical grooves, the electrolyte in the gap between the two electrodes can be flow rapidly by the drive of the helical grooves. And the rapid flow of the electrolyte through the narrow machining gap can not only improve the removal the electrolysis product, but also supply the fresh electrolyte timely. The effects of the concentration of electrolyte, feeding speed and rotary speed of the cathode on the machining precision and stability are investigated. Experiment results indicate that low concentration electrolyte and high feeding speed could be benefit to the precision of the micro-hole, and high rotary speed could improve the feeding speed and the machining stability, while the rotary speed is more than 25000rpm, the maximum feeding speed of the stably machining becomes a little decrease.
     In this paper, electrochemical grinding technology is employed in improving the accuracy and surface finish of the micro-hole. A spherical diamond tool is used as the electrode in this experiment. The effects of the voltage and feed rate on the micro-hole machining quality and machining stability are analyzed. The loss of diamond tool and its influence of the accuracy are researched. Under the protection of the sacrifice layer, the high quality micro-hole can be obtained by selecting suitable processing parameters to balance the role of electrolysis and grinding. After electrochemical grinding machining, the experiment results show that the dimension accuracy of the micro-hole is up to 0.9μm, and the surface roughness is up to Ra0.25μm, and the taper of the hole is very small.
引文
[1]刘军.航空发动机气膜冷却孔的打孔工艺[J].航空发动机,1995,(2):31-36
    [2]张晓兵.激光加工涡轮叶片气膜冷却孔的现状及发展趋势[J].应用激光,2002,22(2): 227-229
    [3]陈登,张伟,方文超等.模拟探讨喷油嘴孔径及孔数对柴油机燃烧特性的影响[J].柴油机, 2007,(3):21-24
    [4]李劲松,韩恒信.提高喷油嘴流量系数的探讨[J].柴油机设计与制造,2003,(3):33-35
    [5]刘建新,杜慧勇,李民等.喷油嘴喷孔毛刺现象对燃油喷雾的影响[J].洛阳工学院学报,2002,(2):44-50
    [6]佟浩,李勇,王扬.喷油嘴微孔电火花加工机床机电控制系统设计[J].汽车零部件制造,2007,(9):9-13
    [7]贾宝贤,王振龙,赵万生.基于特种加工的微小孔加工技术[J].电加工与模具,2005,(2):1-5
    [8]应人龙,曾莉群,顾大强.微小孔加工技术综述[J].机床与液压,2008,36(6):144-147
    [9]高霁,曹国强.特种加工微小孔技术及其发展现状[J].机械设计与制造,2005,(7): 169-171
    [10]梁洁萍,周知进.微小孔加工与微细钻头[J].湘潭师范学院学报,2004,26(4):56-58
    [11] K.P.Rajurkar,D.Zhu,J.A.MeGeough. New Development in ECM[J]. CIRP-99,Keynote Paper,1999,48(2):567-580
    [12]朱保国,王振龙.微细轴的电加工技术[J].电加工与模具,2005,(4):1-4
    [13]李小海,王振龙,赵万生.基于多功能加工平台的微细电解加工工艺[J].上海交通大学学报,2006,40(6):909-913
    [14]王明环,朱荻,张朝阳.微细孔电解加工控制方法及试验研究[J].中国机械工程,2007,18(6):646-650
    [15] T.Masuzawa. State of the art of micromachining [J]. Annuals of the CIRP,2002,49(2):473-488
    [16] Takahata Kenichi,Y.B.Gianchandani. Batch mode micro-electrodischarge machining [J]. Journal of Micro- electromechanical Systems,2002,(4):102-111
    [17] Chen Wang,Bing Hwa Yan,Xiang Tai Li. Use of micro ultrasonic vibration lapping to enhance the precision of micro-holes drilled by micro electro-discharge machining [J]. International Journal of Machine Tools & Manufacture,2002,(42):915-923
    [18]王德泉.砂轮特性与磨削加工[M].中国标准出版社,2001
    [19]杜炳志,漆红兰.电化学抛光技术新进展[J].表面技术,2007,36(2):56-58
    [20]张凌云,吴凤林.磨料流加工技术现状及展望[J].机械工程与自动化,2006,(5):166-168
    [21]刘晋春,赵家齐,赵万生.特种加工[M].北京:机械工业出版社,2007
    [22] A.K.M.De Silva,J.McGeough. Hybrid electrodischarge-Electrochemical Process for Roughing and Finishing Dies and Moulds[J]. Processing of the ISEM-12,1998,3(7):24-29
    [23]王建业,徐家文.电解加工原理及应用[M] .北京:国防工业出版社,2001
    [24]朱荻,王明环,明平美等.微细电化学加工技术[J].纳米技术与精密工程,2005,3(2): 151-155
    [25]张建华,盖玉先,刘军营.精密与特种加工技术[M].北京:机械工业出版社,2003.7
    [26]张朝阳,朱荻.微细电解加工的精度及定域性研究[J].机械科学与技术,2006,25(2): 242-245
    [27] I.Basak , A.Ghosh. Mechanism of spark generation during electrochemical discharge machining:a theoretical model and experimental verification[J]. Journal of Materials Processing Technology,1996,62(1-3):46-53
    [28] B.Bhattacharyya,S.Mitra,A.K.Boro. Electrochemical machining:new possibilities for micro-machining [J]. Robotics and Computer Integrated Manufacturing,2002,(18):283-289
    [29]王明环.微细电解加工试验研究[D].南京:南京航空航天大学,2006
    [30] B.Bhattacharyya,J.Munda. Experimental investigation on the influence of electrochemical machining parameters on machining rate and accuracy in micromachining domain[J]. International Journal of Machine Tools & Manufacture,2003,(43):1301-1310
    [31] Jerzy Kozak , Kamlakar P.Rajurkar , Yogesh Makkar. Selected problems of micro-electrochemical machining [J]. Journal of Materials Processing Technology,2004,(149):426-431
    [32]朱保国,王振龙,孙立忠.微细电解加工试验研究[J].华中科技大学学报,2003,(35): 85-88
    [33]雷卫宁,朱荻.微细孔电加工技术[J].航空精密制造技术,2001,37(3):11-15
    [34] Mohan Sen,H.S.Shan. A review of electrochemical macro-to-micro hole drilling processes [J].International Journal of Machine Tools & Manufacture,2005,(45):137-152
    [35]徐惠宇,朱荻,曲宁松.辅助阳极电解孔加工技术研究[J].新技术新工艺,2001,(5): 15-17
    [36]朱荻,曲宁松.电极平动式电解孔加工技术研究[J].机械工程学报,2001,(5):105-109
    [37]王明环,朱荻,徐惠宇.微螺旋电极在改善微细电解加工性能中的应用[J].机械科学与技术,2006,(25):348-351
    [38]李小海,王振龙,赵万生.高频窄脉冲电流微细电解加工[J].机械工程学报,2006,(1): 162-167
    [39] Wansheng Zhao,Xiaohai Li,Zhenlong Wang. Study on Micro Electrochemical Macro-to- Meso-scale [J]. Conference on Nano/Micro Engineered and Molecular Systems,2006,(1): 18-21
    [40]沈健,陈心昭,朱树敏.振动进给与脉冲电流电解加工的工艺特性[J].农业机械学报,2002,(3):110-114
    [41]施文轩,张明岐.电液束加工工艺的研究及其发展[J].航空制造技术,2001,(6):25-27
    [42] J.Munda,M.Malapati,B.Bhattacharyya. Control of micro-spark and stray-current effect during EMM process[J]. Journal of Materials Process Technology,2007,(194):151-158
    [43] B.J.Park,B.H.Kim,C.N.Chu. The Effects of Tool Electrode Size on Characteristics of Micro Electrochemical Machining[J]. Annual of the CIRP,2006,(1):54-59
    [44] M.S.Hewidy. Controlling of metal removal thickness in ECM process[J]. Journal of Materials Processing Technology,2005,(160):348-353
    [45]彭思平,徐家文,李颖等.微细电解加工机理探讨[J].电加工与模具,2005,(2):26-29
    [46]徐惠宇,朱荻,史先传.微细电解加工系统设计及试验研究[J],航空精密制造技术,2005, 41(4):26-30
    [47] A.K.M.De Silva,H.S.J.Altena,J.A.McGeough. Influence of Electrolyte Concentration on Copying Accuracy of Precision-ECM[J]. CIRP Annuals-Manufacturing Technology,2003,(52):165-168
    [48] A.K.M.De Silva,H.S.J.Altena,J.A.McGeough. Precision ECM by Process Characteristic Modelling [J]. CIRP Annals-Manufacturing Technology,2001,49(1):151-155
    [49] B.Zinovi,T.Brus,G.Qiriat. Adjustment and readjustment of electrochemical machines and control of the process parameters in machining shaped surfaces[J]. Journal of materials processing technology,2008,196(1-3):311-320
    [50] D.Clifton,A.R.Mount,G.M.Alder. Ultrasonic measurement of the inter-electrode gap in electrochemical machining [J]. International Journal of Machine Tools & Manufacture,2002,(42):1259-1267
    [51]张建华,张勤河,贾志新.复合加工技术[M].北京:化学工业出版社,2005,3
    [52]明平美,朱荻,徐正杨.电解研磨扩孔新技术研究[J].电加工与模具,2004,(5):52-55
    [53]王彤,刘晋春.脉冲电解研磨复合加工[J].哈尔滨理工大学学报,1997,(2):8-12
    [54]孙永安,李县辉,张永乾.硬质合金的电解磨削加工[J].轴承,2002,(2):18-21
    [55] S.Zaborski,M.Upak,D.Poro. Wear of cathode in abrasive electrochemical grinding of hardly machined materials [J]. Journal of Materials Processing Technology,2004,149(1-3):414-418
    [56]徐家文,王建业,田继安. 21世纪初电解加工的发展和应用[J].电加工与模具,2001,(6): 1-5
    [57]赵麦群,雷阿丽.金属的腐蚀与防护[M].北京:国防工业出版社,2002,9
    [58]李仙昊,季远,姜兴刚.高速钢钻头振动钻削9Cr18不锈钢微小孔的研究[J].现代制造工程,2005,(1):69-71
    [59]陆世英.不锈钢[M].北京:原子能出版社,1995
    [60] R.N.Goswami,S.Mitra,S.Sarkar. Experimental investigation on electrochemical grinding (ECG) of alumina-aluminum interpenetrating phase composite [J]. The International Journal of Advanced Manufacturing Technology,2008,(3):55-61
    [61]徐玉春,赵万生,赵家齐等.精密脉冲电解磨削的电源和实验研究[J] .航空精密制造技术, 1999,35(3):12-14
    [62]杨连文,周锦进,王续跃.小孔的电解磨削工艺及设备[J].电加工,1996,(3):4-6
    [63] F.B.He,W.Zhang,K.Nezu. Precision machining of gears (Slow-scanning field controlled Electro Chemical Honing)[J]. JSME International Journal Series C:Mechanical Systems,Machine Elements and Manufacturing,2000,43(2):486-491

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700