用户名: 密码: 验证码:
铁电晶体畴壁及畴的非线性光学性质研究及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铁电晶体因其较好的非线性性质以及自发极化能够被外加电场反转的特点而在非线性光学的研究中有着广泛的应用。在研究铁电畴和畴反转的过程中,人们发现畴壁作为一个特殊的界面,在光学、电学、力学等方面表现出许多奇特的性质。其中一部分性质已经通过第一性原理计算和动力学模型得到了较好解释。尽管如此,在非线性性质方面,人们对畴壁的研究才刚刚起步,相关报道也不多见。我们的工作正是基于铁电畴及畴反转结构,针对畴壁新的非线性性质开展研究。另一方面,也对铁电畴及畴反转结构在电光控制方面进行了探索。
     在对铁电晶体的基本性质进行了简单介绍后,我们回顾了国际上常用的畴反转制备方法,其中室温电场极化法应用最为广泛。我们在实验室中进行了室温电场极化实验,成功制备了周期性极化反转以及大面积极化反转。这两种类型的畴反转结构是我们后续研究的基础。
     通过对铁电晶体畴壁激发切伦科夫倍频的详细分析,我们发现铁电晶体畴壁上存在巨大提升的非线性性质。利用这一性质,我们提出了一种新的扫描光学成像的方法——利用畴壁切伦科夫倍频信号重建畴壁形态。该方法具有实时、无损、高精度及可三维成像的优点。利用该方法对畴壁厚度的估算在10nm量级,空间角分辨率达10mrad。
     由于畴壁对基频光场响应的定域性,它会对其上产生的非线性极化波产生调制。随着基频光与畴壁间夹角的增大,非线性极化波的相速度会被调制变快。这直接影响了切伦科夫倍频的产生,改变了倍频光的出射角。我们据此分析了在反常色散中由畴壁调制作用产生切伦科夫倍频的可能,并通过实验加以证明。通过对其原理的分析,我们将该现象命名为非线性Smith-Purcell效应。
     基于畴壁对切伦科夫倍频的调制作用,我们设计了畴壁序列产生完全位相匹配倍频的实验。这种类型的倍频是与准位相匹配机制不同的全新机制。实验中产生倍频的归一化效率超过了目前报道中准位相匹配技术产生倍频的最高效率。产生如此高效倍频的原因是畴壁巨大的非线性系数提升以及完全位相匹配的实现。畴壁序列产生完全匹配高效切伦科夫倍频的方案具有实用意义,可用于激光系统中。
     基于铌酸锂晶体的电光效应,我们提出了外加电场控制周期性极化铌酸锂波导阵列中离散空间光孤子产生与坍缩的方法。理论模拟表明,改变外电场不仅能够促使孤子形成和坍缩,也能改变波导阵列输出端面上的能量分布。实验证实了施加z向外电场的周期性极化铌酸锂晶体中可以形成离散空间孤子。改变外电场强度,可以控制它的产生和坍缩。
     利用钽酸锂晶体较大的电光系数,我们设计并制作了准速度匹配电光相位调制器。我们完全掌握了器件的理论设计和制造工艺,制作出不同通光口径的调制器。测试结果表明,调制器能够有效展宽入射光频谱,符合设计标准。
Ferroelectrics, which have good nonliearities and can be inverted by external electrical field, have been widely used in nonliear optics. During the researches on ferroelectric domain and domain inversion, people found a lot of new characteristics of optical, electrical and mechanical properties on their interface—domain wall. Some of these new characteristics can be well explained by the first-priciple calculations and dynamic models. However, in the nonliear aspect, people are just starting to look at domain wall’s nonliearities, and few report is found. Our work here are based on ferroeletric domain and domain inversion, aimed at domain wall’s nonliearities. And we also make study on the electro-optical applications of domain inversion at the same time.
     After simple introduction of ferroelectrics, we review the common techniques to produce domain inversions, among which the poling at room temperature by external electrical field technique is the most widely used. We produce periodically poled and bulk domain inversion by this technique under lab environment. These two types of domain sturctures are the basis of our work here.
     Through a detailed anylasis of Cherenkov second harmonic generation (CSHG), we found significant enhancement of nonlinearities in domain wall. Based on this enhancement, we proposed a new method of scanning optical microscopy—reconstruct the domain walls by collecting the signals of CSHG in domain wall. This method has advantages of in situ, nondestructive, high resolution and 3-D reconstruction. We evaluated the width of domain wall is at the magnitude of 10nm and got a spatial angular resoluton of 10mrad.
     Domain wall can modulate the nonlinear polarization in it by locality. With the increasing of incident angle, the phase velocity of nonlinear polarization can be modulated faster. It affects the CSHG’s ejecting angle. Based on domain wall’s modulation effect, we predicted a CSHG in nonlinear material with anomalous dispersion and demonstrated it experimentally. Based on its principle, we named this effect nonlinear Smith-Purcell effect.
     Also based on domain wall’s modulation effect, we designed the complete-phase-matching CSHG experiment. This is a new mechanism distinguished from quasi-phase-matching technique. The normalized conversion efficiency was even higher than that of quasi phase matching technique. It is because the giant enhancement of nonlinearities in domain wall and the complete-phase-matching mechanism. This scheme has application meaning, and can be used in laser systems.
     We proposed a method to control discrete spatial soliton and its collapse in periodically poled lithum niobate (PPLN) by electro-optical effect. Theoretical simulations showed that external electrical field can control the formation and collapse of soliton and change the energy distribution on the output surface. Experiment demonstrated that solitons can be formed in PPLN with z-directional electrical field. By changing the electrical field, one can control the soliton’s formation and collapse easily.
     We also produced a quasi-volocity-matching electro-optic phase modulator in LiTaO3 crystal by using its large electro-optic coefficient. We made deep understanding on the theorectial design and producing technology. Modulator with different apertures are produced. By testing their modulation indices, we found these modulators can broaden the spectrum of the incidence effectively and rightly meet the design requirements.
引文
1. T. H. Maiman, "Stimulated Optical Radiation in Ruby," Nature 187, 493-494 (1960).
    2. T. Ditmire, "High-power Lasers The invention of the laser 50 years ago has led to the latest generation of devices, with power bursts thousands of times that of the nation's entire electrical grid," Am Sci 98, 394-401 (2010).
    3. T. W. Hansch, "50 Years of Laser Celebrating an invention that changed our lives," Laser Photonics Rev 4, A5-A6 (2010).
    4. J. P. Marangos, "Journal of Modern Optics celebrates 50 years of the laser," J Mod Optic 57, 827-829 (2010).
    5. M. Stur, "50 Years of Laser," Spektrum Augenheilkd 24, 248-250 (2010).
    6. P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, "Generation of Optical Harmonics," Phys Rev Lett 7, 118-119 (1961).
    7. J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, "Interactions between Light Waves in a Nonlinear Dielectric," Physical Review 127, 1918-1939 (1962).
    8. M. Lewenstein, P. Balcou, M. Y. Ivanov, A. L'Huillier, and P. B. Corkum, "Theory of high-harmonic generation by low-frequency laser fields," Phys Rev A 49, 2117-2132 (1994).
    9. D. A. Kleinman, "Nonlinear Dielectric Polarization in Optical Media," Physical Review 126, 1977-1979 (1962).
    10. K. E. Peiponen, "Sum rules for the nonlinear susceptibilities in the case of sum frequency generation," Phys Rev B 35, 4116-4117 (1987).
    11. J. Maytorena, uacute, A. s, B. S. Mendoza, Moch, aacute, and W. L. n, "Theory of surface sum frequency generation spectroscopy," Phys Rev B 57, 2569-2579 (1998).
    12. Y. B. Band, C. Radzewicz, and J. S. Krasinski, "Sum- and difference-frequency generation for broadband input fields," Phys Rev A 49, 517-529 (1994).
    13. G. Giusfredi, D. Mazzotti, P. Cancio, and P. De Natale, "Spatial Mode Control of Radiation Generated by Frequency Difference in Periodically Poled Crystals," Phys Rev Lett 87, 113901 (2001).
    14. G.-L. Oppo, M. Brambilla, and L. A. Lugiato, "Formation and evolution of roll patterns in optical parametric oscillators," Phys Rev A 49, 2028-2032 (1994).
    15. J. Zhang, C. Ye, F. Gao, and M. Xiao, "Phase-Sensitive Manipulations of a Squeezed Vacuum Field in an Optical Parametric Amplifier inside an Optical Cavity," Phys Rev Lett 101, 233602 (2008).
    16. P. Lambropoulos, C. Kikuchi, and R. K. Osborn, "Coherence and Two-Photon Absorption," Physical Review 144, 1081-1086 (1966).
    17. J. H. Yee, "Three-Photon Absorption in Semiconductors," Phys Rev B 5, 449-458 (1972).
    18. J. V. Moloney, "Self-Focusing-Induced Optical Turbulence," Phys Rev Lett 53, 556-559 (1984).
    19. T. Kurki-Suonio, P. J. Morrison, and T. Tajima, "Self-focusing of an optical beam in a plasma," Physical Review A 40, 3230-3239 (1989).
    20. S. K. Kurtz, and J. A. Giordmaine, "Stimulated Raman Scattering by Polaritons," Phys Rev Lett 22, 192-195 (1969).
    21. A. O. Creaser, and R. M. Herman, "Frequency Response of Stimulated Thermal Scattering," Phys Rev Lett 29, 147-150 (1972).
    22. E. Santamato, M. Romagnoli, M. Settembre, B. Diano, and Y. R. Shen, "Self-Induced Stimulated Light Scattering," Phys Rev Lett 61, 113-116 (1988).
    23. W. M. Huo, K. P. Gross, and R. L. McKenzie, "Optical Stark Effect in the Two-Photon Spectrum of NO," Phys Rev Lett 54, 1012-1015 (1985).
    24. S. G. Louie, J. R. Chelikowsky, and M. L. Cohen, "Local-Field Effects in the Optical Spectrum of Silicon," Phys Rev Lett 34, 155-158 (1975).
    25. A. L. Perez Prieto, S. Brouard, and J. G. Muga, "Transient interference of transmission and incidence," Physical Review A 64, 012710 (2001).
    26. C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos,"Localized Dynamics during Laser-Induced Damage in Optical Materials," Phys Rev Lett 92, 087401 (2004).
    27. V. V. Strelkov, V. T. Platonenko, and A. Becker, "High-harmonic generation in a dense medium," Physical Review A 71, 053808 (2005).
    28. D. G. Steel, and S. C. Rand, "Ultranarrow Nonlinear Optical Resonances in Solids," Phys Rev Lett 55, 2285-2288 (1985).
    29. G. L. Eesley, "Generation of nonequilibrium electron and lattice temperatures in copper by picosecond laser pulses," Phys Rev B 33, 2144-2151 (1986).
    30. T. Ditmire, T. Donnelly, A. M. Rubenchik, R. W. Falcone, and M. D. Perry, "Interaction of intense laser pulses with atomic clusters," Physical Review A 53, 3379-3402 (1996).
    31. Y. R. Shen, The principles of nonlinear optics (Wiley-Interscience, Hoboken, N.J., 2003).
    32. R. W. Boyd, Nonlinear optics (Academic Press, San Diego, CA, 2003).
    33. M. J. Molina, L. T. Molina, and C. E. Kolb, "GAS-PHASE AND HETEROGENEOUS CHEMICAL KINETICS OF THE TROPOSPHERE AND STRATOSPHERE," Annual Review of Physical Chemistry 47, 327-367 (1996).
    34. L. Ying, and X. Zhao, "Theoretical Studies of XONO2?H2O (X = Cl, H) Complexes," The Journal of Physical Chemistry A 101, 6807-6812 (1997).
    35. R. Bianco, and J. T. Hynes, "Ab Initio Model Study of the Mechanism of Chlorine Nitrate Hydrolysis on Ice," The Journal of Physical Chemistry A 102, 309-314 (1998).
    36. S. C. Xu, and X. S. Zhao, "Theoretical Investigation of the Reaction of ClONO2 with H2O on Water Clusters," The Journal of Physical Chemistry A 103, 2100-2106 (1999).
    37. R. K. Jain, and R. C. Lind, "Degenerate four-wave mixing in semiconductor-doped glasses," J. Opt. Soc. Am. 73, 647-653 (1983).
    38. L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, "Experimental Observation of Picosecond Pulse Narrowing and Solitons in Optical Fibers," Phys Rev Lett 45,1095-1098 (1980).
    39. H. S. Eisenberg, Y. Silberberg, R. Morandotti, A. R. Boyd, and J. S. Aitchison, "Discrete Spatial Optical Solitons in Waveguide Arrays," Phys Rev Lett 81, 3383-3386 (1998).
    40. H. A. Haus, and W. S. Wong, "Solitons in optical communications," Reviews of Modern Physics 68, 423-444 (1996).
    41. F. Lederer, G. I. Stegeman, D. N. Christodoulides, G. Assanto, M. Segev, and Y. Silberberg, "Discrete solitons in optics," Phys Rep 463, 1-126 (2008).
    42. Y. W. Du, Z. X. Zhou, H. Tian, and D. J. Liu, "Bright solitons and repulsive in-phase interaction in media with competing nonlocal Kerr nonlinearities," J Opt-Uk 13, 015201 (2011).
    43. M. Chauvet, S. Chauvin, and H. Maillotte, "Transient dark photovoltaic spatial solitons and induced guiding in slab LiNbO3 waveguides," Opt Lett 26, 1344-1346 (2001).
    44. S. Suntsov, K. G. Makris, D. N. Christodoulides, G. I. Stegeman, A. Hache, R. Morandotti, H. Yang, G. Salamo, and M. Sorel, "Observation of discrete surface solitons," Phys Rev Lett 96, 063901 (2006).
    45. F. Ye, D. Mihalache, B. Hu, and N. C. Panoiu, "Subwavelength Plasmonic Lattice Solitons in Arrays of Metallic Nanowires," Phys Rev Lett 104, 106802 (2010).
    46. F. Zernike, and J. E. Midwinter, Applied nonlinear optics (Wiley, New York, 1973).
    47. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, "Quasi-phase-matched second harmonic generation: tuning and tolerances," Quantum Electronics, IEEE Journal of 28, 2631-2654 (1992).
    48. M. E. Lines, and A. M. Glass, Principles and applications of ferroelectrics and related materials (OUP, Oxford, 2001).
    49. J. Fousek, "Ferroelectricity: Remarks on historical aspects and present trends," Ferroelectrics 113, 3 - 20 (1991).
    50. K. Deguchi, Landolt-Bornstein New Series on Crystals and Solid State Physics,Group III (Springer-Verlag, Berlin, 1990).
    51. A. F. Devonshire, "Theory of ferroelectrics," Advances in Physics 3, 85-130 (1954).
    52. J. C. Slater, "Theory of the Transition in KH2PO4," The Journal of Chemical Physics 9, 16-33 (1941).
    53. J. C. Slater, "The Lorentz Correction in Barium Titanate," Physical Review 78, 748-761 (1950).
    54. W. Cochran, "Crystal Stability and the Theory of Ferroelectricity," Phys Rev Lett 3, 412-415 (1959).
    55. W. Cochran, "Crystal stability and the theory of ferroelectricity," Advances in Physics 9, 387 - 423 (1960).
    56. P. W. Anderson, Fizika Dielektrikov (Akad. Nauk. SSSR., Moscow, 1960).
    57. L. D. Landau, E. M. Lifshitzs, and L. P. Pitaevskii, Statistical physics. Part 1 (Pergamon, Oxford, 1980).
    58. R. D. King-Smith, and D. Vanderbilt, "First-principles investigation of ferroelectricity in perovskite compounds," Phys Rev B 49, 5828-5844 (1994).
    59. R. Resta, M. Posternak, and A. Baldereschi, "Towards a quantum theory of polarization in ferroelectrics: The case of KNbO3," Phys Rev Lett 70, 1010-1013 (1993).
    60. K. Uchino, E. Sadanaga, and T. Hirose, "Dependence of the Crystal Structure on Particle Size in Barium Titanate," Journal of the American Ceramic Society 72, 1555-1558 (1989).
    61. W. Zhong, P. Zhang, Y. Wang, and T. Ren, "Size effect on the dielectric properties of BaTiO3," Ferroelectrics 160, 55-59 (1994).
    62. W. G. Liu, L. B. Kong, L. Y. Zhang, and X. Yao, "Study of the surface layer of lead titanate thin film by x-ray diffraction," Solid State Commun 93, 653-657 (1995).
    63. W. L. Zhong, Y. G. Wang, and P. L. Zhang, "Size effects on phase transitions in ferroelectric films," Phys Lett A 189, 121-126 (1994).
    64. Y. G. Wang, W. L. Zhong, and P. L. Zhang, "Size effects on the Curie temperatureof ferroelectric particles," Solid State Commun 92, 519-523 (1994).
    65. W. L. Zhong, B. D. Qu, P. L. Zhang, and Y. G. Wang, "Thickness dependence of the dielectric susceptibility of ferroelectric thin films," Phys Rev B 50, 12375 (1994).
    66. C. L. Wang, and et al., "Ferroelectric thin films described by an Ising model in a transverse field," Journal of Physics: Condensed Matter 6, 9633-9646 (1994).
    67. B. D. Qu, W. L. Zhong, and P. L. Zhang, "Curie temperature of a ferroelectric superlattice described by the transverse Ising model," Phys Lett A 189, 419-422 (1994).
    68. R. B. Meyer, L. Liebert, L. Strzelecki, and P. Keller, "Ferroelectric liquid crystals," J. Physique Lett. 36, 69-71 (1975).
    69. R. Blinc, B. ?ek?, M. ?opi?, A. Levstik, I. Mu?evi?, and I. Dreven?ek, "Phase transitions in ferroelectric liquid crystals," Ferroelectrics 104, 159 - 170 (1990).
    70. D. M. Walba, E. K?rblova, R. Shao, J. E. Maclennan, D. R. Link, M. A. Glaser, and N. A. Clark, "A Ferroelectric Liquid Crystal Conglomerate Composed of Racemic Molecules," Science 288, 2181-2184 (2000).
    71. H. Hoshi, "Dependence of second-harmonic generation in ferroelectric liquid crystals with a defect on the optical gap," Phys Lett A 372, 4754-4755 (2008).
    72. R. G. Kepler, and R. A. Anderson, "Ferroelectric polymers," Advances in Physics 41, 1 - 57 (1992).
    73. B. A. Newman, J. I. Scheinbeim, J. W. Lee, and Y. Takase, "A new class of ferroelectric polymers, the odd-numbered nylons," Ferroelectrics 127, 229 - 234 (1992).
    74. C. A. P. de Araujo, and G. W. Taylor, "Integrated ferroelectrics," Ferroelectrics 116, 215 - 228 (1991).
    75. J. F. Scott, and C. A. Paz de Araujo, "Ferroelectric Memories," Science 246, 1400-1405 (1989).
    76. C. A. Paz de Araujo, "New ferroelectric devices," Ferroelectricity New Letter 2, 2 (1994).
    77. D. C. Chrzan, and M. S. Daw, "Pinning-depinning transition in dislocationdynamics," Phys Rev B 55, 798-811 (1997).
    78. T. J. Yang, V. Gopalan, P. J. Swart, and U. Mohideen, "Direct observation of pinning and bowing of a single ferroelectric domain wall," Phys Rev Lett 82, 4106-4109 (1999).
    79. S. Lemerle, J. Ferre, C. Chappert, V. Mathet, T. Giamarchi, and P. Le Doussal, "Domain wall creep in an Ising ultrathin magnetic film," Phys Rev Lett 80, 849-852 (1998).
    80. X. Chen, O. Sichelschmidt, W. Kleemann, O. Petracic, C. Binek, J. B. Sousa, S. Cardoso, and P. P. Freitas, "Domain wall relaxation, creep, sliding, and switching in superferromagnetic discontinuous Co80Fe20/Al2O3 multilayers," Phys Rev Lett 89, 137203 (2002).
    81. T. Tybell, P. Paruch, T. Giamarchi, and J. M. Triscone, "Domain wall creep in epitaxial ferroelectric Pb(Zr0.2Ti0.8)O3 thin films," Phys Rev Lett 89, 097601 (2002).
    82. F. Cayssol, D. Ravelosona, C. Chappert, J. Ferre, and J. P. Jamet, "Domain wall creep in magnetic wires," Phys Rev Lett 92, 107202 (2004).
    83. P. Paruch, T. Giamarchi, and J. M. Triscone, "Domain wall creep in mixed c-a axis Pb(Zr0.2Ti0.8)O-3 thin films," Ann Phys-Berlin 13, 95-96 (2004).
    84. J. Dho, and S. Lee, "Nuclear magnetic relaxation in the domain and domain wall of pure iron," Phys Rev B 56, 7835-7838 (1997).
    85. T. Kohmoto, T. Goto, S. Maegawa, N. Fujiwara, Y. Fukuda, M. Kunitomo, and M. Mekata, "Nuclear magnetic relaxation in an Ising-like antiferromagnet CsCoCl3: Domain-wall dynamics," Phys Rev B 57, 2936-2942 (1998).
    86. S. Mangin, A. Sulpice, G. Marchal, C. Bellouard, W. Wernsdorfer, and B. Barbara, "Magnetic relaxation in GdFe/TbFe/GdFe trilayers: Dynamic study of the propagation of a 180 degrees domain wall through an artificial energy barrier," Phys Rev B 60, 1204-1210 (1999).
    87. J. P. Attane, Y. Samson, A. Marty, D. Halley, and C. Beigne, "Domain wall pinning on strain relaxation defects in FePt(001)/Pt thin films," Applied PhysicsLetters 79, 794-796 (2001).
    88. J. H. Krieger, A. M. Panich, and A. R. Semenov, "Ultraslow motion of domain wall in channel inclusion compound studied by means of NMR cross-relaxation," Solid State Commun 120, 69-72 (2001).
    89. C. S. Ganpule, A. L. Roytburd, V. Nagarajan, B. K. Hill, S. B. Ogale, E. D. Williams, R. Ramesh, and J. F. Scott, "Polarization relaxation kinetics and 180 degrees domain wall dynamics in ferroelectric thin films," Phys Rev B 65, 014101 (2002).
    90. C. Nam, Y. Jang, K. S. Lee, and B. K. Cho, "Characteristics of domain wall pinning and depinning in a three-terminal magnetic Y-junction," Nanotechnology 19, 015703 (2008).
    91. V. I. Marconi, and D. Dominguez, "Melting and transverse depinning of driven vortex lattices in the periodic pinning of Josephson junction arrays," Phys Rev B 6317, 174509 (2001).
    92. G. Piacente, and F. M. Peeters, "Pinning and depinning of a classic quasi-one-dimensional Wigner crystal in the presence of a constriction," Phys Rev B 72, 205208 (2005).
    93. S. Lepadatu, A. Vanhaverbeke, D. Atkinson, R. Allenspach, and C. H. Marrows, "Dependence of Domain-Wall Depinning Threshold Current on Pinning Profile," Phys Rev Lett 102, 127203 (2009).
    94. J. Levrat, R. Butte, T. Christian, M. Glauser, E. Feltin, J. F. Carlin, N. Grandjean, D. Read, A. V. Kavokin, and Y. G. Rubo, "Pinning and Depinning of the Polarization of Exciton-Polariton Condensates at Room Temperature," Phys Rev Lett 104, 166402 (2010).
    95. T. Nattermann, V. Pokrovsky, and V. M. Vinokur, "Hysteretic Dynamics of Domain Walls at Finite Temperatures," Phys Rev Lett 87, 197005 (2001).
    96. W. Kleemann, J. Dec, S. Miga, T. Woike, and R. Pankrath, "Non-Debye domain-wall-induced dielectric response in Sr0.61CeBa0.39Nb2O6," Phys Rev B 65, 220101 (2002).
    97. O. Petracic, A. Glatz, and W. Kleemann, "Models for the magnetic ac susceptibility of granular superferromagnetic CoFe/Al2O3," Phys Rev B 70, 214432 (2004).
    98. C. Campana, M. H. Muler, J. S. Tse, D. Herzbach, and P. Schoffel, "Irreversibility of the pressure-induced phase transition of quartz and the relation between three hypothetical post-quartz phases," Phys Rev B 70, 224101 (2004).
    99. W. Kleemann, and et al., "Uniaxial relaxor ferroelectrics: The ferroic random-field Ising model materialized at last," EPL (Europhysics Letters) 57, 14 (2002).
    100. L. Zhang, W. Kleemann, J. Dec, R. Wang, and M. Itoh, "Phase transition and random-field induced domain wall response of SrTi18O3," Eur. Phys. J. B 28, 163-171 (2002).
    101. T. Braun, W. Kleemann, J. Dec, and P. A. Thomas, "Creep and Relaxation Dynamics of Domain Walls in Periodically Poled KTiOPO4," Phys Rev Lett 94, 117601 (2005).
    102. A. Fragemann, V. Pasiskevicius, and F. Laurell, "Second-order nonlinearities in the domain walls of periodically poled KTiOPO4," Applied Physics Letters 85, 375-377 (2004).
    103. S. J. Holmgren, C. Canalias, and V. Pasiskevicius, "Ultrashort single-shot pulse characterization with high spatial resolution using localized nonlinearities in ferroelectric domain walls," Opt Lett 32, 1545-1547 (2007).
    104. P. Molina, M. D. Ramirez, and L. E. Bausa, "Strontium barium niobate as a multifunctional two-dimensional nonlinear "Photonic Glass"," Adv Funct Mater 18, 709-715 (2008).
    105. S. M. Saltiel, D. N. Neshev, R. Fischer, W. Krolikowski, A. Arie, and Y. S. Kivshar, "Generation of second-harmonic conical waves via nonlinear Bragg diffraction," Phys Rev Lett 100, 103902 (2008).
    106. S. M. Saltiel, D. N. Neshev, W. Krolikowski, A. Arie, O. Bang, and Y. S. Kivshar, "Multiorder nonlinear diffraction in frequency doubling processes," Opt Lett34, 848-850 (2009).
    107. S. M. Saltiel, Y. Sheng, N. Voloch-Bloch, D. N. Neshev, W. Krolikowski, A. Arie, K. Koynov, and Y. S. Kivshar, "Cerenkov-Type Second-Harmonic Generation in Two-Dimensional Nonlinear Photonic Structures," Ieee J Quantum Elect 45, 1465-1472 (2009).
    108. S. M. Saltiel, D. N. Neshev, W. Krolikowski, N. Voloch-Bloch, A. Arie, O. Bang, and Y. S. Kivshar, "Nonlinear Diffraction from a Virtual Beam," Phys Rev Lett 104, 083902 (2010).
    109. Y. Zhang, F. M. Wang, K. Geren, S. N. Zhu, and M. Xiao, "Second-harmonic imaging from a modulated domain structure," Opt Lett 35, 178-180 (2010).
    110. J. Seidel, L. W. Martin, Q. He, Q. Zhan, Y. H. Chu, A. Rother, M. E. Hawkridge, P. Maksymovych, P. Yu, M. Gajek, N. Balke, S. V. Kalinin, S. Gemming, F. Wang, G. Catalan, J. F. Scott, N. A. Spaldin, J. Orenstein, and R. Ramesh, "Conduction at domain walls in oxide multiferroics," Nat Mater 8, 229-234 (2009).
    111. S. Y. Yang, J. Seidel, S. J. Byrnes, P. Shafer, C. H. Yang, M. D. Rossell, P. Yu, Y. H. Chu, J. F. Scott, J. W. Ager, L. W. Martin, and R. Ramesh, "Above-bandgap voltages from ferroelectric photovoltaic devices," Nat Nanotechnol 5, 143-147 (2010).
    1. B. B. Van Aken, J. P. Rivera, H. Schmid, and M. Fiebig, "Observation of ferrotoroidic domains," Nature 449, 702-705 (2007).
    2. H. S. Nalwa, Handbook of advanced electronic and photonic materials and devices (Academic Press, San Diego, 2001).
    3. M. Yamada, and M. Saitoh, "Fabrication of a periodically poled laminar domain structure with a pitch of a few micrometers by applying an external electric field," J Appl Phys 84, 2199-2206 (1998).
    4. B. Murphy, and L. V. Hau, "Electro-Optical Nanotraps for Neutral Atoms," Phys Rev Lett 102, 033003 (2009).
    5. J. P. Caumes, L. Videau, C. Rouyer, and E. Freysz, "Kerr-like nonlinearity induced via terahertz generation and the electro-optical effect in zinc blende crystals," Phys Rev Lett 89, 047401 (2002).
    6. S. Zhu, Y. Y. Zhu, and N. B. Ming, "Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattice," Science 278, 843-846 (1997).
    7. M. Lu, and X. F. Chen, "Multiple quasi-phase matching in engineereddomain-inverted optical superlattice," J Nonlinear Opt Phys 16, 185-198 (2007).
    8. S. B. Lang, Sourcebook of pyroelectricity (Gordon and Breach Science Publishers, London ; New York, 1974).
    9. W. G. Cady, Piezoelectricity : an introduction to the theory and applications of electromechanical phenomena in crystals (Dover, New York, 1964).
    10. S. Roberts, "Dielectric and Piezoelectric Properties of Barium Titanate," Physical Review 71, 890-895 (1947).
    11. W. P. Mason, Piezoelectric crystals and their application to ultrasonics (D. Van Nostrand, Princeton, N.J., 1950).
    12. B. Jaffe, W. R. Cook, and H. Jaffe, Piezoelectric ceramics (Academic Press, London, New York, 1971).
    13. J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, "Interactions between Light Waves in a Nonlinear Dielectric," Physical Review 127, 1918-1939 (1962).
    14. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, "Quasi-phase-matched second harmonic generation: tuning and tolerances," Quantum Electronics, IEEE Journal of 28, 2631-2654 (1992).
    15. S. Bains, "Nonlinear materials - PPLN inspires new applications," Laser Focus World 34, 16-19 (1998).
    16. O. A. Gliko, I. I. Naumova, H. K. Kim, J. J. Ju, M. Cha, and H. K. Kim, "Nonlinear optical properties of PPLN (periodically poled LiNbO3)," J Korean Phys Soc 32, S464-S467 (1998).
    17. I. F. Elder, and J. A. C. Terry, "Efficient conversion into the near- and mid-infrared using a PPLN OPO," J Opt a-Pure Appl Op 2, L19-L23 (2000).
    18. S. Tanzilli, W. Tittel, H. De Riedmatten, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, "PPLN waveguide for quantum communication," Eur Phys J D 18, 155-160 (2002).
    19. S. D. Pan, Y. Yuan, L. N. Zhao, X. J. Lv, and S. N. Zhu, "Experimental realization of broadband parametric generation in a quasi-periodically poled LiTaO3," OpticsExpress 16, 18616-18623 (2008).
    20. C. P. Huang, Y. H. Wang, and Y. Y. Zhu, "Effect of electro-optic modulation on coupled quasi-phase-matched frequency conversion," Appl Optics 44, 4980-4984 (2005).
    21. C. Zhang, H. Wei, Y. Y. Zhu, H. T. Wang, S. N. Zhu, and N. B. Ming, "Third-harmonic generation in a general two-component quasi-periodic optical superlattice," Opt Lett 26, 899-901 (2001).
    22. Y. Kong, X. F. Chen, and Y. X. Xia, "Frequency conversion of femtosecond laser pulses in an engineered aperiodic poled optical superlattice," Appl Optics 46, 5698-5702 (2007).
    23. G. Qu, Y. P. Chen, M. J. Gong, and X. F. Chen, "Proposal for a Tunable and Switchable Multiwavelength Laser With Variable Spacing Based on Broadband Cascaded Quadratic Nonlinearity," Ieee J Quantum Elect 46, 945-950 (2010).
    24. Y. Zheng, Y. Kong, and X. Chen, "Simultaneous frequency doubling and polarization coupling in aperiodically poled lithium niobate," Applied Physics B-Lasers and Optics 95, 697-701 (2009).
    25. N. G. R. Broderick, G. W. Ross, H. L. Offerhaus, D. J. Richardson, and D. C. Hanna, "Hexagonally Poled Lithium Niobate: A Two-Dimensional Nonlinear Photonic Crystal," Phys Rev Lett 84, 4345 (2000).
    26. P. Xu, S. H. Ji, S. N. Zhu, X. Q. Yu, J. Sun, H. T. Wang, J. L. He, Y. Y. Zhu, and N. B. Ming, "Conical second harmonic generation in a two-dimensional chi((2)) photonic crystal: A hexagonally poled LiTaO3 crystal," Phys Rev Lett 93, 133904 (2004).
    27. S. M. Saltiel, D. N. Neshev, R. Fischer, W. Krolikowski, A. Arie, and Y. S. Kivshar, "Generation of second-harmonic conical waves via nonlinear Bragg diffraction," Phys Rev Lett 100, 103902 (2008).
    28. C. Canalias, V. Pasiskevicius, R. Clemens, and F. Laurell, "Submicron periodically poled flux-grown KTiOPO4," Applied Physics Letters 82, 4233-4235 (2003).
    29. R. Blum, M. Sprave, J. Sablotny, and M. Eich, "High-electric-field poling ofnonlinear optical polymers," J Opt Soc Am B 15, 318-328 (1998).
    30. H. Karlsson, and F. Laurell, "Electric field poling of flux grown KTiOPO4," Applied Physics Letters 71, 3474-3476 (1997).
    31. W. P. Risk, and S. D. Lau, "Periodic electric field poling of KTiOPO4 using chemical patterning," Applied Physics Letters 69, 3999-4001 (1996).
    32. V. Bermudez, P. S. Dutta, M. D. Serrano, and E. Dieguez, "In situ poling of LiNbO3 bulk crystal below the Curie temperature by application of electric field after growth," J Cryst Growth 169, 409-412 (1996).
    33. Y. Glickman, E. Winebrand, A. Arie, and G. Rosenman, "Electron-beam-induced domain poling in LiNbO3 for two-dimensional nonlinear frequency conversion," Applied Physics Letters 88, 011103 (2006).
    34. C. Restoin, C. Darraud-Taupiac, J. L. Decossas, J. C. Vareille, V. Couderc, A. Barthelemy, A. Martinez, and J. Hauden, "Electron-beam poling on Ti : LiNbO3," Appl Optics 40, 6056-6061 (2001).
    35. V. Y. Shur, E. L. Rumyantsev, E. V. Nikolaeva, E. I. Shishkin, D. V. Fursov, R. G. Batchko, L. A. Eyres, M. M. Fejer, R. L. Byer, and J. Sindel, "Formation of self-organized nanodomain patterns during spontaneous backswitching in lithium niobate," Ferroelectrics 253, 661-670 (2001).
    36. M. Muller, E. Soergel, and K. Buse, "Influence of ultraviolet illumination on the poling characteristics of lithium niobate crystals," Applied Physics Letters 83, 1824-1826 (2003).
    37. S. Fahy, and R. Merlin, "Reversal of Ferroelectric Domains by Ultrashort Optical Pulses," Phys Rev Lett 73, 1122-1125 (1994).
    38. A. Montakhab, and J. Levy, "Spatiotemporal behavior in a phi(4) model of lattice dynamics," Phys Rev E 56, 6082-6089 (1997).
    39. C. E. Valdivia, C. L. Sones, J. G. Scott, S. Mailis, R. W. Eason, D. A. Scrymgeour, V. Gopalan, T. Jungk, E. Soergel, and I. Clark, "Nanoscale surface domain formation on the +z face of lithium niobate by pulsed ultraviolet laser illumination," Applied Physics Letters 86, 022906 (2005).
    40. I. T. Wellington, C. E. Valdivia, T. J. Sono, C. L. Sones, S. Mailis, and R. W. Eason, "Ordered nano-scale domains in lithium niobate single crystals via phase-mask assisted all-optical poling," Appl Surf Sci 253, 4215-4219 (2007).
    41. Q. X. Xi, D. Liu, Y. N. Zhi, Z. Luan, and L. R. Liu, "Reversible electrochromic effect accompanying domain-inversion in LiNbO3 : Ru : Fe crystals," Applied Physics Letters 87, 121103 (2005).
    42. S. Poykko, and D. J. Chadi, "Ab initio study of 180 degrees domain wall energy and structure in PbTiO3," Applied Physics Letters 75, 2830-2832 (1999).
    43. J. Padilla, W. Zhong, and D. Vanderbilt, "First-principles investigation of 180 domain walls in BaTiO3," Phys Rev B 53, R5969-R5973 (1996).
    44. B. Meyer, and D. Vanderbilt, "Ab initio study of ferroelectric domain walls in PbTiO3," Phys Rev B 65, 104111 (2002).
    45. V. Gopalan, V. Dierolf, and D. A. Scrymgeour, "Defect-domain wall interactions in trigonal ferroelectrics," Annu Rev Mater Res 37, 449-489 (2007).
    46. T. Braun, W. Kleemann, J. Dec, and P. A. Thomas, "Creep and relaxation dynamics of domain walls in periodically poled KTiOPO4," Phys Rev Lett 94, 117601 (2005).
    47. A. Fragemann, V. Pasiskevicius, and F. Laurell, "Second-order nonlinearities in the domain walls of periodically poled KTiOPO4," Applied Physics Letters 85, 375-377 (2004).
    1. F. Zernike, and J. E. Midwinter, Applied nonlinear optics (Wiley, New York, 1973).
    2. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, "Quasi-phase-matched second harmonic generation: tuning and tolerances," Ieee J Quantum Elect 28, 2631-2654 (1992).
    3. A. Fragemann, V. Pasiskevicius, and F. Laurell, "Second-order nonlinearities in the domain walls of periodically poled KTiOPO4," Applied Physics Letters 85, 375-377 (2004).
    4. S. M. Saltiel, D. N. Neshev, W. Krolikowski, A. Arie, O. Bang, and Y. S. Kivshar, "Multiorder nonlinear diffraction in frequency doubling processes," Opt Lett 34, 848-850 (2009).
    5. R. Fischer, S. M. Saltiel, D. N. Neshev, W. Krolikowski, and Y. S. Kivshar, "Broadband femtosecond frequency doubling in random media," Applied Physics Letters 89, 191105 (2006).
    6. J. Trull, C. Cojocaru, R. Fischer, S. M. Saltiel, K. Staliunas, R. Herrero, R. Vilaseca, D. N. Neshev, W. Krolikowski, and Y. S. Kivshar, "Second-harmonic parametric scattering in ferroelectric crystals with disordered nonlinear domain structures," Optics Express 15, 15868-15877 (2007).
    7. V. Roppo, D. Dumay, J. Trull, C. Cojocaru, S. M. Saltiel, K. Staliunas, R. Vilaseca, D. N. Neshev, W. Krolikowski, and Y. S. Kivshar, "Planar second-harmonic generation with noncollinear pumps in disordered media," Optics Express 16, 14192-14199 (2008).
    8. S. J. Holmgren, C. Canalias, and V. Pasiskevicius, "Ultrashort single-shot pulsecharacterization with high spatial resolution using localized nonlinearities in ferroelectric domain walls," Opt Lett 32, 1545-1547 (2007).
    9. M. Baudrier-Raybaut, R. Haidar, P. Kupecek, P. Lemasson, and E. Rosencher, "Random quasi-phase-matching in bulk polycrystalline isotropic nonlinear materials," Nature 432, 374-376 (2004).
    10. S. E. Skipetrov, "Nonlinear optics - Disorder is the new order," Nature 432, 285-286 (2004).
    11. X. Vidal, and J. Martorell, "Generation of light in media with a random distribution of nonlinear domains," Phys Rev Lett 97, 013902 (2006).
    12. X. L. Zeng, X. F. Chen, F. Wu, Y. P. Chen, Y. X. Xia, and Y. L. Chen, "Second-harmonic generation with broadened flattop bandwidth in aperiodic domain-inverted gratings," Opt Commun 204, 407-411 (2002).
    13. L. J. Chen, X. F. Chen, Y. P. Chen, and Y. X. Xia, "Multiple quasi-phase-matching in two-dimensional domain-inverted aperiodic optical superlattice," Phys Lett A 349, 484-487 (2006).
    14. I. Freund, "Nonlinear Diffraction," Phys Rev Lett 21, 1404-1406 (1968).
    15. P. A. Cherenkov, "Visible emission of clean liquids by action ofγradiation," Dokl. Akad. Nauk SSSR 2, 451-454 (1934).
    16. E. Fermi, "The Ionization Loss of Energy in Gases and in Condensed Materials," Physical Review 57, 485-493 (1940).
    17. P. K. Tien, R. Ulrich, and R. J. Martin, "OPTICAL SECOND HARMONIC GENERATION IN FORM OF COHERENT CERENKOV RADIATION FROM A THIN-FILM WAVEGUIDE," Applied Physics Letters 17, 447-450 (1970).
    18. A. Zembrod, H. Puell, and J. A. Giordmaine, "Surface radiation from non-linear optical polarisation," Optical and Quantum Electronics 1, 64-66 (1969).
    19. A. K. Alexandr, and et al., "Second-harmonic generation with Cherenkov-type phase matching in a bulk nonlinear LaBGeO 5 crystal," Quantum Electron+ 26, 381-382 (1996).
    20. S. M. Saltiel, Y. Sheng, N. Voloch-Bloch, D. N. Neshev, W. Krolikowski, A. Arie,K. Koynov, and Y. S. Kivshar, "Cerenkov-Type Second-Harmonic Generation in Two-Dimensional Nonlinear Photonic Structures," Ieee J Quantum Elect 45, 1465-1472 (2009).
    21. D. A. Kleinman, "Theory of Second Harmonic Generation of Light," Physical Review 128, 1761-1775 (1962).
    22. G. Stone, and V. Dierolf, "Raman Enhancement Across the Domain Wall in Ferroelectric Lithium Niobate," (Optical Society of America, 2009), p. CE6_6.
    23. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, "Quasi-phase-matched second harmonic generation: tuning and tolerances," Quantum Electronics, IEEE Journal of 28, 2631-2654 (1992).
    24. K. Nassau, H. J. Levinstein, and G. M. Loiacono, "THE DOMAIN STRUCTURE AND ETCHING OF FERROELECTRIC LITHIUM NIOBATE," Applied Physics Letters 6, 228-229 (1965).
    25. M. L. Muller, E. Soergel, and K. Buse, "Visualization of ferroelectric domains with coherent light," Opt Lett 28, 2515-2517 (2003).
    26. S. I. Bozhevolnyi, J. M. Hvam, K. Pedersen, F. Laurell, H. Karlsson, T. Skettrup, and M. Belmonte, "Second-harmonic imaging of ferroelectric domain walls," Applied Physics Letters 73, 1814-1816 (1998).
    27. P. Mathey, P. Jullien, P. Lompre, and D. Rytz, "Photorefractive detection of antiparallel ferroelectric domains in BaTiO3 and BaTiO3 : Co crystals," Appl Phys a-Mater 66, 511-514 (1998).
    28. S. N. Zhu, and W. W. Cao, "Direct observation of ferroelectric domains in LiTaO3 using environmental scanning electron microscopy," Phys Rev Lett 79, 2558-2561 (1997).
    29. F. Augereau, G. Despaux, and P. Saint-Gregoire, "Imaging ferroic domain structures with an acoustic microscope: Example of PPLN," Ferroelectrics 290, 29-38 (2003).
    30. O. Tikhomirov, B. Red'kin, A. Trivelli, and J. Levy, "Visualization of 180 degrees domain structures in uniaxial ferroelectrics using confocal scanning opticalmicroscopy," J Appl Phys 87, 1932-1936 (2000).
    31. M. Florsheimer, R. Paschotta, U. Kubitscheck, C. Brillert, D. Hofmann, L. Heuer, G. Schreiber, C. Verbeek, W. Sohler, and H. Fuchs, "Second-harmonic imaging of ferroelectric domains in LiNbO3 with micron resolution in lateral and axial directions," Applied Physics B-Lasers and Optics 67, 593-599 (1998).
    32. Y. Zhang, F. M. Wang, K. Geren, S. N. Zhu, and M. Xiao, "Second-harmonic imaging from a modulated domain structure," Opt Lett 35, 178-180 (2010).
    33. D. A. Scrymgeour, and V. Gopalan, "Nanoscale piezoelectric response across a single antiparallel ferroelectric domain wall," Phys Rev B 72, 024103 (2005).
    34. J. Wittborn, C. Canalias, K. V. Rao, R. Clemens, H. Karlsson, and F. Laurell, "Nanoscale imaging of domains and domain walls in periodically poled ferroelectrics using atomic force microscopy," Applied Physics Letters 80, 1622-1624 (2002).
    35. D. A. Scrymgeour, V. Gopalan, A. Itagi, A. Saxena, and P. J. Swart, "Phenomenological theory of a single domain wall in uniaxial trigonal ferroelectrics: Lithium niobate and lithium tantalate," Phys Rev B 71, 184110 (2005).
    36. I. Solc, "Birefringent Chain Filters," J. Opt. Soc. Am. 55, 621-625 (1965).
    37. L. J. Chen, J. H. Shi, X. F. Chen, and Y. X. Xia, "Photovoltaic effect in a periodically poled lithium niobate Solc-type wavelength filter," Applied Physics Letters 88, 121118 (2006).
    1. O. Bang, W. Krolikowski, J. Wyller, and J. J. Rasmussen, "Collapse arrest and soliton stabilization in nonlocal nonlinear media," Phys Rev E 66, 046619 (2002).
    2. W. Krolikowski, O. Bang, N. I. Nikolov, D. Neshev, J. Wyller, J. J. Rasmussen, and D. Edmundson, "Modulational instability, solitons and beam propagation in spatially nonlocal nonlinear media," J Opt B-Quantum S O 6, S288-S294 (2004).
    3. M. Peccianti, C. Conti, and G. Assanto, "Interplay between nonlocality and nonlinearity in nematic liquid crystals," Opt Lett 30, 415-417 (2005).
    4. X. Hutsebaut, C. Cambournac, M. Haelterman, A. Adamski, and K. Neyts, "Single-component higher-order mode solitons in liquid crystals," Opt Commun 233, 211-217 (2004).
    5. M. Peccianti, K. A. Brzdakiewicz, and G. Assanto, "Nonlocal spatial solitoninteractions in nematic liquid crystals," Opt Lett 27, 1460-1462 (2002).
    6. N. I. Nikolov, D. Neshev, W. Krolikowski, O. Bang, J. J. Rasmussen, and P. L. Christiansen, "Attraction of nonlocal dark optical solitons," Opt Lett 29, 286-288 (2004).
    7. C. Rotschild, M. Segev, Z. Xu, Y. V. Kartashov, and L. Torner, "Two-dimensional multipole solitons in nonlocal nonlinear media," Opt Lett 31, 3312-3314 (2006).
    8. S. Skupin, O. Bang, D. Edmundson, and W. Krolikowski, "Stability of two-dimensional spatial solitons in nonlocal nonlinear media," Phys Rev E 73, 066603 (2006).
    9. A. I. Yakimenko, V. M. Lashkin, and O. O. Prikhodko, "Dynamics of two-dimensional coherent structures in nonlocal nonlinear media," Phys Rev E 73, 066605 (2006).
    10. Y. V. Kartashov, L. Torner, V. A. Vysloukh, and D. Mihalache, "Multipole vector solitons in nonlocal nonlinear media," Opt Lett 31, 1483-1485 (2006).
    11. V. M. Lashkin, "Two-dimensional nonlocal vortices, multipole solitons, and rotating multisolitons in dipolar Bose-Einstein condensates," Physical Review A 75, 043607 (2007).
    12. D. Briedis, D. E. Petersen, D. Edmundson, W. Krolikowski, and O. Bang, "Ring vortex solitons in nonlocal nonlinear media," Optics Express 13, 435-443 (2005).
    13. A. I. Yakimenko, Y. A. Zaliznyak, and Y. Kivshar, "Stable vortex solitons in nonlocal self-focusing nonlinear media," Phys Rev E 71, 065603(R) (2005).
    14. C. Rotschild, O. Cohen, O. Manela, M. Segev, and T. Carmon, "Solitons in nonlinear media with an infinite range of nonlocality: First observation of coherent elliptic solitons and of vortex-ring solitons," Phys Rev Lett 95, 213904 (2005).
    15. Y. V. Kartashov, V. A. Vysloukh, and L. Torner, "Stability of vortex solitons in thermal nonlinear media with cylindrical symmetry," Optics Express 15, 9378-9384 (2007).
    16. S. Lopez-Aguayo, A. S. Desyatnikov, Y. S. Kivshar, S. Skupin, W. Krolikowski, and O. Bang, "Stable rotating dipole solitons in nonlocal optical media," Opt Lett 31,1100-1102 (2006).
    17. S. Lopez-Aguayo, A. S. Desyatnikov, and Y. S. Kivshar, "Azimuthons in nonlocal nonlinear media," Optics Express 14, 7903-7908 (2006).
    18. C. Rotschild, B. Alfassi, O. Cohen, and M. Segev, "Long-range interactions between optical solitons," Nat Phys 2, 769-774 (2006).
    19. A. Fratalocchi, A. Piccardi, M. Peccianti, and G. Assanto, "Nonlinearly controlled angular momentum of soliton clusters," Opt Lett 32, 1447-1449 (2007).
    20. J. Wittborn, C. Canalias, K. V. Rao, R. Clemens, H. Karlsson, and F. Laurell, "Nanoscale imaging of domains and domain walls in periodically poled ferroelectrics using atomic force microscopy," Applied Physics Letters 80, 1622-1624 (2002).
    21. D. A. Scrymgeour, and V. Gopalan, "Nanoscale piezoelectric response across a single antiparallel ferroelectric domain wall," Phys Rev B 72, 024103 (2005).
    22. J. R. Kurz, A. M. Schober, D. S. Hum, A. J. Saltzman, and M. M. Fejer, "Nonlinear physical optics with transversely patterned quasi-phase-matching gratings," Ieee J Sel Top Quant 8, 660-664 (2002).
    23. Y. Q. Qin, C. Zhang, Y. Y. Zhu, X. P. Hu, and G. Zhao, "Wave-front engineering by huygens-fresnel principle for nonlinear optical interactions in domain engineered structures," Phys Rev Lett 100, 063902 (2008).
    24. S. M. Saltiel, D. N. Neshev, W. Krolikowski, N. Voloch-Bloch, A. Arie, O. Bang, and Y. S. Kivshar, "Nonlinear Diffraction from a Virtual Beam," Phys Rev Lett 104, 083902 (2010).
    25. S. M. Saltiel, D. N. Neshev, W. Krolikowski, A. Arie, O. Bang, and Y. S. Kivshar, "Multiorder nonlinear diffraction in frequency doubling processes," Opt Lett 34, 848-850 (2009).
    26. Y. N. Zhi, W. J. Qu, D. A. Liu, Z. Luan, Y. Zhou, and L. R. Liu, "Ridge-shape phase distribution adjacent to 180 degrees domain wall in congruent LiNbO3 crystal," Applied Physics Letters 89, 112912 (2006).
    27. Y. L. Chen, H. Zhan, and B. Zhou, "Refractive index modulation in periodically poled MgO-doped congruent LiNbO3 crystal," Applied Physics Letters 93, 222902(2008).
    28. M. Baudrier-Raybaut, R. Haidar, P. Kupecek, P. Lemasson, and E. Rosencher, "Random quasi-phase-matching in bulk polycrystalline isotropic nonlinear materials," Nature 432, 374-376 (2004).
    29. S. E. Skipetrov, "Nonlinear optics - Disorder is the new order," Nature 432, 285-286 (2004).
    30. P. K. Tien, R. Ulrich, and R. J. Martin, "Optical Second Harmonic Generation In Form Of Coherent Cerenkov Radiation Froam a Thin-Film Waveguide," Applied Physics Letters 17, 447-450 (1970).
    31. Y. Zhang, Z. D. Gao, Z. Qi, S. N. Zhu, and N. B. Ming, "Nonlinear Cerenkov radiation in nonlinear photonic crystal waveguides," Phys Rev Lett 100, 163904 (2008).
    32. O. Gayer, Z. Sacks, E. Galun, and A. Arie, "Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3," Applied Physics B-Lasers and Optics 91, 343-348 (2008).
    33. P. A. Cherenkov, "Visible emission of clean liquids by action ofγradiation," Dokl. Akad. Nauk SSSR 2, 451-454 (1934).
    34. S. J. Smith, and E. M. Purcell, "Visible Light from Localized Surface Charges Moving across a Grating," Physical Review 92, 1069 (1953).
    35. T. Ochiai, and K. Ohtaka, "Theory of unconventional Smith-Purcell radiation in finite-size photonic crystals," Optics Express 14, 7378-7397 (2006).
    36. O. Haeberle, P. Rullhusen, J. M. Salome, and N. Maene, "Smith-Purcell radiation from electrons moving parallel to a grating at oblique incidence to the rulings," Phys Rev E 55, 4675-4683 (1997).
    37. S. E. Korbly, A. S. Kesar, J. R. Sirigiri, and R. J. Temkin, "Observation of frequency-locked coherent terahertz Smith-Purcell radiation," Phys Rev Lett 94, 054803 (2005).
    38. J. Urata, M. Goldstein, M. F. Kimmitt, A. Naumov, C. Platt, and J. E. Walsh, "Superradiant Smith-Purcell emission," Phys Rev Lett 80, 516-519 (1998).
    39. H. L. Andrews, and C. A. Brau, "Gain of a Smith-Purcell free-electron laser," Phys Rev Spec Top-Ac 7, 070701 (2004).
    40. J. Gardelle, P. Modin, and J. T. Donohue, "Start Current and Gain Measurements for a Smith-Purcell Free-Electron Laser," Phys Rev Lett 105, 224801 (2010).
    41. M. H. Wang, P. K. Liu, G. Y. Ge, and R. X. Dong, "Free electron laser based on the Smith-Purcell radiation," Opt Laser Technol 39, 1254-1257 (2007).
    1. J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, "Interactions between Light Waves in a Nonlinear Dielectric," Physical Review 127, 1918-1939 (1962).
    2. L. J. Chen, J. H. Shi, X. F. Chen, and Y. X. Xia, "Photovoltaic effect in a periodically poled lithium niobate Solc-type wavelength filter," Applied Physics Letters 88, 121118 (2006).
    3. F. Genereux, G. Baldenberger, and B. Bourliaguet, "Deep periodic domain inversions in x-cut LiNbO3 and its use for second harmonic generation near 1.5 mu m," Applied Physics Letters 91, 231112 (2007).
    4. Y. L. Lee, N. E. Yu, C. Jung, B. A. Yu, I. B. Sohn, S. C. Choi, Y. C. Noh, D. K. Ko, W. S. Yang, H. M. Lee, W. K. Kim, and H. Y. Lee, "Second-harmonic generation in periodically poled lithium niobate waveguides fabricated by femtosecond laser pulses," Applied Physics Letters 89, 171103 (2006).
    5. H. F. Pan, H. F. Dong, H. P. Zeng, and W. Lu, "Efficient single-photon counting at
    1.55 mu m by intracavity frequency upconversion in a unidirectional ring laser," Applied Physics Letters 89, 191108 (2006).
    6. Y. Sasaki, A. Yuri, K. Kawase, and H. Ito, "Terahertz-wave surface-emitteddifference frequency generation in slant-stripe-type periodically poled LiNbO3 crystal," Applied Physics Letters 81, 3323-3325 (2002).
    7. J. An, S. Zhao, G. Li, K. Yang, D. Li, J. Wang, M. Li, and Z. Zhuo, "LD-pumped passively Q-switched Nd : YVO4/YVO4 green laser with a MgO-PPLN and Cr4+: YAG saturable absorber," Laser Phys Lett 5, 193-196 (2008).
    8. A. V. Kir'yanov, S. M. Klimentov, P. E. Powers, I. V. Mel'nikov, and Y. N. Korkishko, "IR tunable narrow-band nanosecond converter with a microchip pump source and periodically-poled Lithium Niobate," Laser Phys Lett 5, 281-285 (2008).
    9. J. Rauschenberger, T. Fuji, M. Hentschel, A. J. Verhoef, T. Udem, C. Gohle, T. W. Hansch, and F. Krausz, "Carrier-envelope phase-stabilized amplifier system," Laser Phys Lett 3, 37-42 (2006).
    10. A. Zavadilova, V. Kubecek, and J. C. Diels, "Picosecond optical parametric oscillator pumped synchronously, intracavity, by a mode-locked Nd : YVO4 laser," Laser Phys Lett 4, 103-108 (2007).
    11. P. Brand, B. Boulanger, P. Segonds, Y. Petit, C. Felix, B. Menaert, T. Taira, and H. Ishizuki, "Angular quasi-phase-matching experiments and determination of accurate Sellmeier equations for 5%MgO:PPLN," Opt Lett 34, 2578-2580 (2009).
    12. J. H. Chang, Q. H. Mao, S. J. Feng, X. M. Gao, and C. Q. Xu, "Widely tunable mid-IR difference-frequency generation based on fiber lasers," Opt Lett 35, 3486-3488 (2010).
    13. R. Das, S. C. Kumar, G. K. Samanta, and M. Ebrahim-Zadeh, "Broadband, high-power, continuous-wave, mid-infrared source using extended phase-matching bandwidth in MgO:PPLN," Opt Lett 34, 3836-3838 (2009).
    14. Z. C. Huang, C. H. Tu, S. G. Zhang, Y. N. Li, F. Y. Lu, Y. X. Fan, and E. B. Li, "Femtosecond second-harmonic generation in periodically poled lithium niobate waveguides written by femtosecond laser pulses," Opt Lett 35, 877-879 (2010).
    15. O. Kokabee, A. Esteban-Martin, and M. Ebrahim-Zadeh, "Efficient, high-power, ytterbium-fiber-laser-pumped picosecond optical parametric oscillator," Opt Lett 35, 3210-3212 (2010).
    16. J. Wang, S. Nuccio, X. X. Wu, O. F. Yilmaz, L. Zhang, I. Fazal, J. Y. Yang, Y. Yue, and A. E. Willner, "40 Gbit/s optical data exchange between wavelength-division-multiplexed channels using a periodically poled lithium niobate waveguide," Opt Lett 35, 1067-1069 (2010).
    17. T. J. Yang, V. Gopalan, P. J. Swart, and U. Mohideen, "Direct observation of pinning and bowing of a single ferroelectric domain wall," Phys Rev Lett 82, 4106-4109 (1999).
    18. T. Braun, W. Kleemann, J. Dec, and P. A. Thomas, "Creep and relaxation dynamics of domain walls in periodically poled KTiOPO4," Phys Rev Lett 94, 117601 (2005).
    19. Y. N. Zhi, W. J. Qu, D. A. Liu, Z. Luan, Y. Zhou, and L. R. Liu, "Ridge-shape phase distribution adjacent to 180 degrees domain wall in congruent LiNbO3 crystal," Applied Physics Letters 89, 112912 (2006).
    20. V. Gopalan, V. Dierolf, and D. A. Scrymgeour, "Defect-domain wall interactions in trigonal ferroelectrics," Annu Rev Mater Res 37, 449-489 (2007).
    21. J. Seidel, L. W. Martin, Q. He, Q. Zhan, Y. H. Chu, A. Rother, M. E. Hawkridge, P. Maksymovych, P. Yu, M. Gajek, N. Balke, S. V. Kalinin, S. Gemming, F. Wang, G. Catalan, J. F. Scott, N. A. Spaldin, J. Orenstein, and R. Ramesh, "Conduction at domain walls in oxide multiferroics," Nat Mater 8, 229-234 (2009).
    22. S. Y. Yang, J. Seidel, S. J. Byrnes, P. Shafer, C. H. Yang, M. D. Rossell, P. Yu, Y. H. Chu, J. F. Scott, J. W. Ager, L. W. Martin, and R. Ramesh, "Above-bandgap voltages from ferroelectric photovoltaic devices," Nat Nanotechnol 5, 143-147 (2010).
    23. A. R. Tunyagi, M. Ulex, and K. Betzler, "Noncollinear optical frequency doubling in strontium barium niobate," Phys Rev Lett 90, 243901 (2003).
    24. A. Fragemann, V. Pasiskevicius, and F. Laurell, "Second-order nonlinearities in the domain walls of periodically poled KTiOPO4," Applied Physics Letters 85, 375-377 (2004).
    25. M. Baudrier-Raybaut, R. Haidar, P. Kupecek, P. Lemasson, and E. Rosencher, "Random quasi-phase-matching in bulk polycrystalline isotropic nonlinear materials,"Nature 432, 374-376 (2004).
    26. S. E. Skipetrov, "Nonlinear optics - Disorder is the new order," Nature 432, 285-286 (2004).
    27. A. A. Lagatsky, C. T. A. Brown, W. Sibbett, S. J. Holmgren, C. Canalias, V. Pasiskevicius, F. Laurell, and E. U. Rafailov, "Efficient doubling of femtosecond pulses in aperiodically and periodically poled KTP crystals," Optics Express 15, 1155-1160 (2007).
    1. R. Y. Chiao, E. Garmire, and C. H. Townes,“Self-Trapping of Optical Beams,”Phys. Rev. Lett. 13, 479-482 (1965).
    2. V. E. Zahkarov, A, B, Shabat,“Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of manes in nonlinear media,”Sov. Phys. JETP 34, 62-69 (1972).
    3. A. Barthelemy, S. Maneuf, and C. Froehly, "Propagation soliton et auto-confinement de faisceaux laser par non linearitéoptique de kerr," Opt. Commun. 55, 201-206 (1985).
    4. J. S. Aitchison, A. M. Weiner, Y. Silberberg, M. K. Oliver, J. L. Jackel, D. E. Leaird, E. M. Vogel, and P. W. E. Smith,“Observation of spatial optical solitons in a nonlinear glass waveguide,”Opt Lett. 15, 471-473 (1990).
    5. J. S. Aitchison, K. Al-Hemyari, C. N. Ironside, R. S.Grant, W. Sibbett,“Observation of spatial solitons in AlGaAs waveguides,”Electron. Lett. 28, 1879-1880 (1992).
    6. U. Bartuch, U. Peschel, Th. Gabler, R. Waldhaus, H.-H.Horhold,“Experimental investigations and numerical simulations of spatial solitons in planar polymer waveguides,”Opt. Commun. 134, 49-54 (1997).
    7. D. N. Christodoulides and R. I. Joseph,“Discrete self-focusing in nonlinear arrays of coupled waveguides,”Opt. Lett. 13, 794–796 (1988).
    8. H. S. Eisenberg, Y. Silberberg, R. Morandotti, A. R. Boyd and J. S. Aitchison,“Discrete spatial optical solitons in waveguide arrays,”Phys. Rev. Lett. 81, 3383–3386 (1998).
    9. H. S. Eisenberg, Y. Silberberg, R. Morandotti and J. S. Aitchison,“Diffraction management,”Phys. Rev. Lett. 85, 1863–1866 (2000).
    10. T. Pertsch, T. Zentgraf, U. Peschel, A. Brauer and F. Lederer,“Anomalous refraction and diffraction in discrete optical systems,”Phys. Rev. Lett. 88, 093901 (2002).
    11. D. Mandelik, H. S. Eisenberg, Y. Silberberg, R. Morandotti and J. S. Aitchison,“Band-gap structure of waveguide arrays and excitation of Floquet-Bloch solitons,”Phys. Rev. Lett. 90, 053902 (2003).
    12. T. Pertsch, U. Peschel, F. Lederer, J. Meier, R. Schiek, R. Iwanow, G. Stegeman,“Discrete solitons in quadratic nonlinear waveguide arrays,”in OSA Trends in Optics and Photonics (Optical Society of America, 2002), NLGW 2002 paper NLTuA1
    13. J. W. Fleischer, M. Segev, N. K. Efremidis and D. N. Christodoulides,“Observation of two-dimensional discrete solitons in optically-induced nonlinear photonic lattices,”Nature 422, 147–150 (2003).
    14. Feng Chen, Milutin Stepi?, Christian E. Rüter, Daniel Runde, Detlef Kip,“Discrete diffraction and spatial gap solitons in photovoltaic LiNbO3 waveguide arrays,”Opt. Express 13, 4314-4324 (2005)
    15. F. Lederer and Y. Silberberg,“Discrete solitons,”Opt. Photon. News 13, 48-53 (2002).
    16. A. S. Davydov, Solitons in Molecular Systems (Academic, 1991).
    17. H. Xie, L. van der Meer, V. Hoff, and R. H. Austin,“Long-lived amide I vibrational modes in myoglobin,”Phys. Rev. Lett. 84, 5435?5438 (2000).
    18. I. Swanson, J. A. Brozik, S. P. Love, G. F. Strouse, A. P. Shreve, A. R. Bishop W.-Z. Wang, and M. I. Salkola,“Observation of intrinsically localized modes in a discrete low-dimensional material,”Phys. Rev. Lett. 82, 3288?3291 (1999).
    19. U. T. Schwartz, L. Q. English, and A. J. Sievers,“Experimental generation and observation of intrinsic localized spin wave modes in an antiferromagnets,”Phys. Rev. Lett. 83, 223?226 (1999).
    20. E. Trias, J. J. Mazo, and T. P. Orlando,“Discrete breathers in nonlinear lattices: experimental detection in Josephson junctions,”Phys. Rev. Lett. 84, 741–744 (2000).
    21. P. Binder, D. Abraimov, A. V. Ustinov, S. Flach, and Y. Zolotaryuk,“Observation of breathers in Josephson ladders,”Phys. Rev. Lett. 84, 745?748 (2000).
    22. A. Trombettoni and A. Smerzi,“Discrete solitons and breathers with dilute Bose-Einstein condensates,”Phys. Rev. Lett. 86, 2353–2356 (2001).
    23. A. Eiermann, Th. Anker, M. Albiez, M. Taglieber, P. Treutlein, K.-P. Marzlin, and M. K. Oberthaler,“Bright Bose-Einstein gap solitons of atoms with repulsive interaction,”Phys. Rev. Lett. 92, 230401 (2004).
    24. Falk Lederer, George I. Stegeman, Demetri N. Christodoulides, Gaetano Assanto, Moti Segev and Yaron Silberberg,“Discrete solitons in optics,”Phys. Report 463, 1-126 (2008)
    25. R. A. Vicencio, M. I. Molina, and Y. S. Kivshar, "Controlled switching of discrete solitons in waveguide arrays,”Opt. Lett. 28, 1942-1944 (2003).
    26. A. A. Sukhorukov and Y. S. Kivshar,“Soliton switching and Bloch-wave filtering in periodic photonic lattices,”arXiv Physics/0412151 (2004).
    27. J. A. Abernethy, C. B. E. Gawith, R. W. Eason, and P. G. R. Smith,“Demonstration and optical characteristics of electro-optic Bragg modulators in periodically poled lithium niobate in the near-infrared,”Appl. Phys. Lett. 81, 2514-2516 (2002).
    28. M. Yamada, M. Saitoh and H. Ooki,“Electric-field induced cylindrical lens, switching and deflection devices composed of the inverted domains in LiNbO3 crystals,”Appl. Phys. Lett. 69, 3659-3661 (1996).
    29. Roger Cudney, L. Ríos, and H. Escamilla, "Electrically controlled Fresnel zone plates made from ring-shaped 180°domains," Opt. Express 12, 5783-5788 (2004)
    30. Marcuse, Light Transmission optics (Academic, 1972)
    31. A. Yariv, P. Yeh, Optical waves in crystals: propagation and control of laser radiation (Academic, 1972)
    32. G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, 1995).
    33. Z. Chen, M. Segev, D. W. Wilson, R. E. Muller, and P. D. Maker,“Self-trapping of an optical vortex by use of the bulk photovoltaic effect,”Phys. Rev. Lett. 78, 2948?2951 (1997).
    1. S. Skupsky, and K. Lee, "Uniformity of energy deposition for laser driven fusion," J Appl Phys 54, 3662-3671 (1983).
    2. J. D. Lindl, and W. C. Mead, "Two-Dimensional Simulation of Fluid Instability in Laser-Fusion Pellets," Phys Rev Lett 34, 1273-1276 (1975).
    3. K. R. Tamura, and M. Nakazawa, "Spectral-smoothing and pedestal reduction of wavelength tunable quasi-adiabatically compressed femtosecond solitons using a dispersion-flattened dispersion-imbalanced loop mirror," Ieee Photonic Tech L 11, 230-232 (1999).
    4. S. P. Regan, J. A. Marozas, J. H. Kelly, T. R. Boehly, W. R. Donaldson, P. A. Jaanimagi, R. L. Keck, T. J. Kessler, D. D. Meyerhofer, W. Seka, S. Skupsky, and V. A. Smalyuk, "Experimental investigation of smoothing by spectral dispersion," J Opt Soc Am B 17, 1483-1489 (2000).
    5. S. L. Zhou, Z. Q. Lin, and X. J. Jiang, "Beam smoothing by lens array with spectral dispersion," Opt Commun 272, 186-191 (2007).
    6. G. Miyaji, N. Miyanaga, S. Urushihara, K. Suzuki, S. Matsuoka, M. Nakatsuka, A. Morimoto, and T. Kobayashi, "Three-directional spectral dispersion for smoothing of a laser irradiance profile," Opt Lett 27, 725-727 (2002).
    7. Y. K. Wu, and W. S. Wang, "Design and fabrication of sidewalls-extended electrode configuration for ridged lithium niobate electrooptical modulator," J Lightwave Technol 26, 286-290 (2008).
    8. L. Terlevich, S. Balsamo, S. Pensa, M. Pirola, and G. Ghione, "Design and characterization of a 10-Gb/s dual-drive Z-cut Ti : LiNbO3 electrooptical modulator," J Lightwave Technol 24, 2355-2361 (2006).
    9. C. D'hose, E. Cassan, J. Baggio, O. Musseau, and J. L. Leray, "Electrical and optical response of a Mach-Zehnder electrooptical modulator to pulsed irradiation," Ieee T Nucl Sci 45, 1524-1530 (1998).
    10. T. Gryba, J. Gazalet, J. E. Lefebvre, F. Sainte-Rose, V. Y. Zhang, and V. Sadaune, "Acoustooptic modulator using the stark effect and stress-induced bandgap changes," Ieee J Quantum Elect 35, 153-161 (1999).
    11. T. Hori, N. Nishizawa, H. Nagai, M. Yoshida, and T. Goto, "Electronically controlled high-speed wavelength-tunable femtosecond soliton pulse generation using acoustooptic modulator," Ieee Photonic Tech L 13, 13-15 (2001).
    12. A. Bhatti, H. S. Al-Raweshidy, and G. Murtaza, "Optical response of an all-fibreacoustooptic phase modulator using aluminium nitride coating," Opt Commun 176, 355-363 (2000).
    13. A. A. Berezhnoi, "On the nature of anisotropy of optical properties of lithium niobate and lithium tantalate crystals," Opt Spektrosk+ 82, 93-104 (1997).
    14. X. L. Tong, A. Yariv, M. Zhang, A. J. Agranat, R. Hofmeister, and V. Leyva, "Ferroelectric domain gratings and Barkhausen spikes in potassium lithium tantalate niobate," Applied Physics Letters 70, 2241-2243 (1997).
    15. D. S. Kim, M. Arisawa, A. Morimoto, and T. Kobayashi, "Femtosecond optical pulse generation using quasi-velocity-matched electrooptic phase modulator," Ieee J Sel Top Quant 2, 493-499 (1996).
    16. F. Z. Guo, C. T. Yu, L. Chen, T. Kobayashi, and Y. Chen, "Quasi-velocity-matched electrooptic phase modulator for the synthesis of ultrashort optical pulses," Ieee J Quantum Elect 33, 879-882 (1997).
    17. Y. Kong, X. F. Chen, and Y. X. Xia, "Frequency conversion of femtosecond laser pulses in an engineered aperiodic poled optical superlattice," Appl Optics 46, 5698-5702 (2007).
    18. B. F. Johnston, and M. J. Withford, "Dynamics of domain inversion in LiNbO3 poled using topographic electrode geometries," Applied Physics Letters 86, 262901 (2005).
    19. H. Gnewuch, N. K. Zayer, and C. N. Pannell, "Full electrical characterization of aperiodic acoustic gratings by an enhanced delta-function model: Theory and experiment," Ieee T Ultrason Ferr 48, 1527-1531 (2001).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700