用户名: 密码: 验证码:
DMOG改善骨髓间充质干细胞生存能力以及相关机制的探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
实验背景:随着经济社会的发展和人民生活水平的提高,心脑血管疾病已经成为人类健康的头号杀手。心肌梗死的发生率、致残率和致死率明显上升,尽管近年来药物治疗和介入治疗得到了快速发展,缺血性心肌病患者的预后有了明显的改善,但药物治疗和介入治疗终归不能修复坏死的心肌。骨髓间充质干细胞(MSCs)具有自我更新能力和横向分化能力,移植到心梗局部后能够分化为内皮细胞、血管平滑肌细胞和心肌细胞样细胞,促进新生血管的形成。大量的基础研究和临床前期研究发现MSCs能够挽救濒死的心肌,减少心梗面积进而改善心肌梗死后的心功能,因此骨髓间充质干细胞在心血管疾病中的应用是近年来研究的热点,成为攻克心血管疾病难题的一种非常有前景的治疗手段。但是,MSCs改善心功能的能力有限,大量的证据表明MSC移植对心功能的改善是轻中度的,大部分研究结果显示MSCs移植对心功能的改善只有5-6%左右,甚至有些临床试验没有观察到心功能的改善,这远远达不到我们的预期,其中一个很重要的原因是绝大多数的细胞移植到体内后在很短的时间内发生死亡,研究报道90%的MSCs在移植后的1天内死亡。因此,找到一种能够提高MSCs生存能力的方法显得尤为迫切。
     DMOG是一种脯氨酰羟化酶抑制剂,能够抑制细胞内HIF-1α的降解,继而使细胞核内很多基因(如EPO、VEGF、Ang1和Glut-1等)的转录和表达增高,继而发挥其保护性作用。在缺血再灌注心肌损伤和急性心肌梗死的动物模型中发现,DMOG能够发挥降低大鼠的心肌重构和抑制炎症反应等保护作用。在体外的研究中发现,DMOG能够改善肿瘤细胞和神经元在缺血清或缺神经营养因子等恶劣环境下的生存能力。但是,DMOG到底能否改善MSCs的生存能力目前没有报道。
     实验目的:
     研究DMOG是否能增强骨髓间充质干细胞(MSCs)的生存能力,并对可能的作用机制进行探讨。
     实验方法:
     建立经典的缺血清的凋亡模型,分为正常对照组(Control)、缺血清组(SD)和缺血清DMOG干预组(SD+DMOG)三大组,其中SD+DMOG组又分为100μM、500μM和1000μM三个小组。应用western-blot技术检测DMOG能否降低HIF-1α的在细胞内的降解以及上调其下游Glut-1的表达情况;应用台盼蓝方法来评估DMOG对正常有血清条件培养下的MSCs的毒性作用;通过相差显微镜观察不同组中MSCs形态学上的改变,经缺血清处理后的凋亡细胞体积缩小;应用Hoechst染MSCs的细胞核,通过荧光显微镜观察不同组中MSCs细胞核的改变,凋亡细胞染色质浓聚、细胞核缩小甚至断裂,荧光显微镜下表现为核小而亮和不完整;应用免疫组化对cleaved caspase-3进行染色,阳性细胞定义为凋亡细胞,并使用Hoechst进行染核计算细胞总数,阳性细胞除以总细胞数即为凋亡率;western-blot检测cleaved caspase-3的表达情况,以进一步验证免疫组化染色的准确性,并进一步探讨DMOG对MSCs凋亡保护的时程进行分析,分6h、12h和24h三个时间点;应用台盼蓝方法对MSCs进行染色来检测细胞死亡情况,阳性细胞即为死亡细胞,阳性细胞除以总细胞数即为死亡率。通过比较不同组之间凋亡和死亡指标的变化,说明DMOG对缺血清条件下MSCs的保护作用。对于除HIF-1α通路外其他的可能作用机制,我们检测了经典的影响细胞凋亡的线粒体通路和与细胞生存密切相关的PI3K/Akt通路。应用western-blot技术检测细胞色素C蛋白在线粒体、胞浆中的表达情况,分析在缺血清状况下细胞色素C从线粒体释放到胞浆中(细胞色素C将进一步与Apaf-1和pro-caspase9形成凋亡复合体激活凋亡通路)的情况,探讨线粒体途径中caspase-3依赖性的凋亡通路在DMOG抗凋亡中的作用;应用western-blot技术检测凋亡诱导因子(AIF)在胞浆和核蛋白中的表达情况,分析在缺血清状况下AIF从胞浆转录到细胞核(AIF转录到细胞核后也能够启动细胞凋亡程序)的情况,探讨线粒体途径中非caspase-3依赖性的凋亡通路在DMOG抗凋亡中的作用。应用western-blot技术检测Akt和磷酸化Akt、ERK和磷酸化ERK的表达情况,明确DMOG能否激活PI3K/Akt和/或MEK/ERK通路,然后应用PI3K特异性阻断剂wortmannin阻断PI3K/Akt通路后,观察DMOG的保护作用(重新检测cleaved caspase-3染色和台盼蓝分别评估细胞凋亡和死亡)是否消失,从反面来证明DMOG的保护作用是否通过该通路。
     实验结果:
     DMOG在作用浓度范围内,对MSCs没有明显的毒性作用,却能够剂量依赖性地降低MSCs内HIF-1α的降解,上调其下游Glut-1的表达。DMOG能够呈剂量依赖性地改善缺血清后MSCs的形态学上的细胞缩小情况,使Hoechst阳性的细胞核数量明显降低,cleaved caspase-3的表达降低。Western-blot结果进一步确认了免疫染色cleaved caspase-3的结果,并提示从缺血清6h开始,DMOG就有降低凋亡的趋势,到12h和24h时达到了统计学差异。类似地,根据台盼蓝染色结果DMOG能够呈剂量依赖性地降低MSCs经缺血清处理后的细胞死亡,从12h开始到72h均能不同程度地降低细胞死亡,具有显著的统计学意义。以上说明DMOG能够降低缺血清所引起的MSCs凋亡和死亡,并呈剂量依赖性和有一定的作用时程。缺血清能够使细胞色素C从线粒体释放到胞浆的数量增加,而DMOG却能降低这种过程;类似地,DMOG能够降低缺血清所引起的AIF的从胞浆向细胞核的转位,说明DMOG能够降低caspase依赖的和非依赖的凋亡通路而发挥保护作用。缺血清能够明显降低MSCs的Akt和ERK的磷酸化水平,DMOG能够逆转Akt的磷酸化表达水平而不能逆转ERK的活化,提示PI3K/Akt通路而不是MEK/ERK通路可能在DMOG的保护中发挥一定的作用。应用PI3K/Akt通路的特异性阻断剂wortamannin后,发现DMOG逆转的Akt磷酸化水平作用消失,相应地,DMOG对MSCs凋亡和死亡的保护作用(分别由cleaved capase-3和台盼蓝染色检测)也消失了,这从反面也证实了PI3K/Akt通路在DMOG保护中的作用。
     实验结论:
     1、DMOG能够降低MSCs内HIF-1α的降解和上调下游Glut-1的表达,在作用浓度下对MSCs没有明显的毒性作用;
     2、DMOG能够降低缺血清状况下MSCs的凋亡和死亡;
     3、caspase-3依赖的和非依赖的线粒体通路可能在DMOG对MSCs保护中发挥了一定的作用;
     4、PI3K/Akt通路在DMOG对MSCs的保护中发挥了重要的作用。
Background:
     Despite great strides in medical strategies aimed at post-infarct remodeling,the development of aggressive reperfusion strategies such as interventional diagnosis and therapy,as well as common drug therapy,heart failure persists as an emerging public health concern in the developing world and remains the leading cause of death and hospitalization in industrialized countries.In recent years,cell-based therapy has emerged as a promising therapeutic approach for restoration of heart function after myocardial infarction.Circumventing ethical and immune rejection issues,autologous mesenchymal stem cells(MSCs) transplantation is an ideal option for clinical cell therapy use.To date,it has been demonstrated that MSCs are capable of ameliorating the cardiac function after myocardial infarction.However,the majority of transplanted cells usually die a few days after transplantation into the harsh host environment.It was reported that over 90%of MSCs died in the first 24 h and only 0.44%survived 4 d after transplantation to ischemic heart.Poor cell viability after transplantation into infarcted myocardium obviously restricts the efficacy of this attractive therapy.Therefore, strategies to enhance MSCs survival are important and urgently needed.
     Under hypoxic conditions,prolyl hydroxylase activity decreases because they require oxygen as a co-factor and the HIF-1αprotein is stabilized.HIF-1αstabilization is followed by activation of the transcription of numerous target genes such as vascular endothelial growth factor(VEGF),erythropoietin(EPO),and glucose transporter 1 (Glut-1) that are involved in angiogenesis,erythropoiesis,energy metabolism and cell survival.It has been demonstrated that hydroxylases play an important role in heart diseases.Inhibition of prolyl hydroxylase activity or expression can be effected using competitive inhibitors such as dimethyloxalylglycine(DMOG) or siRNA leading to the stabilization of HIF and other beneficial effects.In ischemia-reperfusion(I/R) injury and acute myocardial infarction animal models,inhibition of prolyl hydroxylases has been observed to prevent deleterious remodeling and to attenuate the acute inflammatory response.Additionally,hydroxylase inhibition followed by HIF-1αup-regulation participates in the protection of cell survival and regulation of apoptosis which have been shown in cancer cells and neurons under hypoxic condition,serum deprivation or tropic factor deprivation.The precise role of HIF-1αin regulation cell death and apoptosis remains controversial because of the concern that HIF-1αmay promote cell death.
     The role of prolyl hydroxylase inhibition by DMOG in regulation of cell survival has not been investigated in MSCs.The purpose of this study is to evaluate the effect of DMOG on the apoptosis and cell death induced by serum deprivation in MSCs and to delineate the underlying signaling mechanisms.
     Objectives:The objective of this study is to evaluate the effect DMOG on MSCs survival against serum deprivation and to explore the possible mechanisms.
     Methods:The typical apoptotic model of serum deprivation was used in this study to mimic the microenvironment of ischemic heart diseases in vivo.Three groups,Control group,serum deprivation group(SD) and serum deprivation with DMOG group (SD+DMOG),were divided.According to the concentration of DMOG application, SD+DMOG group was sub-divided into 100μM,500μM and 1000μM groups. Western-blot was applied to detect HIF-1αand its downstream Glut-1 expression of MSCs.Trypan blue was used to detect the cell toxicity in the normal culture condition and MSCs death under serum deprivation.Apoptosis of MSCs in different groups was observed by morphological changes,caspase-3 activation.Morphological anlysis was detected by phase-contrast microscope and Hoechst staining which was checked under fluorescent microscope to detect the nuclear condensation and fragmentation.Apoptotic rate was calculated by cleaved caspase-3 staining and western-blot of cleaved caspase-3 was used to confirm staining results.To evaluate the mechanisms beside HIF-1αpathway,mitochondrial and survival pathways were detected.To study involvement of the mitochondrial pathway in the mechanism,western-blot was used to detect cytochrome C release and apoptosis inducing factor(AIF) translocation to evaluate caspase dependent or caspase independent pathway,respectively.Akt and ERK phosophorylation level were detected by western-blot to evaluate the possible effect of PI3K/Akt and MEK/ERK pathway.Wortmannin,a specific inhibitor of PI3K,was used to block PI3K/Akt pathway and then Akt activation,cleaved caspase-3,and trypan-blue staining were re-evaluated to confirm the involvement of PI3K/Akt pathway in the protective effect of DMOG on MSCs.
     Results:DMOG remarkably increased MSCs HIF-1αstablizaion and Glut-1 expression without obvious toxicity.DMOG ameliorated the morphological changes by serum deprivation and decreased nuclear condensation detected by Hoechst staining.DMOG significantly reduced the apoptotic rate calculated by cleaved caspase-3 staining in a dose dependent manner which was confirmed by western-blot analysis of cleaved caspase-3 activation.What's more,DMOG prevented caspase-3 activation in a time course from 6h to 24h.Similarly,DMOG decreased MSCs death in a dose-dependent manner and in a time course from 12h to 72h.Serum deprivation induced cytochrome C release from mitochondria into cytosol and AIF translocation from cytosol into nucleus. DMOG decreased both of of them indicating both caspase dependent and independent apoptotic pathway were possibly involved in the protective effect.Furthermore,serum deprivation significantly decreased Akt and ERK activation compared with control group,while DMOG reversed Akt but not ERK phosphorylation,indicating PI3K/Akt but not MEK/ERK pathway maybe involved in the mechanism.To confirm this, wortmannin,a specific PI3K inhibitor,was used to block PI3K/Akt pathway and Akt activation was inhibited.Meanwhile,wortmannin abrogated the beneficial effect of DMOG on MSCs apoptosis and cell death re-evaluated by cleaved caspase-3 and trypan-blue staining,respectively.
     Conclusions:The prolyl hydroxylase inhibitor DMOG inhibited apoptosis and cell death induced by serum deprivation in MSCs concurrent with HIF-1αstabilization, mitochondrial protection,and activation of the PI3K/Akt pathway.
引文
[1]Braunwald,E.and M.R.Bristow,Congestive heart failure:fifty years of progress.Circulation,2000.102(20 Suppl 4):p.Ⅳ14-23.
    [2]Schuleri,K.H.,A.J.Boyle,and J.M.Hare,Mesenchymal stem cells for cardiac regenerative therapy.Handb Exp Pharmacol,2007(180):p.195-218.
    [3]Sharma,R.and R.Raghubir,Stem cell therapy:a hope for dying hearts.Stem Cells Dev,2007.16(4):p.517-36.
    [4]Pittenger,M.F.,et al.,Multilineage potential of adult human mesenchymal stem cells.Science,1999.284(5411):p.143-7.
    [5]Orlic,D.,et al.,Bone marrow stem cells regenerate infarcted myocardium.Pediatr Transplant,2003.7 Suppl 3:p.86-8.
    [6]Miyahara,Y.,et al.,Monolayered mesenchymal stem cells repair scarred myocardium after myocardial infarction.Nat Med,2006.12(4):p.459-65.
    [7]Hu,X.,et al.,Optimal temporal delivery of bone marrow mesenchymal stem cells in rats with myocardial infarction.Eur J Cardiothorac Surg,2007.31(3):p.438-43.
    [8]Wang,J.A.,et al.,Human bone marrow-derived mesenchymal stem cells transplanted into damaged rabbit heart to improve heart function.J Zhejiang Univ Sci B,2005.6(4):p.242-8.
    [9]Wollert,K.C.,et al.,Intracoronary autologous bone-marrow cell transfer after myocardial infarction:the BOOST randomised controlled clinical trial.Lancet,2004.364(9429):p.141-8.
    [10]Meyer,GP.,et al.,Intracoronary bone marrow cell transfer after myocardial infarction:eighteen months' follow-up data from the randomized,controlled BOOST(BOne marrOw transfer to enhance ST-elevation infarct regeneration)trial.Circulation,2006.113(10):p.1287-94.
    [11]Tang,Y.L.,et al.,Improved graft mesenchymal stem cell survival in ischemic heart with a hypoxia-regulated heme oxygenase-1 vector.J Am Coll Cardiol,2005.46(7):p.1339-50.
    [12]Toma,C,et al.,Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart.Circulation,2002.105(1):p.93-8.
    [13]Wang,G.L.,et al.,Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension.Proc Natl Acad Sci U S A,1995.92(12):p.5510-4.
    [14]Salceda,S.and J.Caro,Hypoxia-inducible factor lalpha(HIF-lalpha) protein is rapidly degraded by the ubiquitin-proteasome system under normoxic conditions.Its stabilization by hypoxia depends on redox-induced changes.J Biol Chem,1997.272(36):p.22642-7.
    [15]Lando,D.,et al.,FIH-1 is an asparaginyl hydroxylase enzyme that regulates the transcriptional activity of hypoxia-inducible factor.Genes Dev,2002.16(12):p.1466-71.
    [16]Iyer,N.V.,et al.,Cellular and developmental control of O2 homeostasis by hypoxia-inducible factor 1 alpha.Genes Dev,1998.12(2):p.149-62.
    [17]Kerendi,R,et al.,Thoracic Surgery Directors Association Award.Cobalt chloride pretreatment attenuates myocardial apoptosis after hypothermic circulatory arrest.Ann Thorac Surg,2006.81(6):p.2055-62;discussion 2062.
    [18]Ockaili,R.,et al.,HIF-1 activation attenuates postischemic myocardial injury:role for heme oxygenase-1 in modulating microvascular chemokine generation.Am J Physiol Heart Circ Physiol,2005.289(2):p.H542-8.
    [19]Natarajan,R.,et al.,Hypoxia inducible factor-1 activation by prolyl 4-hydroxylase-2 gene silencing attenuates myocardial ischemia reperfusion injury.Circ Res,2006.98(1):p.133-40.
    [20]Natarajan,R.,et al.,Activation of hypoxia-inducible factor-1 via prolyl-4hydoxylase-2 gene silencing attenuates acute inflammatory responses in postischemic myocardium.Am J Physiol Heart Circ Physiol,2007.293(3):p.H1571-80.
    [21]Philipp,S.,et al.,Stabilization of hypoxia inducible factor rather than modulation of collagen metabolism improves cardiac function after acute myocardial infarction in rats.Eur J Heart Fail,2006.8(4):p.347-54.
    [22]Alvarez-Tejado,M.,et al.,Hypoxia induces the activation of the phosphatidylinositol 3-kinase/Akt cell survival pathway in PC12 cells: protective role in apoptosis.J Biol Chem,2001.276(25):p.22368-74.
    [23]Piret,J.P.,et al.,Hypoxia and CoCl2 protect HepG2 cells against serum deprivation- and t-BHP-induced apoptosis:a possible anti-apoptotic role for HIF-1.Exp Cell Res,2004.295(2):p.340-9.
    [24]Sasabe,E.,et al.,Mechanism of HIF-1 alpha-dependent suppression of hypoxia-induced apoptosis in squamous cell carcinoma cells.Cancer Sci,2005.96(7):p.394-402.
    [25]Lomb,D.J.,J.A.Straub,and R.S.Freeman,Prolyl hydroxylase inhibitors delay neuronal cell death caused by trophic factor deprivation.J Neurochem,2007.103(5):p.1897-906.
    [26]Carmeliet,P.,et al.,Role of HIF-1 alpha in hypoxia-mediated apoptosis,cell proliferation and tumour angiogenesis.Nature,1998.394(6692):p.485-90.
    [27]Sowter,H.M.,et al.,HIF-1-dependent regulation of hypoxic induction of the cell death factors BNIP3 and NIX in human tumors.Cancer Res,2001.61(18):p.6669-73.
    [28]Campagnoli,C,et al.,Identification of mesenchymal stem/progenitor cells in human first-trimester fetal blood,liver,and bone marrow.Blood,2001.98(8):p.2396-402.
    [29]Gerhart,D.Z.,et al.,Glucose transporter localization in brain using light and electron immunocytochemistry.J Neurosci Res,1989.22(4):p.464-72.
    [30]Green,D.R.and J.C.Reed,Mitochondria and apoptosis.Science,1998.281(5381):p.1309-12.
    [31]Broker,L.E.,F.A.Kruyt,and G Giaccone,Cell death independent of caspases:a review.Clin Cancer Res,2005.11(9):p.3155-62.
    [32]Lin,Z.,et al.,GLUT-1 reduces hypoxia-induced apoptosis and JNK pathway activation.Am J Physiol Endocrinol Metab,2000.278(5):p.E958-66.
    [33]Rastogi,S.,et al.,Glut-1 antibodies induce growth arrest and apoptosis in human cancer cell lines.Cancer Lett,2007.257(2):p.244-51.
    [34]Zhu,W.,et al.,Hypoxia and serum deprivation-induced apoptosis in mesenchymal stem cells.Stem Cells,2006.24(2):p.416-25.
    [35]Xie,L.,R.S.Johnson,and R.S.Freeman,Inhibition of NGF deprivation-induced death by low oxygen involves suppression of BIMEL and activation of HIF-1.J Cell Biol,2005.168(6):p.911-20.
    [36]Mangi,A.A.,et al.,Mesenchymal stem cells modified with Akt prevent remodeling and restore performance of infarcted hearts.Nat Med,2003.9(9):p.1195-201.
    [37]Beitner-Johnson,D.,et al.,Hypoxia activates Akt and induces phosphorylation of GSK-3 in PC12 cells.Cell Signal,2001.13(1):p.23-7.
    [1]Braunwald,E.and M.R.Bristow,Congestive heart failure:fifty years of progress.Circulation,2000.102(20 Suppl 4):p.Ⅳ14-23.
    [2]Towbin,J.A.and N.E.Bowles,The failing heart.Nature,2002.415(6868):p.227-33.
    [3]Lee,M.S.,M.Lill,and R.R.Makkar,Stem cell transplantation in myocardial infarction.Rev Cardiovasc Med,2004.5(2):p.82-98.
    [4]Min,J.Y.,et al.,Transplantation of embryonic stem cells improves cardiac function in postinfarcted rats.J Appl Physiol,2002.92(1):p.288-96.
    [5]Kehat,I.,et al.,Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes.J Clin Invest,2001.108(3):p.407-14.
    [6]Perin,E.C.,Y.J.Geng,and J.T.Willerson,Adult stem cell therapy in perspective.Circulation,2003.107(7):p.935-8.
    [7]Pittenger,M.F.,et al.,Multilineage potential of adult human mesenchymal stem cells.Science,1999.284(5411):p.143-7.
    [8]Pittenger,M.F.and B.J.Martin,Mesenchymal stem cells and their potential as cardiac therapeutics.Circ Res,2004.95(1):p.9-20.
    [9]Weng,Y.S.,et al.,The effects of different growth factors on human bone marrow stromal cells differentiating into hepatocyte-like cells.Adv Exp Med Biol,2003.534:p.119-28.
    [10]Yokoo,T.,et al.,Xenobiotic kidney organogenesis from human mesenchymal stem cells using a growing rodent embryo.J Am Soc Nephrol,2006.17(4):p.1026-34.
    [11]Silva,GV.,et al.,Mesenchymal stem cells differentiate into an endothelial phenotype,enhance vascular density,and improve heart function in a canine chronic ischemia model.Circulation,2005.111(2):p.150-6.
    [12]Sanchez-Ramos,J.,et al.,Adult bone marrow stromal cells differentiate into neural cells in vitro.Exp Neurol,2000.164(2):p.247-56.
    [13]Di Nicola,M.,et al.,Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli.Blood,2002.99(10):p.3838-43.
    [14]Saito,T.,et al.,Xenotransplant cardiac chimera:immune tolerance of adult stem cells.Ann Thorac Surg,2002.74(1):p.19-24;discussion 24.
    [15]MacDonald,D.J.,et al.,Persistence of marrow stromal cells implanted into acutely infarcted myocardium:observations in a xenotransplant model.J Thorac Cardiovasc Surg,2005.130(4):p.1114-21.
    [16]Makkar,R.R.,et al.,Intramyocardial injection of allogenic bone marrow-derived mesenchymal stem cells without immunosuppression preserves cardiac function in a porcine model of myocardial infarction.J Cardiovasc Pharmacol Ther,2005.10(4):p.225-33.
    [17]Leobon,B.,et al.,Myoblasts transplanted into rat infarcted myocardium are functionally isolated from their host.Proc Natl Acad Sci U S A,2003.100(13):p.7808-11.
    [18]Meyer,GP.,et al.,Intracoronary bone marrow cell transfer after myocardial infarction:eighteen months' follow-up data from the randomized,controlled BOOST(BOne marrOw transfer to enhance ST-elevation infarct regeneration)trial.Circulation,2006.113(10):p.1287-94.
    [19]Janssens,S.,et al.,Autologous bone marrow-derived stem-cell transfer in patients with ST-segment elevation myocardial infarction:double-blind,randomised controlled trial.Lancet,2006.367(9505):p.113-21.
    [20]Lunde,K.,et al.,Autologous stem cell transplantation in acute myocardial infarction:The ASTAMI randomized controlled trial.Intracoronary transplantation of autologous mononuclear bone marrow cells,study design and safety aspects.Scand Cardiovasc J,2005.39(3):p.150-8.
    [21]Dai,W.,et al.,Allogeneic mesenchymal stem cell transplantation in postinfarcted rat myocardium:short- and long-term effects.Circulation,2005.112(2):p.214-23.
    [22]Lunde,K.,et al.,Intracoronary injection of mononuclear bone marrow cells in acute myocardial infarction.N Engl J Med,2006.355(12):p.1199-209.
    [23]Tang,Y.L.,et al.,Improved graft mesenchymal stem cell survival in ischemic heart with a hypoxia-regulated heme oxygenase-1 vector.J Am Coll Cardiol,2005.46(7):p.1339-50.
    [24]Toma,C,et al.,Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart.Circulation,2002.105(1):p.93-8.
    [25]Noiseux,N.,et al.,Mesenchymal stem cells overexpressing Akt dramatically repair infarcted myocardium and improve cardiac function despite infrequent cellular fusion or differentiation.Mol Ther,2006.14(6):p.840-50.
    [26]Shake,J.G.,et al.,Mesenchymal stem cell implantation in a swine myocardial infarct model:engraftment and functional effects.Ann Thorac Surg,2002.73(6):p.1919-25;discussion 1926.
    [27]Muller-Ehmsen,J.,et al.,Effective engraftment but poor mid-term persistence of mononuclear and mesenchymal bone marrow cells in acute and chronic rat myocardial infarction.J Mol Cell Cardiol,2006.41(5):p.876-84.
    [28]Crisostomo,P.R.,et al.,High passage number of stem cells adversely affects stem cell activation and myocardial protection.Shock,2006.26(6):p.575-80.
    [29]Honczarenko,M.,et al.,Human bone marrow stromal cells express a distinct set of biologically functional chemokine receptors.Stem Cells,2006.24(4):p.1030-41.
    [30]Stenderup,K.,et al.,Aging is associated with decreased maximal life span and accelerated senescence of bone marrow stromal cells.Bone,2003.33(6):p.919-26.
    [31]Zimmermann,S.,et al.,Lack of telomerase activity in human mesenchymal stem cells.Leukemia,2003.17(6):p.1146-9.
    [32]Simonsen,J.L.,et al.,Telomerase expression extends the proliferative life-span and maintains the osteogenic potential of human bone marrow stromal cells.Nat Biotechnol,2002.20(6):p.592-6.
    [33]Mathew,J.M.,et al.,Modulatory effects of human donor bone marrow cells on allogeneic cellular immune responses.Transplantation,1997.63(5):p.686-92.
    [34]Zhang,W.,et al.,Effects of mesenchymal stem cells on differentiation,maturation,and function of human monocyte-derived dendritic cells.Stem Cells Dev,2004.13(3):p.263-71.
    [35]Rasmusson,I.,et al.,Mesenchymal stem cells inhibit the formation of cytotoxic T lymphocytes,but not activated cytotoxic T lymphocytes or natural killer cells.Transplantation,2003.76(8):p.1208-13.
    [36]Corcione,A.,et al.,Human mesenchymal stem cells modulate B-cell functions.Blood,2006.107(1):p.367-72.
    [37]Grinnemo,K.H.,et al.,Xenoreactivity and engraftment of human mesenchymal stem cells transplanted into infarcted rat myocardium.J Thorac Cardiovasc Surg,2004.127(5):p.1293-300.
    [38]Potier,E.,et al.,Prolonged hypoxia concomitant with serum deprivation induces massive human mesenchymal stem cell death.Tissue Eng,2007.13(6):p.1325-31.
    [39]Zhu,W.,et al.,Hypoxia and serum deprivation-induced apoptosis in mesenchymal stem cells.Stem Cells,2006.24(2):p.416-25.
    [40]Blocklet,D.,et al.,Myocardial homing of nonmobilized peripheral-blood CD34+ cells after intracoronary injection.Stem Cells,2006.24(2):p.333-6.
    [41]Kocher,A.A.,et al.,Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis,reduces remodeling and improves cardiac function.Nat Med,2001.7(4):p.430-6.
    [42]Hou,D.,et al.,Radiolabeled cell distribution after intramyocardial,intracoronary,and interstitial retrograde Coronary venous delivery:implications for current clinical trials.Circulation,2005.112(9 Suppl):p.1150-6.
    [43]Hu,X.,et al.,Optimal temporal delivery of bone marrow mesenchymal stem cells in rats with myocardial infarction.Eur J Cardiothorac Surg,2007.31(3):p.438-43.
    [44]Chang,R,et al.,Involvement of PI3K/Akt pathway in cell cycle progression,apoptosis,and neoplastic transformation:a target for cancer chemotherapy. Leukemia,2003.17(3):p.590-603.
    [45]Thompson,J.E.and C.B.Thompson,Putting the rap on Akt.J Clin Oncol,2004.22(20):p.4217-26.
    [46]Zhou,H.,et al.,Akt regulates cell survival and apoptosis at a postmitochondrial level.J Cell Biol,2000.151(3):p.483-94.
    [47]Feng,J.,et al.,Stabilization of Mdm2 via decreased ubiquitination is mediated by protein kinase B/Akt-dependent phosphorylation.J Biol Chem,2004.279(34):p.35510-7.
    [48]Downward,J.,PI 3-kinase,Akt and cell survival.Semin Cell Dev Biol,2004.15(2):p.177-82.
    [49]Mangi,A.A.,et al.,Mesenchymal stem cells modified with Akt prevent remodeling and restore performance of infarcted hearts.Nat Med,2003.9(9):p.1195-201.
    [50]Gnecchi,M.,et al.,Paracrine action accounts for marked protection of ischemic heart by Akt-modified mesenchymal stem cells.Nat Med,2005.11(4):p.367-8.
    [51]Jiang,S.,et al.,Supportive interaction between cell survival signaling and angiocompetent factors enhances donor cell survival and promotes angiomyogenesis for cardiac repair.Circ Res,2006.99(7):p.776-84.
    [52]Agarwal,A.and H.S.Nick,Renal response to tissue injury:lessons from heme oxygenase-1 GeneAblation and expression.J Am Soc Nephrol,2000.11(5):p.965-73.
    [53]Yang,Z.F.,et al.,Heme oxygenase-1 potentiates the survival of small-for-size liver graft.Liver Transpl,2004.10(6):p.784-93.
    [54]Soares,M.P.,et al.,Expression of heme oxygenase-1 can determine cardiac xenograft survival.Nat Med,1998.4(9):p.1073-7.
    [55]Melo,L.G,et al.,Gene therapy strategy for long-term myocardial protection using adeno-associated virus-mediated delivery of heme oxygenase gene.Circulation,2002.105(5):p.602-7.
    [56]Vulapalli,S.R.,et al.,Cardioselective overexpression of HO-1 prevents I/R-induced cardiac dysfunction and apoptosis.Am J Physiol Heart Circ Physiol,2002.283(2):p.H688-94.
    [57]Choi,A.M.,Heme oxygenase-1 protects the heart.Circ Res,2001.89(2):p.105-7.
    [58]Li,W.,et al.,Bcl-2 engineered MSCs inhibited apoptosis and improved heart function.Stem Cells,2007.25(8):p.2118-27.
    [59]Wei,L.,et al.,Transplantation of embryonic stem cells overexpressing Bcl-2promotes functional recovery after transient cerebral ischemia.Neurobiol Dis,2005.19(1-2):p.183-93.
    [60]Song,H.,et al.,Tissue transglutaminase is essential for integrin-mediated survival of bone marrow-derived mesenchymal stem cells.Stem Cells,2007.25(6):p.1431-8.
    [61]Song,H.,et al.,Transfection of mesenchymal stem cells with the FGF-2 gene improves their survival under hypoxic conditions.Mol Cells,2005.19(3):p.402-7.
    [62]Sun,L.,et al.,Mesenchymal stem cells modified with angiopoietin-1 improve remodeling in a rat model of acute myocardial infarction.Biochem Biophys Res Commun,2007.357(3):p.779-84.
    [63]Meuillet,E.J.,et al.,Specific inhibition of the Akt1 pleckstrin homology domain by D-3-deoxy-phosphatidyl-myo-inositol analogues.Mol Cancer Ther,2003.2(4):p.389-99.
    [64]Samoilov,M.O.,et al.,The adaptive effects of hypoxic preconditioning of brain neurons.Neurosci Behav Physiol,2003.33(1):p.1-11.
    [65]Sharp,F.R.,et al.,Hypoxic preconditioning protects against ischemic brain injury.NeuroRx,2004.1(1):p.26-35.
    [66]Matsuda,T.,et al.,Hypoxia-inducible factor-lalpha DNA induced angiogenesis in a rat cerebral ischemia model.Neurol Res,2005.27(5):p.503-8.
    [67]Liu,J.,et al.,Neuroprotection by hypoxic preconditioning involves oxidative stress-mediated expression of hypoxia-inducible factor and erythropoietin.Stroke,2005.36(6):p.1264-9.
    [68]Uchiyama,T.,et al.,Role of Akt signaling in mitochondrial survival pathway triggered by hypoxic preconditioning.Circulation,2004.109(24):p.3042-9.
    [69]Sasaki,H.,et al.,Hypoxic preconditioning triggers myocardial angiogenesis:a novel approach to enhance contractile functional reserve in rat with myocardial infarction.J Mol Cell Cardiol,2002.34(3):p.335-48.
    [70]Azarnoush,K.,et al.,Enhancement of the functional benefits of skeletal myoblast transplantation by means of coadministration of hypoxia-inducible factor lalpha.J Thorac Cardiovasc Surg,2005.130(1):p.173-9.
    [71]Hu,X.,et al.,Transplantation of hypoxia-preconditioned mesenchymal stem cells improves infarcted heart function via enhanced survival of implanted cells and angiogenesis.J Thorac Cardiovasc Surg,2008.135(4):p.799-808.
    [72]Pasha,Z.,et al.,Preconditioning enhances cell survival and differentiation of stem cells during transplantation in infarcted myocardium.Cardiovasc Res,2008.77(1):p.134-42.
    [73]Hahn,J.Y.,et al.,Pre-treatment of mesenchymal stem cells with a combination of growth factors enhances gap junction formation,cytoprotective effect on cardiomyocytes,and therapeutic efficacy for myocardial infarction.J Am Coll Cardiol,2008.51(9):p.933-43.
    [74]Hanabusa,K.,et al.,Adrenomedullin enhances therapeutic potency of mesenchymal stem cells after experimental stroke in rats.Stroke,2005.36(4): p.853-8.
    [75]Muscari,C,et al.,Polyamine depletion reduces TNFalpha/MG132-induced apoptosis in bone marrow stromal cells.Stem Cells,2005.23(7):p.983-91.
    [76]Xu,R.,et al.,Lovastatin protects mesenchymal stem cells against hypoxia- and serum deprivation-induced apoptosis by activation of PI3K/Akt and ERK1/2.J Cell Biochem,2008.103(1):p.256-69.
    [77]Chen,J.,et al.,Lysophosphatidic acid protects mesenchymal stem cells against hypoxia and serum deprivation-induced apoptosis.Stem Cells,2008.26(1):p.135-45.
    [78]Zhao,Y.,et al.,Insulin rescues ES cell-derived neural progenitor cells from apoptosis by differential regulation of Akt and ERK pathways.Neurosci Lett,2007.429(1):p.49-54.
    [79]Liu,X.B.,et al.,Angiopoietin-1 protects mesenchymal stem cells against serum deprivation and hypoxia-induced apoptosis through the PBK/Akt pathway.Acta Pharmacol Sin,2008.29(7):p.815-22.
    [1]Tse WT,Pendleton JD,Beyer WM,Egalka MC and Guinan EC:Suppression of allogeneic T-cell proliferation by human marrow stromal cells:implications in transplantation.Transplantation 75:389-97,2003.
    [2]Di Nicola M,Carlo-Stella C,Magni M,Milanesi M,Longoni PD,Matteucci P,Grisanti S and Gianni AM:Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli.Blood 99:3838-43,2002.
    [3]Le Blanc K,Tammik C,Rosendahl K,Zetterberg E and Ringden O:HLA expression and immunologic properties of differentiated and undifferentiated mesenchymal stem cells.Exp Hematol 31:890-6,2003.
    [4]Krampera M,Glennie S,Dyson J,Scott D,Laylor R,Simpson E and Dazzi F:Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigen-specific T cells to their cognate peptide.Blood 101:3722-9,2003.
    [5]Majumdar MK,Keane-Moore M,Buyaner D,Hardy WB,Moorman MA,McIntosh KR and Mosca JD:Characterization and functionality of cell surface molecules on human mesenchymal stem cells.J Biomed Sci 10:228-41,2003.
    [6]Eliopoulos N,Stagg J,Lejeune L,Pommey S and Galipeau J:Allogeneic marrow stromal cells are immune rejected by MHC class Ⅰ- and class Ⅱ-mismatched recipient mice.Blood 106:4057-65,2005.
    [7]Nauta AJ,Westerhuis G,Kruisselbrink AB,Lurvink EG,Willemze R and Fibbe WE:Donor-derived mesenchymal stem cells are immunogenic in an allogeneic host and stimulate donor graft rejection in a nonmyeloablative setting.Blood 108:2114-20,2006.
    [8]Spaggiari GM,Capobianco A,Becchetti S,Mingari MC and Moretta L:Mesenchymal stem cell-natural killer cell interactions:evidence that activated NK cells are capable of killing MSCs,whereas MSCs can inhibit IL-2-induced NK-cell proliferation.Blood 107:1484-90,2006.
    [9]Chan JL,Tang KC,Patel AP,Bonilla LM,Pierobon N,Ponzio NM and Rameshwar P:Antigen-presenting property of mesenchymal stem cells occurs during a narrow window at low levels of interferon-gamma.Blood 107:4817-24,2006.
    [10]Stagg J,Pommey S,Eliopoulos N and Galipeau J:Interferon-gamma-stimulated marrow stromal cells:a new type of nonhematopoietic antigen-presenting cell.Blood 107:2570-7,2006.
    [11]Klyushnenkova E MJ,Mcintosh K:Human mesenchymal stem cells suppress allogeneic T cell responses in vitro:implications for allogeneic transplantation..Blood 92:642a,1998.
    [12]Djouad F,Plence P,Bony C,Tropel P,Apparailly F,Sany J,Noel D and Jorgensen C:Immunosuppressive effect of mesenchymal stem cells favors tumor growth in allogeneic animals.Blood 102:3837-44,2003.
    [13]Aggarwal S and Pittenger MF:Human mesenchymal stem cells modulate allogeneic immune cell responses.Blood 105:1815-22,2005.
    [14]Maccario R,Podesta M,Moretta A,Cometa A,Comoli P,Montagna D,Daudt L,Ibatici A,Piaggio G,Pozzi S,Frassoni F and Locatelli F:Interaction of human mesenchymal stem cells with cells involved in alloantigen-specific immune response favors the differentiation of CD4+ T-cell subsets expressing a regulatory/suppressive phenotype.Haematologica 90:516-25,2005.
    [15]Maccario R,Moretta A,Cometa A,Montagna D,Comoli P,Locatelli F,Podesta;M and Frassoni F:Human mesenchymal stem cells and cyclosporin a exert a synergistic suppressive effect on in vitro activation of alloantigen-specific cytotoxic lymphocytes.Biol Blood Marrow Transplant 11:1031-2,2005.
    [16]Le Blanc K,Tammik L,Sundberg B,Haynesworth SE and Ringden O:Mesenchymal stem cells inhibit and stimulate mixed lymphocyte cultures and mitogenic responses independently of the major histocompatibility complex.Scand J Immunol 57:11-20,2003.
    [17]Li C,Zhang W,Jiang X and Mao N:Human-placenta-derived mesenchymal stem cells inhibit proliferation and function of allogeneic immune cells.Cell Tissue Res 330:437-446,2007.
    [18]Keyser KA,Beagles KE and Kiem HP:Comparison of mesenchymal stem cells from different tissues to suppress T-cell activation.Cell Transplant 16:555-62,2007.
    [19]Krampera M,Sartoris S,Liotta F,Pasini A,Angeli R,Cosmi L,Andreini A,Mosna F,Bonetti B,Rebellato E,Testi MG,Frosali F,Pizzolo G,Tridente G,Maggi E,Romagnani S and Annunziato F:Immune regulation by mesenchymal stem cells derived from adult spleen and thymus.Stem Cells Dev 16:797-810,2007.
    [20]Niemeyer P,Kornacker M,Mehlhorn A,Seckinger A,Vohrer J,Schmal H,Kasten P,Eckstein V,Sudkamp NP and Krause U:Comparison of immunological properties of bone marrow stromal cells and adipose tissue-derived stem cells before and after osteogenic differentiation in vitro.Tissue Eng 13:111-21,2007.
    [21]Schwartz RH:T cell anergy.Annu Rev Immunol 21:305-34,2003.
    [22]Zappia E,Casazza S,Pedemonte E,Benvenuto F,Bonanni I,Gerdoni E,Giunti D,Ceravolo A,Cazzanti F,Frassoni F,Mancardi G and Uccelli A:Mesenchymal stem cells ameliorate experimental autoimmune encephalomyelitis inducing T-cell anergy.Blood 106:1755-61,2005.
    [23]Glennie S,Soeiro I,Dyson PJ,Lam EW and Dazzi F:Bone marrow mesenchymal stem cells induce division arrest anergy of activated T cells.Blood 105:2821-7,2005.
    [24]Kim JA,Hong S,Lee B,Hong JW,Kwak JY,Cho S and Kim CC:The inhibition of T-cells proliferation by mouse mesenchymal stem cells through the induction of p16INK4A-cyclin D1/cdk4 and p21wafl,p27kipl-cyclin E/cdk2 pathways.Cell Immunol 245:16-23,2007.
    [25]Bernardo ME,Avanzini MA,Perotti C,Cometa AM,Moretta A,Lenta E,Del Fante C,Novara F,de Silvestri A,Amendola G,Zuffardi O,Maccario R and Locatelli F:Optimization of in vitro expansion of human multipotent mesenchymal stromal cells for cell-therapy approaches:further insights in the search for a fetal calf serum substitute.J Cell Physiol 211:121-30,2007.
    [26]Beyth S,Borovsky Z,Mevorach D,Liebergall M,Gazit Z,Asian H,Galun E and Rachmilewitz J:Human mesenchymal stem cells alter antigen-presenting cell maturation and induce T-cell unresponsiveness.Blood 105:2214-9,2005.
    [27]Prevosto C,Zancolli M,Canevali P,Zocchi MR and Poggi A:Generation of CD4+ or CD8+ regulatory T cells upon mesenchymal stem cell-lymphocyte interaction.Haematologica 92:881-8,2007.
    [28]Munn DH,Shafizadeh E,Attwood JT,Bondarev I,Pashine A and Mellor AL:Inhibition of T cell proliferation by macrophage tryptophan catabolism.J Exp Med 189:1363-72,1999.
    [29]Meisel R,Zibert A,Laryea M,Gobel U,Daubener W and Dilloo D:Human bone marrow stromal cells inhibit allogeneic T-cell responses by indoleamine 2,3-dioxygenase-mediated tryptophan degradation.Blood 103:4619-21,2004.
    [30]Krampera M,Cosmi L,Angeli R,Pasini A,Liotta F,Andreini A,Santarlasci V,Mazzinghi B,Pizzolo G,Vinante F,Romagnani P,Maggi E,Romagnani S and Annunziato F:Role for interferon-gamma in the immunomodulatory activity of human bone marrow mesenchymal stem cells.Stem Cells 24:386-98,2006.
    [31]Arikawa T,Omura K and Morita I:Regulation of bone morphogenetic protein-2 expression by endogenous prostaglandin E2 in human mesenchymal stem cells.J Cell Physiol 200:400-6,2004.
    [32]Rasmusson I,Ringden O,Sundberg B and Le Blanc K:Mesenchymal stem cells inhibit lymphocyte proliferation by mitogens and alloantigens by different mechanisms.Exp Cell Res 305:33-41,2005.
    [33]Sato K,Ozaki K,Oh I,Meguro A,Hatanaka K,Nagai T,Muroi K and Ozawa K:Nitric oxide plays a critical role in suppression of T-cell proliferation by mesenchymal stem cells.Blood 109:228-34,2007.
    [34]Nasef A,Mathieu N,Chapel A,Frick J,Francois S,Mazurier C,Boutarfa A,Bouchet S,Gorin NC,Thierry D and Fouillard L:Immunosuppressive effects of mesenchymal stem cells:involvement of HLA-G.Transplantation 84:231-7,2007.
    [35]Selmani Z,Naji A,Zidi I,Favier B,Gaiffe E,Obert L,Borg C,Saas P,Tiberghien P,Rouas-Freiss N,Carosella ED and Deschaseaux F:HLA-G5 secretion by Human Mesenchymal Stem Cells Is Required to Suppress T-lymphocyte and NK Function and to Induce CD4+CD25highFOXP3+ Regulatory T Cells.Stem Cells:2007.
    [36]Le Blanc K,Rasmusson I,Gotherstrom C,Seidel C,Sundberg B,Sundin M,Rosendahl K,Tammik C and Ringden 0:Mesenchymal stem cells inhibit the expression of CD25(interleukin-2 receptor) and CD38 on phytohaemagglutinin-activated lymphocytes.Scand J Immunol 60:307-15,2004.
    [37]Augello A,Tasso R,Negrini SM,Amateis A,Indiveri F,Cancedda R and Pennesi G:Bone marrow mesenchymal progenitor cells inhibit lymphocyte proliferation by activation of the programmed death 1 pathway.Eur J Immunol 35:1482-90,2005.
    [38]Deng W,Han Q,Liao L,You S,Deng H and Zhao RC:Effects of allogeneic bone marrow-derived mesenchymal stem cells on T and B lymphocytes from BXSB mice.DNA Cell Biol 24:458-63,2005.
    [39]Corcione A,Benvenuto F,Ferretti E,Giunti D,Cappiello V,Cazzanti F,Risso M,Gualandi F,Mancardi GL,Pistoia V and Uccelli A:Human mesenchymal stem cells modulate B-cell functions.Blood 107:367-72,2006.
    [40]Banchereau J,Briere F,Caux C,Davoust J,Lebecque S,Liu YJ,Pulendran B and Palucka K:Immunobiology of dendritic cells.Annu Rev Immunol 18:767-811,2000.
    [41]Zhang W,Ge W,Li C,You S,Liao L,Han Q,Deng W and Zhao RC:Effects of mesenchymal stem cells on differentiation,maturation,and function of human monocyte-derived dendritic cells.Stem Cells Dev 13:263-71,2004.
    [42]Jiang XX,Zhang Y,Liu B,Zhang SX,Wu Y,Yu XD and Mao N:Human mesenchymal stem cells inhibit differentiation and function of monocyte-derived dendritic cells.Blood 105:4120-6,2005.
    [43]Nauta AJ,Kruisselbrink AB,Lurvink E,Willemze R and Fibbe WE:Mesenchymal stem cells inhibit generation and function of both CD34+-derived and monocyte-derived dendritic cells.J Immunol 177:2080-7,2006.
    [44]Chen L,Zhang W,Yue H,Han Q,Chen B,Shi M,Li J,Li B,You S,Shi Y and Zhao RC:Effects of Human Mesenchymal Stem Cells on the Differentiation of Dendritic Cells from CD34(+) Cells.Stem Cells Dev 16:719-732,2007.
    [45]Jung YJ,Ju SY,Yoo ES,Cho SJ,Cho KA,Woo SY,Seoh JY,Park JW,Han HS and Ryu KH:MSC-DC interactions:MSC inhibit maturation and migration of BM-derived DC.Cytotherapy 9:451-8,2007.
    [46]English K,Barry FP and Mahon BP:Murine mesenchymal stem cells suppress dendritic cell migration,maturation and antigen presentation.Immunol Lett:2007.
    [47]Djouad F,Charbonnier LM,Bouffi C,Louis-Plence P,Bony C,Apparailly F,Cantos C,Jorgensen C and Noel D:Mesenchymal stem cells inhibit the differentiation of dendritic cells through an interleukin-6-dependent mechanism.Stem Cells 25:2025-32,2007.
    [48]Biron CA:Activation and function of natural killer cell responses during viral infections.Curr Opin Immunol 9:24-34,1997.
    [49]Yoon SR,Chung JW and Choi I:Development of natural killer cells from hematopoietic stem cells.Mol Cells 24:1-8,2007.
    [50]Sotiropoulou PA,Perez SA,Gritzapis AD,Baxevanis CN and Papamichail M:Interactions between human mesenchymal stem cells and natural killer cells. Stem Cells 24:74-85,2006.
    [51]Bartholomew A,Sturgeon C,Siatskas M,Ferrer K,Mclntosh K,Patil S,Hardy W,Devine S,Ucker D,Deans R,Moseley A and Hoffman R:Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo.Exp Hematol 30:42-8,2002.
    [52]van Laar JM and Tyndall A:Adult stem cells in the treatment of autoimmune diseases.Rheumatology(Oxford) 45:1187-93,2006.
    [53]Gerdoni E,Gallo B,Casazza S,Musio S,Bonanni I,Pedemonte E,Mantegazza R,Frassoni F,Mancardi G,Pedotti R and Uccelli A:Mesenchymal stem cells effectively modulate pathogenic immune response in experimental autoimmune encephalomyelitis.Ann Neurol 61:219-27,2007.
    [54]Augello A,Tasso R,Negrini SM,Cancedda R and Pennesi G:Cell therapy using allogeneic bone marrow mesenchymal stem cells prevents tissue damage in collagen-induced arthritis.Arthritis Rheum 56:1175-86,2007.
    [55]Djouad F,Fritz V,Apparailly F,Louis-Plence P,Bony C,Sany J,Jorgensen C and Noel D:Reversal of the immunosuppressive properties of mesenchymal stem cells by tumor necrosis factor alpha in collagen-induced arthritis.Arthritis Rheum 52:1595-603,2005.
    [56]Urban VS,Kiss J,Kovacs J,Gocza E,Vas V,Monostori E and Uher F:Mesenchymal Stem Cells Cooperate with Bone Marrow Cells in Therapy of Diabetes.Stem Cells:2007.
    [57]Koc ON,Gerson SL,Cooper BW,Dyhouse SM,Haynesworth SE,Caplan AI and Lazarus HM:Rapid hematopoietic recovery after coinfusion of autologous-blood stem cells and culture-expanded marrow mesenchymal stem cells in advanced breast cancer patients receiving high-dose chemotherapy.J Clin Oncol 18:307-16,2000.
    [58]Lazarus HM,Haynesworth SE,Gerson SL,Rosenthal NS and Caplan AI:Ex vivo expansion and subsequent infusion of human bone marrow-derived stromal progenitor cells(mesenchymal progenitor cells):implications for therapeutic use.Bone Marrow Transplant 16:557-64,1995.
    [59]Le Blanc K,Rasmusson I,Sundberg B,Gotherstrom C,Hassan M,Uzunel M and Ringden O:Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells.Lancet 363:1439-41,2004.
    [60]Ringden O,Uzunel M,Rasmusson I,Remberger M,Sundberg B,Lonnies H,Marschall HU,Dlugosz A,Szakos A,Hassan Z,Omazic B,Aschan J,Barkholt L and Le Blanc K:Mesenchymal stem cells for treatment of therapy-resistant graft-versus-host disease.Transplantation 81:1390-7,2006.
    [61]Lazarus HM,Koc ON,Devine SM,Curtin P,Maziarz RT,Holland HK,Shpall EJ,McCarthy P,Atkinson K,Cooper BW,Gerson SL,Laughlin MJ,Loberiza FR,Jr.,Moseley AB and Bacigalupo A:Cotransplantation of HLA-identical sibling culture-expanded mesenchymal stem cells and hematopoietic stem cells in hematologic malignancy patients.Biol Blood Marrow Transplant 11:389-98,2005.
    [62]Maitra B,Szekely E,Gjini K,Laughlin MJ,Dennis J,Haynesworth SE and Koc ON:Human mesenchymal stem cells support unrelated donor hematopoietic stem cells and suppress T-cell activation.Bone Marrow Transplant 33:597-604,2004.
    [63]Saito T,Kuang JQ,Bittira B,Al-Khaldi A and Chiu RC:Xenotransplant cardiac chimera:immune tolerance of adult stem cells.Ann Thorac Surg 74:19-24;discussion 24,2002.
    [64]Wang JA,Li CL,Fan YQ,He H and Sun Y:Allograftic bone marrow-derived mesenchymal stem cells transplanted into heart infarcted model of rabbit to renovate infarcted heart.J Zhejiang Univ Sci 5:1279-85,2004.
    [65]Grinnemo KH,Mansson A,Dellgren G,Klingberg D,Wardell E,Drvota V, Tammik C,Holgersson J,Ringden O,Sylven C and Le Blanc K:
    Xenoreactivity and engraftment of human mesenchymal stem cells transplanted into infarcted rat myocardium.J Thorac Cardiovasc Surg 127:1293-300,2004.
    [66]Poncelet AJ,Vercruysse J,Saliez A and Gianello P:Although pig allogeneic mesenchymal stem cells are not immunogenic in vitro,intracardiac injection elicits an immune response in vivo.Transplantation 83:783-90,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700