用户名: 密码: 验证码:
恒压超滤水处理过程的影响因素及膜污染特性的评价研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,膜分离技术在水处理领域得到了快速的发展。在出水水质得以确保的基础上,保持稳定持久的透水性能已成为膜分离技术研究的中心课题。其中,核心问题是运行过程中膜污染的控制。有效地控制膜污染的形成,能降低膜分离技术的运行成本,实现膜分离技术的广泛普及应用。本文考察了恒压条件下处理有机污染水时跨膜压差、在线清洗频率、反洗压力、快洗压力、回收率、混凝预处理及运行模式(恒压模式和恒流模式)对超滤过程的影响,并采用膜结构参数模型对不同条件下的超滤过程进行了分析和评价。得出以下主要结论:
     (1)通过研究操作条件对恒压超滤过程的影响,发现在一定的试验压力范围内,减小跨膜压差,增加在线清洗频率,增大反洗压力,减小回收率均可起到减缓膜通量下降、抑制膜污染的作用。而快洗压力的改变对缓解膜污染作用不明显。
     (2)通过研究混凝预处理对恒压超滤过程的影响,发现混凝预处理能够一定程度地减缓膜通量下降、抑制膜污染。原水经切割分子量为100kDa的超滤膜过滤后,主要去除了分子量大于100kDa的物质,而对分子量小于100kDa物质的去除率较小。在超滤过程中,产生的膜污染是以分子量大于100kDa大分子物质为主的表面污染。同时,研究发现混凝预处理能够去除一部分分子量大于100kDa的物质,对缓解膜污染具有一定的作用。混凝、超滤工艺增加了对水中污染物的去除率,混凝预处理对进一步改善水质具有显著作用。
     (3)通过对恒压模式和恒流模式超滤过滤过程的比较,发现在相同过滤时间、相同产水量条件下,恒压模式下的膜污染程度比恒流模式大,且随着跨膜压差的增大,恒压模式的膜阻力增加的更快,即恒压模式比恒流模式更容易被污染。膜过滤过程中,采用恒流模式过滤可一定程度减轻膜污染,能够提高膜的产水能力。
     (4)利用膜结构参数模型对不同条件下的超滤过程进行了分析和评价。模型的表达式为(其中α_1为膜孔径影响因子,m~(-1);α_2为膜孔密度影响因子,m~(-1)):
     结果发现:
     ①用模型评价跨膜压差、在线清洗频率、反洗压力对膜过滤影响时,膜孔径影响因子α_1和膜孔密度影响因子α_2随着跨膜压差的减小、清洗频率的加大、反洗压力的增加均逐渐减小,说明跨膜压差越小、清洗频率越大、反洗压力越大则膜孔窄化和膜面覆盖堵塞作用越弱,膜污染越轻。
     ②用模型评价快洗压力对膜过滤的影响时,膜孔径影响因子α_1和膜孔密度影响因子α_2基本没有变化,说明快洗压力的改变对缓解膜污染的作用不明显。
     ③用模型评价回收率和混凝预处理对膜过滤的影响时,膜孔密度影响因子α_2随回收率减小、混凝剂投加量加大而减小,而膜孔径影响因子α_1则增大,说明回收率越小、混凝剂投加量越大则膜面覆盖堵塞作用越弱而膜孔窄化作用越强,总体过滤过程的污染是由膜表面污染所控制,此时膜污染相对较轻。
     ④用模型评价恒压与恒流模式的膜过滤过程时,恒压过滤模式的膜孔径影响因子α_1和膜孔密度影响因子α_2均要比相应恒流过滤模式的大,表明恒压模式膜孔窄化和膜面覆盖堵塞作用均比恒流模式明显,恒压模式的膜污染相对严重。且随着跨膜压差的增大,恒压模式的膜孔密度影响因子变的更大,即恒压模式的膜阻力增加的更快,恒压模式比恒流模式更容易被污染。
     膜结构参数模型得出的结论与前面的试验结果相一致,表明膜结构参数模型适合评价膜污染过程。
The membrane separation technology has obtained rapid development in water and wastewater treatment. Concerning the insurance of the water quality, controlling membrane fouling is the key to stable and lasting permeability performance, which has become the core of membrane separation technology research. Only if the membrane fouling has been controlled effectively, can operation cost of membrane separation technology be reduced, and can a wide application be achieved. In this paper the influences of trans-membrane pressure、on-line cleaning frequency、backwashing pressure、surface washing pressure、recovery rate and coagulation pretreatment as well as operation mode(constant pressure mode and constant flux mode)on ultrafiltration process were investigated and different ultrafiltration process was evaluated by the membrane structure parameter model in the condition of treating organic wastewater. The main results were shown as:
     (1) By investigating the influence of operating conditions in constant pressure ultrafiltration process,it can be found that reducing trans-membrane pressure、increasing on-line cleaning frequency、increasing backwashing pressure and reducing recovery rate can slow down the membrane flux decline effectively and inhibit membrane pollution in a certain operation pressure range. However, the change of surface washing pressure played little role in alleviating membrane fouling.
     (2) Coagulation pretreatment could slow down the decrease of membrane flux and inhibit membrane pollution during constant pressure ultrafiltration process.After filtered by ultrafiltration membrane(MWCO100kDa), organics whose molecular weights were more than 100kDa were mainly removed, but removal rate of organics whose molecular weights were less than 100kDa was low. Membrane fouling was mainly surface fouling of organics whose molecular weights were more than 100kDa in ultrafiltration process.While coagulation pretreatment could remove part of organics whose molecular weights were more than 100kDa,so it could slow down the extent of membrane fouling.Coagulation pretreatment combined with ultrafiltration technology could not only increase the rejection of pollutants in wastewater, but also improve the water quality.
     (3) By comparison of constant pressure ultrafiltration mode with constant flux ultrafiltration mode with the same filtering time and same water production, the degree of membrane fouling was larger for constant pressure ultrafiltration process, and the larger trans-membrane pressure, the faster the membrane fouling of constant pressure ultrafiltration process which explained constant pressure ultrafiltration process was easily polluted. In the membrane filtration process, constant flux code could reduce membrane fouling in a certain degree and enhance water production.
     (4) Different ultrafiltration process was evaluated by the membrane structure parameter model.The model equations are(α_1 is membrane pore size impact factor, m~(-1);α_2 is membrane pore density impact factor, m~(-1)):
     The results shows:
     ①By researching the influences of trans-membrane pressure、on-line cleaning frequency and backwashing pressure on ultrafiltration process evaluated by the membrane structure parameter model,membrane pore size impact factorα_1 and membrane pore density impact factorα_2 decreased gradually with minor trans-membrane pressure, large cleaning frequency and large backwashing pressure, which explained membrane pore narrowing and membrane surface covering and blocking weakened and the degree of membrane fouling was small.
     ②By researching the influence of surface washing pressure on ultrafiltration process evaluated by the membrane structure parameter model,membrane pore size impact factorα_1 and membrane pore density impact factorα_2 were almost invariant,which explained the change of surface washing pressure played no role in alleviating membrane fouling.
     ③By researching the influences of recovery rate and coagulation pretreatment on ultrafiltration process evaluated by the membrane structure parameter model, membrane pore density impact factorα_2 decreased but membrane pore size impact factorα_1 increased with small recovery rate and big dosing quantity of coagulant,which explained membrane surface covering and blocking weakened but membrane pore narrowing enhanced,membrane fouling was determined by surface fouling and the degree of membrane fouling was light.
     ④By researching the influences of constant pressure ultrafiltration mode and constant flux ultrafiltration mode on ultrafiltration process evaluated by the membrane structure parameter model,membrane pore size impact factorα_1 and membrane pore density impact factorα_2 of constant pressure mode were bigger,which explained membrane pore narrowing and membrane surface covering and blocking were more obvious and membrane fouling of constant pressure mode was serious.Membrane pore density impact factorα_2 of constant pressure mode was bigger with large trans-membrane pressure,which explained membrane fouling increased faster and constant pressure model was easily polluted.
     The conclusions of membrane structure parameter model were consistent to test conclusions, which indicated that the membrane structure parametric model was suitable for evaluating the process of membrane fouling.
引文
[1] Marcel Mulder著,李琳译.膜技术基本原理[M].北京:清华大学出版社,1999.
    [2] 高从堦.膜科学—可持续发展技术的基础.水处理技术.Vol(1):14-19,1998.
    [3] 刘茉娥等编著.膜分离技术[M].北京:化学工业出版社,1998.
    [4] 翁晓姚等.关于超滤膜的几个问题.工业水处理[J].1997,17(1):15-17.
    [5] C. Jarusutthirak et al. Membrane filtration of wastewater effluents for reuse:effluence organic matter rejection and fouling[J].Wat. Sci. Tech, 2001, 43(10):225-232.
    [6] A.Nabe, E. Staude, G. Belfort. Surface modification of polysulfone ultrafiltration membranes and fouling by BSA solutions [J]. Journal of Membrane Science, 1997,133:57-72.
    [7] D.B. Burns, A.L. Zydney. Buffer effects on the zeta potential of ultrafiltration membranes [J]. Journal of Membrane Science, 2000, 172:39-48.
    [8] 殷峻,陈英旭,膜生物反应器中的膜污染问题.环境污染治理技术与设备[J].2(3):61-68,2001.
    [9] GF. Crozes, J. Gjacangelo, C. Anselme and J.M. Laine.Impact of ultrafiltration operating conditions on membrane irreversible fouling[J]. J. Membr. Sci, 1997, 124:63-76.
    [10] 张自杰,林荣忱,金儒霖.排水工程[M].中国建筑工业出版社,1995.
    [11] 邱晓霞,于水利,时文歆.纳滤膜法水处理技术.2001年中日水处理技术国际交流会.
    [12] 薛怀德.超滤膜法简要介绍(二)[J].膜科学与技术,1992(1):64-68.
    [13] 刘茉娥.超滤膜污染机理的研究.水处理技术,1989,(3):163-168.
    [14] 祝生杰.超滤器的膜污染控制与处理.膜科学与技术[J].17(2):1-4,1997.
    [15] Lianfa Song. Flux decline in crossflow microfiltration and ultrafiltration:mechanisms and modeling of membrane fouling[J].J. Membr. Sci, 1998, 139:183-200.
    [16] C.C.Ho,A.L.Zydney.A combined pore blocking and cake filtration model for protein fouling during microfiltration[J]Journal of Colloid and Interface Science,2000,232:389-399.
    [17]W.Yuan,A.L.Zydney.Effects of solution environment on humic acid fouling during microfiltration[J].Desalination,1999,122:63-76.
    [18]L.Wang,K.Fukushi,A.fundamental study on the application of nanofiltrition to water treatment[J]Journal of Japan Water Works Association,2000,69:35-45.
    [19]J M Laine,J P Hagstrom,M M Clark,et al.Effects of ultrafiltration membrane compositionJour.AWWA.81(11):61-67,1989.
    [20]K J.Howe.Effect of coagulation pretreatment on membrane filtration performance[D].University of Illinois.
    [21]J M Laine,el al.Effect of Ultrafiltration Membrane Composition[J]J.AWWA,1989,81(11):61-67.
    [22]S R Yoo,D R Brown,R J Pardini.Microfiltration:a case study.Jour.AWWA.87(3):38-45,1995.
    [23]G.AmyJ.Cho.Interactions between natural organic matter and membranes:rejection and fouling[J].Wat.Sci.Tech.1999,40(9):131-139.
    [24]J.Cho,G.Amy,J.Pellegrino,Y.Yoon.CharacteriZation of clean and natural organic matter fouled NF and UF membranes and foulants characterization[J].Desalination,1998,118:101-108.
    [25]C.H.Kim,et al.Characteristics of fouling due to clay-organic substances in potable water treatment by ultrafiltration[J].Water Science and Technology,1996,34(9):157-164.
    [26]K.Khatib,et al.Physico-chemical study of fouling mechanisms of ultrafiltration membrane on Biwa Lake(Japan)[J].Journal of Membrane Science,1997,130:53-62.
    [27]Y.Chang,et al.Iron oxide adsorption and UF to remove NOM and control fouling[J]J.AWWA,1996,88(12):74.
    [28]M.Nystrom.Fouling prevention by modification of UF membrane[A].International on Membranes and Membrane processes.Chicago:1990,90-92.
    [29]J.L.Nilsson,K.M.Person.Fouling resistance model in UF and MF[A].International Congress on Membranes and Membrane processes. Chicago: 1990, 99-100.
    [30] 祝生杰.超滤器的膜污染控制与处理[J].膜科学与技术,1997,17(2):1-4.
    [31] 钟景等.经自来水污染后的无机陶瓷微滤膜再生方法研究[J].膜科学与技术,1996,16(3):46-51.
    [32] 陆晓峰等.超滤膜的吸附污染研究[J].膜科学与技术,1997,17(1):37-41.
    [33] 刘忠州,续曙光,李锁定.微滤、超滤过程中的膜污染与清洗[J].水处理技术,1997,23(4):187-193.
    [34] 许振良等.亲水性聚醚酰亚胺中空纤维超滤膜的研制[A].第三界全国膜和膜过程学术报告会论文集[D].北京:国家教育部,清华大学,1999.
    [35] G.W. Chen, et al. A novel polymer tubular composite membrane[J]. International Conference on Membrane Science and Techonogy, Beijing: 1998.
    [36] I.F. Wang, R. Morris, J. F. Ditter. Highly asymmetric PVDF membrane[J].International Conference on Membrane Science and Techonogy, Beijing: 1998.
    [37] 三泽忠则.膜分离技术的应用(改订增补).北京:化学工业出版社,1983.
    [38] 华耀祖编著.超滤技术与应用[M].北京:化学工业出版社,2003.
    [39] 邢丹敏,武冠英,胡家俊.改性聚氯乙烯超滤膜的研究(1)—等离子体改性膜结构和性能的研究[J].膜科学与技术,1996,16(1):49-55.
    [40] J M Laine, M M Clark, J.Mallevialle. Ultrafiltration of Lake Water: Effect of Pretreatment on the partitioning of Organnics, THMFP, and Flux[J]. J.AWWA,1990, 82(12):82-87.
    [41] A.G. Fane. Ultrafiltration of suspensions[J].Journal of Membrane Science, 1984,20:249-259.
    [42] D. X. Wu, J. A. Howell, R. W. Field. Critical flux measurement for model colloids[J].Journal of Membrane Seienee, 1999, 152:89-98.
    [43] C. Gouvemeur, P. Schlmitz.Hydrodynamics in crossflow microfiltration inside A hollow fiber[A].International Congress on Membranes and Membrane Processes.Chicago: 1990, 1223-1225.
    [44] EDZWALD J K.Coagulation in Drinking Water Treatment:Particles,Organics and Coagulants [A] Control of Oganic Material by Coagulation and Floc-Separation Process,Water Science & Technology[C].Okford:Pergamon Press, 1993,21-35.
    [45] Mores WD, Bowman C N, Davis D H.Theoretical and experimental flux maximization by optimization of backpulsing[J].J Membr Sci, 2000, 165:225-236.
    [46] L. Wang, X.D. Wang. Study of membrane morphology by microscopic image analysis and membrane structure parameter model[J].Journal of Membrane Science, 283(2006): 109-115.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700