用户名: 密码: 验证码:
超声场强化光催化氧化—无机膜微滤过程的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文在超声场强化光催化氧化-无机膜分离集成反应器中,将超声场强化技术与无机膜分离技术、光催化氧化技术相集成,研究超声强化作用下,低浓度苯酚溶液、聚丙烯酰胺溶液的光催化氧化降解作用和TiO2颗粒悬浆体系、聚丙烯酰胺溶液体系的无机膜分离过程。
     采用超声场强化光催化氧化降解低浓度苯酚溶液体系,研究了光催化氧化反应过程,优化了反应操作条件为:苯酚初始浓度14 mg·L-1,TiO2用量2000 mg·L-1,溶液pH值为9,超声功率150 w,超声频率45 kHz,超声场协同作用能极大地提高光催化反应速率和苯酚降解率。研究了超声场强化光催化氧化降解低浓度苯酚溶液的动力学模型,计算结果很好地验证了超声对光催化氧化的协同作用。
     通过超声场强化光催化氧化降解低浓度聚丙烯酰胺溶液的过程参数研究,得到了优化反应参数:超声功率150 w,超声频率45 kHz,超声场强化光催化反应的协同效果明显优于单一光催化氧化降解过程。对超声协同光催化氧化降解的机理及动力学模型初步研究结果表明,超声场协同光催化氧化降解高分子量聚丙烯酰胺反应呈一级反应动力学特征。
     采用超声场协同强化无机膜分离TiO2颗粒悬浆体系和聚丙烯酰胺溶液体系,研究了分离过程参数。TiO2悬浆液优化操作条件为:操作压力0.1-0.15 MPa,温度298 K-303 K,溶液浓度1000-1500 mg·L-1,溶液pH值2.0-4.0,膜面错流速度0.8 m·s-1,超声功率150 w,超声频率45 kHz,超声场强化作用使膜通量提高了12 %-15 %。低浓度聚丙烯酰胺溶液的优化分离条件为:操作压力0.10 MPa,温度303 K,溶液浓度1000 mg·L-1,溶液pH值11,膜面错流速度1.0 m·s-1,超声功率100 w超声场的强化作用使膜通量提高了5 %-7 %。同时,研究了超声场强化无机膜分离TiO2悬浆液和聚丙烯酰胺溶液的数学模型。
In the reactor of ultrasonic-enhanced photocatalysis with inorganic membrane separation, we coupled ultrasound field, photocatalysis and membrane separation for photocatalytic oxidative degradation of low concentration phenol solution and polyacrylamide solution, using inorganic membrane to separate TiO2 particles from slurry system.
     Photocatalysis degradation of phenol was investigated. The pH value, reaction temperature, the initial concentration of the phenol Solution ultrasound power, ultrasound frequency on the integrated process was investigated. We fixed pH value of 9.0, temperature of 308 K, phenol concentration of 14 mg.L-1,ultrasonic power of 150 w and frequency of 45 kHz. Ultrasound can greatly improve the photocatalytic reaction rate and phenol degradation rate. We Studied dynamic model of ultrasound enhanced photocatalytic oxidative degradation of low concentration phenol solution, the results showed that ultrasound can enhance photocatalytic oxidation.
     Photocatalysis degradation of PAM solution was investigated. The effect of ultrasound power, ultrasound frequency was investigated. We fixed ultrasonic power of 150 w and frequency of 45 kHz. Ultrasound enhanced photocatalytic degradation, showing superior performance compared to only photocatalytic oxidation degradation process or only ultrasonic degradation process. We investigated the mechanism and kinetic model of ultrasonic-enhanced photocatalytic oxidation degradation, the result show that the ultrasonic enhance photocatalytic oxidation degradation polyacrylamide solution was first order reaction kinetics.
     In the reactor of ultrasonic-enhanced inorganic membrane separation, the ultrasound power, ultrasound frequency was investigated. We fixed the operation pressure of 0.1-0.15 MPa,cross-flow velocity of 0.8 m·s-1, solution concentration 1000-1500 mg·L-1, solution temperature of 298-303 K, pH value of 2.0-4.0, ultrasonic power of 100 w and frequency of 45 kHz for TiO2 particles slurry system. The increment of the permeation flux was 12 %-15 % under optimized conditions. We fixed the operating pressure 0.1 MPa, cross-flow velocity1.0 m·s-1, solution concentration 1000 mg·L-1, solution temperature303 K, pH value of 11.0,,ultrasonic power of 100 w and frequency of 45 kHz for PAM solution system. The increment of the permeation flux was 12 %-15 % under optimized conditions. Model to describe the ultrasound-enhanced inorganic membrane separation of polyacylamide (PAM) suspension was proposed based upon the experimental results and analysis of forces acted upon particles.
引文
[1]徐甦,周明华,张兴旺等.金属有机物化学气相沉积法制备负载型纳米TiO2光催化剂及性能评价[J].高校化学工程学报,2009,19(1):119-123.
    [2]吴楚龙,柳松,秦好丽.外加“场”辅助TiO2光催化降解有机物研究进展[J].化工进展,2006,25(5):512-516.
    [3]白波,赵景联,冯霄等. TiO2光催化反应过程的“场流”理论分析[J].太阳能学报,2002,23(5):641-647.
    [4] Sylwia M., Antoni W. M., Masahiro T., et al.. InagakiApplication of anatase-phase TiO2 for decomposition of azo dye in a photocatalytic membrane reactor[J]. Desalination, 2009, 241:97-105.
    [5] Xiao X.,Zhang J.H.,Nan J.M..Prepapation and photocatalytic properties of Fe (III) -doped TiO2 magnetically separable photocatalyst[J] J. Ceram. Soc. Jpn., 2008, 36(11):1548-1552.
    [6]王垚,吴珺,魏飞等.破碎-絮凝法分离细长碳纳米管与碳纤维[J].物理化学学报,2003,19(4):376-379.
    [7]任凌波.实用精细化工过程与装备[M].化学工业出版社,2007年03月,第七章.
    [8] Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 37(1): 238-245.
    [9]孙德智.环境工程中的高级氧化技术[M].北京:化学工业出版社,2002.
    [10]刘岩,蔡伟民.超声空化效应和声化学研究进展[J].大自然探索,1994,(1):81-88.
    [11]冯若.声化学及其应用[M].安徽科学技术出版社,1991.
    [12]赵彬斌.超声技术对水中有机污染物的降解[J].化学工程师,2002,23 (6):63-65.
    [13] Edward B. The temperature of caviation[J]. Science, 1991, 253:1397-1399.
    [14] Flymn H. G.. Cavitation in physical acoustics[M]. New York:Academic Press,1964.
    [15] Zhiqiao H., Lili L., Shuang S..Mineralization of C.I. Reactive Blue 19 by ozonation combined with sonolysis:Performance optimization and degradation mechanism[J]. Sep. Purif. Technol. , 2008, 62:376–381.
    [16]刘开强,芮延年,郭旭红.高压脉冲超声裂解处理印染废水机理的研究[J].苏州大学学报(工科版),2004,24(5):120-122.
    [17]赵德明,占昌朝,金鑫丽. Fenton试剂强化超声波处理水中对硝基苯酚的研究[J].浙江工业大学学报,2004,32(3):69-77.
    [18]韩华颖,刘毅慧,杨凤林等.联合使用磁场、双氧水和超声波降解苯酚[J].大连理工大学学报,2003,43(6):67-70.
    [19] Lin G. .Decomposition of 2-chlorophenol with ultrasound/H2O2 process[J]. Wat.Res, 1996, 33(6):75.
    [20]汤红妍,罗亚田,徐昌伟.超声波、电场和光催化协同降解有机污染物的研究现状[J].四川环境,2005,24(1):65-68.
    [21] Masonand T J,Lorimer J. Sonochemistry: Theory, Application and uses of ultrasound in chemistry[M]. NewYork: Ellis Norwood, 1998.
    [22]周彤,吴纯德,王晓蕾等.超声协同纳米TiO2光催化降解水中苯酚机理的研究[J].分析科学学报,2005,21(3):27-29.
    [23] Irfan Z.S. Aniruddha B. P.. Sonophotochemical destructionof aqueous solution of 2,4,6-trichlorophenol[J]. Ultrason. Sonochem.,1998, 5:53-61.
    [24] Sadao M., Jun T..Photocatalytic oxidation of dibenzothiophenes in acetonitrile using TiO2:effect of hydrogen peroxide and ultrasound irradiation[J] . J. Photochem. Photobiol., A: Chemistry, 2002, 149: 183–189.
    [25]赵德明,史惠祥,雷东成. US/UV协同催化氧化降解对氯苯酚的研究[J].环境科学学报,2003,23(5):587-592.
    [26] Yoshifumi K., Mahito A., Tsutomu N..Ultrasonic effects on electroorganic process– Part20. Photocatalytic oxidation of aliphatic alcohols in aqueous suspension of TiO2 powder[J]. Ultrason. Sonochem,2001, 8:69-74.
    [27] Elena S., Claudia L. B., Carlo P., et al.. Degradation of methyl tert-butyl ether in water: effects ofthe combined use of sonolysis and photocatalysis[J]. Ultrason. Sonochem, 2005, 12 :395–400.
    [28]白波,陈庆云,赵景联. TiO2超声光催化降解荧光增白剂CBW[J].太阳能学报,2003,24(1):68-73.
    [29]顾浩飞,安太成,文晟等.超声光催化降解苯胺及其衍生物研究[J].环境科学学报,2003,23(5):593-597.
    [30]艾智慧.微波-超声辅助催化降解氯酚的研究[C].华中科技大学博士学位论文,107-108.
    [31]邢卫红,童金忠,徐南平等.微滤和超滤过程中浓差极化和膜污染控制方法研究[J].化工进展,2000,(1):44-56.
    [32]冯若,李化茂.声化学及其应用[M].安徽:安徽科学技术出版社.1991:91-93.
    [33] Xua X.C., Li J.X., Li H.S. et al..Non-invasive monitoring of fouling in hollow fiber membrane via UTDR[J]. J. Membr. Sci ..2009, 326 :103–110.
    [34]晋卫,李亚,郭伟等.聚偏氟乙烯中空纤维超滤膜的超声辅助清洗及反冲清洗.水处理技术[J],2008,34(10):82-85.
    [35]芮延年,郭旭红,刘文杰等.超声振动强化膜分离过程机理的研究[J].环境污染治理技术与设备,2002,3(6):43-46.
    [36] Takaomi K., Tsuyoshi K., Yoho H.,et al..Ultrasound- enhanced membrane- cleaning processes applied water treatments influence of sonic frequencyon filtration treatments[J]. Ultrasonics,2003, 41:185-190.
    [37] Chai X.J..,Takaomi K.,Nobuyuki F..Ultrasound as-sociated cleaning of polymeric membranes for watertreatment[J], Sep. Pufif. Technol. ,1999, 15:139-146.
    [38] Masselin L.,Chasseray X.,Durand B. et al. Effect of sonication on polymeric membranes[J] .J. Membr. Sci .,2001, 181(2):213-220.
    [39]张国俊,刘忠洲.超滤膜的超声波助清洗研究[J].环境科学,2003,24(6):129~134.
    [40] Shu L., XING W.H., XU N.P. .Effect of Ultrasound on the Treatment of Emulsification Wastewaterby Ceramic Membranes[J].Chin. J. Chem. Eng., 2007, 15(6): 855- 860.
    [1]周民杰.集成反应器中陶瓷膜微滤过程的研究[C].合肥大业大学硕士论文,2004.
    [2] GB 7490-87水质挥发酚的测定蒸馏后4-氨基安替比林分光光度法[P]. 1987-08-01.
    [3]樊栓狮.王金渠无机膜处理含油废水[J].大连理工大学学报,2000,4(01):61-63.
    [4]陈欢林主编.新型分离技术[M].化学工业出版社.北京. 2005年7月第一版:68.
    [5] GB 12005.1-89聚丙烯酰胺特性粘数的测定方法[P]. 1987-08-01.
    [6]卢红霞,刘福胜,于世涛等.阳离子聚丙烯酰胺制备条件研究[J].化学工程,2008,36(03):72-75.
    [7]关淑霞,范洪富,段吉国等.聚丙烯酰胺质量浓度的测定——淀粉-碘化镉法[J].大庆石油学院报. 2007,2(3l):110-112.
    [1]赵红雁,张敬畅,曹维良.纳米TiO2光催化降解苯酚[J].石油化工,2003,32(3):247-250.
    [2]王仪春,陈建林,程盈盈等.声光催化的研究进展[J].工业水处理,2006,26(5):9-13.
    [3] Elefteria P., Grammatiki G., Nicolas K., et al.. Degradation of polycyclic aromatic hydrocarbons in aqueous solutions by ultrasonic irradiation[J]. J. Hazard. Mater. , 2004, B108: 95-102.
    [4]王君,郭宝东,张朝红等.纳米锐钛型TiO2催化超声降解SDBS溶液[J].水处理技术,2005,31(5):21-24.
    [5]张晖,刘芳,张建华等.超声强化高级氧化技术降解水中有机污染物的研究进展[J].化工环保,2007,27 (6):491-495.
    [6]赵德明. US/UV系统催化氧化降解酚类有机物的研究[C].浙江大学博士学位论文,2003:90-95.
    [7]李春喜,李玉同,王子镐.超声波-光催化联合降解苯酚废水研究[J].环境污染治理技术与设备,2002,3(8):48-51.
    [8 ]韩世同,习海玲,史瑞雪等.半导体光催化研究进展与展望[J].化学物理学报,2003,16 (5):339-349.
    [1]崔宝臣,崔福义. UV-H2O2协同降解水中聚丙烯酰胺研究[J].工业用水与废水. 2007,38(06):22-24.
    [2]魏新利,王敏.超声波-光催化氧化处理废水的研究进展[J].河南建材,2007,(2):30-33.
    [3] Abdolmajid M. , Takaomi K., Seid A. M.,et al.. Effect of low frequencies and mixed wave of ultrasound and EDTA on flux recovery and cleaning of microfiltration membranes[J]. Sep. Purif. Technol., 2008, 59:67–73.
    [4]朱麟勇,常志英.部分水解聚丙烯酰胺在水溶液中的氧化降解:Ⅰ.温度的影响[J].高分子材料科学与工程,2000,16(1):114-117.
    [5] Hoffmann M.R., Matin S.T. ,Choi W, et al..Environmental application of semi- conductor photocatalysis[J]. Chem Rev., 1995, 95(1):69-73.
    [1] Mikko O. L., Harold W. W., Linda K. W.. Mechanisms and factors influencing the ultrasonic cleaning of particle-fouled ceramic membranes[J]. J. Membr. Sci.. 2004, 237 :213–223.
    [2]芮延年,郭旭红,刘文杰等.超声振动强化膜分离过程机理的研究[J].环境污染治理技术与设备,2002,3(6):43-46.
    [3]陈红,李晓静,万明习等.高强度聚焦超声场中空化泡群的结构及其形成过程[J].声学学报. 2006,31(6):532-535.
    [4]焦红光,布占文,赵继芬等.筛分技术的研究现状及发展趋势[J].煤矿机械,2006,27(10):8-10.
    [5] Kuo-Jen H., Ya-Ju W.. Flux enhancement and cake formation in air-sparged cross-flow microfiltration[J]. Chem. Eng. J. , 2008, 139 :296–303.
    [6] Myung-man K., Andrew L. Z..Theoretical analysis of particle trajectories and sieving in a two-dimensional cross-flow filtration system [J]. J. Membr. Sci., 2006, 281:666–675.
    [7]许肖梅编著.超声基础[M].北京-科学出版社,2003:112.
    [8] Yosioka K, KawasimaY.. Acoustic Radiation Pressure on A Compressible Sphere[J]. Acoustica, 1955, 5: 167 -173.
    [9]杨慧,郭航.应用超声分离微纳米颗粒的微型装置的设计与微制造[J].功能材料与器件学报,2008,14(1):251-257.
    [10] Tam C.. The drag on a cloud of spherical particles in low Reynold number flow[J]. Fluid Mech., 1969. 38(3): 537-546.
    [11] Altmann J., Ripperger S.. Particle deposition and layer formation at the crossflow microfiltration[J]. J. Membr. Sci., 1997, 124: 119.
    [12]钟璟.陶瓷微滤膜过滤微米、亚微米级颗粒体系的基础研究和应用开发[C].南京工业大学博士论文,1998.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700