用户名: 密码: 验证码:
基于GaAs HEMT嵌入式悬臂梁—质量块结构的力敏特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于硅材料压阻效应的微机电系统器件研究已经有几十年的历史,并被广泛地应用。但是硅压阻效应的灵敏度远不能满足在地震波检测、导航制导、平台稳定方面等高精度、高灵敏传感场合的要求。本文设计了以GaAs材料的高电子迁移率晶体管HEMT作为敏感单元的十字梁压阻式悬臂梁-质量块结构,具有灵敏度高、阻值可调等优点。
     本文在压阻效应理论基础上,设计并生长了n +-AlGaAs/i-AlGaAs/i-InGaAs/i-GaAsHEMT结构;并对悬臂梁-质量块结构进行了力学参数分析及ANSYS仿真分析。本悬臂梁-质量块结构加工采用了表面加工与体加工相结合的工艺,如双凹槽工艺、空气桥工艺和控制孔工艺等。最后根据实验结果对原有结构进行了优化改进。
     在实验设计方面,本论文在分析力敏特性的基础上进行了HEMT参数特性实验、栅槽深度实验、压阻系数实验和温度实验。测试结果表明:GaAs HEMT不同偏压下压阻系数不同,且饱和区的变化比线性区明显,最大压阻系数比SI高出三个数量级;GaAs HEMT压阻系数随着温度升高而降低。这将对设计新型的高灵敏且阻值可调的微机电压阻性器件非常有利。本文研究创新点主要体现在:
     (1)实验测试方面,首次设计了Agilent 4156C半导体特性分析仪、Polytec微系统分析仪及ANSYS仿真软件组成的加压测试系统来估算压阻系数。(2)在原有版图的基础上做了一系列优化:去掉了空气桥工艺,改变了栅电极引出位置,并考虑了压阻系数与晶向的关系。
The study of MEMS devices based on the piezoresistive effect of silicon has several ten years history with widely applications. However, the sensitivity of piezoresistive effect of silicon can not meet the seismic wave detection, navigation guidance, platform stability and other high-precision, highly sensitive sensor’s demands. In this paper, a GaAs high electron mobility transistors (HEMT)–embedded beams-mass structure is designed, which is cross beam structure, with the advantages of high sensitivity, adjustable resistance.
     Based on the piezoresistive effect theory, n +-AlGaAs/i-AlGaAs/i-InGaAs/i-GaAs HEMT structure is designed and grown; and the mechanical parameters of beams-mass structure is analyzed and simulated by ANSYS. This structure is processed with the processing technology of body and surface combination technology, such as the double groove technology, the air bridge technology and hole controling technology. Finally, experimental results on the original structure has been optimized and improved.
     In the experiments, the HEMT parameters characteristic experiment, the depth of gate groove experiment, the piezoresistive coefficient experiment and the temperature experiment are studied based on the piezoresistive effect theory. The results show that: the piezoresistive coefficient of GaAs HEMT under different bias voltage is different. And the change of saturation region is larger obviously than the linear region. The maximum piezoresistance coefficient of GaAs HEMT is three orders of magnitude higher than that of silicon; the piezoresistive coefficient of GaAs HEMT decreases with increasing temperature . This will be very useful for the design of new high-sensitivity and adjustable resistance Micro-Electro-Mechanical Systems piezoresistive device. In this paper, innovation is mainly reflected in:
     (1) We design firstly a new stress loading system to obtain the piezoresistive coefficient, including an Agilent 4156C semiconductor characteristic analyzer, a Polytec microsystem analyzer and an ANSYS simulation software. (2) A series of optimization based on the original structure are made: to remove the air bridge technology, to change the location of gate electrode leads, and to consider the relationship of piezoresistive coefficient and crystal.
引文
[1]丁志新.基于MEMS加速度传感器人体模仿的设计与实现: [硕士论文].华中科技大学.2008.
    [2]关荣峰. MEMS器件设计、封装工艺及应用研究: [博士论文].华中科技大学.2005.
    [3]隋鸿鹏.不同衬底条件对MEMS压阻传感器性能影响的研究: [硕士论文].北京大学. 2008.
    [4]周明才. MEMS三维动态测试系统中数据技术的研究与实现: [硕士论文].华中科技大学. 2004.
    [5]杨晓光.一种新型MEMS惯导加速度计的设计与研究: [硕士论文].西安:西安电子科技大学. 2009.
    [6]徐小波. MEMS传感器弱信号检测电路及集成设计: [硕士论文].西安:西安电子科技大学. 2009.
    [7] Z.Z.Wang, J.suski. Silicon piezoresistivity modeling: application to the simulation of MOSFETs. Sensors and Actuators A . 1995,46: 628–637.
    [8] R. G. Beck, M. A. Eriksson, M. A. Topinka. GaAs/AlGaAs self-sensing cantilevers for low temperature scanning probe microscopy. Applied physics letters. 1998,73: 24.
    [9] Robert G. Knobel, Andrew N. Cleland. Nanometre-scale displacement sensing using a single electron transistor. NATURE. 2003, 17: 424.
    [10] Gajendra Shekhawat, Soo-Hyun Tark and Vinayak P. Dravid. MOSFET-Embedded microcantilevers for measuring deflection in biomolecular sensors. Science. 2006,311: 17.
    [11] Ranjith Amarasinghe, Dzung Viet Daob, Toshiyuki Toriyama and Susumu Sugiyama. Development of miniaturized 6-axis accelerometer utilizing piezoresistive sensing elements. Sensors and Actuators A. 2007, 134: 310–320.
    [12] T Lalinsk′y, E Burian and M Drˇz′?k. Thermal actuation of a GaAs cantilever beam. J. Micromech. Microeng. 2000, 10: 293-298.
    [13] Jiri Jakovenko Miroslav Husak Tibor Lalinsky. Design and simulation of micro- mechanical thermal converter for RF power sensor microsystem. Microelectronics Reliability.2004, 44 : 141–148.
    [14] T. Lalinsk′, M. Drˇz′?k , J. Jakovenko , G. Vankoa, Z. Mozolov′a , S. Haˇsˇc′?k , J. Chlp′?k , I. Hotov′y , V. Rˇeha′cˇek , I. Kostic , L. Matay e, M. Husa′k . GaAs based micromachined thermal converter for gas sensors. Sensors and Actuators A . 2008, 142: 147–152.
    [15] E. Hynes, M. O’Neill, D. McAuliffe, H. Berney, W.A. Lane, G. Kelly, M. Hill. Development and characterisation of a surface micromachined FET pressure sensor on a CMOS process.Sensors and Actuators. 1999, 76:283–292.
    [16] Alexandre Kerlain , Vincent Mosser. Dynamic low-frequency noise cancellation in quantum well Hall sensors (QWHS). Sensors and Actuators A . 2008, 142: 528–532.
    [17] Lee-Soon Fark, Young-Jun Hur, Byung-Ki Sohn. Effect of membrane structure on the performance of field-effect transistor potassium-sensitive sensor. Sensors and Actuators A . 1996, 57: 239-243.
    [18] M. Doelle , D. Mager, P. Ruther, O. Paul .Geometry optimization for planar piezo- resistive stress sensors based on the pseudo-Hall effect Sensors and Actuators A . 2000, 127: 261–269.
    [19] J.A. Plaza, M.A. Benitez, J. Esteve, E. Lora-Tamayo. New FET accelerometer based on surface micromachining. Sensors and Actuators A. 1997, 61: 342-345.
    [20] Jiri Jakovenko Miroslav Husak Tibor Lalinsky. Design and simulation of micro- mechanical thermal converter for RF power sensor microsystem. Microelectronics Reliability. 2004, 44 : 141–148.
    [21] X.H. Wang_, X.L. Wang, C. Feng, C.B. Yang, B.Z. Wang, J.X. Ran,H.L. Xiao, C.M. Wang, J.X. Wang. Hydrogen sensors based on AlGaN/AlN/GaN HEMT. Micro- electronics Journal. 2008, 39: 20–23.
    [22] T. Lalinsk′, M. Drˇz′?k , J. Jakovenko , G. Vankoa, Z. Mozolov′a , S. Haˇsˇc′?k , J. Chlp′?k , I. Hotov′y , V. Rˇeha′cˇek , I. Kostic , L. Matay e, M. Husa′k . GaAs based micromachined thermal converter for gas sensors. Sensors and Actuators A . 2008, 142 : 147–152.
    [23] Klas Hjort, Jan Soderkvist , Jan-Ake Schweitz. Gallium arsenide as a mechanicalmaterial. Institute of Technology. University of Uppsala. 1994.
    [24] Tibor Lalinsk′y, Milan Drˇz′?k, Jiˇr′? Jakovenko, Miroslav Hus′ak. GaAs Thermally Based MEMS Devices—Fabrication Techniques,Characterization and Modeling. MEMS Device Design and Fabrication.2006.
    [25] Wang Hong .The Developed Situation and Prospect for Semiconductor Power Device. Microprocessors. 2002,2.
    [26] Stephen A C. The science and engineering of microelectronic fabrication (second edition) [M],oxford university press,2001.
    [27] H. Yamaguchia, K. Kanisawaa, S. Miyashitab, Y. Hirayamaa,c. InAs/GaAs (1 1 1)A heteroepitaxial systems. Physica E. 2004, 23:285–292.
    [28] Y. Alifragis, A. Volosirakis, N.A. Chaniotakis, G. Konstantinidis, A. Adikimenakis, A. Georgakilas. Potassium selective chemically modified field effect transistors based on AlGaN/GaN two-dimensional electron gas heterostructures. Biosensors and Bioelectronics. 2007, 22:2796–2801.
    [29] B.S. Kang, G. Louche, R.S. Duran, Y. Gnanou, S.J. Pearton c, F. Ren . Gateless AlGaN/GaN HEMT response to block co-polymers. Solid-State Electronics . 2004, 48 : 851–854.
    [30] X.H. Wang_, X.L. Wang, C. Feng, C.B. Yang, B.Z. Wang, J.X. Ran, H.L. Xiao, C.M. Wang, J.X. Wang. Hydrogen sensors based on AlGaN/AlN/GaN HEMT. Microelectronics Journal . 2008, 39: 20–23.
    [31]虞丽生.半导体异质结物理.北京:科学出版社,1990.140.
    [32]李效白.砷化镓微波功率场效应晶体管及其集成电路.北京:科学出版社.1998.502-507.
    [33] Shusen Huang, Xinxin Li, Zhaohui Song, YuelinWang, Heng Yang, Lufeng Che and Jiwei Jiao. A high-performance micromachined piezoresistive accelerometer with axially stressed tiny beams. Journal of Micromechanics and microengineering. 2005, 15:993-1000
    [34]陈辉. GaAs MESFET和HEMT大信号模型的研究:[硕士论文].电子科技大学.2008.
    [35]徐敏.HEMT中二维电子气的电子密度的研究.江西师范大学学报(自然科学版).2002,26:266-269
    [36] K.B.Chough,W.P.Hong,C.Caneau,J.I.Song.Effect of high strain on noise characteristics in InAlAs/InGaAs pseudomorphic HEMT.Current Applied Physics.2006,6(5):821-826
    [37] W.Kruppa,J.B.Boos,B.R.Bennett.InAs HEMT narrowband amplifier with ultra-low power dissipation.Electronics letters.2006,42(12):688-690
    [38] J.M.Tirado,J.L.Sanchez De Rojas,J.I.Izpura.Numerical 2D simulation of surface states effects in AlGaN/GaN HEMT and GaN MESFET devices.2005. 5thIEEE conference on nanotechnology.2005:719-720.
    [39] R.Anderson.Electron micro-probe analysis and scanning electron microscopy. IBM J.Res.and Develop.1960,3:283-286
    [40] EsakiL,R.Tsu.Photoconductivity in disordered nickel-oxide films.Phys rev lett.1969,23(17):997-999
    [41] R.Dingle.Electron mobility in modulation-doped semiconductor heteojunction supperlattices.Appl Phys Lett.1978,31(6):665-669
    [42] T.Mimura,S.Hiyamizu,Enhancement-mode high electron mobility transistors for logic applications.Jap.J.Appl.Phys. 1980,19:22-26
    [43]姚官生. GaAs/AlGaAs HEMT材料的结构与电学性能研究: [硕士论文].哈尔滨工业大学.2007.
    [44] C.T.Foxon. Three decades of molecular beam epitaxy. Journal of crystal growth. 2003,251: 1-8.
    [45] HiyamizuSetal.Appl.Phys.Lett. 1980,37:805.
    [46]姜岩峰,谢梦贤.微纳电子器件.北京:化学工业出版社,2005.
    [47] LeeK,ShurM,DrummondTJetal.J.Appl.Phys.1983,54:6432.
    [48]王良臣半导体量子器件物理讲座第二讲高电子迁移率晶体管(HEMT).中国科学院半导体研究所.2000.
    [49]吴宇.微纳光纤环MOEMS加速度传感器理论与应用研究: [博士论文].浙江大学. 2008.
    [50]黎渊.三轴高g加速度计的测试理论与实验研究:[硕士论文].国防科学技术大学. 2008.
    [51]凌灵.基于非硅MEMS的新型微机械加速度计若干技术的研究: [硕士论文].上海交通大学. 2008.
    [52]毛海央,熊继军,张文栋,郭涛,徐栋.复合量程微加速度计中阻尼的分析与设计.传感技术学报. 2006,19(5): 2186-2189
    [53]科瓦奇·格雷戈里T A.微传感器与执行器全书[M].张文栋等译.北京:科学出版社. 1998.
    [54]周长城,胡仁喜,熊文波. ANSYS11.0基础与典型范例[M].北京:电子工艺出版社.2007.
    [55] Mori. Y, Watanabe. N. A New Etching Solution System H3PO4-H2O2-H2O for GaAs and Its Kinetics. J of Electrochemical Society. 1978,125.9: 1510-1514.
    [56] Hoyle. P. C, Cleaver. J. R, Ahmed. H. Fabrication of Free-standing Microtransducer in GaAs with an Electron-beam-induced Oxide Mask and Cl2 etching. Sensors and Actuators A. 1995,50: 31-37.
    [57] Hjort. K. Sacrificial Etching of III-V Compounds for Micromechanical Devices. Journal of Micromechanics and Microengineering. 1996,6: 370-375.
    [58] Collins. S. D. Etch Stop Techniques for Micromachining. Journal of Electrochemical Society. 1997,144. ,6: 2242-2262.
    [59]毛海洋,张文栋,熊继军等.共振隧穿二极管I-V特性的一致性测试与研究[J].仪器仪表学报,2006,27(6):1189-1191
    [60]熊继军,毛海洋,张文栋等.复合量程微加速度计的研究[J].传感技术学报.2006,19(5):2200-2203
    [61] Tai-RanHsu. MEMS&MICROSYSTEMS: Design and Manufacture[M]. Boston: McGraw-Hill, 2002.
    [62]张兴宏,夏冠群,徐元森.HEMT结构材料中二维电子气的输运性质研究.半导体学报.1999,20(4): 292-297

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700