用户名: 密码: 验证码:
基于咪唑类与吡啶类离子液体的化学修饰电极构置及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
离子液体是指完全由离子组成的、在室温及邻近室温下呈液态的盐。离子液体具有的独特物理和化学性质,使其既可以作为溶剂又可作为支持电解质,在电化学、分离科学等领域得到了广泛应用。本论文基于咪唑类与吡啶类离子液体,构置了八种新型化学修饰电极,研究了其电化学行为和肌红蛋白等四种蛋白质(酶)的直接电化学、电催化行为。该研究对拓宽离子液体的应用范围,丰富化学修饰电极和电化学传感器的研究内容具有一定的科学意义。全文共分四章,主要研究内容如下:
     以疏水性离子液体[BMIM][PF_6]为黏合剂制备了咪唑类离子液体碳糊电极(CILE),并以CILE为基体电极构置了Nafion/L-天冬氨酸/CILE修饰电极,分别研究了多巴胺、尼群地平和对乙酰氨基酚三种化合物的电化学行为,建立了其微分脉冲伏安测定新方法。与传统碳糊电极相比,咪唑类离子液体碳糊电极能明显改善电极反应的可逆性,提高电流响应灵敏度,但背景电流较大。
     以疏水性离子液体[BPy][PF_6]为黏合剂制备了吡啶类离子液体碳糊电极(CILE),研究了酚磺乙胺的电化学行为并建立了其循环伏安测定新方法:以CILE为基体电极,采用滴涂法和电沉积法构置了GOx/CILE、Mb/CILE、Hb/Fe_3O_4/CILE、PB/Au/CILE修饰电极,研究了GOx、Mb和Hb的直接电化学及其电催化行为,建立了葡萄糖、H_2O_2的伏安、计时安培测定新方法。研究表明,吡啶类离子液体能改善电极性能,可降低电极反应过程中的背景电流。
     将GOx、Mb和HRP包埋于离子液体([BMIM][BF_4]、[CePy][PF_6])与MWNTs、GG、HA形成的复合物中,采用滴涂法构置了HA-MWNTs-[BMIM][BF_4]-GOx/GCE、HA-[CePy][PF_6]-Mb/GCE、GG-[BMIM][BF_4]-HRP/GCE修饰电极,应用电化学方法和光谱法对这些复合物和修饰电极进行了研究。结果表明:这些复合膜能保持GOx、Mb和HRP的活性并能实现其在电极表面的直接电化学反应,且修饰电极对葡萄糖、H_2O_2表现出良好的电催化作用,催化电流分别与葡萄糖、H_2O_2浓度在一定范围内呈线性关系,可用于葡萄糖、H_2O_2的循环伏安、计时安培测定。
Ionic liquids are organic salts consisted of only ions utterly, which are liquids with the melting point close to or below room temperature. The unique physical and chemical properties make them suitable for many applications. In this thesis, ionic liquid carbon paste electrodes (CILEs) and eight kinds of chemically modified electrodes are fabricated based on imidazolium and pyridinium ionic liquids. The electrochemical behaviors of four compounds, and direct electrochemistry and electrocatalytic activity of four proteins (enzyme) are investigated in details. The studies are significant to broaden the application range of ionic liquids, enrich research content of chemically modified electrodes and biosensors. The thesis consists of four chapters. The author's main contributions are summarized and presented as follows:
     Iimidazolium ionic liquid carbon paste electrode (CILE) and Nafion/L-aspartic acid/CILE are fabricated using hydrophobic ionic liquid, 1-butyl-3-methyl-imidazolium hexafluorophosphate ([BMIM][PF_6]) as binder. Electrochemical behaviors of dopamine (DA), nitrendipine (NT), paracetamol (PCT) are studied at these electrodes, respectively and corresponding differential pulse voltammetric determination methods are established. In terms of electron transfer, reversibility and sensitivity, CILEs are superior to traditional carbon paste electrode (TCPE) except for larger background current.
     Pyridinium ionic liquid carbon paste electrode (CILE) is fabricated using hydrophobic ionic liquid, 1-butyl pyridinium hexafluophosphate ([BPy][PF_6]) as binder. The electrochemical behaviors of ethamsylate (ESL) are investigated at CILE and a novel cyclic voltammetric determination of ESL in urine and serum sample is established. By casting and electrodeposit, GOx/CILE, Mb/CILE, Hb/Fe_3O_4/CILE and PB/Au/CILE are fabricated on the basis of CILE, which are used to investigate the direct electrochemistry and electrocatalytic activity of GOx, Mb and Hb, respectively. The corresponding cyclic voltammetry and amperometry are used to determine glucose and H_2O_2. The results show that [BPy][PF_6] can improve the properties of electrode and lower background current.
     Three kinds of new composites of HA-MWNTs-[BMIM][BF_4], HA-[CePy][PF_6] and GG-[BMIM][BF_4] are used as immobilization matrix to entrap GOx, Mb and HRP. By casting the mixture on the surface of GCE, HA-MWNTs-[BMIM][BF_4]-GOx/GCE, HA-[CePy][PF_6]-Mb/GCE and GG-[BMIM][BF_4]-HRP/GCE chemically modified electrodes are fabricated, respectively. Electrochemical and spectroscopy methods are used to characterize the composite films and the modified electrodes. The results show that GOx, Mb and HRP molecules in the composite films retain their native structures and achieve their direct electrochemistry. The chemically modified electrodes show excellent electrocatalytic activity toward glucose and H_2O_2. The catalytic currents are linearly with concentration of glucose and H_2O_2 in the fixed range. The cyclic voltammetry and amperometry are applied determine glucose and H_2O_2.
引文
[1] Walden P. B., Molecular weights and electrical conductivity of several fused salts [J]. Bulletin de I'Academie Imperiale des Sciences de St.-Petersbourg,1914,1800,405-422
    [2] Hurley F. H., Wier T. P., Electrodeposition of aluminum from nonaqueous solutions at room temperature [J]. Journal of the Electrochemical Society,1951,98,207-212
    [3] Chum H. L., Koch V. R., Miller L. L. Osteryong R. A., Electrochemical scrutiny of organometallic iron complexes and hexamethylbenzene in a room temperature molten salt [J]. Journal of the Electrochemical Society, 1975,97(11): 3264-3265
    [4] Wilkes J. S., Levisky J. A., Wilson R. A., Hussey C. L., Dialkylimidazolium chloroaluminate melts: a new class of room-temperature ionic liquids for electrochemistry, spectroscopy and synthesis[J].Inorganic Chemistry,1982,21(3): 1263-1264
    [5] Wilkes J. S., Zaworotko M., Air and Water Stable 1-Ethyl-3-Methylimidazlium Based Ionic Liquids[J].Chemical Communications (Cambridge, United Kingdom), 1992, 13,965-967
    [6] Fuller J., Carlin R. T., Structural and electrochemical characterization of 1,3-bis(4-methylphenyl) imidazolium chloride [J].Journal of Chemical Crystallography, 1994,24(8): 489-93
    [7] Carlin R. T., De Long H. C, Fuller J., Trulove P. C, Dual intercalating molten electrolyte batteries [J].Journal of the Electrochemical Society, 1994, 141(7): L73-L76
    [8] Fuller J., Carlin R. T.,De Long H. C, Haworth D., Structure of 1-ethyl-3-methylimidazolium hexafluorophosphate: model for room temperature molten salts [J]. Chemical Communications (Cambridge, United Kingdom), 1994, 3,299-300
    [9] Bonhote P., Dias A.-P., Papageorgiou N., Kalyanasundaram K., Gratzel M., Hydrophobic, Highly Conductive Ambient-Temperature Molten Salts [J]. Inorganic Chemistry, 1996, 35(5): 1168-1178
    [10] Visser A. E., Swatloski R. P., Reichert W. M., Davis J. H. J., Rogers R. D., Mayton R., Sheff S.,Wierzbicki A., Task-specific ionic liquids for the extraction of metal ions from aqueous solutions [J].Chemical Communications (Cambridge, United Kingdom), 2001,1,135-136
    [11] Davis J. H., Fox P. A., From curiosities to commodities: ionic liquids begin the transition [J].Chemical Communications (Cambridge, United Kingdom), 2003,11,1209-1212
    [12] 李汝雄,离子液体的合成及应用[M].北京:化学化工出版社,2004:10
    [13] 贡长生,张龙,绿色化学[M].武汉:华中科技大学出版社,2008:33-34
    [14] Wilkes J. S., Zaworotko M. J., Air and water stable l-ethyl-3-methylimidazolium based ionic liquids[J]. Chemical Communications (Cambridge, United Kingdom), 1992,13,965-967
    [15] Welton T., Room-Temperature Ionic Liquids. Solvents for Synthesis and Catalysis [J]. Chemical Reviews (Washington, D. C.),1999, 99(8): 2071-2083
    [16] Hagiwara R.,Ito Y., Room temperature ionic liquids of alkylimidazolium cations and fluoroanions [J].Journal of Fluorine Chemistry, 2000,105(2):221-227
    [17] 陈晓伟,包宗宏,室温离子液体的应用进展[J].精细石油化工,2006,23(2):60-64
    [18] Galinski M., Lewandowski A., Stepniak I., Ionic liquids as electrolytes [J]. Electrochimica Acta, 2006,51(26): 5567-558
    [19] 张锁江,吕兴梅等,离子液体-从基础研究到工业应用[M].北京:科学出版社,2006
    [20] Seddon K. R., Stark A., Selective catalytic oxidation of benzyl alcohol and alkylbenzenes in ionic liquids [J]. Green Chemistry, 2002,4(2):119-123
    [21] Huddleston J. G., Visser A. E, Reichert W. M, Willauer H. D., Broker G. A., Rogers R. D.,Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation [J]. Green Chemistry, 2001, 3(4):156-164
    [22] Merrigan T. L., Bates E. D., Dorman S. C, Davis J. H., New fluoroalkyl-containing imidazolium compounds as surfactants in conventional room-temperature ionic liquids [J]. Chemical Communications (Cambridge, United Kingdom), 2000,20, 2051-2052
    [23] Fannin A. A., Floreani D. A., King L. A., Landers J. S., Piersma B. J.; Stech D. J., Vaughn R. L., Wilkes J. S., Williams J. L., Properties of 1,3-dialkylimidazolium chloride-aluminum chloride ionic liquids. 2. Phase transitions, densities, electrical conductivities, and viscosities [J]. Journal of Physical Chemistry, 1984, 88(12): 2614-2621
    [24] Suarez P. A. Z., Einloft S., Dullius J. E. L., De Souza R. F., Dupont J., Synthesis and physical-chemical properties of ionic liquids based on 1-n-butyl-3-methylimidazolium cation [J]. Journal de Chimie Physique et de Physico-Chimie Biologique., 1998,95(7): 1626-1639
    [25] Sanders J. R., Ward E. H., Hussey C. L., Aluminum bromide-1-methyl-3-ethylimidazolium bromide ionic liquids. I. Densities, viscosities, electrical conductivities, and phase transitions [J]. Journal of the Electrochemical Society, 1986, 133(2): 325-330
    [26] Davis J. H., Forrester K. J., Thiazolium-ion based organic ionic liquids (OILs). Novel OILs which promote the benzoin condensation [J]. Tetrahedron Letters, 1999, 40(9): 1621-1622
    [27] Mirzaei, Y. R., Twamley B., Shreeve, J. M., Syntheses of 1-Alkyl-1,2,4-triazoles and the Formation of Quaternary 1-Alkyl-4-polyfluoroalkyl-1,2,4-triazolium Salts Leading to Ionic Liquids [J]. Journal of Organic Chemistry, 2002, 67(26): 9340-9345
    [28] Sun J., MacFarlane D. R., Forsyth M, A new family of ionic liquids based on the 1-alkyl-2-methyl pyrrolinium cation [J]. Electrochimica Acta, 2003,48(12): 1707-1711
    [29] Levillain J., Dubant G., Abrunhosa I., Gulea M., Gaumont A. C., Synthesis and properties of thiazoline based ionic liquids derived from the chiral pool [J]. Chemical Communications (Cambridge, United Kingdom), 2003,23: 2914-2915
    [30] Xie H. B., Zhang S. B., Duan H. F., An ionic liquid based on a cyclic guanidinium cation is an efficient medium for the selective oxidation of benzyl alcohols [J].Tetrahedron Letters, 2004, 45(9): 2013-2015
    [31] Varma R. S., Namboodiri V. V., An expeditious solvent-free route to ionic liquids using microwaves [J]. Chemical Communications (Cambridge, United Kingdom), 2001, 7,643-644
    [32] Hagiwara R., Hirashige T., Tsuda T., Ito Y., Acidic 1-ethyl-3-methylimidazolium fluoride: a new room temperature ionic liquid [J]. Journal of Fluorine Chemistry, 1999, 99(1): 1-3
    [33] Nishida T., Tashiro Y., Yamamoto M., Physical and electrochemical properties of 1-alkyl-3-methylimidazolium tetrafluoroborate for electrolyte [J]. Journal of Fluorine Chemistry, 2003, 120(2): 135-141
    [34] Leadbeater N. E., Torenius H. M., Tye H., Ionic liquids as reagents and solvents in conjunction with microwave heating: rapid synthesis of alkyl halides from alcohols and nitrites from aryl halides [J]. Tetrahedron, 2003, 59(13): 2253-2258
    [35] 胡和兵,吴勇民,王珍珍,王牧野,何明中,离子液体合成及其应用研究[J]. 中国酿造, 2007, 167 (2): 9-12
    [36] Harjani J.R., Nara S. J., Salunkhe M. M., Lewis acidic ionic liquids for the synthesis of electrophilic alkenes via the Knoevenagel condensation [J]. Tetrahedron Letters, 2002,43(6): 1127-1130
    [37] Wasserscheid P., Welton T. (Eds.), Ionic liquids in synthesis [M]. Weinheim: Wiley-VCH, 2002: 23
    [38] Seddon K. R., Stak A., Torres M. J., Influence of chloride, water, and organic solvents on the physical properties of ionic liquids [J]. Pure and Applied Chemistry, 2000, 72(12): 2275-2287
    [39] Li Z. P., Du Z. Y., Gu Y. L, Zhang X.P., Deng Y.Q., Environmentally friendly and effective removal of Br- and Cl- impurities in hydrophilic ionic liquids by electrolysis and reaction [J]. Electrochemical Communications (Cambridge, United Kingdom), 2006, 8(8): 1270-1274
    [40] Cassol C. C, Ebeling G , Ferrera B., Dupont J.,A simple and practical method for the preparation and purity determination of halide-free imidazolium ionic liquids[J]. Advanced Synthesis and Catalysis,2006, 348 (1-2): 243-248
    [41] 邓友全,离子液体-性质、制备与应用[M].北京:中国石化出版社,2006
    [42] AnthonyJ. L., Maginn E. J., Brennecke J. F., Solution Thermodynamics of Imidazolium-Based Ionic Liquids and Water [J].Journal of Physical Chemistry B, 2001,105(44): 10942-10949
    [43] Billard I., Moutiers G., Labet A., El Azzi A., Gaillard C, Mariet C, Luetzenkirchen K., Stability of Divalent Europium in an Ionic Liquid: Spectroscopic Investigations in 1-Methyl-3-butylimidazolium Hexafluorophosphate [J]. Inorganic Chemistry, 2003,42(5):1726-1733
    [44] Villagran C, Deetlefs M., Pitner W., Hardacre C, Quantification of Halide in Ionic Liquids Using Ion Chromatography [J]. Analytical Chemistry, 2004, 76(7):2118-2123
    [45] Xiao L., Johnson K. E., Electrochemistry of 1-butyl-3-methyl-1H-imidazolium tetrafluoroborate ionic liquid [J]. Journal of the Electrochemical Society, 2003,150(6): E307-E311
    [46] Wei D., Kvarnstrom C., Lindfors T., Ivaska A., Electrochemical functionalization of single walled carbon nanotubes with polyaniline in ionic liquids[J]. Electrochemistry Communications, 2007, 9(2):206-210
    [47] Villagran C, Banks C. E, Hardacre C, Compton R. G.,Electroanalytical Determination of Trace Chloride in Room-Temperature Ionic Liquids[J]. Analytical Chemistry, 2004,76(7): 1998-2003
    [48] Zhang Y., Zheng J. B., Investigation on the electro-oxidation of iodide in the room temperature ionic liquid,1-butyl-3-methylimidazolium tetrafluoroborate at platinum electrode [J]. Electrochimica Acta,2007, 52(12): 4082-4086
    [49] GreavesT. L., Durmmond C. J., Protic Ionic Liquids: Properties and Applications [J]. Chemical Reviews (Washington, D. C), 2008,108(1):206-237
    [50] 邵媛,邓宇,离子液体的应用研究进展[J].精细化工中间体,2005,35(6):14-18
    [51] Kubo W., Kambe S., Nakade S., Kitamura T., Hanabusa K.J., Wada Y.J., Yanagida S.,Photocurrent-Determining Processes in Quasi-Solid-State Dye-Sensitized Solar Cells Using Ionic Gel Electrolytes[J]. Journal of Physical Chemistry B,2003,107(18): 4374-4381
    [52] 陈泊余,离子液体的发展及其在电化学与其它领域的应用-独特的溶剂系统[J].JournaI of the Chinese Chemical Society(Taiwan),2006,64(2):235-258
    [53] Haque S. A., Tachibana Y., Willis R. L., Moser J. E., Graetzel M., Klug D. R., Durrant J. R.,Parameters Influencing Charge Recombination Kinetics in Dye-Sensitized Nanocrystalline Titanium Dioxide Films [J]. Journal of Physical Chemistry B,2000, 104(3): 538-547
    [54] ]Viswanathan G., Murugesan S., Pushparaj V., Nalamasu O.,Ajayan P. M., Linhardt R. J.,Preparation of Biopolymer Fibers by Electrospinning from Room Temperature Ionic Liquids [J].Biomacromolecules, 2006, 7(2): 415-418
    [55] 杨平平,张亚,郑建斌,离子液体在电分析化学领域中的应用[J].西北大学学报(网络版),2007,5(4):288-297
    [56] Endres F., Ionic liquids: promising solvents for electrochemistry [J]. Zettschrift Fur Physikalishe Chemie, 2004,218 (2): 255-283
    [57] Buzzeo M. C, Evans R. G., Compton R. G., Non-haloaluminate room-temperature ionic liquids in electrochemistry-a review [J]. Chem. Phys. Chem., 2004, 5(8):1106-1120
    [58] Galinski M., Lewandowski A., Stepniak I., Ionic liquids as electrolytes [J]. Electrochimica Acta, 2006,51(26): 5567-5580
    [59] 陈孝云,邱仁辉,林金春,魏起华,绿色离子液体在电化学领域的应用研究进展[J].科学技术与工程,2008,8(16):4583-4587
    [60] Wei D., Ivaska A., Applications of ionic liquids in electrochemical sensors [J]. Analytica Chimica Acta,2008, 607(2): 126-135
    [61] DiCarlo C. M., Compton D. L., Evans K.O.,Laszlo J. A., Bioelectrocatalysis in ionic liquids.Examining specific cation and anion effects on electrode-immobilized cytochrome c [J].Bioelectrochemistry, 2006, 68(2): 134-143
    [62] 张亚,郑建斌,辣根过氧化物酶修饰电极在离子液体[EMIM][BF_4]中的直接电化学[J].化学学报,2008,66(19):2124-2130
    [63] Wang S.F.,Chen T.,Zhang Z. L., Shen X. C, Lu Z. X., Pang D. W., Wong K. Y., Direct Electrochemistry and Electrocatalysis of Heme Proteins Entrapped in Agarose Hydrogel Films in Room-Temperature Ionic Liquids [J]. Langmuir,2005,21(20): 9260-9266
    [64] Wang S. F., Chen T., Zhang Z. L., Pang D. W., Activity and stability of horseradish peroxidase in hydrophilic room temperature ionic liquid and its application in non-aqueous biosensing [J].Electrochemistry Communications, 2007,9(6): 1337-1342
    [65] Wang S. F., Chen T., Zhang Z. L., Pang D. W., Wong K. Y., Effects of hydrophilic room-temperature ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate on direct electrochemistry and bioelectrocatalysis of heme proteins entrapped in agarose hydrogel films [J]. Electrochemistry Communications, 2007,9(7):1709-1714
    [66] Xiong H. Y., Chen T.,Zhang X. H., Wang S. F., High performance and stability of a hemoglobin-biosensor based on an ionic liquid as nonaqueous media for hydrogen peroxide monitoring [J]. Electrochemistry Communications, 2007,9(11):2671-2675
    [67] Xiong H. Y., Chen T., Zhang X. H., Wang S. F., Electrochemical property and analysis application of biosensors in miscible nonaqueous media-Room-temperature ionic liquid [J]. Electrochemistry Communications, 2007, 9(7): 1648-1654
    [68] Xu H., Xiong H. Y., Zeng Q. X., Jia L., Wang Y., Wang S. F., Direct electrochemistry and electrocatalysis of heme proteins immobilized in single-wall carbon nanotubes-surfactant films in room temperature ionic liquids [J]. Electrochemistry Communications, 2009, 11(2): 286-289
    [69] Ding S. F., Xu M. Q., Zhao G., Wei X. W., Direct electrochemical response of Myoglobin using a room temperature ionic liquid, l-(2-hydroxyethyl)-3-methyl imidazolium tetrafluoroborate, as supporting electrolyte [J]. Electrochemistry Communications, 2007,9(2):216-220
    [70] Allen G. D., Buzzeo M. C, Villagran C, Hardacre C, Compton R. G., A mechanistic study of the electro-oxidation of bromide in acetonitrile and the room temperature ionic liquid,1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide at platinum electrodes [J]. Journal of Electroanalytical Chemistry, 2005, 575(2): 311-320
    [71] Villagran C, Aldous L., Lagunas M., Compton R. G., Hardacre C, Electrochemistry of phenol in bis{(trifluoromethyl)sulfonyl}amide ([NTf_2]~-) based ionic liquids [J]. Journal of Electroanalytical Chemistry, 2006, 588(1): 27-31
    [72] Silvester D. S., Wain A. J., Aldous L., Hardacre C, Compton R. G., Electrochemical reduction of nitrobenzene and 4-nitrophenol in the room temperature ionic liquid [C_4dmim][N(Tf)_2] [J]. Journal of Electroanalytical Chemistry, 2006, 596(2):131-140
    [73] 王欢,叶小鹤,陈黎明,陆嘉星,何鸣元,离子液体中间硝基苯酚在玻碳电极上的电化学还原行为研究[J].高等学校化学学报,2005,26(2):326-329
    [74] Zhao P., Sun Q., Wang H., Lu J. X., He M. Y., Electrochemical characterization of benzoyl formic acid at glassy carbon electrode in ionic liquid: [emim]Br [J]. Chinese Journal of Chemistry, 2005,23(4): 367-369
    [75] 王欢,薛腾,张爱健,张丽,陆嘉星,香豆素在离子液体(BMIMBF_4)中的电还原行为[J].高等学校化学学报,2006,27(6):1135-1137
    [76] 赵宁,董文举,石起增,苯甲醛在离子液体中的电化学行为[J].电化学,2006,12(1):80-84
    [77] 王晓军,马淳安,李美超,陈松,间硝基苯甲酸在离子液体中的电化学还原[J].浙江工业大学学报,2006,34(5):488-490
    [78] 马淳安,陈松,褚有群,毛信表,硝基苯在离子液体BMimBF_4-H_2O中的电还原[J].物理化学学报,2007,23(4):575-580
    [79] 马淳安,王晓娟,李国华,李美超,陈松,硝基甲烷在离子液体BMImPF_6中的电化学行为[J].化工学报,2008,59(3):654-658
    [80] 亓西敏,杜艳芳,张贵荣,赵鹏,陆嘉星,聚苯胺在离子液体中的电合成及其电催化性质[J].华东师范大学学报(自然科学版),2005,3,53-58
    [81] 杨许召,王军,李刚森,楚乐然,离子液体中的硝基苯电化学还原研究[J].郑州轻工业学院学报(自然科学版),2007,22(2/3):4-6
    [82] Ghilane J., Martin P., Fontaine O., Lacroix J. C, Randriamahazaka H., Modification of carbon electrode in ionic liquid through the reduction of phenyl diazonium salt. Electrochemical evidence in ionic liquid [J]. Electrochemistry Communications, 2008, 10(7): 1060-1063
    [83] Zhong J. F.,He D. L., Zhou Z., Xu Y. B., Electrochemical oxidation behavior of hydroxypivalaldehyde in the ionic liquids [J]. Chinese Chemical Letters, 2008,19(3): 319-323
    [84] Niu D. F., Zhang A. J., Xue T., Zhang J. B., Zhao S. F., Lu J. X., Electrocatalytic dimerisation of benzyl bromides and phenyl bromide at silver cathode in ionic liquid BMIMBF_4 [J]. Electrochemistry Communications, 2008, 10(10): 1498-1501
    [85] Doherty A. P., Koshechko V., Titov V., Mishura A., Freon electrochemistry in room-temperature ionic liquids [J]. Journal of Electroanalytical Chemistry, 2007,602(1): 91-95
    [86] 王欢,方慧珏,林美玉,陆嘉星,离子液体中电生成CoL催化行为研究[J].化学学报,2007,65(8):765-767
    [87] Aldous L., Silvester D. S., Villagran C, Pitner W. R., Compton R. G., Lagunas M. C, Hardacre C,Electrochemical studies of gold and chloride in ionic liquids [J]. New Journal of Chemistry, 2006,30(11): 1576-1583
    [88] Zhang J., Bond A. M., Schumann H., Suehring K., Voltammetric Studies on Decaphenylferrocene,Substituted Decaphenylferrocenes, and Their Oxidized Forms in Dichloromethane and Ionic Liquids [J]. Organometallics, 2005,24(9): 2188-2196
    [89] 董文举,赵宁,石起增,二茂铁在离子液体1-甲基-3-丁基咪唑鎓盐中的电化学行为[J].化学研究与应用,2006,18(4):399-402
    [90] Pauliukaite R., Doherty A. P., Murnaghan K. D., Brett C. M. A., Characterisation and application of carbon film electrodes in room temperature ionic liquid media [J]. Journal of Electroanalytical Chemistry, 2008,616(1-2): 14-26
    [91] 彭成信,杨立,王保峰,章正熙,李南,铝箔在甲基烷基咪唑四氟硼酸盐离子液体电解液中的电化学行为[J].科学通报,2006,51(17):2009-2014
    [92] Tachikawa N., Serizawa N., Katayama Y., Miura T., Electrochemistry of Sn(Ⅱ)/Sn in a hydrophobic room-temperature ionic liquid [J]. Electrochimica Acta,2008, 53(22): 6530-6534
    [93] Deng M. J., Chen P. Y., Sun I. W. Electrochemical study and electrodeposition of manganese in the hydrophobic butylmethylpyrrolidinium bis((trifluoromethyl)sulfonyl)imide room-temperature ionic liquid [J]. Electrochimica Acta, 2007, 53(4): 1931-1938
    [94] Jayakumar M., Venkatesan K. A., Srinivasan T. G., Electrochemical behavior of fission palladium in 1-butyl-3-methylimidazolium chloride [J]. Electrochimica Acta, 2007, 52(24): 7121-7127
    [95] Jayakumar M., Venkatesan K. A., Srinivasan T. G., Electrochemical behavior of rhodium(III) in 1-butyl-3-methylimidazolium chloride ionic liquid [J]. Electrochimica Acta, 2008, 53(6): 2794-2801
    [96] Andriyko Y., Nauer G. E., Electrochemistry of TiCl_4 in 1-butyl-2,3-dimethyl imidazolium azide [J]. Electrochimica Acta, 2007, 53(6): 957-962
    [97] Fiorito P. A., Alves W. A., Bazito F. F. C., Haber F. E., Froyer G., Torresi S. I. C. D., Torresi R. M., Characterization of anodic silicon oxide films grown in room temperature ionic liquids [J]. Electrochimica Acta, 2008, 53(25): 7396-7402
    [98] Yamagata M., Tachikawa N., Katayama Y., Miura T., Electrochemical behavior of several iron complexes in hydrophobic room-temperature ionic liquids [J]. Electrochimica Acta, 2007, 52(9): 3317-3322
    [99] Yu L. P., Sun H. J., He J., Wang D. H., Jin X. B., Hu X. H., Chen G. Z., Electro-reduction of cuprous chloride powder to copper nanoparticles in an ionic liquid [J]. Electrochemistry Communications, 2007,9(6): 1374-1381
    [100] Nagaishi R., Arisaka M., Kimura T., Kitatsuji Y., Spectroscopic and electrochemical properties of europium(III) ion in hydrophobic ionic liquids under controlled condition of water content [J]. Journal of Alloys and Compounds, 2007,431(1-2): 221-225
    [101] Broder T. L., Silvester D. S., Aldous L., Hardacre C., Compton R.G., Electrochemical Oxidation of Nitrite and the Oxidation and Reduction of NO_2 in the Room Temperature Ionic Liquid [C_2 mim][NTf_2] [J]. Journal of Physical Chemistry B, 2007,111(27): 7778-7785
    [102] Silvester D. S., Ward K. R., Aldous L., Hardacre C., Compton R. G., The electrochemical oxidation of hydrogen at activated platinum electrodes in room temperature ionic liquids as solvents [J]. Journal of Electroanalytical Chemistry, 2008, 618(1-2): 53-60
    [103] Islam M. M., Ferdousi B. N., Okajima T., Ohsaka T., A catalytic activity of a mercury electrode towards dioxygen reduction in room-temperature ionic liquids [J]. Electrochemistry Communications, 2005, 7(7): 789-795
    [104] Jastorff B., Moter K., Behrend P., Weber U. B., Filser J., Heimers A., Ondruschka B., Ranke J., Schaefer M., Schroter H., Stark A., Stepnowski P., Stock F., Stotmann R., Stolte S., Biermann U. W., Ziegert S., Thoting J., Progress in evaluation of risk potential of ionic liquids-basis for an eco-design of sustainable products [J]. Green Chemistry, 2005, 7(5): 362-372
    [105] Ranke J., Stock F., Stotmann R., Matter K., Hoffmann J., Ondruschka B., Jastorff B., Cornils B., Herrmann W. A., Horvth I.T., Leitner W., Mecking S., Bourbigou H. O., Vogt D. (Eds.), Multiphase Homogeneous Catalysis [M]. Weinheim: Wiley-VCH, 2005: 588-600
    [106] Garcia T. M., Gathergood N., Scammels P. J., Biodegradable ionic liquids. Part II. Effect of the anion and toxicology [J]. Green Chemistry, 2005, 7(1): 9-14
    [107] Stepnowski P., Zaleska A., Comparison of different advanced oxidation processes for the degradation of room temperature ionic liquids [J]. Journal of Photochemistry and Photobiology A: Chemistry, 2005, 170(1): 45-50
    [108] Fang S. H., Yang L., Wei C., Jiang C., Tachibana K., Kamijima K., Ionic liquids based on guanidinium cations and TFSI anion as potential electrolytes [J]. Electrochimica Acta, 2009, 54(6): 1752-1756
    [109] Ries L. A. S., Amaral F. A. D., Matos K., Martini E. M. A., Souza M. O. D., Souza R. F. D., Evidence of change in the molecular organization of 1-n-butyl-3-methylimidazolium tetrafluoroborate ionic liquid solutions with the addition of water [J]. Polyhedron, 2008,27(15): 3287-3293
    [110] Buzzeo M. C., Hardacre C., Compton R. G., Extended electrochemical windows made accessible by room temperature ionic liquid/organic solvent electrolyte systems [J]. ChemPhysChem, 2006, 7(1): 176-180
    [111] Duffy N. W., Bond A. M., Macroelectrode voltammetry in toluene using a phosphonium-phosphate onic liquid as the supporting electrolyte [J]. Electrochemistry Communications, 2006, 8(5): 892-898
    [112] Lagunas M. C., Silvester D. S., Aldous L., Compton R. G., The electrochemistry of vitamin B12 in ionic liquids and its use in the electrocatalytic reduction of vicinal dibromoalkanes [J]. Electroanalysis, 2006, 18(22): 2263-2268
    [113] Wu X. M., Du P., Wu P., Cai C. X., Effects of 1-butyl-3-methylimidazolium tetrafluoroborate on the oxidation of glucose catalyzed by glucose oxidase [J]. Electrochimica Acta, 2008, 54(2): 738-743
    [114] Luczak J., Hupka J., Thoing J., Jungnickel C., Self-organization of imidazolium ionic liquids in aqueous solution [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 329(3): 125-133
    [115] Liu H. T., He P., Liu Z. Y., Sun C. Y., Shi L. H., Liu Y., Zhu G. Y., Li J. H., An ionic liquid-type carbon paste electrode and its polyoxometalate-modified properties [J]. Electrochemistry Communications, 2005, 7(12): 1357-1363
    
    [116] 孙伟,高瑞芳,王丹丹,焦奎,血红蛋白在离子液体[BMIM]PF_6碳糊电极上的直接电化学[J]. 物理化学学报, 2007, 23(8): 1247-1251
    [117] Sun W., Wang D. D., Gao R. F., Sun J., Jiao K., Direct electrochemistry and electrocatalysis of hemoglobin in sodium alginate film on a BMIMPF_6 modified carbon paste electrode [J]. Electrochemistry Communications, 2007, 9(5): 1159-1164
    [118] Sun W., Zhai Z. Q., Wang D. D., Liu S. F., Sun J., Jiao K., Electrochemistry of hemoglobin entrapped in a Nafion/nano-ZnO film on carbon ionic liquid electrode [J]. Bioelectrochemistry, 2009, 74(2): 295-300
    [119] Sun W., Wang D. D., Li G. C., Zhai Z. Q., Zhao R.J., Jiao K., Direct electron transfer of hemoglobin in a CdS nanorods and Nafion composite film on carbon ionic liquid electrode [J]. Electrochimica Acta, 2008, 53(28): 8217-8221
    [120] Wang S. F., Xiong H. Y., Zeng Q. X., Design of carbon paste biosensors based on the mixture of ionic liquid and paraffin oil as a binder for high performance and stabilization [J]. Electrochemistry Communications, 2007, 9(4): 807-812
    [121] Musameh M., Wang J., Sensitive and stable amperometric measurements at ionic liquid-carbon paste microelectrodes [J]. Analytica Chimica Acta, 2008,606(1): 45-49
    [122] Zhang Y., Zheng J. B., Comparative investigation on electrochemical behavior of hydroquinone at carbon ionic liquid electrode, ionic liquid modified carbon paste electrode and carbon paste electrode [J]. Electrochimica Acta, 2007, 52(25): 7210-7216
    [123] Zheng J. B., Zhang Y., Yang P. P., An ionic liquid-type carbon paste electrode for electrochemical investigation and determination of calcium dobesilate [J]. Talanta, 2007,73(5): 920-925
    [124] Franzoi A. C., Dupont J., Spinelli A., Vieira I. C., Biosensor based on laccase and an ionic liquid for determination of rosmarinic acid in plant extracts [J]. Talanta, 2009, 77(4): 1322-1327
    [125] Maleki N., Safavi A, Tajabadi F., High-performance carbon composite electrode based on an ionic liquid as a binder [J]. Analytical Chemistry, 2006, 78(11): 3820-3826.
    [126] Safavi A., Maleki N., Moradlou O., Tajabadi F., Simultaneous determination of dopamine, ascorbic acid, and uric acid using carbon ionic liquid electrode [J]. Analytical Biochemistry, 2006, 359(2): 224-229
    [127] Safavi A., Maleki N., Moradlou O., Sorouri M., Direct electrochemistry of hemoglobin and its electrocatalytic effect based on its direct immobilization on carbon ionic liquid electrode [J]. Electrochemistry Communications, 2008, 10(3): 420-423
    [128] Safavi A., Maleki N., Tajabadi F., Farjami E., High electrocatalytic effect of palladium nanoparticle arrays electrodeposited on carbon ionic liquid electrode [J]. Electrochemistry Communications, 2007, 9(8): 1963-1968
    [129] Maleki N., Safavi A., Farjami E., Tajabadi F., Palladium nanoparticle decorated carbon ionic liquid electrode for highly efficient electrocatalytic oxidation and determination of hydrazine [J]. Analytica Chimica Acta,2008,611(2): 151-155
    [130] Safavi A., Maleki N., Momeni S., Tajabadi F., Highly improved electrocatalytic behavior of sulfite at carbon ionic liquid electrode: Application to the analysis of some real samples [J]. Analytica Chimica Acta, 2008,625(1): 8-12
    [131] Maleki N., Safavi A, Sedaghati F., Tajabadi F., Efficient electrocatalysis of L-cysteine oxidation at carbon ionic liquid electrode [J]. Analytical Biochemistry, 2007,369(2): 149-153
    [132] Safavi A., Maleki N., Farjamia E., Fabrication of a glucose sensor based on a novel nanocomposite electrode [J]. Biosensors and Bioelectronics 2009,24(6): 1655-1660
    
    [133] 孙伟,高瑞芳,毕现锋,焦奎,室温离子液体六氟磷酸正丁基吡啶修饰碳糊电极的制备与表征[J]. 分析化学,2007, 35(4): 567-570
    [134] Sun W., Li Y. Z., Yang M. X., Li J., Jiao K., Application of carbon ionic liquid electrode for the electrooxidative determination of catechol [J]. Sensors and Actuators B: Chemical, 2008, 133(2): 387-392
    [135] Sun W., Li Y. Z., Yang M. X., Liu S. F., Jiao K., Direct electrochemistry of single-stranded DNA on an ionic liquid modified carbon paste electrode [J]. Electrochemistry Communications, 2008, 10(2): 298-301
    [136] Sun W., Yang M. X., Jiao K., Electrocatalytic oxidation of dopamine at an ionic liquid modified carbon paste electrode and its analytical application [J]. Analytical and Bioanalytical Chemistry, 2007, 389(4): 1283-1291
    [137] Sun W., Yang M. X., Jiang Q., Jiao K., Direct electrocatalytic reduction of p-nitrophenol at room temperature ionic liquid modified electrode [J]. Chinese Chemical Letters, 2008, 19(10): 1156-1158
    [138] Sun W., Li Y. Z., Duan Y. Y., Jiao K., Direct electrocatalytic oxidation of adenine and guanine on carbon ionic liquid electrode and the simultaneous determination [J]. Biosensors and Bioelectronics, 2008,24(4): 988-993
    [139] Sun W., Duan Y. Y., Li Y. Z., Gao H. W., Jiao K., Electrochemical behaviors of guanosine on carbon ionic liquid electrode and its determination [J]. Talanta 2009, 78(3): 695-699
    [140] Sun W., Gao R. F., Jiao K., Electrochemistry and Electrocatalysis of Hemoglobin in Nafion/nano-CaCO_3 Film on a New Ionic Liquid BPPF_6 Modified Carbon Paste Electrode [J]. Journal of Physical Chemistry B, 2007,111(17): 4560-4567
    [141] Musameh M. M., Kachoosangi R. T., Xiao L., Russell A. , Compton R. G., Ionic liquid-carbon composite glucose biosensor [J]. Biosensors and Bioelectronics, 2008,24(1): 87-92
    [142] Ding C. F., Zhang M. L., Zhao F., Zhang S. S., Disposable biosensor and biocatalysis of horseradish peroxidase based on sodium alginate film and room temperature ionic liquid [J]. Analytical Biochemistry, 2008, 378(1): 32-37
    [143] Shul G., Sirieix-Plenet J., Gaillon L., Opallo M., Ion transfer at carbon paste electrode based on ionic liquid [J]. Electrochemistry Communications, 2006, 8(7):1111-1114
    [144] 张亚,乔广军,张宏芳,郑建斌,离子液体修饰碳糊电极对Bai的电催化作用及其分析应用[J].应用化学,2008,25(8):899-903
    [145] Zhang Y., Zheng J. B., Sensitive voltammetric determination of rutin at an ionic liquid modified carbon paste electrode [J]. Talanta, 2008, 77(1): 325-330
    [146] Zhang Y., Zheng J. B., An ionic liquid bulk-modified carbon paste electrode and its electrocatalytic activity toward p-aminophenol [J]. Chinese Journal of Chemistry, 2007,25(11):1652-1657
    [147] 张亚,张宏芳,郑建斌,Nafion/离子液体/修饰碳糊电极在抗坏血酸和尿酸存在下选择性测定多巴胺[J].分析试验室,2008,27(12):34-37
    [148] 贾晓光,张玲,朱永春,对苯二酚在室温离子液体碳糊电极上电化学行为的半经验量子化学AM1研究[J].沈阳师范大学学报(自然科学版),2008,26(3):340-343
    [149] Sun W., Jiang Q., Wang Y, Jiao K., Electrochemical behaviors of metol on hydrophilic ionic liquid 1-ethyl-3-methylimidazolium tetrafluoroborate-modified electrode [J]. Sensors and Actuators B:Chemical, 2009,136(2):419-424
    [150] Fukushima T.,Kosaka A., Lshimura Y., Yamamoto T., Takigawa T.,Ishii N., Aida T., Molecular Ordering of Organic Molten Salts Triggered by Single-Walled Carbon Nanotubes [J]. Science, 2003,300(5628): 2072-2075
    [151] Zhao Y., Liu H.,Kou Y., Li M., Zhu Z. W., Zhuang Q. K., Structural and characteristic analysis of carbon nanotubes-ionic liquid gel biosensor [J]. Electrochemistry Communications, 2007, 9(10):2457-2462
    [152] Zhao Y. F., Ye T. L., Liu H., Kou Y., Li M. X., Shao Y. H., Zhu Z. W., Zhuang Q. K.,A novel electrochemical biosensor for the detection of uric acid and adenine [J]. Frontiers in Bioscince, 2006,11(3): 2976-2982
    [153] Zhao Y. F., Gao Y. Q., Zhan D. P., Liu H., Zhao Q.,Kou Y., Shao Y. H., Li M. X., Zhuang Q. K., Zhu Z. W., Selective detection of dopamine in the presence of ascorbic acid and uric acid by a carbon nanotubes-ionic liquid gel modified electrode [J]. Talanta,2005,66(1):51-57
    [154] Zhao Q., Zhan D. P., Ma H. Y., Zhang M. Q., Zhao Y. F., Jing P., Zhu Z. W., Wan X. H., Shao Y. H.,Zhuang Q. K., Direct proteins electrochemistry based on ionic liquid mediated carbon nanotube modified glassy carbon electrode [J]. Frontiers in Bioscince, 2005,10(1): 326-334
    [155] Li C. M., Zang J. F., Zhan D. P., Chen W., Sun C. Q., Teo A. L., Chua Y. T., Lee V. S., Moochhala S.M., Electrochemical detection of nitric oxide on a SWCNT/RTIL composite gel microelectrode [J].Electroanalysis,2006,18(7):713-718
    [156] Yan Q. P., Zhao F. Q., Li G. Z., Zeng B. Z., Voltammetric determination of uric acid with a glassy carbon electrode coated by paste of multiwalled carbon nanotubes and ionic liquid [J].Electroanalysis, 2006,18(11):1075-1080
    [157] 颜权平,赵发琼,曾百肇,肾上腺素在碳纳米管.离子液体糊修饰电极上的伏安行为[J].分析科学学报,2006,22(5):523-526
    [158] Xiao F., Ruan C. P., Liu L. H., Yan R., Zhao F. Q., Zeng B. Z.,Single-walled carbon nanotube-ionic liquid paste electrode for the sensitive voltammetric determination of folic acid [J]. Sensors and Actuators B: Chemical, 2008, B134(2): 895-901
    [159] Fan S. S., Xiao F., Liu L.Q., Zhao F. Q., Zeng B. Z., Sensitive voltammetric response of methylparathion on single-walled carbon nanotube paste coated electrodes using ionic liquid as binder[J]. Sensors and Actuators B: Chemical, 2008, B132(1): 34-39
    [160] Liu Y., Zou X. Q., Dong S. J., Electrochemical characteristics of facile prepared carbon nanotubes-ionic liquid gel modified microelectrode and application in bioelectrochemistry [J]. Electrochemistry Communications, 2006, 8(9): 1429-1434
    [161] Liu Y., Liu L., Dong S. J., Electrochemical characteristics of glucose oxidase adsorbed at carbon nanotubes modified electrode with ionic liquid as binder [J]. Electroanalysis, 2007, 19(1): 55-59
    [162] Sun N. J., Guan L. H., Shi Z. J., Li N. Q., Gu Z. N., Zhu Z. W., Li M. X., Shao Y. H., Ferrocene Peapod Modified Electrodes: Preparation, Characterization, and Mediation of H_2O_2 [J]. Analytical Chemistry, 2006, 78(17): 6050-6057
    [163] Rozniecka E., Niedziolka J., Sirieix-Plenet J., Gaillon L., Murphy M.A., Marken F., Opailo M., Ion transfer processes at the room temperature ionic liquid/aqueous solution interface supported by a hydrophobic carbon nanofibers-silica composite film [J]. Journal of Electroanalytical Chemistry, 2006, 587(1): 133-139
    [164] Du P., Liu S. N., Wu P., Cai C. X., Preparation and characterization of room temperature ionic liquid/single-walled carbon nanotube nanocomposites and their application to the direct electrochemistry of heme-containing proteins/enzymes [J]. Electrochimica Acta, 2007, 52(23): 6534-6547
    [165] Long J. S., Silvester D. S., Wildgoose G. G., Surkus A. E., Flechsig G. U., Compton R. G., Direct electrochemistry of horseradish peroxidase immobilized in a chitosan-[C_4mim][BF_4] film: Determination of electrode kinetic parameters [J]. Bioelectrochemistry, 2008, 74(1): 183-187
    [166] Yu P., Lin Y. Q., Xiang L., Su L., Zhang J., Mao L. Q., Molecular Films of Water-Miscible Ionic Liquids Formed on Glassy Carbon Electrodes: Characterization and Electrochemical Applications [J]. Langmuir, 2005, 21(20): 9000-9006
    [167] Li J. W., Liu L. H., Xiao F., Gui Z., Yan R., Zhao F. Q., Hu L., Zeng B. Z., Direct electron transfer and electrocatalysis of horseradish peroxidase immobilized in gemini surfactant-ionic liquid composite film on glassy carbon electrode [J]. Journal of Electroanalytical Chemistry, 2008, 613(1): 51-57
    [168] Yan R., Zhao F. Q., Li J. W., Xiao F., Fan S. S., Zeng B. Z., Direct electrochemistry of horseradish peroxidase in gelatin-hydrophobic ionic liquid gel films [J]. Electrochimica Acta, 2007, 52(26): 7425-7431
    [169] Chen H. J., Wang Y. L., Liu Y., Wang Y. Z., Qi L., Dong S. J., Direct electrochemistry and electrocatalysis of horseradish peroxidase immobilized in Nafion-RTIL composite film [J]. Electrochemistry Communications, 2007,9:469-474
    [170] Lu X. B., Zhang Q., Zhang L., Li J. H., Direct electron transfer of horseradish peroxidase and its biosensor based on chitosan and room temperature ionic liquid [J]. Electrochemistry Communications, 2006, 8(5): 874-878
    [171] Liu Y., Wang M. J., Li J., Li Z. Y., He P., Liu H. T., Li J. H., Highly active horseradish peroxidase immobilized in 1-butyl-3-methylimidazolium tetrafluoroborate room-temperature ionic liquid based sol-gel host materials [J]. Chemical Communications (Cambridge, United Kingdom), 2005, 13: 1778-1780
    [172] Liu Y., Wang M. J., Li Z., Liu H., He P., Li J. H., Preparation of porous aminopropylsilsesquioxane by a nonhydrolytic sol-gel method in ionic liquid solvent [J]. Langmuir: the ACS journal of surfaces and colloids, 2005,21(4): 1618-1622
    [173] Liu Y., Shi L. H., Wang M. J., Liu H. T., Li J. H., A novel room temperature ionic liquid sol-gel matrix for amperometric biosensor application [J]. Green Chemistry, 2005, 7(9): 655-658
    [174] Xi F. N., Liu L. J., Wu Q., Lin X .F., One-step construction of biosensor based on chitosan-ionic liquid-horseradish peroxidase biocomposite formed by electrodeposition [J]. Biosensors and Bioelectronics, 2008,24( 1): 29-34
    
    [175] 杨柳,吴霞琴,后雯,顾林飞,王荣,郭晓明,章宗穰,离子液体和KGM修饰电极上的直接电化学 [J]. 电化学,2008, 14(3): 304-307
    [176] Wen Y. L., Yang X. D., Hu G. H., Chen S. H., Jia N. Q., Direct electrochemistry and biocatalytic activity of hemoglobin entrapped into gellan gum and room temperature ionic liquid composite system [J]. Electrochimica Acta, 2008, 54(2): 744-748
    [177] Gao R. F., Shangguan X. D., Qiao G. J., Zheng J. B., Direct electrochemistry of hemoglobin and its electrocatalysis based on hyaluronic acid and room temperature ionic liquid [J]. Electroanalysis, 2008, 20(23): 2537-2542
    [178] Lu X. B., Hu J. Q., Yao X., Wang Z. P. , Li J. H., Composite System Based on Chitosan and Room-Temperature Ionic Liquid: Direct Electrochemistry and Electrocatalysis of Hemoglobin [J]. Biomacromolecules, 2006, 7(3): 975-980
    [179] Sun H., Direct electrochemical and electrocatalytic properties of heme protein immobilized on ionic liquid-clay-nanoparticle-composite films [J]. Journal of Porous Materials, 2006,13(3/4): 393-397
    [180] Yu J. J., Zhao T., Zhao F. Q., Zeng B. Z., Direct electron transfer of hemoglobin immobilized in a mesocellular siliceous foams supported room temperature ionic liquid matrix and the electrocatalytic reduction of H_2O_2 [J]. Electrochimica Acta, 2008, 53(19): 5760-5765
    [181] Zhang Y., Zheng J. B., Direct electrochemistry and electrocatalysis of myoglobin immobilized in hyaluronic acid and room temperature ionic liquids composite film [J]. Electrochemistry Communications, 2008, 10(9): 1400-1403
    [182] Zhang Y., Zheng J. B., Direct electrochemistry and electrocatalysis of cytochrome c based on chitosan-room temperature ionic liquid-carbon nanotubes composite [J]. Electrochimica Acta, 2008, 54(2): 749-754
    [183] Ding S. F., Wei W., Zhao G. C., Direct electrochemical response of cytochrome c on a room temperature ionic liquid, N-butylpyridinium tetrafluoroborate, modified electrode [J]. Electrochemistry Communications, 2007,9(9): 2202-2206
    [184] Dai Z., Xiao Y., Yu X. Z., Mai Z. B., Zhao X. J., Zou X. Y., Direct electrochemistry of myoglobin based on ionic liquid-clay composite films [J]. Biosensors and Bioelectronics, 2009,24(6): 1629-1634
    [185] Yang F., Jiao L. S., Shen Y. F., Xu X. Y., Zhang Y. J., Niu L., Enhanced response induced by polyelectrolyte-functionalized ionic liquid in glucose biosensor based on sol-gel organic-inorganic hybrid material [J]. Journal of Electroanalytical Chemistry, 2007,608(1): 78-83
    [186] Shen Y. F., Zhang Y. J., Zhang Q. X., Niu L., You T. Y., Ivaska A., Immobilization of ionic liquid with polyelectrolyte as carrier [J]. Chemical Communications (Cambridge, United Kingdom), 2005, 33,4193-4195
    [187] Sanchez-Paniagua Lopez M., Mecerreyes D., Lopez-Cabarcos E., Lopez-Ruiz B., Amperometric glucose biosensor based on polymerized ionic liquid microparticles [J]. Biosensors and Bioelectronics, 2006,21(12): 2320-2328
    [188] Li J. W., Fan C., Xiao F., Yan R., Fan S. S., Zhao F. Q., Zeng B. Z., Influence of ionic liquids on the direct electrochemistry of glucose oxidase entrapped in nanogold-N,N-dimethylformamide-ionic liquid composite film [J]. Electrochimica Acta, 2007, 52(20): 6178-6185
    [189] Rozniecka E., Shul G., Sirieix-Plenet J., Gaillon L., Opallo M., Electroactive ceramic carbon electrode modified with ionic liquid [J]. Electrochemistry Communications, 2005, 7(3): 299-304
    [190] Zhao G. C., Xu M. Q., Zhang Q., A novel hydrogen peroxide sensor based on the redox of ferrocene on room temperature ionic liquid film [J]. Electrochemistry Communications, 2008, 10(12): 1924-1926
    [191] Qi B., Yang X. R., Characterization and electrocatalytic application of a fullerene/ionic-liquid composite [J]. Materials Letters, 2008,62(6-7): 980-983
    [192] Wang Q., Tang H., Xie Q. J., Tan L., Zhang Y. Y., Li B. M., Yao S. Z., Room-temperature ionic liquids/multi-walled carbon nanotubes/chitosan composite electrode for electrochemical analysis of NADH [J]. Electrochimica Acta, 2007, 52(24): 6630-6637
    [193] Gao R. F., Zheng J. B., Amine-terminated ionic liquid functionalized carbon nanotube-gold nanoparticles for investigating the direct electron transfer of glucose oxidase [J]. Electrochemistry Communications, 2009, 11(3): 608-611
    [194] Zhang Y. J., Shen Y. F., Han D. X., Wang Z. J., Song J. X., Li F., Niu L., Carbon nanotubes and glucose oxidase bionanocomposite bridged by ionic liquid-like unit: Preparation and electrochemical properties [J]. Biosensors and Bioelectronics, 2007,23(3): 438-443
    [195] Jia F., Shan C. S., Li F. H., Niu L., Carbon nanotube/gold nanoparticles/polyethylenimine functionalized ionic liquid thin film composites for glucose biosensing [J]. Biosensors and Bioelectronics, 2008,24(4): 951-956
    [196] Xiang C. L., Zou Y. J., Sun L. X., Xu F., Direct electron transfer of cytochrome c and its biosensor based on gold nanoparticles/room temperature ionic liquid/carbon nanotubes composite film [J]. Electrochemistry Communications, 2008, 10(1): 38-41
    [197] Yan Q. P., Zhao F. Q., Li G. Z., Zeng B. Z., Voltammetric determination of uric acid with a glassy carbon electrode coated by paste of multiwalled carbon nanotubes and ionic liquid [J]. Electroanalysis, 2006,18(11): 1075-1080
    [198] Li J. W., Yu J. J., Zhao F. Q., Zeng B. Z., Direct electrochemistry of glucose oxidase entrapped in nano gold particles-ionic liquid-N,N-dimethylformamide composite film on glassy carbon electrode and glucose sensing [J]. Analytica Chimica Acta, 2007, 587(1): 33-40
    [199] Xiao F., Zhao F. Q., Li J. W., Yan R., Yu J. J., Zeng B. Z., Sensitive voltammetric determination of chloramphenicol by using single-wall carbon nanotube-gold nanoparticle-ionic liquid composite film modified glassy carbon electrodes [J]. Analytica Chimica Acta, 2007, 596(1): 79-85
    [200] Xiao F., Mo Z. R., Zhao F. Q., Zeng B. Z., Ultrasonic-electrodeposition of gold-platinum alloy nanoparticles on multi-walled carbon nanotubes-ionic liquid composite film and their electrocatalysis towards the oxidation of nitrite [J]. Electrochemistry Communications, 2008,10(11):1740-1743
    [201] Tao W. Y., Pan D. W., Liu Q., Yao S. Z., Nie Z., Han B. X., Optical and bioelectrochemical characterization of water-miscible ionic liquids based composites of multiwalled carbon nanotubes [J]. Electroanalysis, 2006, 18(17): 1681-1688
    [202] Zhang J., Lei J. P., Liu Y. Y., Zhao J. W., Ju H. X., Highly sensitive amperometric biosensors for phenols based on polyaniline-ionic liquid-carbon nanofiber composite [J]. Biosensors and Bioelectronics, 2009,24(7): 1858-1863
    [203] Sheng Q. L., Shen Y., Zhang H. F., Zheng J. B., Direct Electrochemistry of Glucose Oxidase Immobilized on Chitosan-gold Nanoparticle Composite Film on Glassy Carbon Electrodes and Its Biosensing Application [J]. Chinese Journal of Chemistry, 2008,26(7): 1244-1250
    [204] Zhang W., Yang T., Zhuang X. M, Guo Z. Y., Jiao K., An ionic liquid supported CeO2 nanoshuttles-carbon nanotubes composite as a platform for impedance DNA hybridization sensing [J]. Biosensors and Bioelectronics, 2009,24(8): 2417-2422
    [205] Xiao F., Zhao F. Q., Li J. W., Liu L. Q., Zeng B. Z., Characterization of hydrophobic ionic liquid-carbon nanotubes-gold nanoparticles composite film coated electrode and the simultaneous voltammetric determination of guanine and adenine [J]. Electrochimica Acta,2008, 53(26):7781-7788
    [1] Adams R. N., Carbon paste electrodes [J]. Analytical Chemistry, 1958,30,1576
    [2] Marcoux L. S., Prater K. B., Prater B. G., Adams R. N., Nonaqueous C paste electrode [J]. Analytical Chemistry, 1965,37(11): 1446-1147
    [3] Covington J. R., Lacoste R. J., Voltammetric determination of the monomethyl ether of hydroquinone with a carbon-ceresin wax paste electrode [J]. Analytical Chemistry, 1965,37(3): 420-421
    [4] Kuwana T., French W.G., Electrooxidation or reduction of organic compounds in aqueous solutions by using carbon paste electrode [J]. Analytical Chemistry,1964,36(1):241-242
    [5] Lindquist J., Carbon paste electrode with a wide anodic potential range [J].Analytical Chemistry,1973,45(6): 1006-1008
    [6] Beilby A. L., Mather B. R., Resistance effects of two types of carbon paste electrodes [J]. Analytical Chemistry,1965,37(6):766-768
    [7] Davis D. G., Everhart M. E., Chronopotentiometry of the bromide-bromine couple at platinum and carbon paste electrodes [J]. Analytical Chemistry, 1964,36(1):38-40
    [8] Meier E. P., Chambers J. Q., Adsorption of organic molecules at a carbon paste electrode [J].Analytical Chemistry, 1969,41(7): 914-918
    [9] Li P. B., Gao Z. Q., Xu Y. W., Wang G. Q., Zhao Z. F., Determination of trace amounts of silver with a chemically modified carbon paste electrode [J]. Analytica Chimica Acta, 1990, 229(2): 213-219
    [10] 马明明,同帜,宋俊峰,高飞,修饰碳糊电极研究进展[J].理化检验-化学分册,2006,42(5):402-405
    [11] 于浩,基于多核金属铁氰化物的化学修饰电极及其应用[D].西安:西北大学博士论文,2007
    [12] Kalcher K., Kauffmann J.M., Wang J., vancara I., Vytas K., Neuhold C.,Yang Z., Sensors based on carbon paste in electrochemical analysis: a review with particular emphasis on the period 1990-1993[J]. Electroanalysis, 1995,7(1):5-22
    [13] Chi Q. J., Gopel W. G., Ruzgas T., Gorton L., Heiduschka P., Effects of pretreatments and modifiers on electrochemical properties of carbon paste electrodes [J]. Electroanalysis, 1997,9,357-365
    [14] Lei Y., Mulchandani P., Wang J., Chen W., Mulchandani A., Highly Sensitive and Selective Amperometric Microbial Biosensor for Direct Determination of p-Nitrophenyl-Substituted Organophosphate Nerve Agents [J].Environmental Science and Technology, 2005, 39(22): 8853-8857
    [15] Lvarez-Gonzalez M. I., Saidman S. B., Lobo-Castanon M. J., Miranda-Ordieres A. J., Tunon-Blanco P., Electrocatalytic detection of NADH and glycerol by NAD(+)-modified carbon electrodes [J].Analytical Chemistry, 2000, 72(3): 520-527
    [16] Zen J. M., Kumar A. S., Chung C. R., A glucose biosensor employing a stable artificial peroxidase based on ruthenium purple anchored cinder [J]. Analytical Chemistry, 2003,75(11): 2703-2709
    [17] Lawrence N. S., Deo R. P., Wang J., Biocatalytic Carbon Paste Sensors Based on a Mediator Pasting Liquid [J]. Analytical Chemistry, 2004, 76(13): 3735-3739
    [18] Zaydan R., Dion M, Boujtita M., Development of a new method, based on a bioreactor coupled with an L-lactate biosensor, toward the determination of a nonspecific inhibition of L-lactic acid production during milk fermentation [J]. Journal of Agricultural and Food Chemistry, 2004,52(1):88-94
    [19] Lozano-Chaves M. E., Palacios-Santander J. M., Cubillana-Aguilera L. M, Naranjo-Rodriguez I.Hidalgo-Hidalgo-de-Cisneros J. L., Modified carbon-paste electrodes as sensors for the determination of 1,4-benzodiazepines: Application to the determination of diazepam and oxazepam in biological fluids [J]. Sensors and Actuators, B: Chemical, 2006,115(2): 575-583
    [20] Tingry S., Innocent C, Touil S., Deratani A., Seta P., Carbon paste biosensor for phenol detection of impregnated tissue: modification of selectivity by using β-cyclodextrin-containing PVA membrane [J].Materials Science & Engineering, C: Biomimetic and Supramolecular Systems, 2006, 26 (2-3):222-226
    [21] Zheng J.B., Zhou X. L., Sodium dodecyl sulfate-modified carbon paste electrodes for selective determination of dopamine in the presence of ascorbic acid [J]. Bioelectrochemistry, 2007, 70(2):408-415
    [22] Abbaspour A., Mirzajani R., Electrochemical monitoring of piroxicam in different pharmaceutical forms with multi-walled carbon nanotubes paste electrode [J]. Journal of Pharmaceutical and Biomedical Analysis, 2007,44(1):41-48
    [23] 张亚,基于八种咪唑类离子液体的电化学研究[D].西安:西北大学博士论文,2008
    [24] Wilkes J. S., Zaworotko M. J., Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids[J]. Chemical Communications (Cambridge, United Kingdom), 1992,13,965-967
    [25] Earle M. J., Seddon K. R., Adams C. J., Roberts G., Friedel-Crafts reactions in room temperature ionic liquids [J]. Chemical Communications (Cambridge, United Kingdom), 1998,19,2097-2098
    [26] Earle M. J., McCormac P. B., Seddon K. R., Regioselective alkylation in ionic liquids [J]. Chemical Communications (Cambridge, United Kingdom),1998, 20,2245-2246
    [27] Dyson P. J., Ellis D. J., Parker D. G., Welton T., Parker D. G., Arene hydrogenation in a room-temperature ionic liquid using a ruthenium cluster catalyst [J]. Chemical Communications (Cambridge, United Kingdom),1999,1,25-26
    [28] Leadbeater N. E., Torenius H. M., A Study of the Ionic Liquid Mediated Microwave Heating of Organic Solvents [J]. Journal of Organic Chemistry, 2002,67(9): 3145-3148
    [29] Mann B. E., Guzman M. H., Dissolution of [RhCl(PPh3)_3] in the ionic liquid,1-ethyl-3-methylimidazolium chloroaluminate (Ⅲ),and its reaction with H_2.The stabilization of Rh (Ⅰ) species in an ionic liquid [J]. Inorganica Chimica Acta, 2002,330,143-148
    [30] Wasserscheid P., Keim W., Ionic liquids-new "solutions" for transition metal catalysis [J].Angewandte Chemie, International Edition, 2000,39(21):3772-3789
    [31] Reynolds J. L., Erdner K. R., Jones P. B., Photoreduction of Benzophenones by Amines in Room-Temperature Ionic Liquids [J]. Organic Letters, 2002,4(6): 917-919
    [32] Welton T., Room-Temperature Ionic Liquids. Solvents for Synthesis and Catalysis [J]. Chemical Reviews (Washington, D. C),1999, 99(8): 2071-2083
    [33] Nara S. J., Harjani J. R., Salunkhe M. M., Lipase-catalyzed transesterification in ionic liquids and organic solvents: a comparative study [J]. Tetrahedron Letters, 2002,43(16): 2979-2982
    [34] Yao Q. W., OsO_4 in Ionic Liquid [Bmim]PF_6: A Recyclable and Reusable Catalyst System for Olefin Dihydroxylation. Remarkable Effect of DMAP [J]. Organic Letters, 2002,4(13): 2197-2199
    [35] Fletcher K. A., Pandey S., Storey I. K., Hendricks A. E., Pandey S., Selective fluorescence quenching of polycyclic aromatic hydrocarbons by nitromethane within room temperature ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate [J]. Analytica Chimica Acta, 2002,453(1): 89-96
    [36] Grodkowski J., Neta P., Reaction Kinetics in the Ionic Liquid Methyltributylammonium Bis(Trifluoromethylsulfonyl)imide. Pulse Radiolysis Study of. bul. CF_3 Radical Reactions [J]. Journal of Physical Chemistry A, 2002, 106(22): 5468-5473
    [37] Handy S. T., Zhang X. L., Organic Synthesis in Ionic Liquids: The Stille Coupling [J]. Organic Letters, 2001, 3(2): 233-236
    [38] DeCastro D. C., Sauvage E., Valkenberg M. H., Holderich W. F., Immobilised Ionic Liquids as Lewis Acid Catalysts for the Alkylation of Aromatic Compounds with Dodecene [J]. Journal of Catalysis, 2000, 196(1): 86-94
    [39] Olivier-Bourbigou Helene, Magna L., Ionic liquids: perspectives for organic and catalytic reactions [J]. Journal of Molecular Catalysis A: Chemical, 2002,182-183,419-437
    [40] Gruttadauria M., Riela S., Meo P. L., D'Anna F., Noto R., Supported ionic liquid asymmetric catalysis. A new method for chiral catalysts recycling. The case of proline-catalyzed aidol reaction [J]. Tetrahedron Letters, 2004, 45(32): 6113-6116
    [41] Riisager A., Wasserscheid P., Van Hal R., Fehrmann R., Continuous fixed-bed gas-phase hydroformylation using supported ionic liquid-phase (SILP) Rh catalysts [J]. Journal of Catalysis, 2003,219(2): 452-455
    [42] Mikkola J. P., Aumo J., Murzin D. Y., Salmi T., Structured but not over-structured: woven active carbon fibre mat catalyst [J]. Catalysis Today, 2005,105(3-4): 325-330
    [43] Valkenberg M. H., De Castro C., Holderich W. F., Friedel-Crafts acylation of aromatics catalyzed by supported ionic liquids [J]. Applied Catalysis, A: General, 2001,215(1-2): 185-190
    [44] Anderson J. L., Armstrong D. W., High-stability ionic liquids. A new class of stationary phases for gas chromatography [J]. Analytical Chemistry, 2003, 75(18): 4851-4858
    [45] Xiao X. H., Zhao L., Liu X., Jiang S. X., Ionic liquids as additives in high performance liquid chromatography. Analysis of amines and the interaction mechanism of ionic liquids [J]. Analytica Chimica Acta, 2004, 519(2): 207-211
    [46] Peng J. F., Liu J. F., Hu X. L., Jiang G. B., Direct determination of chlorophenols in environmental water samples by hollow fiber supported ionic liquid membrane extraction coupled with high-performance liquid chromatography [J]. Journal of Chromatography A, 2007, 1139(2): 165-170
    [47] Stalcup A. M., Cabovska B., Ionic liquids in chromatography and capillary electrophoresis [J]. Journal of Liquid Chromatography and Related Technologies, 2004,27(7-9): 1443-1459
    [48] Qi S. D., Cui S. Y., Cheng Y. Q., Chen X. G., Hu Z. D., Rapid separation and determination of aconitine alkaloids in traditional Chinese herbs by capillary electrophoresis using 1-butyl-3-methylimidazoium-based ionic liquid as running electrolyte [J]. Biomedical Chromatography, 2006, 20(3): 294-300
    [49] Tian K., Qi S. D., Cheng Y. Q., Chen X. G., Hu X. D., Separation and determination of lignans from seeds of Schisandra species by micellar electrokinetic capillary chromatography using ionic liquid as modifier [J]. Journal of Chromatography A, 2005, 1078(1-2): 181-187
    [50] Sanchez-Paniagua Lopez M., Mecerreyes D., Lopez-Cabarcos E., Lopez-Ruiz B., Amperometric glucose biosensor based on polymerized ionic liquid microparticles [J]. Biosensors and Bioelectronics, 2006, 21(12): 2320-2328
    [51] Sun H., Direct electrochemical and electrocatalytic properties of heme protein immobilized on ionic liquid-clay-nanoparticle-composite films [J]. Journal of Porous Materials, 2006,13(3/4): 393-397
    [52] Lu X. B., Zhang Q., Zhang L., Li J. H., Direct electron transfer of horseradish peroxidase and its biosensor based on chitosan and room temperature ionic liquid [J]. Electrochemistry Communications, 2006, 8(5): 874-878
    [53] Lu X. B., Hu J. Q., Yao X., Wang Z. P., Li J. H., Composite System Based on Chitosan and Room-Temperature Ionic Liquid: Direct Electrochemistry and Electrocatalysis of Hemoglobin [J]. Biomacromolecules, 2006,7(3): 975-980
    [54] Zhao G. C., Xu M. Q., Ma J., Wei X. W., Direct electrochemistry of hemoglobin on a room temperature ionic liquid modified electrode and its electrocatalytic activity for the reduction of oxygen [J]. Electrochemistry Communications, 2007,9(5): 920-924
    [55] DiCarlo C. M., Compton D. L., Evans K. O., Laszlo J. A., Bioelectrocatalysis in ionic liquids. Examining specific cation and anion effects on electrode-immobilized cytochrome c [J]. Bioelectrochemistry, 2006,68(2): 134-143
    [56] Li J. W., Yu J. J., Zhao F. Q., Zeng B. Z., Direct electrochemistry of glucose oxidase entrapped in nano gold particles-ionic liquid-N,N-dimethylformamide composite film on glassy carbon electrode and glucose sensing [J]. Analytica Chimica Acta, 2007,587(1): 33-40
    [57] Liu H. T., He P., Liu Z. Y., Sun C. Y., Shi L. H., Liu Y., Zhu G. Y., Li J. H., An ionic liquid-type carbon paste electrode and its polyoxometalate-modified properties [J]. Electrochemistry Communications, 2005,7(12): 1357-1363
    [58] Maleki N., Safavi A, Tajabadi F., High-performance carbon composite electrode based on an ionic liquid as a binder [J]. Analytical Chemistry, 2006,78(11), 3820-3826
    [59] Wang S. F., Xiong H. Y., Zeng Q. X., Design of carbon paste biosensors based on the mixture of ionic liquid and paraffin oil as a binder for high performance and stabilization [J]. Electrochemistry Communications, 2007,9(4): 807-812
    [60] Musameh M., Wang J., Sensitive and stable amperometric measurements at ionic liquid-carbon paste microelectrodes [J]. Analytica Chimica Acta, 2008, 606(1): 45-49
    [61] Nishi N, Imakura S, Kakiuchi T., Wide Electrochemical Window at the Interface between Water and a Hydrophobic Room-Temperature Ionic Liquid of Tetrakis[3,5-bis(Trifluoromethyl)phenyl]borate [J]. Analytical Chemistry, 2006, 78(8): 2726-2731
    [62] Safavi A., Maleki N., Moradlou O., Tajabadi F., Simultaneous determination of dopamine, ascorbic acid, and uric acid using carbon ionic liquid electrode [J]. Analytical Biochemistry, 2006, 359(2): 224-229
    [63] Sun W., Zhai Z. Q., Wang D. D., Liu S. F., Sun J., Jiao K., Electrochemistry of hemoglobin entrapped in a Nafion/nano-ZnO film on carbon ionic liquid electrode [J]. Bioelectrochemistry, 2009, 74(2): 295-300
    [64] Sun W., Wang D. D., Li G. C., Zhai Z. Q., Zhao R.J., Jiao K., Direct electron transfer of hemoglobin in a CdS nanorods and Nafion composite film on carbon ionic liquid electrode [J]. Electrochimica Acta, 2008, 53(28): 8217-8221
    
    [65] Zhang Y., Zheng J. B., Comparative investigation on electrochemical behavior of hydroquinone at carbon ionic liquid electrode, ionic liquid modified carbon paste electrode and carbon paste electrode [J]. Electrochimica Acta, 2007, 52(25): 7210-7216
    
    [66] Wilkes J. S., Levisky J. A., Wilson R. A., Hussey C. L., Dialkylimidazolium chloroaluminate melts: a new class of room-temperature ionic liquids for electrochemistry, spectroscopy and synthesis [J].Inorganic Chemistry, 1982,21(3): 1263-1264
    [67] Carda-Broch S., Berthod A., Armstrong D. W., Solvent properties of the 1-butyl-3-methylimidazolium hexafluorophosphate ionic liquid [J]. Analytical and Bioanalytical Chemistry, 2003, 375(2): 191-199
    [68] Huddleston J. G., Visser A. E, Reichert W. M, Willauer H. D., Broker G. A., Rogers R. D.,Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation [J]. Green Chemistry, 2001, 3(4): 156-164
    [69] Fuller J., Breda A. C, Carlin R. T., Ionic liquid-polymer gel electrolytes from hydrophilic and hydrophobic ionic liquids [J]. Journal of Electroanalytical Chemistry, 1998,459(1):29-34
    [70] 刘波平,周妍,罗香,秦华俊,曹树稳,离子液体溴代1-丁基-3-甲基咪唑盐合成的红外光谱分析[J].现代测量与实验室管理,2007,2,13-14
    [71] Ravichandran K., Baldwin R. P., Enhanced voltammetric response by electrochemical pretreatment of carbon paste electrodes [J]. Analytical Chemistry, 1984, 56(9): 1744-1747
    [72] Venton B. J., Wightman R. M., Psychoanalytical electrochemistry: dopamine and behavior [J].Analytical Chemistry, 2003, 75(19):414A-421A
    [73] Zou G, Basic Nerve Pharmacology [M]. Beijing: Science Press,1999:203
    [74] Hermans A., Seipel A. T., Miller C. E., Wightman R. M., Carbon-fiber microelectrodes modified with 4-sulfobenzene have increased sensitivity and selectivity for brain catecholamine detn. by cyclic voltammetry [J]. Langmuir, 2006,22(5):1964-1969
    [75] Gonon F., Buda M., Cespuglio R., Jouvet M., Pujol J. F., In vivo electrochemical detection of catechols in the neostriatum of anaesthetized rats: dopamine or DOPAC? [J]. Nature (London, United Kingdom), 1980,286(5776): 902-904
    [76] Ramesh P., Suresh G S., Sampath S., Selective determination of dopamine using unmodified,exfoliated graphite electrodes [J]. Journal of Electroanalytical Chemistry, 2004, 561(1-2): 73-180
    [77] Oni J., Westbroek P., Nyokong T., Electrochemical behavior and detection of dopamine and ascorbic acid at an iron(Ⅱ) tetrasulfophthalocyanine modified carbon paste microelectrode [J].Electroanalysis, 2003,15(10):847-854
    [78] Mo J. W., Ogorevc B., Simultaneous Measurement of Dopamine and Ascorbate at Their Physiological Levels Using Voltammetric Microprobe Based on Overoxidized Poly(l,2-phenylenediamine)-Coated Carbon Fiber [J]. Analytical Chemistry, 2001,73(6):1196-1202
    [79] Salimi A., Banks C. E., Compton R. G., Abrasive immobilization of carbon nanotubes on a basal plane pyrolytic graphite electrode: application to the detection of epinephrine [J]. Analyst (Cambridge,United Kingdom), 2004, 129(3): 225-228
    [80] Zhao Y. F., Gao Y. Q., Zhan D. P., Liu H., Zhao Q., Kou Y., Shao Y. H., Li M. X., Zhuang Q. K., Zhu Z. W., Selective detection of dopamine in the presence of ascorbic acid and uric acid by a carbon nanotubes-ionic liquid gel modified electrode [J]. Talanta,2005, 66(1):51-57
    [81] Wang J., Tuzhi P., Golden T., Amperometric detection of cationic neurotransmitters at Nafion-coated glassy carbon electrodes in flow streams [J]. Analytica Chimica Acta,1987, 194: 129-138
    [82] Shahrokhian S., Zare-Mehrjardi H. R., Application of thionine-Nafion supported on multi-walled carbon nanotube for preparation of a modified electrode in simultaneous voltammetric detection of dopamine and ascorbic acid [J]. Electrochimica Acta,2007, 52(22): 6310-6317
    [83] 林祥钦,康广凤,柴颖,Nafion/胆碱双层膜碳纤维电极探测小白鼠大脑内的多巴胺[J].分析化学,2008,36(2):157-161
    [84] 董绍俊,车广礼,谢远武,化学修饰电极(修订版)[M].北京:科学出版社,2003:319
    [85] 汪振辉,郏建波,李工安,周漱萍,多巴胺在聚茶碱/Nafion双层修饰玻碳电极上的电化学行为[J].分析化学,2000,28(5):568-572
    [86] Wang H. S., Li T. H., Jia W. L., Xu H. Y., Highly selective and sensitive determination of dopamine using Nafion/carbon nanotubes coated poly(3-methylthiophene) modified electrode [J]. Biosensors and Bioelectronics, 2006,22(5): 664-669
    [87] Selvaraju T., Ramaraj R., Electrochemically deposited nanostructured platinum on Nafion coated electrode for sensor applications [J]. Journal of Electroanalytical Chemistry, 2005,585(2): 290-300
    [88] Sun W., Yang M. X., Jiao K., Electrocatalytic oxidation of dopamine at an ionic liquid modified carbon paste electrode and its analytical application [J]. Analytical and Bioanalytical Chemistry, 2007,389(4):1283-1291
    [89] Jiang L. Y., Liu C. Y., Jiang L. P., Peng Z., Lu G. H., A chitosan-multiwall carbon nanotube modified electrode for simultaneous detection of dopamine and ascorbic acid [J]. Analytical Sciences, 2004,20(7):1055-1059
    [90] Wang G Y, Liu X. J., Luo G A., Wang Z. H.,α-Cyclodextrin incorporated carbon nanotube-coated electrode for the simultaneous determination of dopamine and epinephrine [J]. Chinese Journal of Chemistry, 2005,23(3): 297-302
    [91] Fang B., Wang G F.,Zhang W. Z., Li M. G, Kan X. W., Fabrication of Fe_3O_4 nanoparticles modified electrode and its application for voltammetric sensing of dopamine [J]. Electroanalysis, 2005, 17(9):744-748
    [92] Li N. B., Ren W, Luo H. Q., Caffeic acid-modified glassy carbon electrode for the simultaneous determination of epinephrine and dopamine [J]. Electroanalysis, 2007,19(14): 1496-1502.
    [93] Luo H. X.,Shi Z. J., Li N. Q., Gu Z. N., Zhuang Q. K.,Investigation of the Electrochemical and Electrocatalytic Behavior of Single-Wall Carbon Nanotube Film on a Glassy Carbon Electrode [J].Analytical Chemistry, 2001,73(5): 915-920
    [94] Shahrokhian S., Zare-Mehrjardi H. R., Cobalt salophen-modified carbon-paste electrode incorporating a cationic surfactant for simultaneous voltammetric detection of ascorbic acid and dopamine [J].Sensors and Actuators, B: Chemical, 2007, B 121(2): 530-537
    [95] Chen W, Lin X. H., Huang L. Y, Luo H. B., Electrochemical Characterization of Polymerized Cresol Red Film Modified Glassy Carbon Electrode and Separation of Electrocatalytic Responses for Ascorbic Acid and Dopamine Oxidation [J]. Microchimica Acta,2005,151(1-2):101-107
    [96] 梁汝萍,邱建丁,蔡沛祥,多巴胺在聚L-天冬氨酸修饰电极上的催化氧化及测定[J].中山大学学报(自然科学版),2003,42(1):119-122
    [97] Eastwood R. J., Galustian C, Bhamra R. K., Holt D. W, High-performance liquid chromatographic method for the measurement of nicardipine in plasma or serum [J]. Journal of Chromatography,Biomedical Applications, 1990, 530(2): 463-468
    [98] 中国药典委员会,中国药典[S](1995年版二部).北京:化学工业出版社,1995:194
    [99] 朱世民,成全,胡秀贞,尼群地平几种测定方法的比较[J].药学学报,1988,23:527
    [100] Krol G J., Noe A. J., Yeh S. C, Raemsch K. D., Gas and liquid chromatographic analyses of nimodipine calcium antagonist in blood plasma and cerebrospinal fluid [J]. Journal of Chromatography, Biomedical Applications, 1984,305(1):105-118
    [101] 张淑慧,甄耀儒,张立常,高效液相色谱法同时测定六种二氢吡啶类钙拮抗剂血药浓度[J].色谱,1995,13(2):132-133,135
    [102] 郑妍鹏,莫金垣,赖瑢,胶束电动毛细管色谱双通道电化学检测尼群地平[J].化学学报,2003,61(1):89-94
    [103] 杨冰仪,莫金垣,赖瑢,黄宝美,双工作电极-双通道胶束电动毛细管色谱电化学法同时检测4种钙通道阻滞剂[J].分析化学,2004,32(10):1304-1308
    [104] Squella J. A., Lemus I.,Pema S.,Nunez-vergara L. J., Polarographic behavior of nitrendipine [J].Analytical Letters, 1988,21(12): 2293-305
    [105] 刘永明,李桂芝,荆济荣,尼群地平在玻碳电极上的伏安行为及应用[J].分析化学,2002,30(11):1341-1343
    [106] Laviron E., General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems [J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1979, 101(1):19-28
    [107] Wang S.F., Xie F., Hu R. R, Carbon-coated nickel magnetic nanoparticles modified electrodes as a sensor for determination of acetaminophen [J]. Sensors and Actuators B: Chemical, 2007, B 123(1):495-500
    [108] Boopathi M., Won M. S., Shim Y. B., A sensor for acetaminophen in a blood medium using a Cu(Ⅱ)-conducting polymer complex modified electrode [J]. Analytica Chimica Acta, 2004,512(2):191-197
    [109] De Carvalho R.M.,Freire R. S.,Rath S., Kubota L. T., Effects of EDTA on signal stability during electrochemical detection of acetaminophen [J]. Journal of Pharmaceutical and Biomedical Analysis,2004, 34(5): 871-878
    [110] 金慧萍,李中东,焦正,对乙酰氨基酚的不良反应与合理使用[J].药物不良反应杂志,2004,1,27-31
    [111] Bosch M. E., Sanchez A. J. R., Rojas F. S., Ojeda C. B., Determination of paracetamol: Historical evolution [J]. Journal of Pharmaceutical and Biomedical Analysis, 2006,42(3):291-321
    [112] 徐春梅,紫外分光光度法测定氨咖黄敏胶囊中对乙酰氨基酚含量[J].延安大学学报(医学科学版),2006,4(2):6
    [113] 王霞英,张学良,马月琴,对乙酰氨基酚在碳原子线修饰电极上的电化学行为研究[J].宁夏医学杂志,2007,29(8):753-754
    [114] Trojanowicz M.,Flow Injection Analysis: Instrumentation and Applications [M]. Singapore: World Scientific, 2000:481
    [115] Filik H.,Tavman A., A new cloud-point preconcentration approach for the spectrophotometric determination of p-aminophenol in the presence of paracetamol with 2-(2-Hydroxyphenyl)-1H-benzimidazole as a coupling reagent [J]. Journal of Analytical Chemistry, 2007, 62(6): 530-535
    [116] Martin A., Barbas C, CE versus HPLC for the dissolution test in a pharmaceutical formulation containing acetaminophen, phenylephrine, and chlorpheniramine [J]. Journal of Pharmaceutical and Biomedical Analysis, 2004, 35(4): 769-777
    [117] 曾志坚,蒋三元,HPLC测定抗感冒片中对乙酰氨基酚含量[J].中国医药导报,2008,5(21):40-41
    [118] Satinsky D., Neto I., Solich P., Sklenarova H., Conceicao M., Montenegro B. S. M., Araujo A. N. J.,Sequential injection chromatographic determination of paracetamol, caffeine, and acetylsalicylic acid in pharmaceutical tablets [J]. Journal of separation science, 2004,27(7-8): 529-536
    [119] 朱晓燕,王增寿,陈帆,丁林,高效毛细管电泳法测定泰诺林滴剂中对乙酰氨基酚的含量[J].中国现代应用药学,2004,21(1):57-59
    [120] Yang B. Y., Mo J. Y., Yang X. Y., Wang L. S., Determination of Acetaminophen and p-Aminophenol by High-performance Capillary Electrophoresis with Amperometric Detection [J]. Fenxi Ceshi Xuebao,2000, 19(1):13-15
    [121] Hilton M. J., Thomas K. V., Determination of selected human pharmaceutical compounds in effluent and surface water samples by high-performance liquid chromatography-electrospray tandem mass spectrometry [J]. Journal of chromatography A,2003,1015,129-141
    [122] Burgot G, Auffret F., Burgot J. L., Determination of acetaminophen by thermometric titrimetry [J].Analytica Chimica Acta, 1997,343,125
    [123] Zarei A. R., Afkhami A., Sarlak N., Simultaneous spectrophotometric determination of paracetamol and salicylamide in human serum and pharmaceutical formulations by a differential kinetic method [J].Journal of AOAC International, 2005,88(6):1695-1701
    [124] 罗红斌,张亚锋,陈伟,林新华,林小燕,对乙酰氨基酚在聚刚果红修饰电极上的伏安测定[J].电化学,2006,12(3):329-332
    [125] 徐雯,姜幸,何风云,对乙酰氨基酚在碳原子线修饰电极上的电化学行为研究[J].南京晓庄学院学报,2007,3,49-52
    [126] 李利军,陈其锋,喻来波,程昊,冯军,钟招亨,孔红星,吴健玲,对乙酰氨基酚在L-半胱氨酸修饰金电极上的不可逆双安培测定[J].化学研究与应用,2008,20(10):22-25
    [127] 王秀文,余芬,赵志杰,艾军,万其进,对乙酰氨基酚在聚L-赖氨酸膜修饰电极上的电化学行为及测定[J].化学与生物工程,2008,25(1):68-72
    [128] Gorton L., Carbon paste electrodes modified with enzymes, tissues, and cells [J]. Electroanalysis,1995,7(1):23-45
    [129] Campanella L., Tomassetti M., The state-of-the-art of electrochemical sensors [J]. Bulletin of Electrochemistry, 1992, 8(5): 229-238
    [130] Dos Reis A. P., Tarley C. R. T., Maniasso N.,Kubota L. T., Exploiting micellar environment for simultaneous electrochemical determination of ascorbic acid and dopamine [J]. Talanta, 2005, 67(4):829-835
    [131] Zen J.M., Ting Y. S., Simultaneous determination of caffeine and acetaminophen in drug formulations by square-wave voltammetry using a chemically modified electrode [J]. Analytica Chimica Acta, 1997,342(2-3):175-180
    [132] Goyal R. N., Singh S. P., Voltammetric determination of paracetamol at Cat-modified glassy carbon electrode [J]. Electrochimica Acta,2006,51(15): 3008-3012
    [133] Fatibello-Filho O., Lupetti K.O.,Vieira I.C., Chronoamperometric determination of paracetamol using an avocado tissue (Persea americana) biosensor [J]. Talanta, 2001,55(4): 685-692
    [134] Duan L. S.,Xie F.,Zhou F., Wang S. F., The electrochemical behavior of acetaminophen on multi-walled carbon nanotubes modified electrode and its analytical application [J]. Analytical Letters,2007,40(14): 2653-2663
    [135] Sun D., Zhang H. J., Electrochemical determination of acetaminophen using a glassy carbon electrode coated with a single-wall carbon nanotube-dicetyl phosphate film [J]. Microchimica Acta, 2007,158(1-2): 131-136
    [136] Li M. Q., Jing L. H., Electrochemical behavior of acetaminophen and its detection on the PANI-MWCNTs composite modified electrode [J]. Electrochimica Acta, 2007, 52(9): 3250-3257
    [137] Silva M. L. S., Garcia M. B. Q., Lima J. L. F. C, Barrado E., Modified tubular electrode in a multi-commutated flow system [J]. Analytica Chimica Acta, 2006, 573-574, 383-390
    [138] Tungkananuruk K.,Tungkananuruk N., Bums D. T., Cyclic voltammetric determination of acetaminophen in paracetamol tablets [J]. KMITL Sci. Tech. J., 2005,5(3): 547-551
    [139] Ozcan L., Sahin Y, Determination of paracetamol based on electropolymerized-molecularly imprinted polypyrrole modified pencil graphite electrode [J]. Sensors and Actuators B: Chemical, 2007, B 127(2): 362-369
    [140] Li L. J.,Cheng H.,Chen Q. F., Kong H. X.,Wu J. L., Flow injection irreversible biamperometric determination of acetaminophen [J]. Fenxi Ceshi Xuebao, 2006,25(5): 38-40
    [141] Goyal R. N.,Gupta V. K., Oyama M., Bachheti N., Differential pulse voltammetric determination of paracetamol at nanogold modified indium tin oxide electrode [J]. Electrochemistry Communications, 2005, 7(8): 803-807
    [1] Maleki N., Safavi A, Tajabadi F., High-performance carbon composite electrode based on an ionic liquid as a binder [J]. Analytical Chemistry, 2006, 78(11): 3820-3826
    [2] Safavi A., Maleki N., Moradlou O., Tajabadi F., Simultaneous determination of dopamine, ascorbic acid, and uric acid using carbon ionic liquid electrode [J]. Analytical Biochemistry, 2006, 359(2):224-229
    [3] Safavi A., Maleki N., Moradlou O., Sorouri M., Direct electrochemistry of hemoglobin and its electrocatalytic effect based on its direct immobilization on carbon ionic liquid electrode [J].Electrochemistry Communications, 2008,10(3): 420-423
    [4] Safavi A., Maleki N., Tajabadi F., Farjami E., High electrocatalytic effect of palladium nanoparticle arrays electrodeposited on carbon ionic liquid electrode [J]. Electrochemistry Communications, 2007,9(8): 1963-1968
    [5] Maleki N., Safavi A., Farjami E., Tajabadi F., Palladium nanoparticle decorated carbon ionic liquid electrode for highly efficient electrocatalytic oxidation and determination of hydrazine [J]. Analytica Chimica Acta,2008,611(2):151-155
    [6] Safavi A., Maleki N., Momeni S., Tajabadi F., Highly improved electrocatalytic behavior of sulfite at carbon ionic liquid electrode: Application to the analysis of some real samples [J]. Analytica Chimica Acta,2008, 625(1):8-12
    [7] Maleki N., Safavi A, Sedaghati F., Tajabadi F.,Efficient electrocatalysis of L-cysteine oxidation at carbon ionic liquid electrode [J]. Analytical Biochemistry, 2007,369(2): 149-153
    [8] Safavi A., Maleki N., Farjamia E., Fabrication of a glucose sensor based on a novel nanocomposite electrode [J]. Biosensors and Bioelectronics, 2009,24(6): 1655-1660
    [9] Musameh M. M., Kachoosangi R. T., Xiao L., Russell A., Compton R. G., Ionic liquid-carbon composite glucose biosensor [J]. Biosensors and Bioelectronics, 2008,24(1):87-92
    [10] 孙伟,高瑞芳,毕瑞锋,焦奎,室温离子液体六氟磷酸正丁基吡啶修饰碳糊电极的制备与表征[J].分析化学,2007,35(4):567-570
    [11] Sun W.,Li Y. Z., Yang M. X., Li J., Jiao K.,Application of carbon ionic liquid electrode for the electrooxidative determination of catechol [J]. Sensors and Actuators B: Chemical, 2008, 133(2):387-392
    [12] Sun W., Li Y. Z., Yang M. X., Liu S. F., Jiao K.,Direct electrochemistry of single-stranded DNA on an ionic liquid modified carbon paste electrode [J]. Electrochemistry Communications, 2008, 10(2):298-301
    [13] Sun W., Yang M. X., Jiao K., Electrocatalytic oxidation of dopamine at an ionic liquid modified carbon paste electrode and its analytical application [J]. Analytical and Bioanalytical Chemistry, 2007,389(4): 1283-1291
    [14] Sun W., Yang M. X., Jiang Q., Jiao K.,Direct electrocatalytic reduction of p-nitrophenol at room temperature ionic liquid modified electrode [J]. Chinese Chemical Letters, 2008, 19(10): 1156-1158
    [15] Sun W., Li Y. Z., Duan Y. Y., Jiao K., Direct electrocatalytic oxidation of adenine and guanine on carbon ionic liquid electrode and the simultaneous determination [J]. Biosensors and Bioelectronics,2008,24(4): 988-993
    [16] Sun W., Duan Y. Y., Li Y. Z., Gao H. W., Jiao K., Electrochemical behaviors of guanosine on carbon ionic liquid electrode and its determination [J]. Talanta, 2009, 78(3): 695-699
    [17] Sun W.,Gao R. F., Jiao K.,Electrochemistry and Electrocatalysis of Hemoglobin in Nafion/nano-CaCO_3 Film on a New Ionic Liquid BPPF_6 Modified Carbon Paste Electrode [J]. Journal of Physical Chemistry B, 2007,111(17):4560-4567
    [18] Ding C. F., Zhang M. L., Zhao F., Zhang S. S., Disposable biosensor and biocatalysis of horseradish peroxidase based on sodium alginate film and room temperature ionic liquid [J]. Analytical Biochemistry, 2008, 378(1):32-37
    [19] Wilkes J. S., Levisky J. A., Wilson R. A., Hussey C. L., Dialkylimidazolium chloroaluminate melts:a new class of room-temperature ionic liquids for electrochemistry, spectroscopy and synthesis [J].Inorganic Chemistry, 1982,21(3): 1263-1264
    [20] Carda-Broch S., Berthod A., Armstrong D. W., Solvent properties of the 1-butyl-3-methylimidazolium hexafluorophosphate ionic liquid [J]. Analytical and Bioanalytical Chemistry, 2003, 375(2): 191-199
    [21] Huddleston J. G., Visser A. E, Reichert W. M, Willauer H. D., Broker G. A., Rogers R. D.,Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation [J]. Green Chemistry, 2001,3(4):156-164
    [22] Fuller J., Breda A. C, Carlin R. T., Ionic liquid-polymer gel electrolytes from hydrophilic and hydrophobic ionic liquids [J]. Journal of Electroanalytical Chemistry, 1998,459(1):29-34
    [23] Zhu A. P., Yuan L. H., Jin W. J., Dai S., Wang Q. Q.,Xue Z. F., Qin A. Polysaccharide surface modified Fe_3O_4 nanoparticles for camptothecin loading and release [J]. Acta Biomaterialia (2008),doi:10.1016/j.actbio.2008.10.022
    [24] 潘春跃,徐先华,刘清泉,室温熔盐溴化丁基吡啶和氟硼酸根丁基吡啶的制备及性能研究[J].精细化工中间体,2002,32(5):22-23
    [25] Cao D. F., Hu N. F., Direct electron transfer between hemoglobin and pyrolytic graphite electrodes enhanced by Fe3O4 nanoparticles in their layer-by-layer self-assembly films [J]. Biophysical Chemistry, 2006, 121(3): 209-217
    [26] Matthew J. B., Hanania G.I. H., Gurd F. R. N., Electrostatic effects in hemoglobin: hydrogen ion equilibriums in human deoxy- and oxyhemoglobin A [J]. Biochemistry, 1979, 18(10): 1919-1928
    [27] 中华人民共和国卫生部药典委员会.中华人民共和国药典(二部)[M].北京:化学工业出版,1995:788
    [28] 许自超,李晓哗,施炯,紫外分光光度法测定兔胃粘膜组织中止血敏含量[J].分析化学,1994,22(4):420
    [29] Ma J. W, Liu Y. P., Quantitative analysis of etamsylate by HPLC [J]. Yaowu Fenxi Zazhi, 1984, 4(4):209-212
    [30] 混旭,杨维平,章竹君,气动毛细管微滴进样-化学发光法测定酚磺乙胺[J].高等学校化学学报,2004,25(2):264-266
    [31] 李银环,杜建修,吕九如,鲁米诺-[铁氰化钾-亚铁氰化钾]-酚磺乙胺化学发光体系[J].分析化学,2002,30(6):742-744
    [32] Yang F. Z., Zhang C.,Baeyens W. R. G., Zhang X. R., Determination of ethamsylate in pharmaceutical preparations based on an auto-oxidation chemiluminescence reaction [J]. Journal of Pharmaceutical and Biomedical Analysis, 2002, 30(3): 473-478
    [33] Zhang X. H., Wang S. F., Determination of ethamsylate in the presence of catecholamines using 4-amino-2-mercaptopyrimidine self-assembled monolayer gold electrode [J]. Sensors and Actuators B:Chemical, 2005, B 104(1):29-34
    [34] Chen J. Q., Song J. F., Chen L. F., Determination of ethamsylate in pharmaceutical preparations by irreversible biamperometry [J]. Microchemical Journal, 2005,80(1):65-70
    [35] 杨功俊,金通利,冷宗周,碳糊电极吸附伏安法测定微量酚磺乙胺[J].药物分析杂志,1998,18(5):311-313
    [36] 倪宏刚,张宏芳,郑建斌,二次微分简易示波伏安法测定酚磺乙胺[J].电化学,2005,11(2):224-227
    [37] Wang S. F., Xu Q., Electrochemical parameters of ethamsylate at multi-walled carbon nanotube modified glassy carbon electrodes [J]. Bioelectrochemistry, 2007,70(2): 296-300
    [38] 王存孝,杨功俊,胡效亚,CTAB存在下酚磺乙胺的电化学测定[J].扬州大学学报(自然科学版),2007,10(2):32-37
    [39] 汪振辉,张岱,张岩,周漱萍,聚对氨基吡啶化学修饰电极上酚磺乙胺的电化学行为及其溶出伏安法测定[J].2001,29(1):83-86
    [40] Zhang Y., Zheng J. B., Comparative investigation on electrochemical behavior of hydroquinone at carbon ionic liquid electrode, ionic liquid modified carbon paste electrode and carbon paste electrode[J]. Electrochimica Acta,2007,52(25):7210-7216
    [41] Pournaghi-Azar M. H., Sabzi R., Electrochemical characteristics of a cobalt pentacyanonitrosylferrate film on a modified glassy carbon electrode and its catalytic effect on the electrooxidation of hydrazine[J].Journal of Electroanalytical Chemistry, 2003,543(2):115-125
    [42] Laviron E., The use of linear potential sweep voltammetry and of a.c.voltammetry for the study of the surface electrochemical reaction of strongly adsorbed systems and of redox modified electrodes [J].Journal of Electroanalytical Chemistry and Interfacial Electrochemistry,1979,100,263-270
    [43] Laviron E., Adsorption, autoinhibition, and autocatalysis in polarography and in linear potential sweep voltammetry [J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1974, 52(3):355-393
    [44] Laviron E., General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems [J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1979,101(1):19-28
    [45] Ghindilis A. L.,Atanasov P., Wilkins E., Enzyme-catalyzed direct electron transfer. Fundamentals and analytical applications [J]. Electroanalysis, 1997,9(9): 661-674
    [46] Mano N., Mao F., Heller A., A Miniature Biofuel Cell Operating in A Physiological Buffer [J]. Journal of the American Chemical Society,2002,124(44): 12962-12963
    [47] Frew J. E., Hill H. A. O., Direct and indirect electron transfer between electrodes and redox proteins[J]. European Journal of Biochemistry, 1988, 172(2): 261-269
    [48] Santucci R., Picciau A., Campanella L., Brunori M., Electrochemistry of metalloproteins [J].Current Topics in Electrochemistry,1994,3(2):313-328
    [49] Armstrong F. A., Insights from protein film voltammetry into mechanisms of complex biological electron-transfer reactions [J]. Journal of the Chemical Society, Dalton Transactions, 2002, 5,661-671
    [50] Aguey-Zinsou K. F.,Bernhardt P. V.,Kappler U., McEwan, A. G, Direct electrochemistry of a bacterial sulfite dehydrogenase [J]. Journal of the American Chemical Society, 2003, 125(2): 530-535
    [51] Xu J. Z., Zhu J. J., Wu Q., Hu Z., Chen H. Y., Direct electron transfer between glucose oxidase and multi-walled carbon nanotubes [J]. Chinese Journal of Chemistry, 2003,21(8): 1088-1091
    [52] Feng J. J., Xu J. J., Chen H.Y., Synergistic effect of zirconium phosphate and Au nanoparticles on direct electron transfer of hemoglobin on glassy carbon electrode [J]. Journal of Electroanalytical Chemistry, 2005, 585(1): 44-50
    [53] Ge B., Scheller F.W., Lisdat F., Electrochemistry of immobilized CuZnSOD and FeSOD and their interaction with superoxide radicals [J]. Biosensors and Bioelectronics, 2003, 18(2-3): 295-302
    [54] Tian Y., Mao L.Q., Okajima T., Ohsaka T., Superoxide dismutase-based third-generation biosensor for superoxide anion [J]. Analytical Chemistry, 2002,74(10): 2428-2434
    [55] Liu H. Y., Hu N. F., Heme protein-gluten films: voltammetric studies and their electrocatalytic properties [J]. Analytica Chimica Acta, 2003,481(1): 91-99
    [56] Wu Y. H., Shen Q. C., Hu S. S., Direct electrochemistry and electrocatalysis of heme-proteins in regenerated silk fibroin film [J]. Analytica Chimica Acta, 2006,558(1-2): 179-186
    [57] Liu X. J., Shang L. B., Sun Z. Y., Li G. X., Direct electrochemistry of hemoglobin in dimethyldioctadecyl ammonium bromide film and its electrocatalysis to nitric oxide [J]. Journal of Biochemical and Biophysical Methods, 2005,62(2): 143-151
    [58] Zhou Y. L., Li Z., Hu N. F., Zeng Y. H., Rusling J. F., Layer-by-Layer Assembly of Ultrathin Films of Hemoglobin and Clay Nanoparticles with Electrochemical and Catalytic Activity [J]. Langmuir, 2002, 18(22): 8573-8579
    [59] Yan Y. M., Zheng W., Zhang M. N., Wang L., Su L., Mao L. Q., Bioelectrochemically functional nanohybrids through co-assembling of proteins and surfactants onto carbon nanotubes: Facilitated electron transfer of assembled proteins with enhanced Faradic response [J]. Langmuir, 2005, 21(14): 6560-6566
    [60] Shen L., Hu N. F., Electrostatic Adsorption of Heme Proteins Alternated with Polyamidoamine Dendrimers for Layer-by-layer Assembly of Electroactive Films [J]. Biomacromolecule, 2005, 6(3): 1475-1483
    [61] Hecht H. J., Kalisz H. M., Hendle J., Schmid R. D., Schomburg D., Crystal structure of glucose oxidase from Aspergillus niger refined at 2.3.ANG. resolution [J]. Journal of Molecular Biology,1993, 229(1): 153-172
    [62] Wu B. L., Zhang G. M., Shuang S. M., Choi M. M. F., Biosensors for determination of glucose with glucose oxidase immobilized on an eggshell membrane [J]. Talanta, 2004,64(2): 546-553
    [63] Krikstopaitis K.., Kulys J., Tetianec L., Bioelectrocatalytical glucose oxidation with phenoxazine modified glucose oxidase [J]. Electrochemistry Communications, 2004,6(4): 331-336
    [64] Miscoria S. A., Barrera G. D., Rivas G. A., Glucose biosensors based on the immobilization of glucose oxidase and polytyramine on rodhinized glassy carbon and screen printed electrodes [J]. Sensors and Actuators B: Chemical, 2006, B 115(1): 205-211
    [65] Chen X. H., Hu Y. B., Wilson G. S., Glucose microbiosensor based on alumina sol-gel matrix/electropolymerized composite membrane [J]. Biosensors and Bioelectronics, 2002, 17(11-12): 1005-1013
    [66] Niu J. J., Lee J. Y., Reagentless mediated biosensors based on polyelectrolyte and sol-gel derived silica matrix [J]. Sensors and Actuators B: Chemical, 2002, B 82(2-3): 250-258
    [67] Chen X., Dong S. J., Sol-gel-derived titanium oxide/copolymer composite based glucose biosensor [J]. Biosensors and bioelectronics, 2003, 18(8): 999-1004
    [68] Li T., Yao Z. H., Ding L., Development of an amperometric biosensor based on glucose oxidase immobilized through silica sol-gel film onto Prussian Blue modified electrode [J]. Sensors and Actuators B: Chemical, 2004, B 101(1-2): 155-160
    [69] Xu J. J., Yu Z. H., Chen H. Y., Glucose biosensors prepared by electropolymerization of p-chlorophenylamine with and without Nafion [J]. Analytica Chimica Acta, 2002,463(2): 239-247
    [70] Reiter S., Habermüller K.,Schuhmann W., A reagentless glucose biosensor based on glucose oxidase entrapped into osmium-complex modified polypyrrole films [J]. Sensors and Actuators B: Chemical,2001,B 79(2-3):150-156
    [71] Rubio-Retama J., Lopez-Cabarcos E., Lopez-Ruiz B., High stability amperometric biosensor based on enzyme entrapment in microgels [J]. Talanta, 2005,68(1):99-107
    [72] Shobha Jeykumari D. R., Sriman Narayanan S., A novel nanobiocomposite based glucose biosensor using neutral red functionalized carbon nanotubes [J]. Biosensors and Bioelectronics, 2008, 23(9):1404-1411
    [73] Zou Y. J., Xiang C. L.,Sun L. X., Xu F., Amperometric glucose biosensor prepared with biocompatible material and carbon nanotube by layer-by-layer self-assembly technique [J].Electrochimica Acta, 2008,53(12): 4089-4095
    [74] Li L., Sheng Q. L., Zheng J. B., Zhang H. F., Facile and controllable preparation of glucose biosensor based on Prussian blue nanoparticles hybrid composites [J]. Bioelectrochemistry, 2008, 74(1):170-175
    [75] Huang Y. X., Zhang W. J., Xiao H., Li G. X., An electrochemical investigation of glucose oxidase at a CdS nanoparticles modified electrode [J]. Biosensors and Bioelectronics, 2005,21(5):817-821
    [76] Ianniello R. M., Lindsay T. J., Yacynych A. M, Differential pulse voltammetric study of direct electron transfer in glucose oxidase chemically modified graphite electrodes [J].Analytical Chemistry,1982,54(7): 1098-1101
    [77] Narasimhan K., Wingard L.B. Jr., Enhanced direct electron transport with glucose oxidase immobilized on (aminophenyl) boronic acid modified glassy carbon electrode [J].Analytical Chemistry, 1986, 58(14): 2984-2987
    [78] Jiang L., McNeil C. J., Cooper J. M., Direct electron transfer reactions of glucose oxidase immobilized at a self-assembled monolayer [J]. Journal of the Chemical Society, Chemical Communications, 1995,12: 1293-1295
    [79] 孙冬梅,蔡称心,邢巍,陆天虹,葡萄糖氧化酶在活性炭上的固定及直接电化学[J].无机化学学报,2005,(21)3:405-408
    [80] Deng C.Y., Chen J. H., Chen X. L., Xiao C. H., Nie L. H., Yao S. Z., Direct electrochemistry of glucose oxidase and biosensing for glucose based on boron-doped carbon nanotubes modified electrode [J]. Biosensors and Bioelectronics, 2008,23(8):1272-1277
    [81] Liu Q.,Lu X. B., Li J., Yao X., Li J. H., Direct electrochemistry of glucose oxidase and electrochemical biosensing of glucose on quantum dots/carbon nanotubes electrodes [J]. Biosensors and Bioelectronics, 2007,22(12):3203-3209
    [82] Galinski M., Lewandowski A., Stepniak I., Ionic liquids as electrolytes [J]. Electrochimica Acta, 2006,51(26): 5567-5580
    [83] Hagiwara R.,Ito Y., Room temperature ionic liquids of alkylimidazolium cations and fluoroanions [J].Journal of Fluorine Chemistry, 2000, 105(2): 221-227
    [84] Nishi N.,Imakura S.,Kakiuchi T.,Wide Electrochemical Window at the Interface between Water and a Hydrophobic Room-Temperature Ionic Liquid of Tetrakis[3,5-bis(Trifluoromethyl)phenyl]borate [J].Analytical Chemistry, 2006, 78(8): 2726-2731
    [85] Lang C. M., Kim K., Guerra L., Kohl P. A., Cation Electrochemical Stability in Chloroaluminate Ionic Liquids [J]. Journal of Physical Chemistry B, 2005, 109(41):19454-19462
    [86] Compton D. L., Laszlo J. A., Direct electrochemical reduction of hemin in imidazolium-based ionic liquids [J]. Journal of Electroanalytical Chemistry, 2002, 520(1-2): 71-78
    [87] Zhao F., Wu X., Wang M. K., Liu Y., Gao L. X., Dong S. J., Electrochemical and Bioelectrochemistry Properties of Room-Temperature Ionic Liquids and Carbon Composite Materials [J]. Analytical Chemistry, 2004, 76(17): 4960-4967
    [88] Li J. W., Yu J. J., Zhao F. Q., Zeng B. Z., Direct electrochemistry of glucose oxidase entrapped in nano gold particles-ionic liquid-N,N-dimethylformamide composite film on glassy carbon electrode and glucose sensing [J]. Analytica Chimica Acta, 2007,587(1): 33-40
    [89] Sun W., Wang D. D., Gao R. F., Jiao K., Direct electrochemistry and electrocatalysis of hemoglobin in sodium alginate film on a BMIMPF_6 modified carbon paste electrode [J]. Electrochemistry Communications, 2007,9(5): 1159-1164
    [90] Zhang Y. J., Shen Y. F., Han D. X., Wang Z. J., Song J. X., Li F., Niu L., Carbon nanotubes and glucose oxidase bionanocomposite bridged by ionic liquid-like unit: Preparation and electrochemical properties [J]. Biosensors and Bioelectronics, 2007,23(3): 438-443
    [91] Jia F., Shan C. S., Li F. H., Niu L., Carbon nanotube/gold nanoparticles/polyethylenimine functionalized-ionic liquid thin film composites for glucose biosensing [J]. Biosensors and Bioelectronics, 2008,24(4): 951-956
    [92] Tinoco I., Sauer K., Wang J. C., Physical Chemistry: Principles and Applications in Biological Sciences [M]. Prentice-Hall, Englewood Cliffs, N. J. 1978: 606
    [93] Ju H. X., Liu S. Q., Ge B. X., Lisdat F., Scheller F. W., Electrochemistry of cytochrome c immobilized on colloidal gold modified carbon paste electrodes and its electrocatalytic activity [J]. Electroanalysis, 2002, 14(2): 141-147
    [94] Liu, S. Q., Ju, H. X., Renewable reagentless hydrogen peroxide sensor based on direct electron transfer of horseradish peroxidase immobilized on colloidal gold-modified electrode [J]. Analytical Biochemistry, 2002,307(1): 110-116
    [95] Liu S. Q., Ju H. X., Reagentless glucose biosensor based on direct electron transfer of glucose oxidase immobilized on colloidal gold modified carbon paste electrode [J]. Biosensors and Bioelectronics, 2003, 19(3): 177-183
    [96] Liu Y., Wang M. K., Zhao F., Xu Z. A, Dong S. J., The direct electron transfer of glucose oxidase and glucose biosensor based on carbon nanotubes/chitosan matrix [J]. Biosensors and Bioelectronics, 2005, 21(6): 984-988
    [97] Cai C. X., Chen J., Direct electron transfer of glucose oxidase promoted by carbon nanotubes [J]. Analytical Biochemistry, 2004, 332(1): 75-83
    
    [98] Bard A. J. (Ed.), Electroanalytical Chemistry [M]. Marcel Dekker: New York, 1982: 53-157
    [99] Xu J. Z., Zhu J. J., Wu Q., Hu Z., Chen H. Y., Direct electron transfer between glucose oxidase and multi-walled carbon nanotubes [J]. Chinese Journal of Chemistry, 2003,21(8): 1088-1091
    [100] Zhao S., Zhang K., Bai Y., Yang W.W., Sun C. Q., Glucose oxidase/colloidal gold nanoparticles immobilized in Nafion film on glassy carbon electrode: Direct electron transfer and electrocatalysis [J]. Bioelectrochemistry, 2006,69(2): 158-163
    [101] Xu H., Malladi K., Wang C. L., Kulinsky L., Song M. J., Madou M., Carbon post-microarrays for glucose sensors [J]. Biosensors and Bioelectronics, 2008, 23(11): 1637-1644
    [102] Zuo S. H., Teng Y. J., Yuan H. H., Lan M. B., Direct electrochemistry of glucose oxidase on screen-printed electrodes through one-step enzyme immobilization process with silica sol-gel/polyvinyl alcohol hybrid film [J]. Sensors and Actuators, B: Chemical, 2008, B 133(2): 555-560
    [103] Wei W. Z., Zhai X. R.,Zeng J. X., Gao Y. P., Gong S. G., New amperometric glucose biosensor by entrapping glucose oxidase into chitosan/nanoporous ZrO_2/multiwalled carbon nanotubes nanocomposite film [J]. Journal of Central South University of Technology (English Edition), 2007,14(1):73-77
    [104] 段大雪,楚霞,碳纳米管-铂纳米颗粒修饰金电极用于葡萄糖生物传感器的研究[J].化学传感器,2006,26(2):29-33
    [105] 郑彦,李家涛,冷鹏,利用层层累积技术制备基于纳米碳管的葡萄糖生物传感器[J].化学分析计量,2008,17(2):60-63
    [106] 王璐,黄晓东,陈红飞,基于多壁碳纳米管修饰的葡萄糖生物传感器[J].安徽工程科技学院学报,2008,23(1):15-18
    [107] Kamin R. A., Wilson G. S., Rotating ring-disk enzyme electrode for biocatalysis kinetic studies and characterization of the immobilized enzyme layer [J]. Analytical Chemistry, 1980,52(8):1198-1205
    [108] Wang B. Q., Li B., Deng Q., Dong S. J., Amperometric glucose biosensor based on sol-gel organic-inorganic hybrid material [J]. Analytical chemistry, 1998,70(15):3170-3174
    [109] Vidal J. C, Garcia E., Castillo J. R., Electropolymerization of pyrrole and immobilization of glucose oxidase in a flow system: influence of the operating conditions on analytical performance [J].Biosensors and Bioelectronics, 1998,13(3-4): 371-382
    [110] Lvov Y. M., Lu Z. Q., Schenkman J. B., Zu X. L., Rusling J. F., Direct Electrochemistry of Myoglobin and Cytochrome p450cam in Alternate Polyion Layer-by-Layer Films with DNA and Poly(styrenesulfonate) [J]. Journal of the American Chemical Society, 1998,120(17): 4073-4080
    [111] Lehmann C, Wollenberger U., Brigelius-Flohe R., Scheller F. W., Bioelectrocatalysis by a selenoenzyme [J]. Journal of Electroanalytical Chemistry, 1998,455(1-2): 259-263
    [112] Gao Z. M, Chen J., Liu H., Cha C, Direct electrochemistry of hemoglobin and myoglobin at didodecyldimethylammonium bromide-modified powder microelectrode and application for electrochemical detection of nitric oxide [J]. Analytica Chimica Acta, 2008,607(1):30-36
    [113] Qiao Y. B., Jian F. F., Bai Q., Bioconjugation of zirconium undine monophosphate: Application to myoglobin direct electrochemistry [J]. Biosensors and Bioelectronics, 2008,23(8): 1244-1249
    [114] Wang Q. L., Lu G. X., Yang B. J., Myoglobin/Sol-Gel Film Modified Electrode: Direct Electrochemistry and Electrochemical Catalysis [J]. Langmuir, 2004,20(4): 1342-1347
    [115] Wang F., Hu S. F., Direct electron transfer of myoglobin within a new zwitterionic gemini surfactant film and its analytical application for H_2O_2 detection [J]. Colloids and Surfaces B: Biointerfaces,2008,63(2):262-268
    [116] Zhang Y. H., Chen X., Yang W. S., Direct electrochemistry and electrocatalysis of myoglobin immobilized in zirconium phosphate nanosheets film [J]. Sensors and Actuators B: Chemical, 2008, B 130(2):682-688
    [117] Du P., Liu S., Wu P., Cai C. X., Preparation and characterization of room temperature ionic liquid/single-walled carbon nanotube nanocomposites and their application to the direct electrochemistry of heme-containing proteins/enzymes [J]. Electrochimica Acta, 2007, 52(23):6534-6547
    [118] Liu H. H., Tian Z. Q., Lu Z. X., Zhang Z. L., Zhang M., Pang D. W., Direct electrochemistry and electrocatalysis of heme-proteins entrapped in agarose hydrogel films [J]. Biosensors and Bioelectronics, 2004,20(2): 294-304
    [119] Wang S. F., Chen T., Zhang Z. L., Pang D. W., Wong K. Y., Effects of hydrophilic room-temperature ionic liquid l-butyl-3-methylimidazolium tetrafluoroborate on direct electrochemistry and bioelectrocatalysis of heme proteins entrapped in agarose hydrogel films [J]. Electrochemistry Communications, 2007, 9(7):1709-1714
    [120] Ding S. F., Xu M. Q., Zhao G. C, Wei X. W., Direct electrochemical response of Myoglobin using a room temperature ionic liquid,1-(2-hydroxyethyl)-3-methyl imidazolium tetrafluoroborate,as supporting electrolyte [J].Electrochemistry Communications, 2007, 9(2): 216-220
    [121] Qiao K., Liu H. Y., Hu N. F., Layer-by-layer assembly of myoglobin and nonionic poly(ethylene glycol) through ion-dipole interaction: An electrochemical study [J]. Electrochimica Acta, 2008,53(14):4654-4662
    [122] Mukhopadhyay I., Aravinda C. L., Borissov D., Freyland W., Electrodeposition of Ti from TiCl4 in the ionic liquid 1-methyl-3-butylimidazolium bis(trifluoromethylsulfone) imide at room temperature:study on phase formation by in situ electrochemical scanning tunneling microscopy [J].Electrochimica Acta, 2005, 50(6): 1275-1281
    [123] Li M. C, Ma C. A., Liu B. Y., Jin Z. M., A novel electrolyte 1-ethylimidazolium trifluoroacetate used for electropolymerization of aniline [J]. Electrochemistry Communications, 2005,7(2):209-212
    [124] Yoshimoto N.,Shirai T., Morita M., A novel polymeric gel electrolyte systems containing magnesium salt with ionic liquid [J]. Electrochimica Acta,2005, 50(19): 3866-3871
    [125] Wang S. F., Chen T., Zhang Z. L.,Shen X. C, Lu Z. X., Pang D. W., Wong K.Y.,Direct Electrochemistry and Electrocatalysis of Heme Proteins Entrapped in Agarose Hydrogel Films in Room-Temperature Ionic Liquids [J]. Langmuir, 2005, 21(20): 9260-9266
    [126] Wang L., Wang E.K.,Direct electron transfer between cytochrome c and a gold nanoparticles modified electrode [J]. Electrochemistry Communications, 2004,6(1):49-54
    [127] Moghaddam A. B., Ganjali M. R., Dinarvandb R., Ahadi S., Saboury A. A., Myoglobin immobilization on electrodeposited nanometer-scale nickel oxide particles and direct voltammetry [J].Biophysical Chemistry, 2008,134(1-2):25-33
    [128] Dong S. J., Chu Q. H., Study on electrode process of myoglobin at a polymerized Toluidine Blue film electrode [J]. Chinese Journal of Chemistry, 1993,11(1):12-20
    [129] Xu Q., Bian X., Li L., Hu X., Sun M., Chen D., Wang Y., Glucose biosensor based on gold nanoparticle-catalyzed luminol electrochemiluminescence on a three-dimensional sol-gel network [J].Electrochemistry Communications, 2008,10(9):1250-1253
    [130] Zhang L., Tian D. B., Zhu J. J., Third generation biosensor based on myoglobin-TiO_2/MWCNTs modified glassy carbon electrode [J]. Chinese Chemical Letters, 2008, 19(8): 965-968
    [131] Zhao X. J., Mai Z. B., Kang X. H., Dai Z., Zou X. Y., Clay-chitosan-gold nanoparticle nanohybrid:Preparation and application for assembly and direct electrochemistry of myoglobin [J]. Electrochimica Acta,2008,53(14): 4732-4739
    [132] Dai Z., Xiao Y., Yu X. Z., Mai Z. B., Zhao X. J., Zou X. Y., Direct electrochemistry of myoglobin based on ionic liquid-clay composite films [J]. Biosensors and Bioelectronics,2009,24(6):1629-1634
    [133] Zhang Y., Zheng J. B., Direct electrochemistry and electrocatalysis of myoglobin immobilized in hyaluronic acid and room temperature ionic liquids composite film [J]. Electrochemistry Communications, 2008, 10(9): 1400-1403
    [134] 朱荣贵,韩吉林,陈洪渊,NADH在亚甲绿修饰石墨电极上的电催化氧化[J].化学学报,1995,16(1):35-36
    [135] 李根喜,廖向民,史海蓉,分析化学进展[M].南京:南京大学出版社,1994:722
    [136] 冶保献,方程,周性尧,血红蛋白在裸银电极上的光谱电化学研究[J].高等学校化学学报,1998,19(9):1405-1407
    [137] Topoglidis E., Astuti Y.,Durianx F., Gratzel M., Durrant J. R., Direct electrochemistry and nitric oxide interaction of heme proteins adsorbed on nanocrystalline tin oxide electrodes [J]. Langmuir,2003, 19(17): 6894-6900
    [138] Lu Q., Hu S. S., Pang D. W., He Z., Direct electrochemistry and electrocatalysis with hemoglobin in water-soluble quantum dots film on glassy carbon electrode [J]. Chemical Communications (Cambridge, England), 2005,20:2584-2585
    [139] Brown K.R., Fox A. P., Natan M. T., Morphology-dependent electrochemistry of cytochrome c at Au colloid-modified SnO_2 electrodes [J]. Journal of the American Chemical Society, 1996,118(5):1154-1157
    [140] Luo X. L.,Killard A. J., Smyth M. R., Reagentless glucose biosensor based on the direct electrochemistry of glucose oxidase on carbon nanotube-modified electrodes [J]. Electroanalysis, 2006,18(11): 1131-1134
    [141] Yu X., Chattopadhyay D., Galeska I.,Papadimitrakopoulos F., Rusling J. F., Peroxidase activity of enzymes bound to the ends of single-wall carbon nanotube forest electrodes [J]. Electrochemistry Communications, 2003,5(5): 408-411
    [142] Wang J. X., Li M. X., Shi Z. J., Li N. Q., Gu Z. N., Direct electrochemistry of cytochrome c at a glassy carbon electrode modified with single-wall carbon nanotubes [J]. Analytical Chemistry, 2002,74(9): 1993-1997
    [143] Cai C. X., Chen J., Direct electron transfer of redox proteins and enzymes promoted by carbon nanotube [J]. Electrochemistry, 2004,10(2):159-167
    [144] 李玉平,曹宏斌,张懿,血红蛋白在碳纳米管修饰碳糊电极上的直接电化学行为[J].物理化学学报,2005,21(2):187-191
    [145] Zhang F. H., Cho S. S., Yang S. H., Seo S. S., Cha G. S., Nam H., Gold nanoparticle-based mediatorless biosensor prepared on microporous electrode [J]. Electroanalysis, 2006,18(3):217-222
    [146] Xiao Y., Ju H. X., Chen H. Y., Hydrogen peroxide sensor based on horseradish peroxidase-labeled Au colloids immobilized on gold electrode surface by cystamine monolayer [J]. Analytics Chimica Acta,1999, 391(1):73-82
    [147] 李清文,高宏,黄昊,王义明,冯军,罗国安,血红蛋白与NO分子间相互作用的电化学表征[J].高等学校化学学报,2001,22(8):1373-1375
    [148] Zheng W., Zheng Y. F., Jin K. W., Wang N., Direct electrochemistry and electrocatalysis of hemoglobin immobilized in TiO2 nanotube films [J]. Talanta,2008,74(5):1414-1419
    [149] Zhang C. L., Liu M. C, Li P., Xian Y. Z., Cheng Y. X., Zhang F. F., Wang X. L.,Jin L.T., Fabrication of ZnO nanorod modified electrode and its application to the direct electrochemical determination of hemoglobin and cytochrome c [J]. Chinese Journal of Chemistry, 2005,23(2):144-148
    [150] 张成林,刘梅川,李平,张莉,程欲晓,金利通,纳米聚硫堇修饰电极的制备及其用于检测血红蛋白的研究[J].2004,24(4):17-24
    [151] 李平,刘梅川,张成林,程欲晓,张莉,金利通,聚乙烯吡咯烷酮/硫化镉量子点修饰电极的制备及其对血红蛋白的测定研究[J].化学学报,2005,63(12):1075-1080
    [152] Salimi A., Hallaj R., Soltanian S., Immobilization of hemoglobin on electrodeposited cobalt-oxide nanoparticles: Direct voltammetry and electrocatalytic activity [J]. Biophysical Chemistry, 2007,130(3):122-131
    [153] Buzzeo M. C, Hardace C., Compton R. G., Use of Room Temperature Ionic Liquids in Gas Sensor Design [J]. Analytical Chemistry, 2004, 76(15): 4583-4588
    [154] Hiroyuki O.,Electrochemical Aspects of Ionic Liquids [M]. Hoboken, New Jersey: John Wiley&Sons, Inc, 2005
    [155] Buzzeo M. C., Evans R. G., Comoton R. G., Non-haloaluminate room-temperature ionic liquids in electrochemistry-a review [J]. ChemPhysChem, 2004, 5(8): 1106-1120
    [156] Liu Y., Shi L. H., Wang M. J., Li Z. Y., Liu H. T., Li J. H., A novel room temperature ionic liquid sol-gel matrix for amperometric biosensor application [J]. Green Chemistry, 2005, 7(9): 655-658
    [157] Turner M. B., Spear S. K., Holbrey J. D., Rogers R. D., Production of Bioactive Cellulose Films Reconstituted from Ionic Liquids [J]. Biomacromolecules, 2004, 5(4): 1379-1384
    [158] Sun H., Direct electrochemical and electrocatalytic properties of heme protein immobilized on ionic liquid-clay-nanoparticle-composite films [J]. Journal of Porous Materials, 2006, 13(3/4): 393-397
    [159] Ding S. F., Zhao G. C., Wang L., Li P. H., Immobilization of Hemoglobin and a Room Temperature IonicLiquid, 1-(3-Aminopropyl)-3-Methylimidazolium Bromide, on a Basal Plane Graphite Electrode for Preparation of a Novel Oxygen Biosensor [J]. 淮北煤炭师范学院学报, 2008, 29(1): 34-37
    [160] Zheng W., Li J., Zheng Y. F., An amperometric biosensor based on hemoglobin immobilized in poly(.vepsiln.-caprolactone) film and its application [J]. Biosensors and Bioelectronics, 2008, 23(10): 1562-1566
    [161] Zeng X. D., Wei W. Z., Li X. F., Zeng J. X., Wu L., Direct electrochemistry and electrocatalysis of hemoglobin entrapped in semi-interpenetrating polymer network hydrogel based on polyacrylamide and chitosan [J]. Bioelectrochemistry, 2007, 71(2): 135-141
    [162] Zhu J. T., Shi C. G., Xu J. J., Chen H. Y., Direct electrochemistry and electrocatalysis of hemoglobin on undoped nanocrystalline diamond modified glassy carbon electrode [J]. Bioelectrochemistry, 2007, 71(2): 243-248
    [163] Bond A. M., Modern Polarographic Methods in Analytical Chemistry [M]. Marcel Dekker: New York, 1980: 27
    [164] Yamazaki I., Araiso T., Hayashi Y., Yamada H., Makino R., Analysis of acid-base properties of peroxidase and myoglobin [J]. Advances in Biophysics, 1978, 11,249-281
    [165] Wang Q. L., Lu G. X., Yang B. J., Direct electrochemistry and electrocatalysis of hemoglobin immobilized on carbon paste electrode by silica sol-gel film [J]. Biosensors and Bioelectronics, 2004, 19(10): 1269-127
    [166] Wang H. Y., Guan R., Fan C. H., Zhu D. X., Li G. X., A hydrogen peroxide biosensor based on the bioelectrocatalysis of hemoglobin incorporated in a kieselguhr film [J]. Sensors and Actuators B: Chemical, 2002, B 84(2-3): 214-218
    [167] Feng J. J., Zhao G., Xu J. J., Chen H. Y., Direct electrochemistry and electrocatalysis of heme proteins immobilized on gold nanoparticles stabilized by chitosan [J]. Analytical Biochemistry, 2005, 342(2): 280-286
    [168] Neff V. D., J. Electrochem. Soc., Electrochemical oxidation and reduction of thin films of prussian blue [J]. Journal of the Electrochemical Society, 1978, 125(6): 886-887
    [169] Itaya K., Akahoshi H., Toshima S., Electrochemistry of Prussian blue-modified electrodes: an electrochemical preparation method [J]. Journal of the Electrochemical Society, 1982, 129(7): 1498-500
    [170] Bustos E., Manriquez J., Orozco G., Godinez L. A., Preparation, Characterization, and Electrocatalytic Activity of Surface Anchored, Prussian Blue Containing Starburst PAMAM Dendrimers on Gold Electrodes [J]. Langmuir, 2005, 21(7): 3013-3021
    [171] Ricci F., Palleschi G., Sensor and biosensor preparation, optimisation and applications of Prussian Blue modified electrodes [J]. Biosensors and Bioelectronics, 2005,21(3): 389-407
    [172] Karyakin A. A., Prussian Blue and its analogues: electrochemistry and analytical applications [J]. Electroanalysis,2001, 13(10): 813-819
    [173] Koncki R., Composite Films of Prussian Blue and N-Substituted Polypyrroles: Fabrication and Application to Optical Determination of pH [J]. Analytical Chemistry, 1998, 70(13): 2544-2550
    [174] Yang R., Qian Z. B., Deng J. Q., Electrochemical deposition of Prussian blue from a single ferricyanide solution [J]. Journal of the Electrochemical Society, 1998,145(7): 2231-2236
    [175] Zhang D., Wang K., Sun D. C., Xia X. H., Chen H. Y., Ultrathin Layers of Densely Packed Prussian Blue Nanoclusters Prepared from a Ferricyanide Solution [J]. Chemistry of Materials, 2003, 15(22): 4163-4165
    [176] Abbaspour A., Kamyabi M. A., Electrochemical formation of Prussian blue films with a single ferricyanide solution on gold electrode [J]. Journal of Electroanalytical Chemistry, 2005, 584(2): 117-123
    [177] Tsai M.-C., Chen P.-Y., Voltammetric study and electrochemical detection of hexavalent chromium at gold nanoparticle-electrodeposited indium tinoxide (ITO) electrodes in acidic media [J]. 2008, Talanta 76 (3): 533-539
    [1] Feng J. J., Xu J. J., Chen H. Y., Synergistic effect of zirconium phosphate and Au nanoparticles on direct electron transfer of hemoglobin on glassy carbon electrode [J]. Journal of Electroanalytical Chemistry, 2005,585(1): 44-50
    [2] Ge B., Scheller F. W., Lisdat F., Electrochemistry of immobilized CuZnSOD and FeSOD and their interaction with superoxide radicals [J]. Biosensors and Bioelectronics, 2003,18(2-3): 295-302
    [3] Tian Y., Mao L. Q.,Okajima T., Ohsaka T., Superoxide dismutase-based third-generation biosensor for superoxide anion [J]. Analytical Chemistry, 2002, 74(10): 2428-2434
    [4] Liu H. Y., Hu N. F., Heme protein-gluten films: voltammetric studies and their electrocatalytic properties [J]. Analytica Chimica Acta, 2003,481(1):91-99
    [5] Wu Y. H., Shen Q. C, Hu S. S., Direct electrochemistry and electrocatalysis of heme-proteins in regenerated silk fibroin film [J]. Analytica Chimica Acta,2006,558(1-2):179-186
    [6] Liu X. J., Shang L. B., Sun Z. Y., Li G. X., Direct electrochemistry of hemoglobin in dimethyldioctadecyl ammonium bromide film and its electrocatalysis to nitric oxide [J]. Journal of Biochemical and Biophysical Methods, 2005, 62(2):143-151
    [7] Zhou Y. L., Li Z., Hu N. F., Zeng Y. H., Rusling J. F., Layer-by-Layer Assembly of Ultrathin Films of Hemoglobin and Clay Nanoparticles with Electrochemical and Catalytic Activity [J]. Langmuir, 2002, 18(22): 8573-8579
    [8] Yan Y. M., Zheng W., Zhang M. N., Wang L., Su L., Mao L. Q., Bioelectrochemically functional nanohybrids through co-assembling of proteins and surfactants onto carbon nanotubes: Facilitated electron transfer of assembled proteins with enhanced Faradic response [J]. Langmuir, 2005, 21(14): 6560-6566
    [9] Shen L., Hu N. F., Electrostatic Adsorption of Heme Proteins Alternated with Polyamidoamine Dendrimers for Layer-by-layer Assembly of Electroactive Films [J]. Biomacromolecules, 2005, 6(3): 1475-1483
    [10] Welton T., Room-Temperature Ionic Liquids. Solvents for Synthesis and Catalysis [J]. Chemical Reviews (Washington, D. C), 1999, 99(8): 2071-2083
    [11] Mcfarlane D. R., Sun J., Golding J., Meakin P., Forsyth M, High conductivity molten salts based on the imide ion [J]. Electrochimica Acta, 2000,45(8-9): 1271-1278
    [12] Zhao F., Wu X., Wang M. K., Liu Y., Gao L. X., Dong S. J., Electrochemical and Bioelectrochemistry Properties of Room-Temperature Ionic Liquids and Carbon Composite Materials [J]. Analytical Chemistry, 2004, 76(17): 4960-4967
    [13] Li J. W., Yu J. J., Zhao F. Q., Zeng B. Z., Direct electrochemistry of glucose oxidase entrapped in nano gold particles-ionic liquid-N,N-dimethylformamide composite film on glassy carbon electrode and glucose sensing [J]. Analytica Chimica Acta, 2007, 587(1): 33-40
    [14] Sun W., Wang D. D., Gao R. F., Jiao K., Direct electrochemistry and electrocatalysis of hemoglobin in sodium alginate film on a BMIMPF_6 modified carbon paste electrode [J]. Electrochemistry Communications, 2007,9(5): 1159-1164
    [15] Safavi A., Maleki N., Moradlou O., Sorouri M., Direct electrochemistry of hemoglobin and its electrocatalytic effect based on its direct immobilization on carbon ionic liquid electrode [J]. Electrochemistry Communications, 2008, 10(3): 420-423
    [16] Musameh M. M., Kachoosangi R. T., Xiao L., Russellc A., Compton R. G., Ionic liquid-carbon composite glucose biosensor [J]. Biosensors and Bioelectronics, 2008, 24(1): 87-92
    [17] Wu X. M., Du P., Wu P., Cai C. X., Effects of 1-butyl-3-methylimidazolium tetrafluoroborate on the oxidation of glucose catalyzed by glucose oxidase [J]. Electrochimica Acta, 2008, 54(2): 738-743
    [18] Compton D. L., Laszlo J. A., Direct electrochemical reduction of hemin in imidazolium-based ionic liquids [J]. Journal of Electroanalytical Chemistry, 2002, 520(1-2): 71-78
    [19] Compton D. L., Laszlo J. A., Loss of cytochrome c Fe(III)/Fe(II) redox couple in ionic liquids [J]. Journal of Electroanalytical Chemistry, 2003, 553, 187-190
    [20] Wang S. F., Chen T., Zhang Z. L., Pang D. W., Activity and stability of horseradish peroxidase in hydrophilic room temperature ionic liquid and its application in non-aqueous biosensing [J]. Electrochemistry Communications, 2007,9(6): 1337-1342
    [21] Wang S. F., Chen T., Zhang Z. L., Shen X. C., Lu Z. X., Pang D. W., Wong K. Y., Direct Electrochemistry and Electrocatalysis of Heme Proteins Entrapped in Agarose Hydrogel Films in Room-Temperature Ionic Liquids [J]. Langmuir, 2005,21(20): 9260-9266
    [22] Xiong H. Y., Chen T., Zhang X. H., Wang S. F., Electrochemical property and analysis application of biosensors in miscible nonaqueous media-Room-temperature ionic liquid [J]. Electrochemistry Communications, 2007, 9(7): 1648-1654
    [23] Xiong H. Y., Chen T., Zhang X. H., Wang S. F., High performance and stability of a hemoglobin-biosensor based on an ionic liquid as nonaqueous media for hydrogen peroxide monitoring [J]. Electrochemistry Communications, 2007,9(11):2671-2675
    [24] Ding S. F., Xu M. Q., Zhao G. C, Wei X. W., Direct electrochemical response of Myoglobin using a room temperature ionic liquid, l-(2-hydroxyethyl)-3-methyl imidazolium tetrafluoroborate, as supporting electrolyte [J]. Electrochemistry Communications, 2007,9(2):216-220
    [25] Turner M. B., Spear S. K., Holbrey J. D., Rogers R.D., Production of Bioactive Cellulose Films Reconstituted from Ionic Liquids[J]. Biomacromolecules, 2004,5(4): 1379-1384
    [26] Liu Y., Shi L. H., Wang M. J., Li Z. Y., Liu H. T., Li J. H., A novel room temperature ionic liquid sol-gel matrix for amperometric biosensor application [J]. Green Chemistry, 2005, 7(9): 655-658
    [27] Lu X. B., Zhang Q., Zhang L., Li J. H., Direct electron transfer of horseradish peroxidase and its biosensor based on chitosan and room temperature ionic liquid [J]. Electrochemistry Communications,2006, 8(5): 874-878
    [28] Chen H. J., Wang Y. L., Liu Y., Wang Y. Z., Qi L., Dong S. J., Direct electrochemistry and electrocatalysis of horseradish peroxidase immobilized in Nafion-RTIL composite film [J].Electrochemistry Communications, 2007,9(3): 469-474
    [29] Liu H. T., He P., Li Z. Y., Sun C. Y., Shi L. H, Liu Y., Zhu G. Y., Li J. H., An ionic liquid-type carbon paste electrode and its polyoxometalate-modified properties [J]. Electrochemistry Communications, 2005, 7(12): 1357-1363
    [30] Mandal P. K., Sarkar M., Samanta A. Excitation-wavelength-dependent fluorescence behavior of some dipolar molecules in room-temperature ionic liquids, J. Phys. Chem. A, 2004, 108(42):9048-9053
    [31] 潘春跃,徐先华,刘清泉,室温熔盐溴化丁基吡啶和氟硼酸根丁基吡啶的制备及性能研究[J].精细化工中间体,2002,32(5):22-23
    [32] 刘波平,周妍,罗香,秦华俊,曹树稳,离子液体溴代1-丁基-3-甲基咪唑盐合成的红外光谱分析[J].现代测量与实验室管理,2007,2,13-14
    [33] Guéchot J., Edrief S., Lasnier E., Küper R., Automated assay of hyaluronic acid in serum Dosage sérique automatisé de l'acide hyaluronique [J]. Immuno-analyse and Biologie Spécialiséd, 2008, 23:148-152
    [34] Choi K.Y., Lee S., Park K., Kim K., Park J. H., Kwon I. C, Jeong S. Y., Preparation and characterization of hyaluronic acid-based hydrogel nanoparticles [J]. Journal of Physics and Chemistry of Solids,2007,69(5-6): 1591-1595
    [35] Lapcik L. J., Lapcik L., De Smedt S., Demeester J., Chabrecek P., Hyaluronan: preparation, structure,properties, and applications [J]. Chemical Reviews (Washington, D. C), 1998,98(8): 2663-2683
    [36] Liu H. Y., Hu N. F., Interaction between Myoglobin and Hyaluronic Acid in Their Layer-by-Layer Assembly: Quartz Crystal Microbalance and Cyclic Voltammetry Studies [J]. Journal of Physical Chemistry B, 2006,110(29): 14494-14502
    [37] Zhang Y., Zheng J. B., Direct electrochemistry and electrocatalysis of myoglobin immobilized in hyaluronic acid and room temperature ionic liquids composite film [J]. Electrochemistry Communications 2008, 10(9): 1400-1403
    [38] Jia N. Q., Zhou Q., Liu L., Yan M. M., Jiang Z. Y., Direct electrochemistry and electrocatalysis of horseradish peroxidase immobilized in sol-gel-derived tin oxide/gelatin composite films [J]. Journal of Eiectroanalytical Chemistry, 2005, 580(2):213-221
    [39] George P., Hanania C, Spectrophotometric study of ionizations in methemoglobin [J]. Biochemical Journal, 1953,55,236-243
    [40] Wang L., Wang E. K., Direct electron transfer between cytochrome c and a gold nanoparticles modified electrode [J]. Electrochemistry Communications, 2004,6(1): 49-54
    [41] Feng J. J., Zhao G., Xu J. J., Chen H. Y., Direct electrochemistry and electrocatalysis of heme proteins immobilized on gold nanoparticles stabilized by chitosan [J]. Analytical Biochemistry, 2005, 342(2): 280-286
    
    [42] Bard A. J., Electroanalytical Chemistry [M]. Marcel Dekker: New York, 1982: 53-157
    [43] Laviron E. The use of linear potential sweep voltammetry and of a.c. voltammetry for the study of the surface electrochemical reaction of strongly adsorbed systems and of redox modified electrodes [J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1979,100,263-270
    [44] Laviron E., General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems [J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1979, 101(1): 19-28
    [45] Pournaghi-Azar M. H., Sabzi R., Electrochemical characteristics of a cobalt pentacyanonitrosylferrate film on a modified glassy carbon electrode and its catalytic effect on the electrooxidation of hydrazine [J]. Journal of Electroanalytical Chemistry, 2003, 543(2): 115-125
    [46] Lvov Y. M, Lu Z. Q., Schenkman J. B., Zu X. L., Rusling J. F., Direct Electrochemistry of Myoglobin and Cytochrome p450cam in Alternate Polyion Layer-by-Layer Films with DNA and Poly(styrenesulfonate) [J]. Journal of the American Chemical Society, 1998, 120(17): 4073-4080
    [47] Lehmann C., Wollenberger U., Brigelius-Flohe R., Scheller F. W., Bioelectrocatalysis by a selenoenzyme [J]. Journal of Electroanalytical Chemistry, 1998,455(1-2): 259-263
    [48] Gao Z. M., Chen J., Liu H., Cha C.,Direct electrochemistry of hemoglobin and myoglobin at didodecyldimethylammonium bromide-modified powder microelectrode and application for electrochemical detection of nitric oxide [J]. Analytica chimica acta, 2008,607(1): 30-36
    [49] Qiao Y. B., Jian F. F., Bai Q., Bioconjugation of zirconium uridine monophosphate: Application to myoglobin direct electrochemistry [J]. Biosensors and Bioelectronics, 2008,23(8): 1244-1249
    [50] Wang Q. L., Lu G. X., Yang B. J., Myoglobin/Sol-Gel Film Modified Electrode: Direct Electrochemistry and Electrochemical Catalysis [J]. Langmuir, 2004,20(4): 1342-1347
    [51] Wang F., Hu S. F., Direct electron transfer of myoglobin within a new zwitterionic gemini surfactant film and its analytical application for H_2O_2 detection [J]. Colloids and Surfaces B: Biointerfaces, 2008, 63(2): 262-268
    [52] Zhang Y. H., Chen X., Yang W. S., Direct electrochemistry and electrocatalysis of myoglobin immobilized in zirconium phosphate nanosheets film [J]. Sensors and Actuators B: Chemical, 2008, B 130(2): 682-688
    [53] Du P., Liu S., Wu P., Cai C.X. , Preparation and characterization of room temperature ionic liquid/single-walled carbon nanotube nanocomposites and their application to the direct electrochemistry of heme-containing proteins/enzymes [J]. Electrochimica Acta, 2007, 52(23): 6534-6547
    [54] Liu H. H., Tian Z. Q., Lu Z. X., Zhang Z. L., Zhang M., Pang D. W, Direct electrochemistry and electrocatalysis of heme-proteins entrapped in agarose hydrogel films [J]. Biosensors and Bioelectronics, 2004, 20(2): 294-304
    [55] Wang S. F., Chen T., Zhang Z. L., Pang D. W., Wong K. Y., Effects of hydrophilic room-temperature ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate on direct electrochemistry and bioelectrocatalysis of heme proteins entrapped in agarose hydrogel films [J]. Electrochemistry Communications, 2007, 9(7): 1709-1714
    [56] Qiao K., Liu H. Y., Hu N. F., Layer-by-layer assembly of myoglobin and nonionic poly(ethylene glycol) through ion-dipole interaction: An electrochemical study [J]. Electrochimica Acta, 2008, 53(14): 4654-4662
    [57] Liu S. Q., Ju H. X., Electrocatalysis via direct electrochemistry of myoglobin immobilized on colloidal gold nanoparticles [J]. Electroanalysis, 2003, 15(18): 1488-1493
    [58] Kamin R. A., Wilson G. S., Rotating ring-disk enzyme electrode for biocatalysis kinetic studies and characterization of the immobilized enzyme layer [J]. Analytical Chemistry, 1980, 52(8): 1198-1205
    [59] Cai C. X., Chen J., Direct electron transfer of glucose oxidase promoted by carbon nanotubes [J]. Analytical Biochemistry, 2004,332(1): 75-83
    [60] Davis J. J., Coles R. J., Hill H. A. O., Protein electrochemistry at carbon nanotube electrodes [J]. Journal of Electroanalytical Chemistry, 1997,440(1-2): 279-282
    [61] Sun Y. Y., Yan F., Yang W. S., Sun C. Q., Multilayered construction of glucose oxidase and silica nanoparticles on Au electrodes based on layer-by-layer covalent attachment [J]. Biomaterials, 2006, 27(21): 4042-4049
    [62] Salimi A., Sharifi E., Noorbakhsh A., Soltanian S., Immobilization of glucose oxidase on electrodeposited nickel oxide nanoparticles: Direct electron transfer and electrocatalytic activity. Biosensors and Bioelectronics, 2007,22(12): 3146-3153
    [63] Liu Y., Wang M. K., Zhao F., Xu Z. A, Dong S. J., The direct electron transfer of glucose oxidase and glucose biosensor based on carbon nanotubes/chitosan matrix [J]. Biosensors and Bioelectronics, 2005, 21(6): 984-988
    [64] Liu Q., Lu X. B., Li J., Yao X., Li J. H., Direct electrochemistry of glucose oxidase and electrochemical biosensing of glucose on quantum dots/carbon nanotubes electrodes [J]. Biosensors and Bioelectronics, 2007,22(12): 3203-3209
    [65] Salimi A., Compton R. J., Hallaj R., Glucose biosensor prepared by glucose oxidase encapsulated sol-gel and carbon-nanotube-modified basal plane pyrolytic graphite electrode [J]. Analytical Biochemistry, 2004, 333(1): 49-56
    [66] Deng C. Y., Chen J. H., Chen X. L., Xiao C. H., Nie L., Yao S. Z., Direct electrochemistry of glucose oxidase and biosensing for glucose based on boron-doped carbon nanotubes modified electrode [J].Biosensors and bioelectronics, 2008,23(8): 1272-1277
    [67] Ma L., Tian Y. N., Rong Z. J., Direct electrochemistry of hemoglobin in the hyaluronic acid films [J]. Journal of Biochemical and Biophysical Methods, 2007,70(4): 657-662
    [68] Gao R. F., Shangguan X. D., Qiao G. J., Zheng J. B., Direct electrochemistry of hemoglobin and its electrocatalysis based on hyaluronic acid and room temperature ionic liquid, Electroanalysis, 2008, 20(23): 2537-2542
    
    [69] Stoscheck C. M., Quantitation of protein [J]. Methods in enzymology, 1990, 182,50-68
    [70] Xue M. H., Xu Q., Zhou M., Zhu J. J., In situ immobilization of glucose oxidase in chitosan-gold nanoparticle hybrid film on Prussian Blue modified electrode for high-sensitivity glucose detection [J]. Electrochemistry Communications, 2006, 8(9): 1468-1474
    [71] Nadzhafova O., Etienne M., Walcarius A., Direct electrochemistry of hemoglobin and glucose oxidase in electrodeposited sol-gel silica thin films on glassy carbon [J]. Electrochemistry Communications, 2007,9(5): 1189-1195
    [72] Liu S. Q., Ju H. X., Reagentless glucose biosensor based on direct electron transfer of glucose oxidase immobilized on colloidal gold modified carbon paste electrode [J]. Biosensors and Bioelectronics, 2003, 19(3): 177-183
    [73] Shu F. R., Wilson G. S., Rotating ring-disk enzyme electrode for surface catalysis studies [J]. Analytical Chemistry, 1976,48(12): 1679-86
    [74] Sheng Q. L., Shen Y., Zhang H. F., Zheng J. B., Direct electrochemistry of glucose oxidase immobilized on chitosan-gold nanoparticle composite film on glassy carbon electrodes and its biosensing application [J]. Chinese Journal of Chemistry, 2008,26(7): 1244-1250
    [75] Zhao Z. W., Chen X. J., Tay B. K., Chen J. S., Han Z. J., Khor K. A., A novel amperometric biosensor based on ZnO:Co nanoclusters for biosensing glucose [J]. Biosensors and Bioelectronics, 2007,23(1): 135-139
    [76] Rogers M. J., Brandt K. G., Interaction of D-glucal with Aspergillus niger glucose oxidase [J]. Biochemistry, 1971, 10(25): 4624-4630
    [77] Amine A., Kauffmann J. M., Guilbault G. G., Bacha S., Characterization of mixed enzyme mediator arbon paste electrodes [J]. Analytical Letters, 1993,26(7): 1281-1299
    [78] Vidal J. C., Garcia E., Castillo J. R., Electropolymerization of pyrrole and immobilization of glucose oxidase in a flow system: influence of the operating conditions on analytical performance [J]. Biosensors and bioelectronics, 1998, 13(3-4): 371-382
    [79] Hurdis E. C., Romeyn H. J., Accuracy of determination of hydrogen peroxide by cerate oxidimetry [J]. Analytical Chemistry, 1954,26, 320-325
    [80] Matsubara C., Kawamoto N., Takamura K., Oxo[5,10,15,20-tetra(4-pyridyl)porphyrinato]titanium(IV): an ultrahigh-sensitive spectrophotometric reagent for hydrogen peroxide [J]. Analyst, 1992, 117(11): 1781-1784
    [81] Nakashima K., Maki K., Kawaguchi S., Akiyama S., Tsukamoto Y., Imai K., Peroxyoxalate chemiluminescence assay of hydrogen peroxide and glucose using 2,4,6,8- tetrathiomorpholino -pyrimido [5,4-d]-pyrimidine as a fluorescent component [J]. Analytical Sciences, 1991, 7(5): 709-713
    [82] Xiao Y., Ju H. X., Chen H. Y., A reagentless hydrogen peroxide sensor based on incorporation of horseradish peroxidase in poly (thionine) film on a monolayer modified electrode [J]. Analytica Chimica Acta, 1999, 391(3): 299-306
    [83] Zhang L., Zhang Q., Lu X. B., Li J. H., Direct electrochemistry and electrocatalysis based on film of horseradish peroxidase intercalated into layered titanate nano-sheets [J]. Biosensors and Bioelectronics, 2007,23(1): 102-106
    [84] Liu S. Q., Ju H. X., Renewable reagentless hydrogen peroxide sensor based on direct electron transfer of horseradish peroxidase immobilized on colloidal gold-modified electrode [J]. Analytical Biochemistry, 2002, 307(1): 110-116
    [85] Liu Y., Lei J. P., Ju H. X., Amperometric sensor for hydrogen peroxide based on electric wire composed of horseradish peroxidase and toluidine blue-multiwalled carbon nanotubes nanocomposite [J]. Talanta, 2008, 74(4): 965-970
    [86] Yang X. S., Chen X., Yang L., Yang W. S., Direct electrochemistry and electrocatalysis of horseradish peroxidase in α-zirconium phosphate nanosheet film [J]. Bioelectrochemistry, 2008,74(1): 90-95
    [87] Yang X. S., Chen X., Zhang X., Yang W.S., Evans D. G., Direct electrochemistry and electrocatalysis with horseradish peroxidase immobilized in polyquaternium-manganese oxide nanosheet nanocomposite films [J]. Sensors and Actuators B: Chemical, 2008, B 134(1): 182-188
    [88] Chen X., Fu C. L., Wang Y., Yang W.S., Evans D. G., Direct electrochemistry and electrocatalysis based on a film of horseradish peroxidase intercalated into Ni-Al layered double hydroxide nanosheets [J]. Biosensors and Bioelectronics, 2008, 24(3): 356-361
    [89] Cao Z. J., Jiang X. Q., Xie Q. J., Yao S. Z., A third-generation hydrogen peroxide biosensor based on horseradish peroxidase immobilized in a tetrathiafulvalene-tetracyanoquinodimethane/multiwalled carbon nanotubes film [J]. Biosensors and Bioelectronics, 2008,24(2): 222-227
    [90] Li W. J., Yuan R., Chai Y. Q., Zhou L., Chen S. H.,Li N., Immobilization of horseradish peroxidase on chitosan/silica sol-gel hybrid membranes for the preparation of hydrogen peroxide biosensor [J].Journal of Biochemical and Biophysical Methods, 2008, 70(6): 830-837
    [91] Xu Q., Zhu J. J., Hu X. Y., Ordered mesoporous polyaniline film as a new matrix for enzyme immobilization and biosensor construction [J]. Analytica Chimica Acta, 2007,597(1):151-156
    [92] Kong Y. T., Boopathi M., Shim, Y. B., Direct electrochemistry of horseradish peroxidase bonded on a conducting polymer modified glassy carbon electrode [J]. Biosensors and Bioelectronics, 2003, 19(3):227-232
    [93] Huang R., Hu N. F., Direct voltammetry and electrochemical catalysis with horseradish peroxidase in polyacrylamide hydrogel films [J]. Biophysical Chemistry, 2003,104(1): 199-208
    [94] Song Y. H., Wang L., Ren C. B., Zhu G. Y., Li Z., A novel hydrogen peroxide sensor based on horseradish peroxidase immobilized in DNA films on a gold electrode [J}. Sensors and Actuators B:Chemical, 2006, B 114(2): 1001-1006
    [95] Tang J. L., Wang B. Q., Wu Z. Y., Han X. J., Dong S. J., Wang E. K., Lipid membrane immobilized horseradish peroxidase biosensor for amperometric determination of hydrogen peroxide [J].Biosensors and Bioelectronics, 2003,18(7): 867-872
    [96] Yi X., Ju H. X., Chen H. Y., Direct Electrochemistry of Horseradish Peroxidase Immobilized on a Colloid/Cysteamine-Modified Gold Electrode [J]. Analytical Biochemistry, 2000,278(1): 22-28
    [97] Wang B., Zhang J. J., Pan Z. Y., Tao X. Q., Wang H. S., A novel hydrogen peroxide sensor based on the direct electron transfer of horseradish peroxidase immobilized on silica-hydroxyapatite hybrid film[J].Biosensors and Bioelectronics, 2009,24(5):1141-1145
    [98] Kafi A. K. M., Wu G. S., Chen A., A novel hydrogen peroxide biosensor based on the immobilization of horseradish peroxidase onto Au-modified titanium dioxide nanotube arrays [J]. Biosensors and Bioelectronics, 2008,24(4): 566-571
    [99] ElKaoutit M, Naranjo-Rodriguez I., Dominguez M., Hemandez-Artiga M. P., Bellido-Milla D.,Hidalgo-Hidalgo de Cisneros J. L., A third-generation hydrogen peroxide biosensor based on Horseradish Peroxidase (HRP) enzyme immobilized in a Nafion-Sonogel-Carbon composite [J].Electrochimica Acta,2008,53(24):7131-7137
    [100] Liu C. Y., Hu J.M., Direct electrochemistry and electrocatalysis of horseradish peroxidase immobilized on L-glutathione self-assembled monolayers [J]. Chinese Chemical Letters, 2008, 19(8):955-958
    [101] Chen X., Li C. C, Liu Y. L., Du Z. F., Xu S. J., Li L. M., Zhang M., Wang T. H., Electrocatalytic activity of horseradish peroxidase/chitosan/carbon microsphere microbiocomposites to hydrogen peroxide [J]. Talanta,2008,77(1):37-41
    [102] Salomi B. S. B., Mitra C. K., Electrochemical studies on horseradish peroxidase covalently coupled with redox dyes [J]. Biosensors and Bioelectronics, 2007,22(8):1825-1829
    [103] Yan R., Zhao F.Q., Li J.W., Xiao F., Fan S. S., Zeng B. Z., Direct electrochemistry of horseradish peroxidase in gelatin-hydrophobic ionic liquid gel films [J]. Electrochimica Acta,2007, 52(26):7425-7431
    [104] Li J. W., Liu L.H., Xiao F., Gui Z., Yan R., Zhao F.Q., Hu L., Zeng B. Z., Direct electron transfer and electrocatalysis of horseradish peroxidase immobilized in gemini surfactant-ionic liquid composite film on glassy carbon electrode [J]. Journal of Electroanalytical Chemistry, 2008,613(1):51-57
    [105] Liu Y., Wang M., Li J., He P., Liu H. T., Li J. H., Highly active horseradish peroxidase immobilized in 1-butyl-3-methylimidazolium tetrafluoroborate room-temperature ionic liquid based sol-gel host materials [J]. Chemical Communications (Cambridge, United Kingdom), 2005, 13, 1778-1780
    [106]Xi F. N., Liu L. J., Wu Q., Lin X. F., One-step construction of biosensor based on chitosan-ionic liquid-horseradish peroxidase biocomposite formed by electrodeposition [J]. Biosensors and Bioelectronics, 2008,24(1): 29-34
    [107]Jansson P., Lindberg B., Sandford P. A., Structural studies of gellan gum, an extracellular polysaccharide elaborated by Pseudomonas elodea [J]. Carbohydrate Research, 1983,124(1): 135-139
    [108]Alupei I. C., Popa M., Bejenariu A., Vasiliu S., Alupei V., Composite membranes based on gellan and poly( N-vinylimidazole ). Synthesis and characterization [J]. European Polymer Journal, 2006, 42(4): 908-916
    [109] Lee K. Y., Shim J., Lee H. G., Mechanical properties of gellan and gelatin composite films [J]. Carbohydrate Polymers, 2004, 56(2): 251-254
    [110]Ashtaputre A. A., Shah A. K., Studies on the exopolysaccharide from Sphingomonas paucimobilis-GS1:Nutritional requirements and precursor-forming enzymes [J]. Current Microbiology, 1995, 31(4): 234-238
    [111] Sanderson G. R., Clark R. C., Gums and Stabilisers for the Food Industry [M]. Oxford University: UK, 1984: 201
    [112]Bajaj I. B., Survase S. A., Saudagar P. S., Singhal R. S., Gellan gum: Fermentative production, downstream processing and applications [J]. Food Technology and Biotechnology, 2007, 45(4): 341-354
    [113] Wen Y. L., Yang X. D., Hu G. H., Chen S. H., Jia N.Q., Direct electrochemistry and biocatalytic activity of hemoglobin entrapped into gellan gum and room temperature ionic liquid composite system [J]. Electrochimica Acta, 2008, 54(2): 744-748
    [114] Suarez P. A .Z., Dullius J. E. L., Einloft S., De Souza R. F., Dupont J., The use of new ionic liquids in two-phase catalytic hydrogenation reaction by rhodium complexes [J]. Polyhedron, 1996, 15(7): 1217-1219
    [115] Wu F. H., Xu J. J., Tian Y., Hu Z. C., Wang L. W., Xian Y. Z., Jin L. T., Direct electrochemistry of horseradish peroxidase on TiO_2 nanotube arrays via seeded-growth synthesis [J]. Biosensors and Bioelectronics, 2008,24(2): 198-203
    [116] Zhao Y. D., Zhang W. D., Chen H., Luo Q. M., Li S. F. Y., Direct electrochemistry of horseradish peroxidase at carbon nanotube powder microelectrode [J]. Sensors and Actuators B: Chemical, 2002, B 87(1): 168-172
    [117] Chen X., Peng X., Kong J., Deng J., Characterization of the direct electron transfer and bioelectrocatalysis of horseradish peroxidase in DNA film at pyrolytic graphite electrode [J]. Analytica Chimica Acta, 2000,412(1-2): 89-98
    [118] Bond A. M., Modern Polarographic Methods in Analytical Chemistry [M]. Marcel Dekker: New York, 1980
    [119] Chen H. J., Dong S. J., Direct electrochemistry and electrocatalysis of horseradish peroxidase immobilized in sol-gel-derived ceramic-carbon nanotube nanocomposite film [J]. Biosensors and Bioelectronics, 2007,22(8): 1811-1815
    [120] Li J., Tan S. N., Ge H. L., Silica sol-gel immobilized amperometric biosensor for hydrogen peroxide [J]. Analytica Chimica Acta, 1996, 335(1-2): 137-145
    [121] Zhang R. Y., Wang X. M., Shiu K. K., Accelerated direct electrochemistry of hemoglobin based on hemoglobin-carbon nanotube (Hb-CNT) assembly [J]. Journal of Colloid and Interface Science, 2007,316(2): 517-522
    [122] He P. L., Hu N. F.,Electrocatalytic properties of heme proteins in layer-by-layer films assembled with SiO_2 nanoparticles [J]. Electroanalysis,2004,16(13-14):1122-1131

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700