用户名: 密码: 验证码:
槽道湍流中颗粒弥散及电除尘应用的数值研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
流体-颗粒两相湍流与国民经济中的能源、化工、水利、环境等工业密切相关,已逐渐成为两相流研究中的热点问题。作为两相流的一个分支,流体-颗粒两相流的基础研究在过去30年来取得了很多可喜的成果,但对于壁剪切湍流-颗粒两相流的研究仍不充分,而对于其在工业应用中的理论研究则更为有限。
     本文采用直接数值模拟方法研究了槽道两相湍流中颗粒的弥散特性,并以此为基础研究了电除尘器中颗粒物在空气流中的聚集规律。研究工作从单相槽道湍流模拟开始,分析了二维槽道湍流的湍流特性;进一步采用单向耦合模型,研究了Stokes数为0.01、1.3和11.4的三种颗粒在Re数为5500的槽道湍流中的弥散特性;最后结合工程实际,以静电除尘器为模型,研究了颗粒物在气流和电场耦合作用下的集尘规律。
     对二维单相槽道湍流进行了直接数值模拟,采用拟谱方法直接求解流体相控制方程,并改进了流向和展向速度谱分量的求解方法。分析了二维槽道湍流的统计结果和瞬时特征,计算结果与前人结果吻合较好。对近壁涡量和壁面剪应力的两点互相关结果表明在距离壁面为0.03和0.2处(基于槽道半宽)近壁涡对于壁面阻力的影响最为强烈,为壁面减阻研究提供了理论解释。通过流场中旋涡的演化和能量的传输研究结果表明,二维槽道湍流中存在明显的旋涡自组织特性,并伴随着能量从小尺度结构向大尺度结构传递的逆级串过程。
     颗粒-流体两相槽道湍流模拟的统计结果表明颗粒具有动量统计稳定性,但不具有浓度统计稳定性。颗粒达到动量稳定所需要的时间随着Stokes数的增大而增大,而浓度由槽道中心到壁面逐渐增大,说明颗粒具有壁面聚集效应。近壁区颗粒平均速度明显大于流体速度,且随着Stokes数而增大,说明颗粒惯性对颗粒平均运动的影响主要集中在近壁区域。颗粒的瞬时分布体现出了颗粒在全场中的富集特征,并且随着颗粒Stokes数的增大,富集现象愈明显。而对于离开壁面不同高度位置,颗粒富集程度随颗粒Stokes数的的变化规律并不相同。Stokes数为0.01的颗粒越靠近壁面位置,其局部富集程度越强,而Stokes数为1.3和11.4的颗粒,其局部富集程度在距离壁面高度为0.4和0.8之间最强。
     在颗粒-流体两相槽道湍流模型中施加适当外加电场,以模拟静电除尘器中颗粒物在气流和电场耦合作用下的弥散特性。颗粒的瞬时分布和轨迹曲线表明在相同颗粒Stokes数下,颗粒壁面聚集程度随着外加电压的增大而增大;在相同外加电压下,颗粒壁面聚集程度随着Stokes数的增大而增大。颗粒横向扩散函数的计算结果进一步表明:在初始阶段,外加电压越大,颗粒横向扩散函数越大,颗粒横向运动越明显;同时横向扩散函数值随时间而逐渐减小,且外加电压越大,减小越快。颗粒数浓度的变化结果表明:在同一时刻,对于相同Stokes数的颗粒,外加电压越大,颗粒数浓度也越大,相应地集尘效率也越高;对于相同外加电压而言,颗粒Stokes数越大,颗粒数浓度也越大,相应地集尘效率同样也越高。
     上述研究有助于理解壁剪切湍流中的颗粒弥散规律,并为工程中静电除尘应用提供指导,同时也为进一步研究多场耦合下的流体-颗粒两相流奠定基础。
Fluid-particle two-phase turbulent flows are closely related with energy, chemical industry, hydraulic engineering, environment, and other industrial fields in the national economy. In the past 30 years, a lot of research accomplishments on fluid-particle two-phase turbulent flows have been achieved, but the researches of fluid-particle two-phase flows in shear turbulence near wall are yet not sufficient, and the theoretical researches of which in engineering application are more limited.
     In the present paper the particle dispersion in two-phase turbulent channel-flow is studied with direct numerical simulation (DNS), on the base of which the aggregation properties of particles are analysed in electrostatic precipitator. The research begins with the simulation of a single-phase turbulent channel-flow, and the turbulence characteristics of two-dimensional (2-D) channel are analysed. Then the particle dispersion with particle Stokes number Stk of 0.01、1.3 and 11.4 is studied in fluid-particle two-phase turbulent channel-flow with Reynolds number (Re) of 5500. At last the aggregation properties and collection efficiency of particles in flows and electric field in electrostatic precipitator are studied.
     The 2-D turbulent channel-flow is simulated directly with pseudo-spectral method, and the solving methods of streamwise and spanwise velocities in the spectral space are improved, which saves the computing resource obviously. The statistical results of turbulence are consistent with the predecessor's achievements.The two-point correlation results of wall shear stress and near-wall vorticity indicate that the wall shear stress is associated with the near-wall vortices and the maximum correlation-value locations of the near-wall vortices are 0.03 and 1.2 (scaled with half-width of channel). The evolutionary process of vortices indicates that an obvious self-organization of vortices exists in 2-D turbulent channel-flow, and inverse energy transfer from small scale structures to larger ones is along with the self-organization process.
     The statistical results of fluid-particle two-phase turbulent channel-flow indicate that the velocity of particles is stable but the concentration is unstable. The concentration of particle increases gradually from the centre to the wall, which shows preferential concentration near wall in wall shear two-phase flows. The effection on mean motions of particle by particle inertia is mainly in the near-wall region. The laws of particle preferential concentration at different locations away from the wall are different. The particle preferential concentrations are more obvious with the location closer to the wall when the Stk is 0.01. When the Stk is 1.3 and 11.4, the particle preferential concentrations are most obvious at the location between 0.4 and 0.8 away from the wall.
     Based on the fluid-particle two-phase turbulent channel-flow, the particle dispersion and collection efficiency are studied with the fluid drag and electric field force in industrial electrostatic precipitator. The instantaneous distribution and motion curves of particle show that with the same Stk, the particle preferential concentration is more obvious near the wall with the increase of applied voltage. In the initial stage, when the applied voltage is larger, the value of transverse diffuse function is larger, and the transverse motion of particles is also more obvious. With the same Stk, the particle collection is more efficient if the applied voltage is larger; while with the same applied voltage, the particle collection is also more efficient if the Stk is larger.
     The research in this paper has contributed to understand the particle dispersion in wall shear turbulence and provides guidance for its application in industrial electrostatic precipitator, and laies the foundation of the study for the fluid-particle two-phase flows in coupled multi-physics in the future.
引文
[1]Dubief Y, Delcayre F. On coherent-vortex identification in turbulence. J. of Turbulence.2000,1(011).
    [2]Frisch U. Turbulence. Cambridge University Press:London.1995.
    [3]Pope SB. Turbulence flow. Cambridge University Press:London.2000.
    [4]Rogallo RS, Moin P. Numerical simulation of turbulent flow. Annu. Rev. Fluid Mech.1984.16:99-137
    [5]Choi H, Moin P, Kim J. Active turbulence control for drag reduction in wall-bounded flows. J. Fluid Mech.1994,262:75-110
    [6]Kim J, Moin P, Moser RD. Turbulence statistics in fully-developed channel flow at low Reynolds number. J. Fluid Mech.1987.177:133-166
    [7]李新亮.槽道湍流的直接数值模拟.博士学位论文,北京:中国科学院力学研究所,2000.
    [8]Batcherlor GK. Diffusion in a field of homogeneous turbulence. II:the relative motion of particles. Proc. Camb. Phil. Soc.1952,48:345-362
    [9]Crowe CT, Chung JN, Troutt TR. Particle missing in free sheer flows. Prog. Energy and Combust. Sci.1988,14(3):171-194
    [10]Eaton JK, Fessler JR. Preferential concentration of particles by turbulence. Int. J. of Multiphase Flow.1994,20:169-209
    [11]Marchello JM, Kelly JJ. Gas cleaning for air quality control. Marcel Dekker, New York,1975.
    [12]Beehea RM. Air pollution control technology, VanNostrand, New York,1979.
    [13]Yamamoto T, Velkoff HR. Electro hydrodynamics in an electrostatic precipitator. J. Fluid. Mech.1981,108:1-18
    [14]Choi BS, Fletcher CAJ. Turbulent particle dispersion in an electrostatic precipitator. Applied mathematical modeling.1998,22:1009-1021
    [15]Schoppa W, Hussain F. Coherent structure generation in near-wall turbulence. J. Fluid Mech.2002,453:57-108
    [16]Orszag SA, Patterson GS. Numerical simulation of three-dimensional homogeneous isotropic turbulence. Phy. Rev. Lett.1972,28(2):76-79
    [17]Rogallo RS. Numerical experiment in homogeneous turbulence.1981, NASA TM-81315
    [18]Spalart. PR.1986 Numerical simulation of boundary layers:part 1. Weak formulation and numerical method. NASA TM-88222
    [19]Spalart. PR. Direct simulaion of a turbulent boundary layer up to Re=1410. J. Fluid Mech.1988,187:61-98
    [20]Jimenez J, Transition to turbulence in two-dimensional Poiseuille flow, Journal of Fluid Mechanics,1990,218:265-297
    [21]Lyons SL, Hanratty TJ, Mclaughlin JB. Large-scale computer simulation of fully developed turbulent channel flow with heat transfer. International journal for numerical methods in fluids.1991,13(8):999-1028
    [22]Rai. MM, Moin P. Direct simulations of turbulent flow using finite-difference schemes. J. Comp. Phys.1991,96:15-53
    [23]Moser RD, Moin P. The effects of curvature in wall-bounded turbulent flow. J. Fluid. Mech.1987,175:479-510
    [24]Kristoffersen R, Andersson H I. Direct simulation of low Reynolds number turbulent flow in a rotating channel. J. Fluid Mech.1993,256:163-97
    [25]Moin P, Shih TH, Dirver D. Direct numerical simulation of a three dimensional turbulent boundary layer. Phys. Fluids.1990,2(10) 1846-1853
    [26]Sumitani Y, Kasagi N. Direct numerical simulation of turbulent transport with uniform wall suctions an injection. AIAA J.1995,33(7):1220-1228
    [27]Neves JC, Moin P, Moser RD. Effects of convex transverse curvature on wall bounded turbulence. I:The velocity and vorticity. J. Fluid Mech.1994,272:349-381
    [28]Kasagi N, Tomita Y, Kuroda A. Direct numerical simulation of the passive scalar field in turbulent channel flow. Trans. ASME. J. Heat Transfer.1992,114(3): 598-606
    [29]Le H, Moin P. Direct numerical simulation of turbulent flow over a backward-facing step. Rep. TF-58, Thermosci. Div. Dept. Mech. Eng. Stanford Univ. Calif.1994.
    [30]Na Y, Moin P. Direct numerical simulation of turbulent boundary layers with adverse pressure gradient and separation Rep. TF-68, Thermosci. Div. Dept. Mech. Eng. Stanford Univ. Calif.1996.
    [31]许春晓.槽道湍流的直接数值模拟.博士学位论文,北京:清华大学,1995.
    [32]方一红,罗纪生,周恒.槽道湍流近壁区相干结构的数值模拟.力学学报,1995,27(5):513-522
    [33]Li Xinliang, Ma Yanwen, Fu Dexun. High Efficient Method for incompressible N-S equations and DNS of incompressible turbulent channel flow. Proceedings of the 6th Conference on turbulence and flow stability & the 3rd Conference on turbulent flow and refined modeling in engineering.2000,120-123.
    [34]Li Xinliang, Ma Yanwen, Fu Dexun. DNS and scaling law analysis of compressible turbulent channel flow. Science in China A.2001,44 (5):645-654
    [35]Zhang Dongming, Luo Jisheng, Zhou Heng. A machanism for excitation of coherent structures in wall region of turbulent boundary layer. Applied Mathematics and Mechanics,2005,26(4):415-422
    [36]Moin P, Kim J. On the numerical solution of time-dependent viscous incompressible fluid flows involving solid boundaries. J. Comput. Phys.1980, 35:381-392
    [37]Orszag SA, Kells LC. Transition to turbulence in plane Poiseuile and plane Couette flow. J. Fluid Mech,1980,96:159-205
    [38]Elghobashi S. On predicting particle-laden turbulent flows. Appl. Sci. Res.1994, 52(4):309-329
    [39]Taylor GI. Diffusion by continous movements. Proc. Lond. Math. Soc.1921, 20:196-212
    [40]Batcherlor GK. Diffusion in a field of homogeneous turbulence. Ⅰ. Eulerian analysis. Aust. J. Sci. Res.1949, A2:437-450
    [41]Corrison S. Estimates of the relations between Eulerian and Lagrangian scales in large Reynolds number turbulence. J. Atmos. Sci.1963,20 (2):115-119
    [42]Corrison S. Remarks on turbulent heat transfer in Proceedings of the Iowa Thermodynamics Symposium. State University of Iowa, Iowa City.1963,5-30
    [43]Snyder WH, Lumley JL. Some measurements of particle velocity autocorrelation functions in a turbulent flow. J. Fluid Mech,1971,48:41-71
    [44]Kada J, Hanratty TJ. Effects of solids in turbulence in a fluid. AICHE J,1960,6 (4):624-634
    [45]Neumann P, Umhauer H. Characterization of the spatial distribution state of particles transported by a turbulent gas flow. Exp. Fluids.1991,12 (1-2):81-89
    [46]He Zhu, Liu Zhaohui, Chen Sheng, et al. Particle behavior in isotropic turbulence. Acta Mech Sinica,2005,21(2):112-120
    [47]He Zhu, Liu Zhaohui, Chen Sheng, et al. Effect of particle inertia on temperature Statistics in Particle-Laden Homogeneous Isotropic Turbulence. Sic China Ser E. 2006,49(2):210-221
    [48]贺铸.非等温气固各向同性湍流的直接数值模拟.博士学位论文,武汉:华中科技大学,2006.
    [49]Yilmaz S, Cliffe, KR. Particle deposition simulation using the CFD code FLUENT. Journal of the Institute of Energy.2000,73:65-68
    [50]Comer JK, Kleinstreuer C, Kim CS. Flow structures and particle deposition patterns in double-bifurcation airway models Part 2. Aerosol transport and deposition. Journal of Fluid Mechanics.2001,435:55-80
    [51]You CF, Li GH, Qi HY, et al. Motion of micro-particles in channel flow. Atmospheric Environment.2004,38:1559-1565
    [52]Wang Q, Squires KD. Large eddy simulation of particle deposition in a vertical turbulent channel flow. Int. J. Multiphase flow.1998,22(4):667-683
    [53]Wang Q, Squires KD, Simonin O. Large eddy simulation of turbulent gas-solid flows in a vertical channel and evaluation of second-order models, Int. J. Heat and Fluid Flow.1998,19:505-511
    [54]Fukataaga, Said Z, Sunsuke K, et al. Anomalous velocity fluctuations in particulate turbulent channel flow. Int. J. Multiphase Flow.2001,27:701-719
    [55]Fukataaga, Said Z, Fritz HB. Force balance in a turbulent particulate channel flow. Int. J.Multiphase Flow.1998,24:867-887
    [56]Li C, Mosyak A, Hetsrni G. Direct numerical simulation of particle-turbulence interaction. Int. J.Multiphase flow.1999,25:187-200
    [57]徐进,葛满初.用谱方法数值模拟槽道内的气固两相流动.工程热物理学报.1999,20(2),233-239
    [58]由长福,李光辉,祁海鹰等.可吸入颗粒物近壁运动的直接数值模拟.工程热物理学报.2004,25(2):265-267
    [59]柳朝晖,翁磊,贺铸等.二维槽道两相流动的大涡模拟.华中科技大学学报.2004,32(11):10-12
    [60]栗晶,柳朝晖,吴意,贺铸等.三维槽道两相流颗粒运动的大涡模拟.工程热物理学报.2006,27(6):974-977
    [61]张文丽,徐东群,崔九思.空气细颗粒物(PM2.5)污染特征及其毒性机制的研究进展.中国环境监测.2002,18(1):59-63
    [62]Houthuijs D, Breugelmans O. PM10 and PM2.5 concentrations in central and Eastern Europe: results from the CESAR study. Atmospheric Environment. 2001,35(12):2757-2771
    [63]钱孝琳,阔海东,宋伟民.大气细颗粒物污染与居民每日死亡关系的Meta分析.环境与健康杂志.2005,22(4):246-249
    [64]谭天裕,王励前.电除尘器.北京:水利电力出版社.1983.
    [65]Nealon WH, Townsend CM, Thompson JC. Operative drainage of the pancreatic duct delays functional impairment in patients with chronic pancreatitis:a prospective analysis. Ann Surg.1988,208(3):321-329
    [66]Loeb LB. Kinetic theory of gases. Mcgraw-Hill, New York,1927.
    [67]Loeb LB. Fundamental processes of electrical discharge in gases. John Wiley & Sons, New York,1939.
    [68]Mierdel G, Seeliger R. The physical basis of electrical gas purification. Trans. Faraday Soc,1936,32:1284-1289
    [69]Pauthenier M, Moreau-Hanot, La charge des particules spheriques dans un champ ionize. J. Phys. Radium,1932,3:590-613
    [70]Lackowski M, Krupa A, Jaworek A. Corona discharge ion sources for fine particle charging. Eur. Phys. J. D.2009.
    [71]嵇敬文,除尘器.北京:中国建筑工业出版社.1979.
    [72]Cooperman P. A theory for space charge limited currents with application. Trans. AIEE.1960,79(47):47-50
    [73]Cooperman P. A new theory of precipitator efficiency. Atmospheric Environment. 1971,5:541-551
    [74]Oglesby S, Nicbols J. Electrostatic precipitation. MARCEL DEKKER, INC, New York,1978.
    [75]Robinson M. Movement of air in the electric wind of the corona discharge. Trans. AIEE.1961,80:143-152
    [76]Leonard G, Mitchner M, Self SA. Particle transport in electrostatic precipitators. Atomospheric environment.1980,14:1289-1299
    [77]张国权.气溶胶力学-除尘净化理论基础.北京:中国环境科学出版社.1987.
    [78]Leonard RA, Bernstein GJ, Pelto RH, et al. Liquid-liquid dispersion in turbulent couette flow. AICHE Journal.1981,27(3):495-503
    [79]Kallio GA, Stock DE. Computation of electrical conditions inside wire duct electrostatic precipitators using a combined finite-element, finite-difference technique. Journal of applied physics.1986,59:1799
    [80]Kallio GA, Stock DE. Flow visualization inside a wire-plate electrostatic precipitator. IEEE Transactions on Industry.1990,26(3):503-514
    [81]Kallio GA, Stock DE. Interaction of electrostatic and fluid dynamics fields in wire-plate electrostatic precipitator. Journal of Fluid Mechanics,1992,240:133-166
    [82]Soldati A, Banerjee S. Turbulence modification by large-scale organized electro hydrodynamic flows. Phys. Fluids.1998,10:1742
    [83]Kim SH, Park HS, Lee KW. Theoretical model of electrostatic precipitator performance for collecting polydisperse particles. Journal of electrostatics.2001, 50:177-190
    [84]Talaie MR, Fathikajahi J, Taheri M. Mathematical modeling of double stage electrostatic precipitator base on a modified eulerian approach. Aerosol science and technology.2001,34(66):512-519
    [85]Soldati A, Audreussi P, Banerjee S. Direct simulation of turbulent particle transport in electrostatic precipitators. AICHE Journal.1993,39(12):1910-1919
    [86]Chio BS, Fletcher CAJ. Computation of particle transport in an electrostatic precipitator. Journal of electrostatics.1997,40(41):413-418
    [87]Chio BS, Fletcher CAJ. Turbulent particle dispersion in an electrostatic precipitator. Applied mathematical modeling.1998,22(12):1009-1021
    [88]Gallimberti L. Recent advancements in the physical modeling of electrostatic precipitator. Journal of electrostatics.1998,43(4):219-247
    [89]Soldati A. On the effects of electrohydrodynamic flow and turbulence on aerosol transport and collection in wire plane electrostatic. Journal of aerosol science.2000, 31(3):293-305
    [90]Skodras G, Kaidis SP. Particle removal via electrostatic percipitator-CFD simulation. Fuel processing technology.2006,87(7):623-631
    [91]张向荣.电除尘器中粉尘浓度分布的数值仿真.硕士学位论文,沈阳:东北大学,2001.
    [92]苏明旭,朱芸,袁保宁等.管式电除尘器中粉尘颗粒运动轨迹的数值模拟.南京航空航天大学学报,2000,32(2):169-174
    [93]孙在,罗涌,孙斌伟等.管式电除尘器的实验研究.能源研究与利用,1999,1:27-30
    [94]Townsend AA. The diffusion behind a line source in homogeneous turbulence. Proc. Roy. Soc. A.1954,224:487
    [95]Corrsin S. On the spectrum of isotropic temperature fluctuations in a isotropic turbulence. J. Appl. Phys.1951,22:469
    [96]Silberman I. Planetary waves in the atmosphere. J. Meteorol.1954,11:27-34
    [97]Orszag SA. Transform method for calculation of vector coupled sums:application to the spectral form of the vorticity equation. J. Atmosph. Sci.1970,27:890-895
    [98]Eliasen E, Machenhauer B, Rasmussen E. On a numerical method for integration of the hydrodynamical equations with a spectral representation of the horizontal fields. Rep. NO.2(Institute for teorctisk meteorology. Univ. Copenhagen).1970.
    [99]Frazer RA, Jones WP, Skan SW. Approximation to functions and to the solution of differential equations. R&M1799 (Aeronautical research council, London).1937.
    [100]Lanczos C. Trigonometric interpolation of empirical and analytical functions. J. Math. Phys.1938,123-199
    [101]Kreiss HO, Oliger J. Comparison of accurate methods for the integration of hyperbolic equations. Tellus.1972,24:199-215
    [102]Orszag SA. Comparison of pseudospectral and spectral approximations. Stud. Appl. Math.1972,51:253-259
    [103]Lanczos C. Legendre versus Chebyshev polynomial. Academic Press, London. 1973,191-201
    [104]Canuto C, Hussaini MY, Quarteroni A, et al. Spectral methods in fluid dynamics. Springer Verlag New York Inc.1988.
    [105]Coleman GN, Kim J, Moser RD. A numerical study of turbulent supersonic isothermal-wall channel flow. J. Fluid Mech.1995,305:159-83
    [106]Garnet L, Ducros F, Nicoud F, et al. Compact difference schemes on non-uniform meshes. Application to direct numerical simulations of compressible flows. Int. J. Numer. Meth. Fluids.1999,29:159-191
    [107]Jimenez J, Moin P. The minimal flow unit in near-wall turbulence in a turbulent duct flow. J. Fluid Mech.1991,233:369-388
    [108]Moin P, Kim J. Numerical investigation of turbulent channel flow. J. Fluid Mech. 1982,118:341
    [109]蒋伯诚,周振中,常谦顺.计算物理中的谱方法-FFT及其应用.长沙:湖南科技出版社.1989.
    [110]Sergeev Y A, Muromnsky M Y. On propagation of concentration disturbances in a magnetically stabilized fluidized bed. Multiphase Flow.1994,20(5):927-938
    [111]Stokes GG. On the effect of the internal friction of fluids on the motion of pendulums. Cambridge Philos. Trans,1851,9:8-106
    [112]Basset AB. Treatise on hydrodynamics. Vol.2. London: Deighton Bell.1888.
    [113]Tchen CM. Mean and correlation problems connected with the motion of small particles suspended in a turbulent fluid. Hague:Delft University of technology. PHD thesis.1947.
    [114]Corrsin S, Lumley JL. On the equation of motion for a particle in turbulent fluid. Appl. Sci. Res.1956,6:114-116
    [115]Riley JJ. Computer simulations of turbulent dispersion. Baltimore, Maryland: The johns Hopkins University. PHD thesis.1971.
    [116]Hunt JCR. Vorticity and vortex dynamics in complex turbulent flows. Trans. Can. Soc.Mech.Eng.1987,11:21-35
    [117]Balachander S, Maxey MR. Methods for evaluating fluid velocities in spectral simulations of turbulence. J. Comput. Phys.1989,83(1):96-125
    [118]Maassen SR, Clercx HJH, Heijst GJF, Self organization of quasi-two-dimensional turbulence in stratified fluids in square and circular containers. Physics of Fluid, 2002,14(7):2150-2169
    [119]Clercx HJH, Heijst GJF, Molenaar D, et al. No-slip walls as vorticity sources in two-dimensional bounded turbulence, Dynamics of Atmospheres and Oceans.2005, 40:3-21
    [120]Schneider K, Farge M. Decaying two-dimensional turbulence in a circular container. Physical Review Letters.2005,95:244502-1-244502-4
    [121]Eggels JGM. Direct and large eddy simulation of turbulent flow in a cylinder pipe geometry. PHD thesis, Delft University of technology, The Netherlands,1994.
    [122]Schneider K, Farge M. Decaying 2D turbulence in bounded domains:influence of the geometry, IUTAM Symposium on Computational Physics and New Perspectives in Turbulence, Nagoya University, Nagoya, Japan, September,2006, 1875-3507
    [123]Kramer W, Clercx HJH, G.J.F. van Heijst. On the large-scale structure and spectral dynamics of two-dimensional turbulence in a periodic channel. Physics of Fluids. 2008,20(5):056602-1-15
    [124]张兆顺.湍流.北京:国防工业出版社.2002.
    [125]Park YS, Park SH, Sung HJ. Measurement of local forcing on a turbulent boundary layer using PIV. Experiments in Fluids.2004,34:697-707
    [126]Kramer W, Dispersion of tracers in two-dimensional bounder turbulence, Doctor Dissertation, Technische Universiteit Eindhoven,2007.
    [127]王兵,张会强,王希麟等.气粒湍流流动中考虑重力时颗粒的扩散.清华大学学报(自然科学版).2003,43(2):242-245
    [128]Potthoff M, Tanaka T, Kajishima T, et al. Simulation of turbulent gas/solid two-phase flow in a two-dimensional channel. ZAMM. Z. angew. Math. Mech. 1995,75SI:15-18
    [129]Kussin J, Sommerfeld M. Investigation of particle behavior and turbulence modification in particle laden channel flow. International Congress for Particle Technology, Nuremberg, Germany,2001,27-29
    [130]Ramaprian BR, Chandrasekhara MS. LDA measurements in plane turbulent jets. ASME. Fluids Eng.1985,107:264-271
    [131]Fan JR, Zheng YQ, Yao J. Direct simulation of particle dispersion in a three dimensional temporal mixing layer. Proc R Soc Lond A,2001,457:2151-2166.
    [132]Fessler JR, Kulick JD, Eaton JK. Preferential concentration of heavy particles in a turbulent channel flow. Phys.Fluids,1994,6:3742-3749
    [133]胡满银,赵毅,刘忠.除尘技术.北京:化学工业出版社.2006.
    [134]孙亚兵.电晕等离子体净化室内的机理及实验研究.博士学位论文,合肥:中国科学院等离子体物理研究所,1989.
    [135]Maria J, Juliusz B, Gajewski, et al. Effect of the particle diameter and corona electrode geometry on the particle migration velocity in electrostatic precipitators. Journal of electrostatic.2001,51:245-251
    [136]Moore AD. Electrostatics and its applications. John Wiley &Sons.1973.
    [137]刘小云,罗坤,金军等.气固两相湍流射流中颗粒的统计特性.中国机电工程学报.2005,25(9):108-113

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700