用户名: 密码: 验证码:
基因芯片数据分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基因芯片技术能够同时分析成千上万基因的表达水平,这一技术已经广泛应用于生物学和医学各个研究领域。在其自身迅速发展的同时数据也在不断的增加,如何有效的处理和分析芯片实验所产生的海量数据越来越引起研究者们的广泛关注。基因芯片数据分析简单来说主要包括三块大的部分,数据预处理,数据的分析,数据的进一步分析。通过三个部分的数据分析后,整合样点的生物学信息,发现基因的表达与功能可能存在的联系。
     本论文简单介绍了基因芯片数据处理三个部分的一些内容,主要是阐述了我们自主开发的三个新算法,基于累积函数的弱信号处理方法,基于主集寻找的聚类算法,基于局部切空间校准的非线性芯片数据降维算法。另外,我们还阐述了用meta方法来综合各个实验室的酵母在不同环境刺激条件下芯片数据进行分析,发现一些环境刺激表达基本不变的基因,再用多序列比对识别调控元件工具(AlignACE)分析得到一些保守的调控元件。
     基因芯片数据中会有许多弱信号点,这些点的信号值容易被背景或者噪声掩盖。必须寻找有效的方法分离有价值的弱信号点和背景点或者噪声。我们发现芯片数据普遍符合分段线性累积分布函数,根据这一特征来确定信号值的阈值。基于此确定阈值的方法综合考虑了新片中整体信号强度和背景值的影响,可以保留较多的有价值点,而且不增加假阳性率,芯片数据的可重复性和可靠性也显著提高。
     与使用常规的线性降维方法对基因表达谱进行降维不同,针对处理高维非线性基因芯片数据的困难,本文引入了一种新的非线性降维方法LTSA。本文从算法原理的角度讨论了该方法在芯片数据处理中的适用性,并给出了该方法的误差判定标准,实验结果表明经LTSA降维后得到的低维投影可视化效果好、分类准确性高,且在目标维数判断上优于常用的PCA算法。
     芯片聚类算法通常聚类前需要事先定义类的数目,得到的类没有统计显著性,而且类的质量不能得到保证。本文提出了一种新的迭代的聚类算法。首先用主集方法对原有基因进行重新排序,使高度相似的基因排列在特定区域,然后按照某种规则从排序后的数据集中划分出一个类。文中从多个方面分析了该算法的性能,理论分析和实验结果都表明该算法是实用的、有效的并且有很好的抗噪性能。并且将这种算法用在酵母细胞周期的芯片数据上,发现了许多具有生物意义的类,而且这种算法得到的类能够很好地用来识别调控位点。
     本文采用meta统计模型寻找在不同环境条件刺激下表达保持相对恒定的酵母基因,使得到的基因的假阳性和假阴性都很低。从这些基因的SAGE表达情
    况和在各个芯片实验中的荧光表达强度两个方面验证,我们发现绝大多数基因的确是一些表达相对恒定的基因。所找到的基因从生物过程,基因功能和细胞内定位情况看,有一定的相符。并且通过AlignACE分析,得到两个具有普遍性的元件。一方面说明meta分析这种方法是有效的,得到的结论也是准确的,它提供了一种新思路来综合不同的芯片数据进行分析,另一方面得到的基因和元件可能对基因表达恒定的研究都有启示作用。
Microarray analysis can be used to monitor the expression levels of thousands to tens of thousands of genes in a single assay, which is the most widely used for the study of gene expression patterns on a genomic scale. As more and more researchers jump on the microarray bandwagon, however, it has become increasingly clear that simply generating the data is not enough; one must be able to extract from it meaningful information about the system being suited. The microarray data analysis can be simply summed up to three steps: data pre-processing, data analysing, and data further analysing. Then information of the representative genes is integrated and the relation between gene expression pattern and biological function is found.
    In this thesis, the three steps are respectively described in brief. We focus on three novel approaches developed by ourselves: a threshold determining approach for weak signal based on the accumulated distribution, a clustering approach based on dominant sets finding, a dimension reducing approach based on local tangent space alignment(LTSA). We also focus on the meta analysis in microarray data of diverse stress on Saccharomyces cerevisiae from different labs to find stress unchangeably expressed genes(SUEG), and the regulatory elements analyzed by AlignACE tool.
    In microarray experiments, a lot of spots with low signal intensities are vulnerable to background and noise biases. It is important to determine an effective threshold, with which one can clearly distinguish low abundance genes from background. A new threshold determining method for gene expression intensity based on the accumulated distribution is proposed in the thesis. Compared with previous methods, it takes the overall signal intensity and background into consideration. Using this method, the reproducibility and reliability of microarray experiments are greatly increased, and more valuable genes with significant biological function are preserved for further analysis.
    To overcome the pitfalls in commonly used linear dimension reduction methods, we introduce a new nonlinear dimension reduction method: LTSA in dealing with the difficulty of analyzing high-dimensional, nonlinear microarray data. We analyze the applicability and the construction error of LTSA. The experiments show good visualization performance and the clustering correctness doesn't decline after dimension reduction. And the method shows
    advantage on determining the reduced dimension than PCA algorithm.
    To deal with three issues that have bedeviled clustering, some dominant sets being statistically determined in a significance level, predefining cluster structure being not required, and the quality of a dominant set being ensured, a novel, iterative clustering approach is proposed. The approach sorts the original data by dominant set so that genes with high similarities would be rearranged together and then finds a cluster by some criterion. The new clustering approach is evaluated on several aspects. Both of the theoretical analysis and the experiment results of the approach confirm that it is very applicable, efficient and has good ability to resist noise. We have also applied this approach to analyse published data of yeast cell cycle gene expression and find some biologically meaningful gene groups to be dug out. Furthermore, this approach is a potentially good tool to search for putative regulatory signals.
    In this thesis, a meta statistical model is built to analysis microarray data of diverse stress on Saccharomyces cerevisiae from different labs to find stress unchangeably expressed genes(SUEG) with very low false positive rate and false negative rate. The characteristic of unchangeable expression of SUEGs is confirmed from two aspects of the SAGE and the intensities in these microarray data. The biological meaning of the SUEGs is analyzed from biological process, gene function and cellular localization. And some regulatory elements are identified with AlignACE tool. It is concluded that the approach of meta analysis can obtain good results and provide a new idea to integrate microarray data from different source, moreover, the SUEGs and the elements may provide some clues to research in steadily expressed genes.
引文
[1] 李瑶.基因芯片技术:解码生命[M].北京:化学工业出版社,2004:41-100.
    [2] 李瑶.基因芯片与功能基因组[M].北京:化学工业出版社,2004:31-115.
    [3] Fodor SPA. Light-directed, spatially addressable parallel chemical synthesis[J]. Science, 1991, 251: 767-773.
    [4] Schena M, Heller R. Parallel human genome analysis: Microarray-based expression monitoring of 1000 genes[J]. Proc Natl Acad Sci USA, 1996, 93: 10614-10619.
    [5] Schena M, Dais R. Quantitative Monitoring of Genen Expression Patterns wit a complementary DNA Microarray[J]. Science, 1995, 270(20): 467-470.
    [6] Lipshutz R J, Fodor SP, Gingeras TR, et al. High density synthetic oligonucleotide arrays[J]. Nat Genet, 1999, 21(1 Suppl): 20-24.
    [7] Khan J, Bittner ML, Saal LH, et al. cDNA microarrays detect activation of a myogenic transcription program by the PAX3-FKHR fusion oncogene[J]. Proc Natl Acad Sci U S A, 1999, 96(23): 13264-13269.
    [8] Solinas-Toldo S, Lampel S, Stilgenbauer S, et al. Matrix-based comparative genomic hybridization: biochips to screen for genomic imbalances[J]. Genes Chromosomes Cancer, 1997, 20(4): 399-407.
    [9] Patil N, Berno A J, Hinds DA, et al. Blocks of limited haplotype diversity revealed by high-resolution scanning of human chromosome 21[J]. Science, 2001, 294(5547): 1719-1723.
    [10] Gitan RS, Shi H, Chen CM, et al. Methylation-specific oligonucleotide microarray: a new potential for high-throughput methylation analysis[J]. Genome Res, 2002, 12(1): 158-164.
    [11] Day JK, Bauer AM, DesBordes C, et al. Genistein alters methylation patterns in mice[J]. J Nutr, 2002, 132(8 Suppl): 2419-2423.
    [12] Lapidus RG, Ferguson AT, Ottaviano YL, et al. Methylation of estrogen and progesterone receptor gene 5' CpG islands correlates with lack of estrogen and progesterone receptor gene expression in breast tumors[J]. Clin Cancer Res, 1996, 2(5): 805-810.
    [13] Davis RE, Staudt LM. Molecular diagnosis of lymphoid malignancies by gene expression profiling[J]. Curr Opin Hematol, 2002, 9(4): 333-338.
    [14] Yang YH, Buckley M J, Speed TP. Analysis of cDNA microarray images[J]. Brief Bioinform, 2001, 2(4): 341-9.
    [15] Smyth GK, Yang YH, Speed T. Statistical issues in cDNA microarray data analysis[J]. Methods Mol Biol, 2003, 224: 111-36.
    [16] Smyth GK, Speed T. Normalization of cDNA microarray data[J]. Methods, 2003, 31 (4): 265-73.
    [17] Kerr MK, Martin M, Churchill GA. Analysis of variance for gene expression microarray data[J]. Journal of Computational Biology, 2000, 7: 819-837.
    [18] Yang YH, Dudoit S, Luu P, et al. Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation[J]. Nucleic Acids Research, 2002, 30(4): e15.
    [19] Finkelstein DB, Gollub J, Ewing R, et al. Iterative linear regression by sector. Methods of Microarray Data Analysis[A]. Papers from CAMDA 2000: Kluwer Academic, 2001: 57-68.
    [20] Cleveland WS, Loader CL. Smoothing by Local Regression: Principles and Methods[A]. Statistical Theory and Computational Aspects of Smoothing: Springer, 1996: 10-49.
    [21] Kim JH, Shin DM, Lee YS. Effect of local background intensities in the normalization of cDNA microarray data with a skewed expression profiles[J]. Exp Mol Med, 2002, 34(3): 224-32.
    [22] Troyanskaya O, Cantor M, Sherlock G, et al. Missing value estimation methods for DNA microarrays[J]. Bioinformatics, 2001,17: 520-525.
    [23] Zhou XB, Wang XD, Dougherty ER. Missing-value estimation using linear and non-linear regression with Bayesian gene selection[J]. Bioinformatics, 2003, 19: 2302-2307.
    [24] Yang MCK, Ruan QG, Yang JJ, et al. A statistical procedure for flagging weak spots greatly improves normalization and ratio estimates in microarray experiments[J]. Physiol Genomics, 2001, 7(1): 45-53.
    [25] Bilban M, Buehler LK, Head S, et al. Defining signal thresholds in DNA microarrays: exemplary application for invasive cancer[J]. BMC Genomics, 2002, 3:19.
    [26] Tseng GC, Oh MK, Rohlin L, et al. Issues in cDNA microarray analysis: quality filtering, channel normalization, models of variations and assessment of gene effects[J]. Nucleic Acids Res, 2001, 29: 2549-2557.
    [27] Lee M-LT, Kuo FC, Whitmore GA, et al. Importance of replication in microarray gene expression studies: statistical methods and evidence from repetitive cDNA hybridizations[J]. Proc Natl Acad Sci USA, 2000, 97: 9834-9839.
    [28] Kooperberg C, Fazzio TG, Delrow JJ, et al. Improved background correction for spotted DNA microarray[J]. J Comput Biol, 2002, 9: 55-66.
    [29] Sakai K, Higuchi H, Matsubara K, et al. Microarray hybridization with fractionated cDNA: enhanced identification of differentially expressed genes[J]. Anal Biochem, 2000, 287: 32-37.
    [30] Cunningham MJ, Liang S, Fuhrman S, et al. Gene expression microarray data analysis for toxicology profiling[J]. Ann N Y Acad Sci, 2000, 919: 52-67.
    [31] Epstein CB, Hale W4th, Butow RA. Numerical methods for handling uncertainty in microarray data: an example analyzing perturbed mitochondrial function in yeast. Methods Cell Biol[J]. 2001, 65: 439-52.
    [32] Spellman PT, Sherlock G, Zhang MQ, et al. Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization[J]. Mol Biol Cell, 1998, 9: 3273-3297.
    [33] Alizadeh AA, Eisen MB, Davis RE, et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling[J]. Nature, 2000, 403: 503-511.
    [34] Hoyle DC, Rattray M, Jupp R, et al. Making sense of microarray data distributions[J]. Bioinformatics, 2002,18: 576-584.
    [35] Zhu Z, Pilpel Y, Church GM. Computational identification of transcription factor binding sites via a transcription-factor-centric clustering (TFCC) algorithm[J]. J Mol Biol, 2002, 318(1): 71-81.
    [36] Ben-Dor A, Shamir R, Yakhini Z. Clustering gene expression pattems[J]. J Comput Biol. 1999 Fall-Winter;6(3-4):281-97.
    [37] Whitfield ML, Sherlock G, Saldanha AJ, et al. Identification of genes periodically expressed in the human cell cycle and their expression in tumors[J]. Mol Biol Cell, 2002, 13(6): 1977-2000.
    [38] Boldrick JC, Alizadeh AA, Diehn M, et al. Stereotyped and specific gene expression programs in human innate immune responses to bacteria[J]. Proc Natl Acad Sci USA, 2002, 99: 972-977.
    [39] Kaminski N, Allard JD, Pittet JF, et al. Global analysis of gene expression in pulmonary fibrosis reveals distinct programs regulating lung inflammation and fibrosis[J]. Proc Natl Acad Sci. USA, 2000, 97: 1778-1783.
    [40] Kannan K, Amariglio N, Rechavi G. DNA microarrays identification of primary and secondary target genes regulated by p53[J]. Oncogene, 2001, 20: 2225-2234.
    [41] Sherlock G. Analysis of large-scale gene expression data[J]. Curr Opin Immunol, 2000 Apr;12(2): 201-5.
    [42] Eisen MB, Spellman PT, Brown PO, et al. Cluster Proceedings of the National Academy of Sciences[J]. 1998, 95:14863-14868.
    [43] Dudoit S, Fridlyand J, Speed TP. Comparison of discrimination methods for the classification of tumors using gene expression data. Journal of the American Statistical Association[J]. 2000, 97: 77-87.
    [44] Dougherty ER, Barrera J, Brun M, et al. Inference from clustering with application to gene -expression microarrays[J]. J Comput Boil, 2002,418-429.
    [45] Tavazoie S, Hughes JD, Campbell MJ, et al. Systematic determination of genetic network architecture[J]. Nat Genet, 1999, 22: 281-5.
    [46] Tamayo JP, Slonim D, Mesirov J, et al. Interpreting patterns of gene expression with self-organizing maps: methods and application to hematopoietic differentiation[J]. Proc Natl Acad Sci USA, 1999, 96: 2907-2912.
    [47] Wang J, Delabie J, Aasheim H, et al. Clustering of the SOM easily reveals distinct gene expression patterns: results of a reanalysis of lymphoma study[J]. BMC Bioinformatics, 2002, 3(1): 36.
    [48] Heyer LJ, Kruglyak S, Yooseph S. Exploring expression data: identification and analysis of coexpressed genes[J]. Genome Res, 1999, 9: 1106-1115.
    [49] Eisen MB, Spellman PT, Brown PO, et al. Cluster analysis and display of genome-wide expression patterns[J]. Proc Natl Acad Sci U S A, 1998, 95(25): 14863-8. [50] Dettling M, Buhlmann P. Supervised clustering of genes[J]. Genome Biol, 2002, 3(12): research0069
    [51] Stephanopoulos G, Hwang D, Schmitt WA, et al. Mapping physiological states from microarray expression measurements[J]. Bioinformatics, 2002,18(8): 1054-63.
    [52] Han JW, Kamber M. Data Mining: Concepts and Techniques[M]. Morgan Kaufmann publishers, 2000.
    [53] Breiman L. Arcing classifiers. Annals of Statistics[J]. 1998, 26: 801-824.
    [54] Breiman L. Bagging predictors. Mach learn[J]. 1996, 24:123-140.
    [55] Schapire R, Freund Y, Bartlett P. Boosting the margin: a new explanation for the effectiveness of voting methods. Ann Stat[J]. 1998, 26:1651-1686.
    [56] Brown MP, Grundy WN, Lin D, et al. Knowledge-based analysis of microarray gene expression data by using support vector machines[J]. Proc Natl Acad Sci U S A, 2000, 97: 262-267.
    [57] Riply BD. Pattern Recognition and Neural Networks[M] Cambridge University Press, Cambridge, 1996.
    [58] Furey TS, Cristianini N, Duffy N, et al. Supporting vector machines classification and validation of cancer tissue samples using microarray expression data[J]. Bioinformatics, 2000,16:906-914.
    [59] Herrero.J., Valencia,A. and Dopazo.J. A hierarchical unsupervised growing neural network for clustering gene expression patters[J]. Bioinformatics, 2001,17:126-136.
    [60] Heyer LJ, Kruglyak S., Yooseph S. Exploring expression data: identification and analysis of coexpressed genes[J]. Genome Res, 1999, 9:1106-1115.
    [61] Dembele D, Kastner P. Fuzzy C-means method for clustering microarray data[J]. Bioinformatics, 2003, 19(8): 973-80.
    [62] Getz G, Levine E, Domany E, et al. Super-paramagnetic clustering of yeast gene expression profiles[J]. Physics A, 2000, 279:457-464.
    [63] Datta S, Datta S. Comparisons and validation of statistical clustering techniques for microarray gene expression data[J]. Bioinformatics, 2003,19(4): 459-66.
    [64] Kerr M, Churchill GA. Bootstrapping cluster analysis of oligonucleotide arrays: model validation, design issue and standard error application[J]. Genome Boil, 2001, 2: Research0032.1-Reseach0032.11.
    [65] Yeung KY, Haynor DR, Ruzzo WL. Validating clustering for gene expression data[J]. Bioinformatics, 2001, 17: 301-318.
    [66] Azuaje F. A cluster validity framework for genome expression data[J]. Bioinformatics, 2002, 18:319-320.
    [67] McShane LM, Radmacher MD, Freidlin B, et al. Methods for assessing reproducibility of clustering patterns observed in analyses of microarray data[J]. Informatics, 2002, 18: 1462-1469.
    [68] Lagonigro MS, De Cecco L, Carninci P, et al. CTAB-urea method purifies RNA from melanin for cDNA microarray analysis[J]. Pigment Cell Res, 2004,17(3): 312-5.
    [69] Ye QH, Qin LX, Forgues M, et al. Predicting hepatitis B virus-positive metastatic hepatocellular carcinomas using gene expression profiling and supervised machine leaming[J]. Nat Med, 2003, 9(4): 416-23.
    [70] Tanaka TS, Jaradat SA, Lim MK, et al. Genome-wide expression profiling of mid-gestation placenta and embryo using a 15,000 mouse developmental cDNA microarray[J]. Proc Natl Acad Sci USA, 2000, 97(16): 9127-9132.
    [71] Arfin SM, Long AD, Ito ET, et al. Global gene expression profiling in Escherichia coli K12. The effects of integration host factor[J]. J Biol Chem, 2000, 275 (38): 29672-29684.
    [72] Yang IV, Chen E, Hasseman JP, et al. Within the fold: assessing differential expression measures and reproducibility in microarray assays[J]. Genome Biology, 2002, 3(11): research0062.1-0062.12.
    [73] Tusher VG, Tibshirani R, Chu G. Significance analysis of microarrays applied to the ionizing radiation response[J]. Proc Natl Acad Sci USA, 2001, 98(9): 5116-5121.
    [74] Lonnstedt I, Speed T. Replicated microarray data[J]. Statistica Sinica, 2002, 12: 31-46.
    [75] Reiner A, Yekutieli D, Benjamini Y. Identifying differentially expressed genes using false discovery rate controlling procedures[J]. Bioinformatics, 2003,19(3): 368-75.
    [76] Wright GW, Simon RM. A random variance model for detection of differential gene expression in small microarray experiments[J]. Bioinformatics, 2003, 19(18): 2448-55.
    [77] Baldi P, Long AD. A Bayesian framework for the analysis of microarray expression data: regularized t-test and statistical inferences of gene changes[J]. Bioinformatics, 2001, 17(6): 509-519.
    [78] Yeung KY, Ruzzo WL. Principal component analysis for clustering gene expression data[J]. Bioinformatics, 2001,17(9): 763-74.
    [79] Cleveland WS, Loader CL. Smoothing by Local Regression: Principles and Methods[M]. Statistical Theory and Computational Aspects of Smoothing: Springer, 1996: 10-49
    [80] Tenenbaum JB, Silvam VD, Langford JC. A global geometric framework for nonlinear dimensionality reduction[J]. Science, 2000, 287(5454): 873-80.
    [81] Carreira-Perpinan MA. A Review of Dimension Reduction Techniques[D]. Technical Report, 1997
    [82] Pearson K. On lines and planes of closest fit to systems of points in space[J]. Edinburgh and Dublin Philosophical Magazine and Journal of Science, 1901, 2: 572
    [83] Hotelling H. Analysis of a complex of statistical variables into principal components[J]. Journal of Educational Psychology, 1993, 24: 441
    [84] Borg I, Groenen P. Modern Multidimensional Scaling, Theory and Application [M] New York, Berlin, Heidelberg, Springer-Verlag, 1997.
    [85] Teodoro M, Jr Phillips PM, Kavraki LE. A dimensionality reduction approach to modeling protein flexibility[A]. In Proc. ACM Int. Conf. on Computational Biology(RECOMB)[C], 2002: 299-308.
    [86] Hui S, Shakeel MU, An investigative approach to protein flexibility modeling using dimensionality reduction[A]. ISMB Poster[C], Glasgow: 2004.
    [87] 翁时锋,张长水,张学工.非线性降维在高维医学数据处理中的应用[J].清华大学学报(自然科学版),2004,44(4):485-488
    [88] Zhenyue Zhang and Hongyuan Zha, Principal Manifolds and Nonlinear Dimension Reduction Via Local Tangent Space Alignment
    [89] Golub TR, Slonim DK, Tamayo P, et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring[J]. Science, 1999, 286(5439): 531-537
    [90] 李泽,包雷,黄英武等.基于基因表达谱的肿瘤分型和特征基因选取[J].生物物理学报,2002,18(4):413-417
    [91] Heyer L, Kruglyak JS, Yooseph S. Exploring expression data: identification and analysis of coexpressed genes[J]. Genome Res, 1999, 9: 1106-1115.
    [92] Butte A J, Kohane IS. Mutual information relevance networks: functional genomic clustering using pairwise entropy measurements[J]. Pac Symp Biocomput, 2000, 418-29.
    [93] Massimiliano Pavan, Marcello Pelillo. A new graph-theoretic approach to clustering and segmentation[A]. In CVPR'03, 2003, 145-152.
    [94] Motzkin TS, Straus EG. Maxima for graphs and a new proof of a theorem of Turan[J]. Canad J Math, 1965, 17: 535-540.
    [95] Spellman PT, Sherlock G, Zhang MQ, et al. Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization[J]. Mol Biol Cell, 1998, 9: 3273-3297.
    [96] Cho RJ., Campbell M J, Winzeler E, et al. A genome wide transcriptional analysis of the mitotic cell cycle[J]. Mol. Cell, 1998, 2: 65-73
    [97] Ji XL, Ling JX, Sun ZR. Mining gene expression data using a novel approach based on hidden Markov medels[J]. FEBS Letters, 2003, 542: 125-131.
    [98] Iyer VR, Eisen MB, Ross DT, et al. The transcriptional program in the response of human fibroblasts to serum[J]. Science, 1999, 283: 83-7.
    [99] Xu Y, Olman V, Xu D. Clustering gene expression data using a graph-theoretic approach: an application of minimum spanning trees[J]. Bioinformatics, 2002,18: 536-45.
    [100] Robinson MD, Grigull J, Mohammad N, et al. FunSpec: a web-based cluster interpreter for yeast[J]. BMC Bioinformatics, 2002, 3: 35.
    [101] Zhu J, Zhang MQ. SCPD: a promoter database of the yeast Saccharomyces cerevisiae[J]. Bioinformatics, 1999,15: 607-611.
    [102] Heyer LJ, Kruglyak S, Yooseph S. Exploring expression data: identification and analysis of coexpressed genes[J]. Genome Res, 1999, 9(11): 1106-15.
    [103] Bucher P. Regulatory elements and expression profiles[J]. Curr Opin Struct Biol, 1999, 9(3): 400-7.
    [104] Bussemaker HJ, Li H, Siggia ED. Regulatory element detection using correlation with expression[J]. Nat Genet, 2001, 27(2): 167-71.
    [105] Dahlquist KD, Salomonis N, Vranizan K, et al. GenMAPP, a new tool for viewing and analyzing microarray data on biological pathways[J]. Nat Genet, 2002, 31(1): 19-20.
    [106] Doniger SW, Salomonis N, Dahlquist KD, et al. MAPPFinder: using Gene Ontology and GenMAPP to create a global gene-expression profile from microarray data[J]. Genome Biol, 2003, 4(1): R7.
    [107] Stoeckert CJ Jr, Causton HC, Ball CA. Microarray databases: standards and ontologies[J]. Nat Genet, 2002, 32 Suppl: 469-73.
    [108] Cohn LD, Becker BJ. How meta-analysis increase statistical power[J]. Psychological Methods, 2003, 8(3): 243-253.
    [109] Rhodes DR, Barrette TR, Rubin MA, et al. Meta-analysis of microarrays interstudy validation of gene expression profiles reveals pathway dysregulation in prostate cancer[J]. Cancer Res, 2002, 62(15): 4427-33.
    [110] Rhodes DR, Yu J, Shanker K, et al. Large-scale meta-analysis of cancer microarray data identifies common transcriptional profiles of neoplastic transformation and progression[J]. Proc Natl Acad Sci U S A, 2004,101(25): 9309-14.
    [111] Grutzmann R, Boriss H, Ammerpohl O, et al. Meta-analysis of microarray data on pancreatic cancer defines a set of commonly dysregulated genes[J]. Oncogene, 2005.
    [112] Fessele S, Maier H, Zischek C, et al. Regulatory context is a crucial part of gene function[J]. Trends Genet, 2002, 18(2): 60-3.
    [113] Thijs G, Marchal K, Lescot M, et al. A Gibbs sampling method to detect overrepresented motifs in the upstream regions of coexpressed genes[J]. J Comput Biol, 2002, 9(2): 447-64.
    [114] Lenhard B, Sandelin A, Mendoza L, et al. Identification of conserved regulatory elements by comparative genome analysis[J]. J Biol, 2003, 2(2): 13.
    [115] Roth FR, Hughes JD, Estep PW, et al. Finding DNA regulatory motifs within aligned noncoding sequences clustered by whole-genome mRNA quantitation[J]. Nature Biotechnology, 1998, 16: 939-945
    [116] Fujibuchi W, Anderson JS, Landsman D. PROSPECT improves cis-acting regulatory element prediction by integrating expression profile data with consensus pattern searches[J]. Nucleic Acids Res, 2001, 29(19): 3988-96.
    [117] Ganesh R, Siegele DA, loerger TR. MOPAC: motif finding by preprocessing and agglomerative clustering from microarrays[J]. Pac Symp Biocomput. 2003, 41-52.
    [118] Roven C, Bussemaker HJ. REDUCE: An online tool for inferring cis-regulatory elements and transcriptional module activities from microarray data[J]. Nucleic Acids Res, 2003, 31(13):3487-90.
    [119] Hertz GZ, Stormo GD. Identifying DNA and protein patterns with statistically significant alignments of multiple sequences[J]. Bioinformatics, 1999, 15(7-8): 563-77.
    [120] Grundy WN, Bailey TL, Elkan CP. ParaMEME: a parallel implementation and a web interface for a DNA and protein motif discovery tool[J]. Comput Appl Biosci, 1996, 12(4):303-10.
    [121] Hughes JD, Estep PW, Tavazoie S, et al. Computational identification of cis-regulatory elements associated with groups of functionally related genes in Saccharomyces cerevisiae[J]. J Mol Biol, 2000, 296(5): 1205-14.
    [122] McGuire AM, Hughes JD, Church GM. Conservation of DNA regulatory motifs and discovery of new motifs in microbial genomes[J]. Genome Res, 2000,10(6): 744-57.
    [123] Schneider TD, Stephens RM. Sequence logos: a new way to display consensus sequences[J]. Nucleic Acids Research, 18(20): 6097-6100
    [124] Wang J, Coombes KR, Highsmith WE, et al. Differences in gene expression between B-cell chronic lymphocytic leukemia and normal B cells: a meta-analysis of three microarray studies[J]. Bioinformatics, 2004, 20(17): 3166-78.
    [125] Kuo W, Jenssen T, Butte A, et al. Analysis of mRNA measurements from two different microarray technologies[J]. Bioinformatics, 2002, 18: 405-412
    [126] Yuen T, Wurmbach E, Pfeffer RL, et al. Accuracy and calibration of commercial oligonucleotide and custom cDNA microarrays[J]. Nucleic Acids Res, 2002, 30: e48.
    [127] Irizarry RA, Warren D, Spencer F, et al. Multiple-laboratory comparison of microarray platforms[J]. Nature Methods, 2005, 2(5): 345-349.
    [128] Brazma A, Hingamp P, Quackenbush J, et al. Minimum information about a microarray experiment (MIAME)-toward standards for microarray data[J]. Nat Genet, 2001, 29(4): 365-71.
    [129] Ghosh D, Barette TR, Rhodes D, et al. Statistical issues and methods for meta-analysis of microarray data: a case study in prostate cancer[J]. Funct Integr Genomics, 2003, 3(4): 180-8.
    [130] Munafo MR, Flint J. Meta-analysis of genetic association studies[J]. Trends Genet, 2004, 20(9): 439-44.
    [131] Munafo MR, Clark TG, Moore LR, et al. Genetic polymorphisms and personality in healthy adults: a systematic review and meta-analysis[J]. Mol Psychiatry, 2003, 8(5): 471-84.
    [132] Moreau Y, Aerts S, De Moor B, et al. Comparison and meta-analysis of microarray data: from the bench to the computer desk[J]. Trends Genet, 2003, 19(10): 570-7.
    [133] Tai SL, Boer VM, Daran-Lapujade P, et al. Two-dimensional transcriptome analysis in chemostat cultures. Combinatorial effects of oxygen availability and macronutrient limitation in Saccharomyces cerevisiae[J]. J Biol Chem, 2005, 280(1 ):437-47.
    [134] Gasch AP, Spellman PT, Kao CM, et al. Genomic expression programs in the response of yeast cells to environmental changes[J]. Mol Biol Cell, 2000,11(12): 4241-57.
    [135] Causton HC, Ren B, Koh SS, et al. Remodeling of yeast genome expression in response to environmental changes[J]. Mol Biol Cell, 2001,12(2): 323-37.
    [136] Kaeberlein M, Andalis AA, Fink GR, et al. High osmolarity extends life span in Saccharomyces cerevisiae by a mechanism related to calorie restriction[J]. Mol Cell Biol, 2002, 22(22): 8056-66.
    [137] Brauer MJ, Saldanha AJ, Dolinski K, et al. Homeostatic adjustment and metabolic remodeling in glucose-limited yeast cultures[J]. Mol Biol Cell, 2005,16(5): 2503-17.
    [138] Bro C, Regenberg B, Lagniel G, et al. Transcriptional, proteomic, and metabolic responses to lithium in galactose-grown yeast cells[J]. J Biol Chem, 2003, 278(34): 32141-9.
    [139] Sirisattha S, Momose Y, Kitagawa E, et al. Genomic profile of roundup treatment of yeast using DNA microarray analysis[J]. Environ Sci, 2004,11(6): 313-23.
    [140] Kim HJ, Ishidou E, Kitagawa E, et al. A yeast DNA microarray for the evaluation of toxicity in environmental water containing burned ash[J]. Environ Monit Assess, 2004, 92(1-3): 253-72.
    [141] Sirisattha S, Momose Y, Kitagawa E, et al. Toxicity of anionic detergents determined by Saccharomyces cerevisiae microarray analysis[J]. Water Res, 2004, 38(1): 61-70.
    [142] Odani M, Komatsu Y, Oka S, et al. Screening of genes that respond to cryopreservation stress using yeast DNA microarray[J]. Cryobiology, 2003, 47(2): 155-64.
    [143] Kitagawa E, Momose Y, Iwahashi H. Correlation of the structures of agricultural fungicides to gene expression in Saccharomyces cerevisiae upon exposure to toxic doses[J]. Environ Sci Technol, 2003, 37(12): 2788-93.
    [144] Homma T, Iwahashi H, Komatsu Y. Yeast gene expression during growth at low temperature[J]. Cryobiology, 2003,46(3): 230-7.
    [145] Murata Y, Watanabe T, Sato M, et al. Dimethyl sulfoxide exposure facilitates phospholipid biosynthesis and cellular membrane proliferation in yeast cells[J]. J Biol Chem, 2003, 278(35): 33185-93.
    [146] Kitagawa E, Takahashi J, Momose Y, et al. Effects of the pesticide thiuram: genome-wide screening of indicator genes by yeast DNA microarray[J]. Environ Sci Technol, 2002, 36(18): 3908-15.
    [147] Kurita S, Kitagawa E, Kim CH, et al. Studies on the antimicrobial mechanisms of capsaicin using yeast DNA microarray[J]. Biosci Biotechnol Biochem, 2002, 66(3): 532-6.
    [148] Momose Y, Iwahashi H. Bioassay of cadmium using a DNA microarray: genome-wide expression patterns of Saccharomyces cerevisiae response to cadmium[J]. Environ Toxicol Chem, 2001, 20(10): 2353-60.
    [149] Backhus LE, DeRisi J, Bisson LF. Functional genomic analysis of a commercial wine strain of Saccharomyces cerevisiae under differing nitrogen conditions[J]. FEMS Yeast Res, 2001,1(2): 111-25.
    [150] Sahara T, Goda T, Ohgiya S. Comprehensive expression analysis of time-dependent genetic responses in yeast cells to low temperature[J]. J Biol Chem, 2002, 277(51): 50015-21.
    [151] Smith JJ, Marelli M, Christmas RH, et al. Transcriptome profiling to identify genes involved in peroxisome assembly and function[J]. J Cell Biol, 2002, 158(2): 259-71.
    [152] Roberts CJ, Nelson B, Marton MJ, et al. Signaling and circuitry of multiple MAPK pathways revealed by a matrix of global gene expression profiles[J]. Science, 2000, 287(5454): 873-80.
    [153] Velculescu VE, Zhang L, Zhou W, et al. Characterization of the yeast transcriptome[J]. Cell, 1997, 88(2): 243-51.
    [154] Sancar GB, Ferris R, Smith FW, et al. Promoter elements of the PHR1 gene of Saccharomyces cerevisiae and their roles in the response to DNA damage[J]. Nucleic Acids Res, 1995, 23: 4320-4328.
    [155] Talibi D, Grenson M, Andre B. Cis- and trans-acting elements determining induction of the genes of the gamma-aminobutyrate (GABA) utilization pathway in Saccharomyces cerevisiae[J]. Nucleic Acids Res, 1995, 23: 550-557.
    [156] Webb CF, Das C, Eaton S, Calame K, Tucker PW. Novel protein-DNA interactions associated with increased immunoglobulin transcription in response to antigen plus interleukin-5[J]. Mol. Cell. Biol, 1991,11: 5197-5205.
    [157] Newcomb LL, Hall DD, Heideman W. AZF1 Is a Glucose-Dependent Positive Regulator of CLN3 Transcription in Saccharomyces cerevisiae[J]. Mol Cell Biol, 2002, 22: 1607-1614.
    [158] Knapp D, Bhoite L, Stillman DJ, et al. The transcription factor Swi5 regulates expression of the cyclin kinase inhibitor p40SIC1[J]. Mol Cell Biol, 1996, 16:5701-5707.
    [159] Paulweber B, Levy-Wilson B. The mechanism by which a human apolipoprotein B gene enhancer and reducer interact with the promoter are different in cultured cells of hepatic and intestinal origin[J]. J Biol Chem, 1991, 266: 24161-24168.
    [160] Roy A, Exinger F, Losson R. cis- and trans-acting regulatory elements of the yeast URA3 promoter[J]. Mol Cell Biol, 1990,10: 5257-5270.
    [161] Company M, Errede B. A Ty1 Cell-Type-Specific Regulatory Sequence Is a Recognition Element for a Constitutive Binding Factor[J]. Mol Cell Biol, 1988, 8: 5299-5309.
    [162] Pierce M, Wagner M, Xie J, et al. Transcriptional regulation of the SMK1 mitogen-activated protein kinase gene during meiotic development in Saccharomyces cerevisiae[J]. Mol Cell Biol, 1998, 18: 5970-5980.
    [163] Pfaff SL, Hall RK, Hart GC, et al. Regulation of the Xenopus laevis transcription factor MIA gene during oogenesis and early embryogenesis: negative elements repress the O-TFIIIA promoter in embryonic cells[J]. Dev Biol, 1991,145: 241-254.
    [164] Luche RM, Sumrada R, Cooper TG. A cis-acting element present in multiple genes serves as a repressor protein binding site for the yeast CAR1 gene[J]. Mol Cell Biol, 1990, 10:3884-3895.
    [165] Lopes JM, Henry SA. Interaction of trans and cis regulatory elements in the INO1 promoter of Saccharomyces cerevisiae[J]. Nucleic Acids Res, 1991,19: 3987-3994.
    [166] Bram RJ, Kornberg RD. Specific protein binding to far upstream activating sequences in polymerase II promoters[J]. Proc Natl Acad Sci USA, 1985, 82:43-47.
    [167] Zhang R, Ou HY, Zhang CT. DEG: a database of essential genes[J]. Nucleic Acids Res, 2004, 32(Database issue): D271-2.
    [168] Barabasi AL, Oltyai ZN. Network biology: understanding the cell's functional organization[J]. Nature Reviews, 2004, 5:101-113.
    [169] Kitano H. Systems biology: a brief overview[J]. Science, 2002, 295:1662-1664.
    [170] Kitano H. Computational systems biology[J]. Nature, 2002,420: 206-210.
    [171] Schafer J., Strimmer K. An empirical approach to inferring large graphical Gaussian models from microarray data[J]. Bioinformatics, 2004,1:1-13.
    [172] Friedman N., Linial M., Nachman I. et al. Using Bayesian networks to analyze expression data[J]. J Computational biology, 2001, 7: 601-620.
    [173] Pe'er D., Regev A., Elidan G. et al. Inferring subnetworks from perturbed expression profiles[J]. Bioinformatics, 2001,1: 1-9.
    [174] Segal E., Yelensky R., Koller D. Genome-wide discovery of transcriptional modules from DNA sequences and gene expression [J]. Bioinformatics, 2003,19: 273-282.
    [175] Friedman N. Inferring cellular networks using probabilistic graphical models[J]. Science, 2004, 303: 799-805.
    [176] Yeung MK, Tegner J., Collins J. Reverse engineering gene networks using singular value decomposition and robust regression[J]. Proc Natl Acad Sci U S A, 2002, 99: 6163-6168.
    [177] Tegner J, Yeung MK, Hasty J, Collins JJ. Reverse engineering gene networks: integrating genetic perturbations with dynamical modeling[J]. Proc Natl Acad Sci USA, 2003, 100: 5944-5949.
    [178] Jansen R, Yu H, Greenbaum D, et al. A Bayesian approach for predicting protein-protein interactions from genomic data[J]. Science, 2003, 302: 449-453.
    [179] Segal E., Wang H., Koller D. Discovering molecular pathways from protein interaction and gene expression data[J]. Bioinformatics, 2003,19: 264-272.
    [180] Wagner A. How to preconstruct a large genetic network from n gene perturbations in fewer than n~2 easy steps[J]. Bioinformatics, 2001,17:1183-1197.
    [181] Davidson EH, Rast JP, Oliveri P, et al. A genomic regulatory network for development[J]. Science, 2002, 295:1669-1678.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700