用户名: 密码: 验证码:
发酵法生产1,3-丙二醇条件优化及相关策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
1,3-丙二醇是一种重要的化工原料,主要作为单体生产聚酯(PTT)等高分子材料。1,3-丙二醇的生产方法有化学法和微生物发酵法两类。微生物发酵法以其环境友好、生产过程中不含醛类物质、产率高、产品质量好以及可再生资源为原料等优点,成为当前研究热点。为了进一步提高1,3-丙二醇产量、实现发酵的有效调控,本论文对克雷伯氏肺炎杆菌(Klebsiella pneumoniae)合成1,3-丙二醇的发酵条件优化、pH值对中心碳代谢的影响、控制3-羟基丙醛(3-HPA)保持持续发酵等进行了系统研究,从而为工艺放大和菌种的基因改造提供指导。
     利用了中心组合设计的商业软件Design Expert 7.0.2 Trial对K. pneumoniae合成1,3-丙二醇的发酵条件,包括初始甘油浓度、搅拌速度、通风量以及pH值四因素进行了研究,获得了最佳的相关参数,使得批次发酵的生产强度提高,优化条件下流加补料发酵实验的发酵周期明显缩短。
     以pH值作为考察因素,研究不同pH值对发酵过程中各代谢产物代谢的影响,结果显示,pH值对K. pneumoniae产物谱有明显的影响,低pH值下有机酸的合成受到抑制,较高pH值抑制2,3-丁二醇的合成。
     3-羟基丙醛是甘油发酵生产1,3-丙二醇的一个中间产物,3-羟基丙醛的积累会造成发酵过程的异常终止。考察了初始甘油浓度、转速和氧化还原电势(ORP)三个因素对3-羟基丙醛积累的影响,实现了在不影响1,3-丙二醇生产强度的情况下,防止3-羟基丙醛的致死性积累。
     研究了利用不同生物柴油副产物粗甘油对K. pneumoniae发酵生产1,3-丙二醇的影响。研究结果表明,生物柴油粗甘油浓度越高,1,3-丙二醇的得率和生产强度也越高,且生产单位1,3-丙二醇产品的经济效益也越高,证明了生物柴油和1,3-丙二醇耦联生产的可行性,为降低1,3-丙二醇工业化生产成本提供了依据。
1,3-Propanediol is an important chemicals mainly used for the synthesis ofpolytrimethylene terephthalate (PTT) and other polyester fibers. Compared with thechemical methods, the biological synthesis approach is increasingly favored due to theenvironmental friendly features, the high yield and the renewable feedstock. In orderto further enhance the 1,3-propanediol productivity and ensure the effectivefermentation regulation, the statistical optimization of culture conditions and thecontrol 3-hydroxypropionaldhyde(3-HPA) concentration below the toxic level to1,3-propanediol production were investigated, providing the substantial insights forthe subsequent pilot plant experiment and the metabolic analysis.
     A central composite design was used to study the effect of glycerol, rate ofstirring, air aeration and pH on the synthesis of 1,3-propanediol by K. pneumoniae.The optimum combinations for 1,3-propanediol productivity was glycerol, rate ofstirring, air aeration, and pH of 50 g/L, 318 rpm, 0.6 vvm, 6.48, respectively. After theoptimization, the 1,3-propanediol productivity of the batch culture was increased. Thefermentation cycle for the fed batch culture was deceased.
     The response of K. pneumoniae central carbon metabolism to environmentalpH has been studied. The results indicated that pH influenced the product spectrum.More organic acid was produced at low pH, while 2,3-butadiol synthesis was inhibtedat high pH condition.
     3-Hydroxypropionaldhyde is a medium metabolite during production of1,3-propanediol. The 1,3-propanediol fermentation would terminated due to the3-hydroxypropionaldhyde accumulation. Three approaches including the initialglycerol, the stirring rate, and the oxidoreduction potential (ORP) regulation wereemployed to investigate the impacts on 3-hydroxypropionaldehyde accumulation. Thegoal of this work was to study three strategies' influences to 3-hydroxypropionaldehyde accumulation and to prevent the abnormal cessation. Theresults confirmed that the accumulation of 3-hydroxypropionaldhyde could beregulated.
     The 1,3-propanediol production with the crude glycerol from biodiesel processwas investigated. The results revealed that higher concentration crude glycerolexhibited higher productivity and yield of 1,3-propanediol, The cost analysis showedhigher concentration crude glycerol could reduce the cost of production. This workwas expected to provide the basis to effectively improve utilization ratio of crudeglycerol from biodiesel process, produce biodiesel and 1,3-propanediol, and reducethe cost of production of 1,3-propanediol.
引文
[1] 程能林,胡生润.溶剂手册[M].北京:化学工业出版社,1986年第一版.
    [2] Smith, James G, Kibler, Charles J., et al. Preparation and Properties of Poly(methylene terephthalates)[J]. Journal of Polymer Science: Part A-1, 1966, 4: 1851-1859.
    [3] 曾益民.聚芳香羧酸酯之合成及性质研究[D].台湾:化学工程研究所,2001.
    [4] Abbad-Andaloussi S, Manginot-Durr C, Raval G, et al. Carbon and electron flow in Clostridium butyricum grown in chemostat culture on glycerol and on glucose[J]. Microbiology, 1996, 142: 1149-1158.
    [5] Ahrens K, Menzel K, Zeng AP, et al. Kinetic, Dynamic, and Pathway Studies of Glycerol Metabolism by Klebsiella pneumoniae in Anaerobic Continuous Culture: Ⅲ Enzymes and Fluxes of Glycerol Dissimilation and 1,3-Propanediol Formation[J]. Biotechnol. Bioeng, 1998, 59: 544-552.
    [6] 张胜一.PTT纤维的生产与应用[J].纺织科学研究,1999,1:43-45.
    [7] Rita LD, Aquino. Three routes vie for the 1,3-propanediol market [J]. Chem Eng, 1999, 106(5): 56-62.
    [8] Trab H L, Hirt P, Heringer H. Faberisches Verhalten yon Fasern aus Polytrimthylenterephalat [J]. Melliand Textiberichte, 1995(9): 702-706.
    [9] Shell oil Co. (US). Process for making 1,3-propanediol and 3-hydroxypropanal[P]. US 5 304 691,1994.
    [10] Shell Oil Co. (US). Process for preparing 1,3-propanediol[P]. US 5 463 144, US 5 463 145, US 5 463 146,1995.
    [11] 洪仲苓.化工有机原料深加工[M].北京:化学工业出版社,1997.
    [12] 瞿国华.PTT的工业开发及1,3-丙二醇的合成[J].合成纤维工业,2000,23(8):31-34.
    [13] Freund A. Uber die Bildung und Darstellung von Trimethylenalkohol aus Glycerin[J]. Monatsh Chem, 1881, 2:636-641.
    [14] Homann T, Tag C, Biebl H, et al. Fermentation of glycerol to 1,3-propanediol by Klebsiella and Citrobacter strains[J]. Appl. Microbiol. Biotechnol. 1990, 33: 121-126.
    [15] Abeles RH, Brownstein AM, Randles CH. β-Hydroxypropionaldehyde, an intermediate in the formation of 1,3-propanediol by Aerobacter aerogenes[J]. Biochim Biophys Acta, 1960, 41: 530-531.
    [16] Barbirato F, Grivet JP, Soucaille P, et al. 3-Hydroxypropionaldehyde, an inhibitory metabolite of glycerol fermentation to 1,3-propanediol by Enterobacterial species[J]. Appl. Envir. Microbiol., 1996a; 62:1448-1451.
    [17] Gottschalk G, Averhoff B. Process for the microbial preparation of 1,3-propanediol from glycerol[P]. European patent no.EP 0373230 A1, 1990.
    [18] Papanikolaou S, Ruiz-Sanchez P, Pariset B, et al. High production of 1,3-propanediol from industrial glycerol by a newly isolated Clostridium butyricum strain[J]. Biotechnol, 2000, 77:191-298.
    [19] Biebl H. Fermentation of glycerol by Clostridium pasteurianum-batch and continuous culture studies[J]. Ind. Microbiol. Biotechnol, 2001, 27:18-26.
    [20] Cunha, M. V., Foster M. A. 1,3-Propanediol: NAD+ oxidoreductases of Lactobacillus brevis and Lactobacillus buchneri[J]. Appl. Environ. Microbiol, 1992,58:2005-2010.
    [21] Axelsson LT, Chung TC, Dobrogosz WJ, et al. Production of a broad spectrum antimicrobial substance by Lactobacillus reuteri[J]. Microb Ecol Health Dis, 1989, 2: 131-136.
    [22] 苑广志,田晶,徐龙权,等.曲霉发酵甘油生产1,3-丙二醇的研究[J].食品与发酵工业,2006,32:49-52.
    [23] Laffend LA, Nagarajan, Vasantha, et al. Bioconversion of a fermentable carbon source to 1,3-propanediol by a single microorganism[P]. US 5,686,276, November 11, 1997.
    [24] Sun J, Van Den Heuvel J, Soucaille P, et al. Comparative Genomic Analysis of dha Regulon and Related Genes for Anaerobic Metabolism in Bacteria[J]. Biotechnol. Prog, 2003, 19(2): 263-272.
    [25] Forage RG, Foster MA. Glycerol fermentation in Klebsiella pneumoniae: functions of the coenzyme B_(12)-denpendent glycerol and diol dehydratases[J]. Bacteriol,1982a, 149(2): 413-419
    [26] Ruth FE and Lin EC. Independent constitutive expression of the aerobic and anaerobic pathways of glycerol catabolism in Klebsiella aerogenes[J]. Bacteriol, 1975, 124:348-352.
    [27] Sprenger GA, Hammer GA, Johnson EA, et al. Anaerobic growth of Escherichia coli on glycerol by importing genes of the dha regulon from Klebsiella pneumoniae[J]. Gen. Microbiol,1989, 135: 1255-1262.
    [28] Yamanishi M Yunoki M, Tobimatsu T, et al . The crystal structure of coenzyme Bn-dependent glycerol dehydratase in complex with cobalamin and propane-1,2-diol[J]. Eur. Biochem, 2002,269:4484-4494.
    [29] Anja Knietsch, Susanne Bowien, Gregg Whited, et al. Identification and Characterization of Coenzyme Bn-dependent Glycerol Dehydratase- and Diol Dehydratase-Encoding Genes from Metagenomic DNA Libraries Derived from Enrichment Cultures [J]. Applied & Environmental Microbiology, 2003,69: 3048-3060.
    [30] Forage RG, Lin ECC. Dha systems mediating aerobic and anaerobic dissimilation of glycerol in Klebsiella pneumoniae NCIB 418[J]. Bacteriol, 1982b, 151: 591-599.
    [31] Biebl H. Glycerol fermentation to 1,3-propanedioi by Clostridium butyricum. Measurement of product inhibition by use of a pH-auxostat[J]. Appl. Microbiol. Biotechnol,1991, 35: 701-705.
    [32] Flores N, Flores S, Escalante A, et al. Adaptation for fast growth on glucose by differential expression of central carbon metabolism and gal regulon genes in an Escherichia coli strain lacking the phosphoenolpyruvate:carbohydrate phosphotransferase system[J]. Metabolic Engineering, 2005, 7:70-87.
    [33] Daran-Lapujade P, Jansen MLA, Daran JM, et al. Role of Transcriptional Regulation in Controlling Fluxes in Central Carbon Metabolism of Saccharomyces cerevisiae[S]. Biological Chemistry, 2006,279: 9125-9138.
    [34] Perrot, M., Sagliocco F, Mini T, et al. Two-dimensional gel protein database of Saccharomyces cerevisiae (update 1999)[J]. Electrophoresis ,1999,20: 2280-2298.
    [35] Shevchenko, A.Jensen, O. N., Podtelejnikov, et al. Linking genome and proteome by mass spectrometry: Large-scale identification of yeast proteins from two dimensional gels[J]. Proc. Natl. Acad. Sci. U. S. A., 1996,93,14440-14445.
    [36] Kolkman A, Olsthoorn MMA, Heeremans CEM, et al. Comparative Proteome Analysis of Saccharomyces cerevisiae Grown in Chemostat Cultures Limited for Glucose or Ethanol[J]. Mol. Cell. Proteomics, 2005,4: 1 - 11.
    [37] Saint-Amans S, Perlot P, Goma G, et al. High production of 1,3-propanediol by Clostridium butyricum VPI 3266 in a simply controlled fed-batch system[J]. Biolechnol. Lett, 1994, 16: 832-836.
    [38] Cameron DC, Altaras NE, Hoffman ML, et al. Metabolic engineering of propanediol pathways[J]. Biotechnol. Prog, 1998, 14: 116-125.
    [39] Norbeck J, Pahlman AK, Akhtr N, et al. Purification and characterization of two isoenzymes of DL-glycerol-3-phosphatase from Saccharomyces cerevisiae [J]. Biol.Chem, 1996, 271: 13875-13881.
    [40] Emptage M, Haynie SL, Laffend LA, et al. Process for the biological production of 1,3-propanediol with high titer[P]. US.Put. No.6514733, 2003.
    [41] Nakamura Charles E, Whited Gregory M. Metabolic engineering for the production of 1,3-propanediol[J]. Current Opinion in Biotechnology, 2003, 14: 454-459.
    [42] 杨光.1,3-丙二醇产生菌肺炎克氏杆菌的分子育种[D].北京:中国农业大学,2003.
    [43] 张延平,曹竹安.醛脱氢酶基因敲除的K.pneumoniae重组菌的构建[J].中国生物工程杂志,2005,12:197-199.
    [44] Skraly FA, Betsy L. Lytle, Douglas C. Cameron. Construction and Characterization of a 1,3-Propanediol Operon[J]. Appl. Envir. Microbiol, 1998, 64: 98-105.
    [45] Zeng AP, Biebl H, Deckwer WD. Microbial conversion of glycerol to 1, 3-propanediol [J]. American Chemical Society, 1997, 265-279.
    [46] 修志龙.甘油连续生物歧化过程培养基和pH调控策略研究[J].高校化学工程学报,2001,15(4):397-402.
    [47] 王剑锋,刘海军,修志龙,等.1,3-丙二醇间歇发酵培养基的优化[J].食品与发酵工业,2001a,27(8):5-8.
    [48] Reimann A, Biebl H, Decker WD. Production of 1,3-propanediol by Clostridium butyricum in continuous culture with cell recycling[J]. Appl. Mierobiol. Biotechnol, 1998b, 49: 359-363.
    [49] Vollenweider S, Lacroix C. 3-Hydropropionaldehyde: applications and perspectives of biotechnological production[J]. Appl Microbiol Biotechnol, 2004, 64:16-27.
    [50] Menzel K, Zeng AP, Deckwer WD. High concentration and productivity of 1,3-propanediol from continuous fermentation of glycerol by Klebsiella pneumoniae[J]. Enzyme Microbiol. Technol, 1997, 20: 82-86.
    [51] Boenigk R, Bowien S, Gottschalk G Fermentation of glycerol to 1,3-propanediol in continuous cultures of Citrobacter freundii[J]. Appl. Microbiol. Biotechnol, 1993, 38: 453-457.
    [52] Pflugmacher U, Gottschalk G. Development of an immobilized cell reactor for the production of 1,3-propanediol by Citrobacter freundii [J]. Appl. Microbiol. Biotechnol, 1994, 41: 313-316.
    [53] 王剑锋,修志龙,刘海军,等.克雷伯氏菌微氧发酵生产1,3-丙二醇的研究[J].现代化工,200lb,21(5):28-31.
    [54] Huang H., Gong CS, Tsao GT. Production of 1,3-propanediol by Klebsiella pneumoniae[J]. Appl. Biochem. Biotechnol, 2002, 98: 687-698.
    [55] Chen X, Zhang D. J., Qi W. T., et al. Microbial fed-batch production of 1,3-propanediol by Klebsiella pneumoniae under micro-aerobic conditions[J]. Appl Microbiol Biotechnol, 2003, 63: 143-146.
    [56] Ames TT. Process for the isolation of 1,3-propanediol from fermentation broth[P]. US Patent: 6361983 B1, 2002.
    [57] Gong Y, Tong Y., Wang X. L, et al. The possibility of the desalination of actual 1,3-propanediol fermentation broth by electrodialysis [J]. Desalination, 2004, 161: 169-178.
    [58] 张代佳,高素军,孙亚琴,等.超滤-醇沉法从发酵液中提取1,3-丙二醇[J],过程工程学报,2006,6:454-457.
    [59] Routier JM, Fouache C, Berghmans. Process for the purification of 1,3-propanediol from a fermentation medium[P]. US Patent: 6428992B1, 2002.
    [60] Hilaly AK, Binder T. Method of recovering 1,3-propanediol from fermentation broth[P]. US Patent: 6479716B2, 2002.
    [61] Corbin DR, Norton T. Process to separate 1,3-propanediol or glycerol, or a mixture thereof from a biological mixture[P]. US Patent:6, 603048 B1, 2003.
    [62] Li, S, Tuan VA, Falcone JL et al. Separation of 1,3-propanediol from glycerol and glucose using a ZSM-5 zeolite membrane[J]. Journal of Membrane Science, 2001, 191:53-59.
    [63] Malinowski JJ.. Reactive Extraction for Downstream Separation of 1,3-Propanediol[J]. Biotechnol. Prog, 2000, 16, 76-79.
    [64] Biebl H, Menzel K, Zeng AP, et al. Microbial production of 1,3-propanediol[J]. Appl Microbiol Biotechnol, 1999, 52:289~297.
    [65] 刘德华,刘宏娟,程可可.微生物发酵法生产1,3-丙二醇研究进展[J].合成纤维,2005, No.9:11-14.
    [66] Molpeceres J, Guzman M, Aberturas MR, et al. Application of central composite designs to the preparation of polycaprolactone nanoparticles by solvent displacement[J]. J Pharm Sci, 1996, 85 (2): 206-213.
    [67] Mcleod AD, Lam FC, Gupta PK, et al. Optimized synthesis of polyglutaraldehyde nanoparticles using central composite design [J]. JPharm Sci, 1988,77 (8):704-710.
    [68] Abu-lzza KA, Garcia-contreras L, Lu DR, et al. Preparation and evaluation of sustained release AZT-loaded microspheres. 1. Optimization of the release characteristics using response surface methodology [J]. JPharm Sci, 1996,85 (2): 144-149.
    [69] Abu-lzza KA, Garcia-contreras L, Lu DR., et al. Preparation and evaluation of sustained release AZT-loaded microspheres. 2. Optimization of multipleresponse variables [J]. J Pharm Sci, 1996,85 (6): 572-578.
    [70] Lu B, Wu W. Optimization of preparation of dexamethasone acetate-loaded poly (D, L-lactide) microspheres by central composite design [J]. Acta Pharm Sin (in Chinese), 1999,34 (5): 387-391.
    [71] Ooijkaas L P, Wilkinson E C, Tramper J, et al. Medium optimization for spore production of Coniothyrium minitans using statistically-based experimental designs[J]. Biotechnol Bioeng, 1999,64 (1): 92-100.
    [72] 陈斌,庄英萍,郭美锦,等.中心组合优化梅岭霉素发酵培养基[J].高技术通讯,2002,12:29-33.
    [73] Box, G. E. P., Wilson, K.B.. On the experimental attainment of optimum conditions[J]. Journal of the Royal Statistical Society (Series B), 1951, 13, 1-45.
    [74] 李大玉,付晨.纳氏试剂分光光度法中纳氏试剂配制的改进[J].预防医学情报杂志,2005,21:243-244.
    [75] 冯立顺,刘洪燕,刘新华.纳氏试剂配制过程中的几个问题[J].德州学院学报,2002,18:43-44.
    [76] Box, G. E. P., Hunter, W. G., Hunter, J.S. Statistics for experimenters[M]. New York: John Wiley and Sons, 1978.
    [77] Lee, C. L., Wang, W.L. Biological Statistcis[M]. Beijing: Science Press, 1997.
    [78] Gu, X. B., Zheng, Z.M., Yu, H., et al. Optimization of medium constituents for a novel lipopeptide production by Bacillus subtilis MO-01 by a response surface method[J]. Process Biochemistry, 2005.40:3196-3201.
    [79] Zeng A P, Biebl H. Bulk chemicals from biotechnology: the case of 1, 3-propanediol production and the new trends[J]. Adv. Biochem.Eng. Biotechnol, 2002, 74: 239-259.
    [80] Daniel R and Gottschalk G. Growth temperature dependent activity of glycerol dehydratase in E.coli expressing the C. feundii dha regulon[J]. FEMS Microbiology Letters, 1992, 100: 281-286.
    [81] Tong IT, Cameron DC. Enhancement of 1,3-propanediol production by cofermentation in Escherichia coli expressing Klebsiella pneumoniae dha regulon genes[J]. Appl. Biochem. Biotechnol, 1992, 34/35: 149-159.
    [82] 周文广,黄日波.克雷伯氏菌1,3-丙二醇氧化还原酶基因在大肠杆菌中的克隆与表达[J].广西农业生物科学.2004,23(2):145-148.
    [83] Kastner J R, Eiteman MA, Lee SA. Effect of redox potential on stationary-phase xylitol fermentations using Candida tropicalis[J]. APPL Microbiol Biotechnol, 2003, 63: 96-100.
    [84] 张健.以葡萄糖为辅助底物发酵生产1,3-丙二醇的研究[D].清华大学,北京,2002.
    [85] 林日辉,刘宏娟,张君,等.3-羟丙醛对Klebsiella pneumoniae发酵产1,3-丙二醇的影响及其调控[J].现代化工,2005,9:47-51.
    [86] Barbirato F, Astruc S, Soucaille P, et al. Anaerobic pathways of glycerol dissimilation by Enterobacter agglomerans CNCM 1210: limitation an regulations[J]. Microbiology, 1997, 143: 2423-2432.
    [87] Wang W, Sun JB, Hartlep M, et al. Combined use of proteomic analysis and enzyme activity assays for metabolic pathway analysis of glycero fermentation by Klebsiella pneumoniae [J].Biotech. Bioeng., 2003, 83(5):533-536.
    [88] Circle S J, Stone L, Boruff CS. Acrolein determination by means of tryptophan[J]. Ind. Eng. Chem. Anal. Ed, 1945,17:259-262.
    [89] Slininger PJ, Bothast RJ, Smiley KL. Production of 3-hydroxypropionaldehyde from glycerol[J]. Appl Environ Microbiol,1983,46:62-67.
    [90] Chen X, Zhang D J, Qi WT, et al. Microbial fed-batch production of 1,3-propanediol by Klebsiella pneumoniae under micro-aerobic conditions[J]. Appl Microbiol Biotechnol, 2003, 63: 143-146.
    [91] Riondel C, Cachon R,Wache Y, et al. Changes in the proton-motive force in Escherichia coli. in response to external oxidoreduction potential[J]. Eur.J. Biochem, 1999, 262:595-599.
    [92] Riondel C, Cachon R, Wache Y, et al. Extracellular oxidoreduction potential modifies carbon and electron flow in Escherichia coli[J]. Bacteriol, 2000,182:620-626.
    [93] Ouvry A, Wache Y, Tourdol-Marechal R, et al. Effects of oxidoreduction potential combined with acetic aci, NaCl and temperature on the growth, acidification,and membrane properties of Lactobacillus plantarum[J]. FEMS Microbiol. Lett., 2002,214:257-261.
    [94] Bourel G, Hennini S, Divies C, et al. The response of Leuconostoc mesenteroides to low external oxidoreduction potential generated by hydrogen gas[J]. Appl. Microbiol, 2003, 94: 280-288.
    [95] Kastner JR, Eiteman MA, Lee SA. Effect of redox potential on stationary-phase xylitol fermentations using Candida tropicalis[J]. Appl. Microbiol. Biotechno., 2003, 63 (1):96-100.
    [96] Riondet C, Cachon R, Wache Y, et al. Extracellular Oxidoreduction Potential Modifies Carbon and Electron Flow in Escherichia coli[J].Bacteriol,2000,182:620-626.
    [97] Barbirato F, Soucaille P, Bories A. Physiological mechanisms involved in the accumulation of 3-hydroxypropionaldehyde during the fermentation of glycerol by Enterobacter agglomerans [J]. Appl. Environ. Microbiol, 1996b, 62: 4405-4409.
    [98] 盛梅,李为民,邬国英.生物柴油研究进展[J].中国油脂,2003,28(4):66-70.
    [99] 忻耀年,B.Sondermann,B.Emersleben.生物柴油的生产与应用[J].中国油脂,2001,26(5):72-77.
    [100] 王领民,甘一如,金平,等.甘油发酵副产物对菌体代谢能力的影响[J].精细与专用化学品,2005,13(12):22-24.
    [101] 李凡锋,周玉杰,刘德华.1,3-丙二醇发酵液的预处理研究[J].微生物学通报,2004,31(3):30-35.
    [102] 刘德华,郝健,向波涛,等.从稀水溶液中提取低级多元醇的新型反应萃取工艺[P].中国专利号:ZL 200410038300.5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700