用户名: 密码: 验证码:
大型矿集区接替资源定位预测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文研究内容主要结合国土资源部科技与国际合作司的专项研究“中国重要成矿带找矿模型及技术方法”下属的“大型矿集区深部精细结构与成矿研究”(编号:1212010561607)。大型矿集区接替资源定位预测研究多年来一直是现今地学勘探领域的热点和前沿。
     大型矿集区是矿产资源产出的重要基地,对满足国家经济持续健康发展有十分重要的意义,大量的勘探事实说明,在己开发老矿山(或矿集区)的深部和外围发现新矿床、扩大资源储量有较大的潜力。加强对矿集区接替资源的研究和勘探评价是扩大矿产资源储量的重要途径,对缓解目前老矿山的资源危机意义重大。
     接替资源定位预测研究的焦点在于如何寻找隐伏矿?如何对隐伏矿进行定位预测研究?对国内外隐伏矿定位预测研究发展现状及我国建国以来隐伏矿的发展过程的分析表明,我国隐伏矿定位预测理论研究是应用综合技术方法定位预测的基础,目前急需结合成矿理论加强综合方法技术优化组合的研究。
     通过对隐伏矿找矿与大比例尺定位预测的现状进行了总结和探讨,阐述了开展隐伏矿找矿的基本思路为:必须首先加强地质基础理论的研究,拓展找矿新思维,同时坚持综合方法技术勘查,充分利用新方法、新技术;探讨了进行隐伏矿大比例尺定位预测的具体手段,提出在开展重要成矿带中比例尺(1:50000)综合立体成矿预测和大比例尺(1:2000~1:10000)立体地质填图中应加强综合物探的作用。应用先进的三维地质建模软件,初步建立了中比例尺狮子山矿区(1:50000)和大比例尺(1:10000)的冬瓜山矿床的三维立体地质模型。
     从矿田分布看,铜陵大型矿集区内由西向东依此为铜官山、狮子山、新桥、凤凰山和沙滩角五大矿田。其中狮子山矿田是我国目前勘查研究程度最高的地区之一,是进行隐伏矿定位预测深入研究的理想场所。
     岩浆侵位和矿田以及矿床的产出主要受近东西向的基底断裂与其上盖层的北东向构造控制。铜陵矿集区在矿田和矿床尺度上,位于表壳浅带的“行、列、汇”构造样式是热液脉型矿床(体)的重要控矿构造,而不同尺度控矿构造的有机结合,则是该类型矿床形成的最重要的构造机制。根据控矿特征,矿田构造可分为浅带“行、列、汇”构造样式、中带岩浆侵入接触构造体系和深带“隆中凹”构造,三者的深度分别为0~1km左右、1~3.0km左右和>3.0km,在空间上构成了矿田构造的垂直分带。浅、中、深控矿构造带在不同的矿田常具有不同的组合形式,当三者完全产出时则构成了完整的矿田构造垂直分带。
     分析了狮子山矿田的成矿地质条件、矿床成因,确定了地层、岩体、构造等控矿因素与隐伏矿的关系,通过对冬瓜山及东狮子山典型铜矿床的解剖和对已建立的狮子山矿田“多层楼”或“多位一体”成矿模式的研究,结合地球物理、地球化学特征,总结了地物化综合找矿方法和标志。
     本次研究的主要内容是依据地球物理探测成果,在基础地质、物化探研究的基础之上,充分结合已有的研究成果,运用和引进新的高精度地震和电磁法等勘探技术进行深部隐伏矿定位预测研究,同时注重对老资料的的客观性评价研究,关注覆盖区隐伏矿的定位预测研究。
     通过对60km深地震反射剖面数据的分析处理和已有资料的综合解释,查明铜陵矿集区总体呈双层地壳结构,地壳厚约31-33公里,下地壳厚度变化较大(10-20km);发现矿集区北部下地壳(4-11s,TWT)呈现多组倾向相反的“层状”强反射,是伸展环境下岩浆多次底侵的直接证据。
     发现矿集区上、下地壳之间(4-7s,TWT)存在向南倾斜的巨型强反射带,证实上下壳之间存在巨大规模的拆离带。该拆离带为岩浆侵入和岩浆房发育创造了空间条件,从而使矿集区下形成巨型穹隆状岩基。
     发现铜陵矿集区上地壳出现由褶皱、冲断和侵入构造造成的复杂的弧形反射,在复杂弧形反射下方出现反射透明区,证实了浅部巨型岩浆房的存在。数值模拟结果表明,始于浅部巨型岩浆房的岩浆侵入活动,整体上,“深部在中间集中,浅部向两侧扩散”。该巨型岩浆房从根本上控制了铜陵矿集区燕山期构造—岩浆—热液成矿作用。
     通过狮子山高分辨率反射地震和层析成像研究,初步查清矿集区主要含矿层位和含矿建造(如五通组顶面)的空间展布形态,对深部找矿具有重要的指示意义;发现上地壳盖层出现非耦合变形,强—弱地层在变形过程中形成层间滑脱带。揭示出层间滑脱带为低粘度岩浆和含矿气液的重要通道。
     在综合分析和研究狮子山矿区地物化综合信息的基础上,建立了隐伏矿定位预测的重磁找矿模型,在预测区开展了以找深部及边部隐伏矿的综合高精度重、磁和电法新技术勘探研究,并依据勘探成果提出了进一步勘查的大比例尺工作预测靶区三处:乌栗山靶区、前冲靶区和桂花冲靶区。
     通过对以往狮子山矿田勘探方法技术手段的分析研究,结合本次综合物探勘查和新方法技术的应用研究,探讨了进行深部隐伏矿定位预测的方法技术及合理选择方法组合的原则,指出具有大探深、高分辨率的物探方法技术虽然很关键,同时也强调了进行综合勘探方法组合的必要性。
The research content of dissertation mainly connects with the expert research item "The deepfine structure and mineralization research of large ore concentrated area" (NO. 1212010561607)that belong to "The ore exploration model and technical method for important ore belt in China"support by technique and international cooperation department of The Ministry of Land andResources P.R.C.
     Large ore concentrated area are important base of mineral resources output and it have quiteimportant meaning for national economy development. Many exploration case proved that therehave more potential for find new ore deposit and expand resource reserves in the depth andperiphery of old mine or old concentrated area. Strengthen research and explore assessment forsubstituted resources of ore concentrated area is a key approach to expand mineral resourcesreserve and it also have important meaning for decrease resources crisis of old mine.
     The focus of location and prediction research for substituted resources is how to seek lieconcealed ore and how to locate and forecast lie concealed ore. According analysis of internationalresearch development about concealed ore location prediction and the development progress ofconcealed ore since 1949, it indict that theory research about concealed ore in China is the basic ofsynthetically technique application for ore locate and predict. Nowadays, it in dire need ofintegrates with ore forming theory to strengthen the research of synthetically method optimizecombination.
     Though summarize and discuss concealed ore exploration and large scale ore location andprediction, the basic thought for concealed ore exploration was expatiated like follows: first ofall ,it should strengthen basically geological theory research and expand newly ore explorationthought, second insist use synthetically methods to explore ore and take full advantage of newapproach and new technique. A idiographic approach for large scale concealed ore located andpredicted was discussed and a suggestion that synthetically geophysical method should strengthenin middle scale (1:50000) and large scale (1:2000 to 1:10000) synthetically solid geologicalmapping.3-D solid geological model of Shizi mountain deposit in middle scale (1:50000) andDonggua mountain deposit in large scale (1:10000) was set up.
     According distributing of mine deposits, from west to east, there are five large mine depositin Tongling large ore concentrated area: Dongguan mountain deposit, Shizi mountain deposit,Xinqiao deposit,Fenghuang mountain deposit and Shatanjiao deposit. In these ore deposits,Shizimountain ore deposit is one of the deposits that be researced more advantaged in China presentlyand it is a ideal site for concealed ore location and predict research.
     Magma intrusion and ore deposit output mainly controlled by west-eastern basement faultand east-northern structure on base floor. In ore field and deposit scale, Tongling ore depositslocate in the structure which pattern named "row-line-cluster" in shallow crust belt and thisstructure style is the most important structure mechanism for fluid ore deposit forming. The bestCombine of different scale ore-controlling structure is main mechanism of this type ore depositforming. According to ore-controlling character, ore field structure can be divided into three types:first, "row-line-cluster" structure type in shallow belt, second, magma intrusion contact structuresystem in middle belt, three, "depression above swell" structure in deep belt. These three type beltdepth partly in 0-10km, 1-3km and more than 3km and composing ore field structure plumbdivided in space. In different ore field there have different combination of shallow, middle anddeep ore-controlling structure bundle, intact ore field structure vertical zoning was forming when these three belts completely output.
     The mineralization geological condition, cause of deposit formation about Tongling ore fieldwas analysesed and the relationship between ore-controlling structure (stratum, rock body andstructure) and concealed ore was confirmed. Though anatomize typical ore deposit such asDonggua mountain ore deposit and east Shizi mountain deposit and research mineralization modelwhich already be set up such as "multistory " and "multi-phase centralize on one body"mineralization patterns in Shizi mountain ore field and integrate with geophysical andgeochemical character , the method and symbol for ore exploration by geophysics andgeochemistry was summarized
     The main content of this research based on basically geology and geophysics andgeochemistry research and according with geophysical exploration result. Combine with researchresult in hand and use and introduce into new method and new instrument such as highresolution seismic and electromagnetism to research concealed ore, at the same time ,we pay moreattention to assess old resource and research location and predict of concealed ore in coveredarea.
     Though analyses deep seismic reflect profile that lasting 60 km and synthesis interpretexploration data, we find that Tongling ore deposits have double layer crust: crust thickness about31-33km and low crust thickness change mostly from 10km to 20km.Low crust in deposits northpresent multi-group stronger reflection layer which incline opposite and it is the directnessevidence of magma intrusion many times.
     A giant stronger reflection bundle was funded between up and lower crust (4-7s,TWT) in oredeposits, it confirmed that there exist large scale detachment belt. This belt create space conditionfor magma intrusion and magma room develop and then forming giant vault batholiths under oredeposits.
     Arc reflection caused by fold, break and intrusion structure was found in up crust in Tonglingore deposits and under complex arc reflection exist reflect transparency area, it confirmed shallowlayer exist giant magma room. The mathematic simulate result show magma intrusion movementthat begin from shallow giant magma room, in large scale, magma centralized in centre in deepcrust and expand to slide in shallow crust. This giant magma room basically controlled Yanshanperiod structure-magma-fluid metallogenetic action in Tongling ore deposits.
     Through research of high resolution seismic and tomography image on Shizi mountaindeposit, space layout shape of mineral layer and mineral structure of deposit(such as Wutonggroup tip) was find out primaryly, it have important directional meaning for deep ore exploration.We find up crust cover layer became non-coupling distortion and detachment belt between layerswas formed in the course of strong-weak layer distortion. We also discover detachment beltbetween layers is the key channel of low viscidity magma and mineralize gas and fluid.
     Magnetism and gravitational modules for concealed ore location and predict was set up basedon synthesis analysis and research about geophysics and geochemistry on Shizi mountain deposits.New high resolution gravitational, magnetism and electrical methods for deep and surroundconcealed ore exploration was exerted in predict area and according exploration result threepredict target area for next large scale exploration work was bring forward,there are Wulimountain target area,Qianchong target area and Guihuachong target area.
     According research on anciently exploration approach and method in Shizi mountain orefield and integrate with synthesis geophysics and new method application, a principle of method select and combination for deep concealed ore location and predict was discussed in thisdissertation, At last, it point out that high resolution and deep exploration method is important andsynthesis exploration methods combination also necessary.
引文
1.国务院新闻办公室.《中国的矿产资源政策》白皮书[N].中国国土资源报,2003-12-24(2版).
    2.裴荣富,吴良士.1994.金属成矿省演化与成矿.地学前缘,1(3-4):95~99.
    3.裴荣富,吕凤翔,范继璋等.1998.华北地块北缘及其北侧金属矿床成矿系列与勘查.北京:地质出版社.
    4.徐勇,2002.浅论矿集区的资源潜力与勘查评价,中国地质29(3):
    5.裴荣富,1997.金属成矿省地质历史演化与特大型矿床.矿床地质,16(2)169~180.
    6.吕古贤,郑大瑜,2004.资源性危机矿山的概念与分类.地质找矿论丛.19(1):1~4
    7.王小凤,2004.危机矿山寻求资源接替.建设科技.8:
    8.胡惠民等,1995.大比例尺成矿预测方法.北京:地质出版社.
    9.吴国荣,2002.21世纪我国有色金属矿山面临的形势与对策.有色冶炼,12(6):1~5
    10.裴荣富,熊群尧,1999.中国特大型金属矿床成矿偏在性与成矿构造聚敛(场).矿床地质.18(1):37~45.
    11.裴荣富,叶锦华,梅燕雄,尹冰川.2001.特大型矿床研究若干问题探讨.中国地质.28(7):9~15.
    12.裴荣富,吴良士.1994.特大型矿床成矿偏在性研究新进展.矿床地质.13(2)170~180.
    13.裴荣富,梅燕雄,李进文.2004.特大型矿床与异常成矿作用.地学前缘.11(2):323~331
    14.邓吉牛.2004.21世纪我国金属矿山地质找矿预测新概念探讨.有色金属矿产与勘查.19(1-2):
    15.张均.2000.隐伏矿体定位预测的方法学基础及方法论.贵金属地质.9(2):100~104.
    16.张均,陈守余,张玉香.1998.隐伏矿体定位预测中的几个关键问题.贵金属地质.7(4):293~300.
    17.彭省临,邵拥军.2001.隐伏矿体定位预测研究现状及发展趋势.大地构造与成矿学.25(3):329~334.
    18.徐兴旺,蔡新平.2000.隐伏矿床预测理论与方法的研究进展.地球科学进展.15(1):76~79.
    19.王安建,侯增谦.2000.成矿理论与勘查技术方法现状与发展趋势.中国地质.2000-1(292):30~33.
    20.王世称,陈永清.1994.成矿系列预测的基本原则及特点.地址找矿论丛.9(4):79~84
    21.程裕淇,陈毓川,赵一鸣.1979.初论矿床的成矿系列问题.中国地质科学院院报.1:33~58.
    22.程裕淇,陈毓川,赵一鸣,宋天锐.1983.再论矿床的成矿系列问题.地质论评.29(2):127~139.
    23.赵鹏大,池都顺.1991.初论地质异常.地球科学.16(3):241~248.
    24.陈昌勇.1997.成矿系列研究现状及展望.昆明理工大学学报.22(2):12~16.
    25.程裕淇,赵一鸣,陈松年.1978.中国几组主要铁矿类型.地质学报.61(4):205~224.
    26.章崇真.1983.矿床类型、成矿系列和矿床组合模式.地质与勘探,1983,19(11):1~8
    27.郑明华.1988.现代成矿学导论.北京:地质出版社.
    28.翟裕生,秦长兴.1987.关于成矿系列与成矿模式.矿床学参考书(下册).北京:地质出版社.
    29.翟裕生,熊永良1987.关于成矿系列的结构.地球科学.12(4):375~380
    30.王润民.1988.内生成矿作用—成矿区及成矿系列.重庆:重庆大学出版社.
    31.翟裕生,姚书振,林新多等.1992.长江中下游铁、铜等成矿规律研究.矿床地质.11(1):1~12.
    32.陈毓川.1994.矿床成矿系列.地学前缘.(3):90~94.
    33.裴荣富.2001.难识别及隐伏大矿、富矿资源潜力的地质评价.北京:地质出版社.
    34.裴荣富,吕凤翔,范继璋,等.1998.华北地块北缘及其北侧金属矿床成矿系列与勘查.北京:地质出版社.
    35.陈永清,夏庆霖.2002.金属矿产勘查技术发展现状与思考.地球物理学进展.17(3)540~550.
    36.张正伟.1998.浅谈寻找隐伏矿床的理论和方法.河南地质.16(3):161~167.
    37.肖克炎,赵鹏大.1994.试论大比例尺成矿预测的基本问题及研究途径.有色金属矿产与勘查.3(1):49~56.
    38.刘士毅,张明华.1998.中国金属矿地球物理勘查.地学前缘.5(1-2):201~206.
    39.刘光鼎.郝天珧.1995.应用地球物理方法寻找隐伏矿.地球物理学报.38(6):850~854.
    40.赵震宇,王世称,许亚明,于平.2002.综合信息矿产预测理论在危机矿山资源预测中的应用思考.世界地质.21(3):283~286.
    41.刘亮明,王志强,彭省临,杨群周,邵拥军.2002.综合信息论在储量危急矿山深边部找矿中的应用——以铜陵凤凰山铜矿为例.地质科学.37(4):444~452.
    42.王志华.1999.综合趋势分析在成矿预测中的应用.贵金属地质.8(1):41~44.
    43.谢学锦.1998.战术性与战略性的深穿透地球化学方法.地学前缘.5(1-2):171~183.
    44.陈永清,王世称.1995.综合信息成矿系列预测的基本原理和方法.山东地质.11(1):55~62.
    45.王学求.1998.寻找和识别隐伏大型特大型矿床的勘查地球化学理论方法与应用.物探与化探.22(2):81~89.
    46.涂光炽.1989.关于超大型矿床的寻找和理论研究.矿物岩石地球化学研究.(3):163~168.
    47.肖克炎.1994.试论综合找矿模型.地质与勘探.30(1):41~45.
    48.王学求.1998.深穿透勘查地球化学.物探与化探.22(3):166~169.
    49.谢学锦,王学求.2003.深穿透地球化学新进展.地学前缘.10(1):225~236.
    50.张西平.1997.隐伏矿床地球化学异常评价的思路与方法.有色金属矿产与勘查.6(5):283~285.
    51.年宗元.1996.我国勘查地球物理的若干进展.物探与化探.20(6):401~418.
    52.吴其斌,崔霖沛.1996.国外勘查地球物理的若干进展.物探与化探.20(6):419~428.
    53.李金铭.1996.电法勘探方法发展概况.物探与化探.20(1):250~258.
    54.徐明才,高锦华,蔡明涛,王广科.1997.金属矿地震勘查的方法技术.有色金属矿产与勘查.6(4):232~237.
    55.徐明才,高锦华,蔡明涛,王广科.1997.寻找隐伏金属矿的地震方法技术研究.物探于化探.21(6):468~474
    56.孙明,林君,陈祖斌,张子三.2001.轻便可控源在金属矿地震反射勘探的试验研究.长春科技大学学报.31(4):404~407
    57.池三川.1988.隐伏矿床(体)的寻找.北京:中国地质大学出版社.
    58.孙殿卿,高庆华.1987.隐伏矿床预测.北京:地质出版社.
    59.施林道.1987.“隐伏矿”的分类找矿途径和找矿方法刍议.中国地质.(8):
    60.池三川.1984.寻找隐伏矿床的几个问题.地质科技情报.(1):
    61.Ю.Н.塞金著,阎立本译.1985.深部构造图的编制原则.国外地质科技.(7):
    62.丁汝福.1999.国内外寻找隐伏矿化探新方法研究进展.地质与勘探.35(2):30~36.
    63.任天祥,伍宗华,汪明启.1997.近十年化探新方法新技术研究进展.物探与化探.21(6):411~417.
    64.吴其斌,王君恒,崔霖沛.1999.勘查隐伏金属矿的新方法.地质与勘探.35(6):44~47.
    65.康卫清,黄革非.2001.勘查隐伏矿床的有效方法探讨.湖南地质.20(3):217~220.
    66.徐明才,高景华,荣立新,刘建勋.2004.从金属矿地震方法的试验效果探讨其应用前景.中国地质.31(1):308~312.
    67.王庆乙,胡玉平.2004.金属资源的紧缺与隐伏矿找矿的思考.地质与勘探.40(6):75~79.
    68.施俊法,肖庆辉.2004.经验勘查与理论勘查的发展趋势.地质通报.23(8):809~815.
    69.施俊法,吴传壁.1995.矿产勘查的新思路、新方法、新技术.有色金属矿产与勘查.4(2):108~103.
    70.朱创业.2000.成矿系统研究现状几发展趋势.成都理工学院学报.27(1):50~53.
    71.陈永清,夏庆霖.1999.应用地质异常单元圈定矿产资源体潜在地段.地球科学.24(5):459~463.
    72.曹瑜,等.1999.圈定“5P”找矿地段的GIS成矿预测空间模型及其应用.地球科学.24(4):409~412.
    73.王世称,叶永胜.1999.综合信息成矿预测专家系统模型.长春:长春出版社.
    74.袁奎荣.1990.隐伏花岗岩预测及深部找矿.武汉:科学出版社.
    75.王钟等.1996.隐伏有色金属矿床综合找矿模型.北京:地质出版社.
    76.彭程电.1986.略论个旧锡矿床地质找矿的新发展及其途径.矿床地质.5(3):37~48.
    77.姚金炎.1990.隐伏矿床及其找矿方法.地质与勘探.26(3):10~16.
    78.赵玉琛.1990.凹山玢岩铁流矿田的勘查历史和找跨国预测.地质与勘探.26(2):10~16.
    79.杨明银.2000.有利因素相关法在矿产预测中的应用.湖北地质.14(1):20~26.
    80.王志华.1999.综合趋势分析在成矿预测中的应用.贵金属地质.8(1):41~44.
    81.肖克炎,等.1999.成矿预测中证据权重法与信息量法及其比较.物探化探计算技术.21(3):223~226.
    82.陈建国,夏庆霖.1999.利用小波分析提取深层次物化探异常信息.地球科学.24(5):509~512.
    83.苏红旗.1997.基于GIS的证据权重法矿产预测系统(EWM).地质与勘探.35(1)44~46.
    84.池顺都.1998.应用GIS圈定找矿可行地段和有利地段.地球科学.23(2):125~128.
    85.唐宾.1999.GIS支持下的金属矿产成矿预测简介.广西地质.13(1):69~72.
    86.宋国耀.1999.矿产资源潜力评价的理论和技术.物探化探计算技术.21(3):199~205.
    87.赵一鸣,陈文明,等.2005.辽宁八家子银铅锌等大型危机矿山找矿示范研究阶段性总结报告.内部资料.
    88.陈毓川,朱裕生等.1993.中国矿床成矿模式.北京:地质出版社.
    89.裴荣富,李进文,梅燕雄.2004.金属成矿省等级体制成矿.矿床地质.23(2):131~141.
    90.梅燕雄,裴荣富,李进文,傅旭杰.2004.中国中生代矿床成矿系列类型及其演化.23(2):190~197.
    91.裴荣富,等.1998.中国特大型矿床成矿偏在性与异常成矿构造聚敛场.北京:地质出版社.
    92.唐永成.,吴言昌,储国正等.1998.安徽沿江地区铜多多金属矿床地质.北京:地质出版社.
    93.周旬若,任进.1994.长江中下游中生代花岗岩.北京:地质出版社.
    94.常印佛,刘湘培,吴言昌.1991.长江中下游铜铁成矿带.北京:地质出版社.
    95.翟裕生,等.1992.长江中下游地区铁铜(金)成矿规律.北京:地质出版社.
    96.翟裕生,姚书振,周宗桂,等.1999.长江中下游铜金矿床矿田构造.武汉:中国地质大学出版社.
    97.刘文灿,高德臻,储国正.1996.安徽铜陵地区构造变形分析及成矿预测.北京:地质出版社.
    98.邓晋福,莫宣学,赵海玲,等1996.中国大陆根-柱构造—大陆动力学的钥匙.北京:地质出版社.
    99.岳文浙,等.1993.长江中下游威宁期沉积地质与块状硫化物矿床.北京:地质出版社.
    100.刘文灿,高德臻,储国正,等.1996.安徽铜陵地区构造变形分析及成矿预测.北京:地质出版社.
    101.翟裕生,姚书振,陈华慧,等.1992.长江中下游鄂城-铜俩一带遥感地质及成矿规律研究.武汉:中国地质大学出版社.
    102.朱裕生,肖克炎,丁鹏飞,等.1997.成矿预测方法.北京:地质出版社.
    103.吴功建,林清湲,高锐.1988.地球物理方法及在地质和找矿中的应用.北京:地质出版社.
    104.彭省临,刘亮民,等.2004.大型矿山接替资源勘查技术与示范研究.北京:地质出版社.
    105.毛建仁,苏郁香,陈三元,等.1990.长江中下游中酸性侵入岩与成矿.北京:地质出版社.
    106.陈泸生,张永鸿,等.1999.下扬子及邻区岩石圈结构构造特征与油气资源评价.北京:地质出版社.
    107.周涛发,岳书仓,袁峰.2005.安徽月山矿田成岩成矿作用.北京:地质出版社.
    108.袁见齐,朱上庆,翟裕生.1984.矿床学.北京:地质出版社.
    109.刘英俊,曹励明.1987.元素地球化学导论.北京:地质出版社.
    110.《中国矿床发现史》编篡委员会.1996.中国矿床发现史(安徽卷).北京:地质出版社.
    111.《中国矿床发现史》编篡委员会.2002.中国矿床发现史(物探化探卷).北京:地质出版社.
    112.储国正,黄许陈,张成火,等.1995.安徽铜陵地区成矿控制因素的探讨.安徽地质.5(1):47~58.
    113.邢凤鸣,详.1996.铜陵地区高钾钙碱性系列侵入岩.地球化学.25(1):29~38.
    114.毛景文,Holly Stein,杜安道,等.2003.长江中下游地区铜金(钼)矿Re-Os年龄精测及其对成矿作用的指.示.地质论评.
    115.刘湘培,常印佛,吴昌言1988.论长江中下游地区成矿条件和成矿规律].地质学报.62(2):167~177.
    116.常印佛,刘学圭.1983.关于层控式夕卡岩型矿床—以安徽省内下扬子坳陷中一些矿床为例.矿床地质.2(1):11~20.
    117.杨学明,杨晓勇,王奎仁,等.1997.安徽铜陵老鸦岭层状铜矿床的成矿地球化学研究.大地构造与成矿学.21(4):347~361.
    118.侯增谦,等.2003.现代与古代海底热水成矿作用.北京:地质出版社.
    119.杨竹森,侯增谦,蒙义峰,等.2002.安徽铜陵矿集区流体系统与成矿.矿床地质.21(增刊):1080~1083.
    120.黄许陈,储国正.1993.铜陵狮子山矿田多位一体(多层楼)模式.矿床地质.12(3):221~230.
    121.郭文魁.1957.论安徽铜官山铜矿成因[J].地质学报.37(3):317~332.
    122.郭文魁.1963.某些金属矿床的原生分带及其成因.地质学报.43(3):247~270.
    123.郭文魁.1982.论花岗岩类与金属成矿作用.中国区域地质.(2):15~30..
    124.吴淦国,张达,藏文栓.2003.铜陵矿集区构造滑脱及分层成矿特征研究.中国科学(D辑).33(4):300~308.
    125.常印佛,董树文,黄德志.1996.论中.下扬子“一盖多底”格局与演化.火山地质与矿产.17(1-2):1~14.
    126.李文达,王文斌,范洪源,等.1997.长江中下游铜(金)矿床密集区形成条件和超大型矿床存在的可能性.火山地质与矿产.20(增刊):1~131.
    127.王文斌,李文达,董平,等.1994.论长江中下游地区含铜黄铁矿型矿床成因.火山地质与矿产.15(2):25~34.
    128.翟裕生,姚书振,林新多,等.1992.长江中下游地区铁、铜等成矿规律.矿床地质.11(1):1~12.
    129.吴才来,周旬若,黄许陈,等.1996.铜陵地区中酸性侵入岩年代学研究[J].岩石矿物学杂志.15(4):299~307.
    130.郭宗山.1957.扬子下游某些夕卡岩型铜矿床.地质学报.37(1):1~10.
    131.李文达,毛建仁,朱云鹤,等.1998.中国东南部中生代火成岩与矿床.北京:地震出版社.
    132.陈沪生.1988.下扬子地区HQ13线的综合地球物理调查及其地质意义.石油与天然气地质.9(3):211~222.
    133.毛景文,王志良.2000.中国东部大规模成矿时限及其动力学背景的初步探讨.矿床地质.19(4):289~296.
    134.任纪舜,牛宝贵,和政军,等.1997.中国东部的构造格局和动力演化.地学研究.第29~30号:43~55.
    135.华仁民,毛景文.1999.试论中国东部中生代成矿大爆发.矿床地质.18(4):300~307.
    136.毛景文,张作衡,余金杰,等.2003.华北中生代大规模成矿的地球动力学背景:从金属矿床年龄精测得到启示.中国科学(D辑),33(4):289~300.
    137.顾连兴.1984.江西武山中石炭世海相火山岩和块状硫化物矿床.桂林冶金地质学院学报.4(4):91~10.
    138.顾连兴,陈培荣,倪培,等.2002.长江中、下游燕山期热液铜—金矿床成矿流体.南京大学学报(自然科学).38(3):392~407.
    139.顾连兴,徐克勤.1986.论长江中下游中石炭世海底块状硫化物矿床.地质学报.60(22):176~186.
    140.顾连兴,富士谷.1999.下扬子威宁期断裂拗陷、火山活动及块状硫化物成矿作用—答黄志诚《安徽铜陵新桥黄龙组沉积期海底火山喷发-沉积质疑》一文.高校地质学报.5(2):228~232.
    141.王训诚,姜章平,蒙义峰,等.2002.铜陵地区构造流体体系初探.矿床地质,21(增刊):1045-1048.
    142.储国正,王训诚,周育才,等.2000.安徽铜陵地区铜金矿化关系及其成因初探.贵金属地质.9(2):73-77.
    143.周涛发,岳书仓,袁峰,等.2000.长江中下游两个系列铜、金矿床及其成矿流体系统的氢、氧、硫、铅同位素研究.中国科学(D辑).30(增刊):122~128.
    144.胡受奚,周顺之,孙志明,等.1979.论我国东部与铁、铜矿床有关中.酸性岩类的成矿专属性].地质学报.53(4):323~336.
    145.周涛发,岳书仓.2000.长江中下游铜、金矿床成矿流体系统的形成条件及机理.北京大学学报(自然科学版).36(5):697~707.
    146.富士谷,阎学义,袁成祥,等.1997.长江中下游成矿带石炭纪海底火山喷发-沉积黄铁矿型铜矿床的地质特征.南京大学学报(自然科学版).第1期:第43页
    147.曾普胜,裴荣富,候增谦,等.2002.安徽铜陵地块沉积—喷流块状硫化物矿床.矿床地质.21(增刊):532~535.
    148.肖新建,顾连兴,倪培,等.2002.铜陵地区海底喷流沉积(SEDEX)块状硫化物矿床成矿流体研究.矿床地质.21(增刊):491-494.
    149.谢光华,王文斌,李文达.1995.安徽新桥铜硫矿床成矿时代及成矿物质来源.火山地质与矿产.16(2):101~107.
    150.曾普胜.2002.安徽铜陵地区成矿流体的叠加改造与大型-超大型铜金矿床的关系.博士后研究报告.中国地质科学院矿产资源研究所
    151.顾连兴,徐克勤.1986.论长江中下游中石炭海底块状流化物矿床.地质学报.2:176~188.
    152.安徽省铜陵芜湖地区航空磁测报告.1974.冶金部地球物理探矿公司.1~62.
    153.陈丕基.1989.郯庐断裂巨大平移的时代与格局.科学通报.4:289~293.
    154.高锐,黄东定,卢德源,等.2001.横过西昆仑造山带与塔里木盆地结合带的深地震反射剖面.科学通报.45(17)1874~1879
    155.李曙光,黄方,李晖.2001.大别-苏鲁造山带碰撞后的岩石圈拆离.科学通报.46(17):1487~1491.
    156.刘福田.1989.用于速度图象重建的层析成象反演方法.地球物理学报.32:39~54.
    157.吕庆田,侯增谦,赵金花,等.2003.深地震反射剖面揭示铜陵矿集区复杂地壳结构形态.中国科学.33(5):442~449
    158.王良书.1990.下扬子江苏地区Pn残差与上地幔波速各向异性.地球物理学报.33(2):174~185.
    159.王强,赵振华,熊小林,等.2001.底侵玄武质下地壳的熔融:来自安徽沙溪adakite质富钠石英闪长玢岩的证据.地球化学.30(4):353~362.
    160.吴宣志,吴春玲,卢杰,等.1995.利用深地震反射剖面研究北祁连.河西走廊地壳细结构.地球物理学报.38(增刊Ⅱ):29~35.
    161.徐嘉炜,马国锋.1992.郯庐断裂带研究的十年回顾.地质论评.38(4):316~324.
    162.徐克勤,朱金初,任启江.1980.论中国东南部几个断裂拗陷带中某些铁铜矿床的成因问题.国际交流地质学术论文集.地质出版社.第3册:49页.
    163.扬振宇,董树文,Besse,J.华南、华北地块中生代构造演化与超高压变质岩的折返机制,地质论评,2001,47(6):568~575
    164.杨文采.1989.地球物理反演和地震层析成像.北京:地质出版社.
    165.杨文采,胡振远,程振炎,等.1999.郯城—涟水综合地球物理剖面.地球物理学报.42(2):206~217.
    166.杨文采,李幼铭.1993.应用地震层析成像.北京:地质出版社.
    167.杨文采,汪集砀.2002.苏鲁地区地壳岩浆底侵的地球物理判识.地质学报.76(2):173~179.
    168.张旗,王焰,王元龙.2001.燕山期中国东部高原下地壳组成初探:埃达克质岩Sr、Nd同位素制约.岩石学报.17(4):505~513.
    169.张四维,张锁喜,唐荣余,等.1988.下扬子地区符离集—奉贤地震测深资料解释.地球物理学报.31:637~648
    170. Elliottp. New airborne electromagnetic method provides fast deep-target data turn around.The Leading Edge, 1996,15(4): 309~310.
    171. Pan Y., and Dong P. 1999. The Lower Changjiang (Yangzi/Yangtze River) metallogenic belt, east China: intrusion-and wall rock-hosted Cu-Fe-Au, Mo, Zn, Pb, Ag deposits. Ore Geology Reviews, 15: 177~242.
    172. Russell M J, Solomon M, Walshe J L. 1981. The genesis of sediment-hosted exhalative zinc-lead deposits. Mineralium. Deposita, 16: 113-127.
    173. Cathles L M, Erendi A H J, Barri T. 1997. How long can a hydrothermal system be sustained by a single in trusive event? Econ. Geol., 92:766-771.
    174. Aki, K., A. Christofferson and E. S. Husbeye. 1977. Determination of three-dimensional seismic structure of the lithosphere, J. Geophys. Res., 82, 277~296.
    175. Allmendinger R W. Nelson K D, Potter C J, et al. Deep seismic reflection characteristics of the continental crust. Geology, 1987,15:304-310.
    
    176. Anderson D. L. 1984. Seismic tomography of the Earth's interior. American Scientists. 172:345~359.
    
    177. Atherton M P, Petford N. 1993. Generation of sodium-rich magmas from newly underplated basaltic crust. Nature, 362:144-146.
    
    178. Bishop T. N., et al. 1985. Tomographic determination of velocity and depth in laterally varying media. Geophysics. 50:903-923.
    
    179. Bois P., et al. 1972. Well-to-well seismic measurements. Geophysics. 37:471-480.
    
    180. Brown L D, Zhao W J, Nelson K D, et al. 1996. Bright Spots, structure, and magmatism in Southern Tibet from INDEPTH seismic Reflection profiling. Science. 274(6): 1688-1690.
    
    181. Brown L D. 1991. A new map of crustal terranes in the United States from COCORP deep seismic reflection profiling. Geophys J Int. 105:3-13.
    
    182. Brown L, Barazangi M, Kaufman S, et al. 1986. The first decade of COCORP: 1974-1984. in Reflection Profiling: A Global Perspective, Barazangi M and Brown L, eds, Geodynamics Series. American Geophysical Union, Washington, DC. 13:107-120.
    
    183. Brun J P, Wenzel F, ECORS-DEKORP team. 1991. Crustal-scale structure of the southern Rhinegraben from ECORS-DEKORP seismic reflection data. Geology. 19:758-762.
    
    184. Chapman C. H., 1981. Generalized Radon transforms and slant stacks, Geophys. J. R. Astr. Soc, 66.
    
    185. Chen, J. F., Foland, K.A., Xing, F. M., et. al., 1991. Magmatism along the south margin of the Yangtze block: Precambrian collision of the Yangtze and Cathaysia blocks of China. Geology. 19: 815-818.
    
    186. Chen, W.J., Harrison, T.M., Heizler, M.T., Liu, R.X., Ma, B.L., and Li J.L., 1992. The cooling History of melange zone in north Jiangsu-South Shangdong region: Evidence from multiple diffusion domain ~(40)Ar-~(39)Ar thermal geochronology. Acta Petrol. Sinica, 8:1-17.
    187.Nolet,G 1991.地震层析成像及应用.王春镛等译.
    
    188. Cook F, Brown L, Kaufman S, et al. 1981. COCORP seismic reflection profiling of the Appalachian orogen beneath the Coastal Plain of Georgia. Geol Soc Amer Bull. 92:738-748.
    
    189. Culter R. T., Bishop T. N., 1984. Seismic tomography: Formulation and Methodology. Expended abstracts of 52th Annual International SEG Meeting: 711-712.
    
    190. Daily W. D., 1984. Underground oil shale retort monitoring using geotomography. Geophysics. 49: 1701—1711.
    
    191. Dana, D., P. Akerberg, A. Levander, C. Zelt, and T. Henstock, 1998. Shallow seismic investigation at an open pit copper mine: a comparison with drill data," EOS, 79:F652.
    
    192. Dana, D., P. Akerberg, C, Zelt, A. Levander, and T. Henstock. 1998. High resolution seismic imaging at a Porphyry copper mine, Society of Exploration Geophysicists, New Orleans, LA.
    
    193. Deemer S J and Hurich C A. 1994. The reflectivity of magmatic underplating using the layered mafic intrusion analog. Tectonophysics. 232: 239-255.
    
    194. Defant M J, Drummond M S. 1990. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature. 347:662-665.
    
    195. Defant M J, Drummond M S. 1993. Mount St. Helens: Potential example of the partial melting of the subducted lithosphere in a volcanic arc. Geology. 21:547-550.
    
    196. Devaney, A.J. 1982. A filtered back propagation algorithm for diffraction tomography, Ultrasonic Img. 4:336-350.
    
    197. Devaney, A.J. 1984. Geophysical diffraction tomography, Trans. IEEE GE-22,3-13.
    
    198. Drummond B J, Collins CDN. 1986. Seismic evidence for underplating of the lower continental crust of Australia. Earth Planet. Sci. Lett. 79:361-372.
    199. Eberhart-Phillips, D., 1993. Local earthquake tomography: earthquake source regions, in: Seismic tomography: Theory and Practice, eds. H. M. Iyer and K. Hirahara, Chapman and Hall, London:563~583.
    
    200. Gustavsson, M., Ivansson, S., Moren; P., & Pihl, J., 1986. Seismic borehole tomography measurement system and field studies, Proc. IEEE. 74:339-346.
    
    201. Hearn, T. M., and J. F. Ni, 1994. Pn velocities beneath continental collision zones: The Turkish-Iranian Plateau. Geophys. J. Int. 117:273-283.
    
    202. Hole, J. A., & Zelt B. C, 1995. Three-dimensional finite-difference reflection travel times. Geophys. J. Int., 121:427-434.
    
    203. Jannane, H., W. Beydoen, E. Crase, D. Cao, Z. Koren, E. Landa, M. Menses, A. Pica, M. Noble, G Roeth, S. Singh, R. Snieder, A. 1989. Tarantola, D. Trezeguet, and M. Xie, Wavelengths of earth structures that can be resolved from seismic reflection data. Geophysics. 54:906-910.
    
    204. Li Z X. 1994. Collision between the North and South China blocks: A crustal-detachment model for suturing in the region east of the Tanlu fault. Geology. 22:739-742.
    
    205. Li, S.G, Hart, S.R., Zheng, S.G, Liu, D.L., Zhang, GW, and Guo, A.L. 1989. Timing of collision between the north and south China blocks- The Sm-Nd isotopic age evidence; Science in China. 32 (11) :1393~1400.
    
    206. Nelson K D, Zhao W J, Project INDEPTH Team. 1996. Partially molten middle crust beneath Southern Tibet: Synthesis of Project INDEPTH results. Science. 274:1684-1688.
    
    207. Nelson, K. D. 1991. A unified view of craton evolution motivated by recent deep seismic reflection and refraction results. Geophys. J. Int 105:25-35.
    
    208. Okay A I, Seng6r A M C, Satir M. 1993. Tectonics of an ultra-high pressure metamorphic terrane: the Dabieshan/Tongbaishan orogen, China. Tectonics. 12:1320-1334.
    
    209. Oliver J. 1990. COCORP and fluids in the crust, in The Role of Fluids in Crustal Processes, National Research Council, Washington, D C: National Academy Press.
    
    210. Paige, C. C, and Saunders, M. A., 1982. LSQR: An algorithm for sparse linear equations and sparse least squares, Assoc. Comput. Mach. Trans. Math. Software. 8:43-71.
    
    211. Pan Y M, Dong P. 1999. The Lower Changjiang mettallogic belt, east central China: intrusion- and rock-hosted Cu-Fe-Au, Mo, Zn, Pb, Ag deposits. Ore Geology Reviews. 15:177-242.
    
    212. Petford N, Atherton M P. 1996. Na-rich partial melts from newly underplated basaltic crust: the Cordillera Blanca Batholith, Peru. Journal of Petrology. 37:1491-1521.
    
    213. Pratt R. G, 1991. Combining wave-equation with traveltime tomography to form high-resolution images from crosshole data. Geophy. 56(2): 208-224.
    
    214. Pratt R. G, Worthington M. H., 1988. The application of diffraction tomography to crossbole seismic data. Geophysics. 53:1284-1294.
    
    215. Qin F., Luo Y., Olsen K B, Cai W and Schuster G T., 1992. Finite-difference solution of the eikonal equation along expanding wavefronts. Geophysics. 57(3):478-487.
    
    216. Rapp R P, Shimizu N, Norman M D, et al. 1999. Reaction between slab-derived melts and peridotite in the mantle wedge: Experimental constraints at 3.8Gpa. Chemical Geology. 160:335-356.
    
    217. Sawyer E W. 1994. Melt segregation in the continental crust. Geology. 22:1019-1022.
    
    218. Somerstein, 1984. Radio-frequency geotomography for remotely probing the interior of operating mini and commercial-sized oil shale retorts. Geophysics. 49: 1288-1300.
    
    219. Thurber, C. H. 1983. Earthquake locations and three-dimensional crustal structure in the Coyote Lake area, central California. J. Geophys. Res. 88: 8226-8236.
    
    220. Thurber, C. H. 1993. Local earthquake tomography: velocities and Vp/Vs - theory, in: Seismic tomography: Theory and Practice, eds. H. M. Iyer and K. Hirahara, Chapman and Hall, London: 563-583.
    221. Voogd De, Serpa B L, Brown L, et al. 1986. Death Valley bright spot: A midcrustal magma body in the southern Great Basin, California. Geology. 14:64-67.
    
    222. Wang C Y, Zeng R S, Mooney W D, et al. 2000. A crustal model of the ultrahigh-pressure Dabie Shan orogenic belt, China, derived from deep seismic refraction profiling. J. Geophys. Res. 105(B5): 10857-10869.
    
    223. Warner M. 1990b. Absolute reflection coefficients from deep seismic reflection. Tectonophysics. 173:15-23.
    
    224. Warner M. 1990a. Basalts, water, or shear zones in the lower continental crust.Tectonophysics. 173: 163-174.
    
    225. Wu, R.-S., and Toksoz, M.N. 1987. Diffraction tomography and multisource holography applied to seismic imaging. Geophysics. 52:11-25.
    
    226. Xu J F, Shinjo R, Defant M J, et al. 2002. Origin of Mesozoic adakitic intrusive rocks in the Ningzhen area of east China: Partial melting of delaminated lower continental crust. Geology. 30: 1111-1114.
    
    227. Zelt, C. A. and R. M. Ellis, 1989. Seismic structure of the crust and upper mantle in the Peace River Arch region, Canada. Journal of Geophysical Research. 94:5729-5744.
    
    228. Zhao Dapeng & Kayal J. R., 2000, Impact of seismic tomography on earth sciences, Special section: seismology 2000, Current Science. 79( 9): 1208-1214.
    
    229. Zhao W J, Nelson K D, Project INDEPTH Team. 1993. Deep seismic reflection evidence for continental underthrusting beneath southern Tibet. Nature. 366:557-559.
    
    230. Zhao, D., D. A. Wiens, L. Dorman, J. Hildebrand, and S. Webb. 1997. High resolution tomography of the Tonga subduction zone and Lau backarc basin, Science. 278:254-257.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700