用户名: 密码: 验证码:
名山河流域水稻土组分对微团聚体吸附—解吸铜、锌的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究以名山河流域典型的水稻土为例,利用模拟-培养试验和选择溶解法,研究原土和不同粒级微团聚体颗粒组对Cu2+、Zn2+的吸附解吸特征,以及各土壤组分即有机质、游离氧化铁、无定形氧化铁对原土和不同粒径微团聚体吸附解吸Cu2+、Zn2+的影响。研究结果表明:原土和不同粒级微团聚体颗粒组对Cu2+的吸附特性用Langmuir等温吸附方程拟合最佳,对Zn2+的吸附特性用Freundlich等温吸附方程拟合最佳,说明本研究流域原土和微团聚体颗粒组对Cu2+的吸附属于单层吸附,对Zn2+的吸附为多层吸附。原土和不同粒径微团聚体颗粒组对Cu2+、Zn2+的吸附量以及吸附固持能力依次以下序递减:(<0.002mm)>2-0.25mm>原土>0.053-0.002mm>0.25-0.053mm,与有机质、游离氧化铁、无定形氧化铁、CEC含量显著相关,2-0.25mm和<0.002mm粒径对Cu2+、Zn2+的吸附量较高,属于Cu2+、Zn2+的富集团聚体颗粒组,且原土和各粒径微团聚体颗粒组对Cu2+的吸附固持能力显著高于Zn2+。不同质量浓度下原土和各粒径微团聚体对Cu2+、Zn2+的吸附均以专性吸附为主,且原土和各微团聚体颗粒组Zn2+的非专性质量分数显著高于Cu2+。
     去除有机质、游离氧化铁、无定形氧化铁后,原土和不同微团聚体颗粒组对Cu2、Zn2+的吸附量和吸附固持能力均有一定程度的降低,尤其是在<0.002mm和2-0.25mm粒径降低值较大,0.25-0.053mm粒组降低值较小,原土、0.053-0.002mm粒组降低值介于其中。去除各组分后原土和不同粒组微团聚体对Cu2+、Zn2+的吸附减少量大小顺序为:去有机质>去游离氧化铁>去无定形氧化铁,表明有机质对原土和不同微团聚体颗粒组吸附Cu2+、Zn2+的过程影响最大,不同处理间差异达到显著水平。同时有机质对Cu2+的选择吸附能力大于Zn2+,游离氧化铁则对Zn2+的选择吸附能力大于Cu2+,无定形氧化铁对Cu2+、Zn2+的选择吸附能力差异不明显。去除各土壤组分后原土和不同粒级微团聚体颗粒组对Cu2+、Zn2+的非专性吸附质量分数均显著上升,专性吸附质量分数则有一定程度的降低,表明去除各组分后原土和不同粒级微团聚体颗粒组对Cu2+、Zn2+束缚能力均降低,Cu2+、Zn2+以活性较高的易解吸态保留于土壤中,易产生迁移,增加了Cu2+、Zn2+在土壤中的流动性;专性吸附质量分数降低,则表明原土和不同粒级微团聚体颗粒组对Cu2+、Zn2+的固定能力降低,缓冲容量随之降低,同时进一步证明有机质、游离氧化铁、无定形氧化铁等土壤组分对专性吸附有显著贡献。
The typical paddy soil, collected from the Mingshan River was used to investigate the characteristics and effect of soil components which consists of organic matter, free oxide iron and amorphous oxide iron on sorption-desorption of copper and zinc by microaggregates from paddy soil by using simulation-incubation test and selective dissolution method.
     The results showed that whether or not remove the paddy soil components, the sorption of copper by the bulk soil and microaggregates fitted well to the Langmuir Isotherm model, while the sorption of zinc by the bulk soil and microaggregates fitted well to the Freundlich Isotherm model. These results explained the sorption of copper was monolayer adsorption while the sorption of zinc was multilayer adsorption by the bulk soil and micro aggregates from paddy soil in this research. The order of copper and zinc s sorption capacity was as follows:less than 0.002mm>2-0.25mm>bulk soil>0.053-0.002mm>0.25-0.053mm, and the sorption and retentin ability of copper was significantly greater than zinc by bulk soil and microaggregates.The sorption capacity of bulk soil and microaggregates was well correlated with the content of organic matter, free oxide iron, amorphous oxide iron, cation exchange capacity.The sorption of copper and zinc by bulk soil and microaggregates in 0.002mm and 2-0.25mm was more bigger than other particle sizes, the 0.002mm and 2-0.25mm particle size were the enrich ment microaggregates. The adsorption of copper and zinc by bulk soil and microaggregates was based mainly on specific adsorption in different concentration, moreover the percentage of non-specific adsorption of zinc was higher than copper.
     The sorption and retentin ability of copper and zinc by bulk soil and microaggregates were decreased in some extent after removal of organic matter, free oxide iron and amorphous oxide iron, especially the decrease was achieved the most in less than 0.002mm, the lowest in 0.25-0.053mm, the decrease caused by bulk soil and 0.053-0.002mm was between the different particles. The decrease of copper and zinc's sorption by bulk soil and microaggregates after removal of soil components in the order:that removing O.M> that removing free oxide iron>that removing amorphous oxide iron, which showed a significant difference among different treatments. Meanwhile, the results showed that the effect of organic matter was the most in adsorption, the selective adsorption of copper by organic matter was higher than zinc, the selective adsorption of zinc by free oxide iron was higher than copper, the selective adsorption ability between copper and zinc by amorphous oxide iron was no significant difference. The percentage of specific adsorption was decreased in some extent with the significant increase of non-specific of copper and zinc by bulk soil and microaggregates after removal of soil components. These results showed that the retentin ability of copper and zinc by bulk soil and microaggregates was all decreased after removal of soil components, copper and zinc was remained in soil with easy desorption in higher activity, and the mobility of copper and zinc in soil was increased with the increase of migration. The retention and buffer capacity of copper and zinc by bulk soil and microaggregates was decreased along with the decrease of percentage in specific adsorption., at the same time, the decrease of specific adsorption suggested the significant contribution of organic matter, free oxide iron and amorphous oxide iron in specific sorption.
引文
[1]陈怀满.土壤对镉的吸附与解吸Ⅰ.土壤组分对镉的吸附和解吸的影响[J].土壤学报,1988,25(1):66-74.
    [2]陈恩凤,周礼恺,邱凤琼,等.土壤肥力实质的研究Ⅰ.黑土[J].土壤学报,1984,21(3):229-236.
    [3]陈恩凤,周礼恺,邱凤琼,等.土壤肥力实质的研究Ⅱ.棕壤[J].土壤学报,1985,22(2):113-119.
    [4]陈恩凤,武冠云,周礼恺.关于土壤肥力研究的几点认识[J].土壤通报,1989,20(4):187-189.
    [5]陈恩凤,周礼恺,武冠云.微团聚体的保肥供肥及其组成比例在评判土壤肥力水平中的意义[J].土壤学报,1994,31(1):18-25.
    [6]陈恩凤,关连珠,汪景宽,等.土壤特征微团聚体的组成比例与肥力评价[J].土壤学报,2001,38(1):49-53.
    [7]陈恩凤.土壤肥力物质基础及其调控[M].北京科学出版,1990,77-139.
    [8]陈恩凤,周礼恺,武冠云,等.土壤的自动调节性能与抗逆性能[J].土壤学报,1991,28(2):168-176.
    [9]成杰民,潘根兴,郑金伟,等.模拟酸雨对太湖地区水稻土铜吸附-解吸的影响[J].土壤学报,2001,38(3):333-340.
    [10]董长勋,潘根兴,陆建虎等.黄泥土微团聚体颗粒组对Cu2+的吸附与解吸研究[J].生态环境,2006a,15(5):988-992.
    [11]董长勋,李恋卿,王芳,等.模拟酸化下水稻土微团聚体Cu2+吸附与解吸的影响[J].生态环境,2006b.15(6):1192-1196.
    [12]董长勋.水稻土黄泥土微团聚体表面性质及对铜离子吸附与解吸特性研究[D].南京农业大学,2007.
    [13]窦森,陈恩凤,须湘成,等.施用有机物料对棕壤微团聚体组成的影响[J].吉林农业大学:青年学刊,1990,2:42-45.
    [14]丁爱芳,潘根兴,李恋卿.太湖地区几种水稻土团聚体颗粒组中PAHs的分布及其环境意义[J].环境科学学报,2006,26(2):293-299.
    [15]高明,张薇,王子芳,等.水分状况对紫色母岩发育的水稻土团聚体及有机碳分布影响[J].土壤学报,2008,45(5):943-949.
    [16]关连珠,张伯泉,颜丽.不同肥力水平黑土、棕壤微团聚体组成及其胶结物质研究[J].土壤学报,1991,28(3):260-266.
    [17]胡红青,陈松,李妍,等.几种土壤的基本理化性质与Cu2+吸附的关系[J].生态环 境,2004,13(4):544-548.
    [18]李辉信,袁颖红,黄欠如,等.不同施肥处理对红壤性水稻土团聚体有机碳分布的影响[J].土壤学报,2006,43(3):422-429.
    [19]刘建立,徐绍辉,刘慧,等.参数模型在壤土类土壤颗粒大小分布中的应用[J].土壤学报.2004,41(3):375-379.
    [20]林玉锁,薛家骅.由Freundlich方程探讨锌在石灰性土壤中的吸附机制和迁移规律[J].土壤学报,1991,28(4):390-395.
    [21]林玉锁.Langmuir,Temkin和Freundlich方程应用于土壤吸附锌的比较[J].土壤,1994,05(8):269-272.
    [22]李恋卿,潘根兴,张平究,等.太湖地区水稻土颗粒中重金属元素的分布及其对环境变化的响应[J].环境科学学报,2001,21(5):607-612.
    [23]鲁如坤.土壤农业化学分析[M].北京:中国农业科技出版社,1999.
    [24]龙新宪,倪吾钟,杨肖娥.菜园土壤锌的吸附-解吸特性研究[J].土壤通报,2002,33(1):51-53.
    [25]马爱军,何任红,张丽.草萘胺在黄泥土不同粒径微团聚体上的吸附行为[J].土壤,2006,38(6)778-781.
    [26]史奕,陈欣,沈善敏.土壤团聚体的稳定机制及人类活动的影响[J].应用生态学报,2002.13(11):1491-1494.
    [27]唐晓红,邵景安,黄雪夏,等.垄作免耕下紫色水稻土有机碳的分布特征[J].土壤学报,2007,44(2):235—243.
    [28]汪景宽,张继宏,王雷,等.棕壤不同粒级微团聚体中磷素的保持与供应[J].土壤通报,2001,32(3):113-115.
    [29]汪景宽,于树,李丛,等.不同肥力土壤各级微团聚体中主要营养元素含量的变化[J].水土保持学报,2007,21(6):122-125.
    [30]王芳,李恋卿,潘根兴.黄泥土不同粒径微团聚体对Cd2+的吸附与解吸研究[J].环境科学,2006,27(3):590-593.
    [31]王芳,李恋卿,董长勋,等.黄泥土和乌栅土中不同粒径微团聚体对Cu2+的吸附与解吸[J].环境化学,2007,26(2):135-140.
    [32]文倩,关欣.土壤团聚体形成的研究进展[J].干旱区研究,2004,21(4):434-438.
    [33]武冠云.不同肥力红壤及其微团聚体的肥力特征[J].土壤,1986,4:174-180.
    [34]武玫玲.土壤对铜离子的专性吸附及其特征的研究[J].土壤学报,1989,26(1):31-42.
    [35]魏朝富,陈世正,谢德体.长期施用有机肥料对紫色水稻土有机无机复合性状的影响[J].土壤学报,1995,32(2):159-166.
    [36]熊毅.有机无机复合与土壤肥力[J].土壤,1982,5:16-167.
    [37]熊毅,张敬森,傅积平,等.土壤胶体Ⅱ.土壤胶体研究法[M].北京:科学出社,1985,5-8.
    [38]熊毅,,陈家坊,武枚玲,等.土壤胶体Ⅲ.土壤胶体的性质[M].北京:科学出社,1990,304-305.
    [39]邢雪荣,李法云.有机物料对白浆土微团聚体组成及其养分含量的影响[J].应用生态学报,1999,10(1):42-44.
    [40]徐明岗,李菊梅,张青.pH对黄棕壤重金属吸附解吸特征的影响[J].生态环境,2004,13(3):312-315.
    [41]谢鹏,蒋剑敏,熊毅.我国几种主要土壤胶体的NH4+吸附特征[J].土壤学报,1988,25(2):175-183.
    [42]杨亚提,张一平.恒电荷土壤胶体对Cu2+、Pb2+的静电吸附与专性吸附特征[J].土壤学报,2003,40(1):102-110.
    [43]杨彭年.石灰性土壤有机矿质复合体及其团聚性研究[J].土壤学报,1984,21(2):144-152.
    [44]杨金燕,杨肖娥,何振立,等.土壤中铅的吸附-解吸行为研究进展[J].生态环境,2005,14(1):103-104.
    [45]袁颖红,李辉信,黄欠如,等.不同施肥处理对红壤性水稻土微团聚体有机碳汇的影响[J].生态学报,2004,24(12):2961-2966.
    [46]朱宁,颜丽,梁晶,等.棕壤及其各粒级微团聚体对Cu2+吸附解吸特性的研究[J].土壤通报,2006,37(1):92-95.
    [47]张世熔,邓良基,周倩,等.耕层土壤颗粒表面的分形维数及其与主要土壤特性的关系[J].土壤学报,2002,39(2):221-226.
    [48]张桂银,董元彦,李学垣,等.有机酸对几种土壤胶体吸附-解吸镉离子的影响[J].土壤学报,2004,41(4):558-563.
    [49]张增强,孟昭福,张一平Freundlich动力学方程及其参数的物理意义探析[J].西北农林科技大学学报,2003,31(5):202-204.
    [50]周萍,宋国菡,潘根兴,等.南方三种典型水稻土长期试验下有机碳积累机制研究Ⅰ.团聚体物理保护作用[J].土壤学报,2008,45(6):1063-1071.
    [51]章明奎,胡国成.浙西石灰岩发育土壤中氧化铁矿物组成及特性的研究[J].土壤,2000,1:38-42.
    [52]张磊,宋凤斌.土壤吸附重金属的影响因素研究现状及展望[J].土壤通报,2005,36(4):628-629.
    [53]赵之重.青海省土壤阳离子交换量与有机质和机械组成关系的研究[J].试验研究,2004,4:4-6.
    [54]祖艳群,訾先能,郭春晖,等.呈贡县蔬菜土壤有机质、阳离子交换量及分布特征研究[J].云南环境科学,2004,23(1):15-18.
    [55]Ajmone M F, Biasioli M, Kralj T, et al. Metals in particle-size fractions of the soils of five European cities[J]. Environmental Pollution,2008,152:73-81.
    [56]Bradl H B. Adsorption of heavy metal ions on soils and soils constituents[J]. Colloid Interface Sci,2004,277:1-18.
    [57]Covelo E F, Alvarez N, Andrade M L,et al. Zn adsorption by differenr fractions of Galician soils. Journal of Colloid and Interface Science,2004,280(2):343-349.
    [58]Covelo E F, Vega F A, Andrade M L. Sorption and desorption of Cd,Cr,Cu,Ni,Pb and Zn by a Fibric Histosol and its organo-mineral fraction. Journal of Hazardous Materials,2008,159:342-347.
    [59]Erten H N, Aksoyoglu S,Gokturk. H. Sorption/desorption of Cs on clay and soil fractions from various regions of Turkey[J].The Science of The Total Environment,1988,69:269-296.
    [60]Feng C W, Ru L T. Liquid-solid phase countercurrent multi-stage adsorption process for using the Langmuir equation[J]. Journal of Hazardous Materials,2008,155:449-458.
    [61]Flor M, Vigil V R, Cala V.Copper sorption in clay fractions of alluvial soils [J]. Science of The Total Environment,1995,172:245-249.
    [62]Ilg K, Wilcke W, Safronov G, et al.Heavy metal distribution in soil aggregates:a comparison of recent and archived aggregates from Ruissia [J]. Geoderma,2004,123:153-162.
    [63]Jaehoon L, Lakhwinder S H, Robert H, et al. Sorption and Transport Behavior of Naphthalene in an Aggregated Soil[J]. J. Environ.Qual,2002(31):1716-1721.
    [64]John O A, Latifatu A O. Competitive adsorption of copper and zinc by a Bt horizon of a savanna Alfisol as affected by pH and selective removal of hydrous oxides and organic matter [J]. Geoderma,2004,119:85-95.
    [65]Karolien D, Lincoln Z, Robert M B, et al. Microaggregate-associated carbon as a diagnostic fraction for management-induced changes in soil organic carbon in two Oxisols[J]. Soil Biology & Biochemistry,2007,39:1165-1172.
    [66]Kevin G T, Gerth J, Brummer G.The sorption of Cd,Zn and Ni by soil clay fractions:Procedures for partition of bound forms and their interpretation[J].Geoderma,1984,34(1):1-16.
    [67]Keren R, Talpaz H B. Adsorption by Montmorillonite as Affected by Particle Size[J]. Soil Science. Society.America.Journal.1984,48:555-559.
    [68]Ilg K, Wilcke W, Safronov G, et al. Heavy metal distribution in soil aggregates:a comparison of recent and archived aggregates from Russia[J].Geoderma,2004,123:153-162.
    [69]Linda S C, Davies B E. Soil sorption of caesium modeled by the Langmuir and Freundlich isotherm equations[J].Applied Geochemistry,1995,10:715-723.
    [70]Mcgrath S P, Sanders J R, Shalaby M H. The effects of soil organic matter levels on soil solu-tion concentrations and extractabilities of manganese, zinc and copper[J]. Geoderma, 1988,42(2):177-188.
    [71]Omotayo S A,Olumuyiwa I O.Theresa I E.Biosorption of Lead from Industrial Wastewater Using Chrysophyllun albidum Seed Shell[J].Bioremediation Journal,2007,11,4:183-194.
    [72]Oades R D, Morris S R, Moyes R B. Alumina-supported tungsten catalysts for the hydrogenation of carbon monoxide[J].Catalysis Today,1991,10(3):379-385.
    [73]Perez N C, Pateiro M M, Osorio F,et al. Influence of organic matter removal on competitive and noncompetitive adsorption of copper and zinc in acid soils. Journal of Colloid and Interface Science 2008,322:33-40.
    [74]Pichler M, Guggenberger G, Hartmann R, et al. Polycyclic aromatic hydrocarbons(PAHs) in different forest humuns types[J].Enviorn Sci Pollut Res,1996,3:24-31.
    [75]Six J, Elliott E T, Paustian K, et al. Aggregation and soil organic matter accumulation in cultivated and native grassland soils [J]. Soil Science Society of America Journal, 1998,62:1367-1377.
    [76]Six J, Elliott E T,Paustian K. Aggregate and soil organic matter dynamics under conventional and no-tillage systems[J]. Soil Science Society of America Journal,1999,63:1350-1358.
    [77]Six J, Paustian K, Elliott E T,et al. Soil structure and organic matter:I.Distribution of aggregate-size classes and aggregate-associated carbon[J]. Soil Science Society of America Journal,2000a,64:681-689.
    [78]Six J, Elliott E T, Paustian K. Soil macroaggregate turnover and microaggregate formation:a mechanism for C sequestration under no-tillage agriculture[J].Soil Biology&Biochemistry,2000b,3 2:2099-2103.
    [79]Schulten H R, Leinweber P. New insights into organic-mineral particles:composition,properties and modles of molecular structure[J]. Biology Fertilize Soil,2000,30:399-432.
    [80]Syers J K.,Broman M G,Smillie G W,et al. Phosphate sorption by soils evaluated by Langmuir adsorption equation[J].Soil Sci.Soc.Am.Proc.,1973:37:358-363.
    [81]Strawn D G, Sparks D L. Effects of soil organic matter on the kinetics and mechanisms of Pb(Ⅱ) sorption and desorption in soil[J]. Soil Science Society of America Journal,2000,64:144-156.
    [82]Streck T, Jorg R. Heavy metal displacement in a sandy soil at field scale:I. Measurements and parameterization of sorption[J].Journal of Environmental Quality,1997,1:49-56.
    [83]Selim M H. Fate and transport of heany metals in the Vadose Zone.Lewis Publishers[M].CRC Press,LLC,1999,323.
    [84]Wilcke W, Martin K. Heavy metal distribution between soil aggregate core and surface fractions along gradients of deposition from the atmosphere[J].Geoderma,1998,83(1-2):55-66.
    [85]Wilcke W, Kretzschmar S, Bundt M,et al. Metal concentrations in aggregate in teriors,exteriors, whole aggregates,and bulk of Costa Rican soils[J]. Soil Science Society of America Journal,1999, 63:1244-1249.
    [86]Wang F, Pan G X, Li L Q. Effects of free iron oxyhydrates and soil organic matter on copper sorption-desorption behavior by size fractions of aggregates from two paddy soils[J] Journal of Environmental Sciences,2009,21:618-624.
    [87]Zhang M K, He Z L, Calvert D V,et al. Phosphorus and heavy metal attachment and release in sandy soil aggregate fractions[J]. Soil Science Society of America Journal,2003,67(4):1158-1167.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700