用户名: 密码: 验证码:
Bacillus cereus B-02拮抗作用相关基因的克隆与检测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蜡样芽孢杆菌(Bacillus cereus)B-02分离自淄博市感染灰霉病的大棚蔬菜土壤,是一株具有很强的抗灰霉病菌(Botrytis cinerea)活性的拮抗细菌。为探讨菌株对Bo.cinerea的防病机理,利用转座子标签法构建B-02抑菌活性消失的突变体,并通过TAIL-PCR方法研究转座因子的插入位点及其侧翼基因,旨在克隆发现新的抑菌功能相关基因,进而分析该位点所在基因或其侧翼基因对该表型的调控机制。
     提取枯草芽孢杆菌(Bacillus subtilis)PY143中携带转座子Tn917的非穿梭性温度敏感型质粒pTV1,电击转化pTV1质粒至野生Ba.cereus B-02菌株,在电压9.0-12.5kv/cm,电阻200Ω,电容25μF的电击转化条件下,得到了具有氯霉素抗性且可以稳定、持续复制的转化子17个,并经质粒电泳及PCR检测证实。将得到的转化子在44.5℃持续地高温诱变,pTV1质粒消除,Tn917插入到Ba.cereus B-02基因组中,筛选得到具有红霉素和林可霉素抗性但失去氯霉素抗性的转座突变子1670个,在本实验中平均转座效率为4.29×10~(-4),通过继代培养,证明突变菌株具有遗传稳定性,表明Tn917插入片段在大多数突变菌株中可以稳定遗传,经PCR检测,可证明pTV1中的Tn917片段插入到Ba.cereus B-02基因组中。进一步测定这些突变子对Bo.cinerea的抑制作用,最终筛选得到了1个对病原菌抑制能力丧失的突变子,命名为B-02-T。随机选择6株突变菌株,以含部分Tn917片段的DIG标记探针和EcoRⅠ消化其基因组进行southern杂交,结果证实突变菌株基因组中有且只有单一的Tn917插入,且可以随机诱变Ba.cereus野生株,产生在不同位点突变的突变株。
     采用TAIL-PCR法从突变菌株B-02-T中克隆Tn917插入位点侧翼的序列,分别得到Tn917插入位点上下游两条基因片段,经去除载体污染、上下游基因拼接后,得到一段2705bp的基因序列,将其进行blast比对后,发现其与芽孢杆菌质粒序列同源性较高,同源序列表达的蛋白为假定蛋白,推测其可能为与抑菌活性相关的新基因。
The bacterial strain B-02,isolated from the tomato infected by Botrytis cinerea in Zibo,was a Bacillus cereus strain effective to control Bo.cinerea.To research the antagonizing mechanism of Ba.cereus B-02 against Bo.cinerea at molecular gene level, the antibiosis-free mutant was constructed using transposon tagging technique,and then integration sites and flanking sequences were identified by TAIL-PCR(thermal asymmetric interlaced PCR).It was aimed at to find new antibacterial functional genes and then analyze the regulation mechanism of this phenotype.
     In this study,pTV1,a temperature-sensitive suicide vector with Tn917,was introduced by electroporation into Ba.cereus B-02 in the condition of 9.0-12.5kv/cm, 200Ω,25μF.17 transformants with chloramphenicol resistance were obtained and this property was highly stable and inheritable,which was proved by PCR and plasmid electrophoresis.By constant high temperature(44.5℃) mutation,the transposon Tn917 was successfully inserted into the genome of Ba.cereus B-02 and 1670 mutants were obtained resistant to erythromycin and lincomycin but susceptible to chloromycetin.In this study,the average efficiency of transposition was 4.29×10~(-4),no replication fusant was appeared.By successive transfer culture,Tn917 was still inherited in the mutant strains proved by PCR and southern blotting.Among 1670 mutants,1 antibiosis-free mutant was obtained no more antagonizing Bo.cinerea,named as B-02-T.Southern blotting proved that transposon Tn917 mutagenesis resulted in random genome insertions in.Southern blotting analysis showed that Tn917 was randomly integrated into the genome of Ba. cereus B-02 strain,with single insertion copy.
     The flanking gene fragment of Tn917 insertion site was cloned by TAIL-PCR amplification using the genome of mutant strain B-02-T.After sequencing and gene splicing of the upper and downstream fragment by removing Tn917 vector sequence,a 2705 bp gene fragment was obtained.Homology alignment revealed that this sequence showed high homology to the plasmid gene of Bacillus which expressed hypothetical protein.From the above,it could be infered that the target gene was a new antibacterial functional gene.
引文
[1]童蕴慧,纪兆林,徐敬友,等.灰霉病生物防治研究进展[J].中国生物防治,2003,19(3):131-135.
    [2]童蕴慧,郭桂萍,徐敬友,等.拮抗细菌对番茄植株抗灰霉病的诱导[J].中国生物防治,2004,20(3):187-189.
    [3]童蕴慧,徐敬友,陈夕军,等.番茄灰霉病菌拮抗菌的筛选和应用[J].江苏农业研究,2001,22(4):25-28.
    [4]李桂霞,马汇泉,刘婧,等.番茄灰霉病高效拮抗菌株的鉴定及通过导入β-1,3-葡聚糖酶基因提高其生防效果[J].中国生物工程杂志,2007,27(4):44-49.
    [5]李桂霞,马汇泉,刘婧,等.番茄灰霉病高效拮抗菌株的鉴定及抗菌活性研究[J].山东农业科学,2007,2:69-72.
    [6]杜立新,冯书亮,王容燕,等.拮抗BS-208菌株对番茄灰霉病诱导抗性的初步研究[J].华北农学报,2005,20(6):84-87.
    [7]林东,徐庆,刘忆周,等.枯草芽孢杆菌SO113分泌蛋白的抑菌作用及抗菌蛋白的分离纯化[J].农业生物技术学报,2001,9(1):77-80.
    [8]汪澈,何月秋,张永庆.枯草芽孢杆菌B9601-Y2抑菌蛋白活性及产生条件的研究[J].植物病理学报,2005,35(1):30-36.
    [9]王慧萍,杨启银,闫淑珍.茄子黄萎病菌抗性根际芽孢杆菌的筛选与鉴定[J].微生物学杂志,2006,26(6):40-44.
    [10]王焰玲,王海燕,秦敏,等.环状芽孢杆菌几丁质酶基因序列分析、表达和生物活性测定[J].微生物学报,2002,42(5):616-619.
    [11]林毅,彭锟,关雄.苏云金杆菌entomocidus亚种几丁质酶基因的克隆与生物信息学分析[J].激光生物学报,2006,15(6):598-601.
    [12]黄玉杰,杨合同,丁爱云,等.巨大芽孢杆菌内切葡聚糖酶编码基因的克隆及序列分析.中国生物防治,2004,20(4):256-259.
    [13]徐小静,张力群,朱有勇,等.通过导入几丁质酶基因提高荧光假单胞杆菌P5的生防效果[J].农业生物技术学报,2004,12(4):460-463.
    [14]程红梅,简桂良,倪万潮,等.转几丁质酶和β-1,3-葡聚糖酶基因提高棉花对枯萎病和黄萎病的抗性[J].中国农业科学,2005,38(6):1160-1166.
    [15]卫华,樊明文,边专,等.转座因子Tn917随机诱变变形链球菌UA159[J].武汉大学学报,2004,25(2):108-110.
    [16]孙会刚,蒋继志,李社增,等.生防细菌NCD-2突变体构建及抑菌功能基因的防病作用[J].棉花学报,2006,18(3):131-134.
    [17]王玉飞,王恒,黄留玉.转座子相关技术在微生物功能基因组研究中的应用[J].生物技术通讯.2006,17(3):405-408.
    [18]陈永辉,史贤明.利用转座子Tn917构建单核细胞增生李斯特菌菌膜形成突变株[J].2005,45(6):952-954.
    [19]蹇文婴,东秀珠.利用反向PCR方法扩增细菌热激蛋白HSP60基因[J].微生物学报,2002,42(1):56-62.
    [20]杜秉海,李小红,林榕姗,等.利用Tn5-1063转座诱变法分离苜蓿中华根瘤菌042BM noeB 基因的研究[J].微生物学报,2004,44(2):206-208.
    [21]姜国忠,谢华,郭玉忠,等.2种PCR方法扩增盐藻肌动蛋白基因3′旁侧序列比较[J].郑州大学学报,2004,1(39):41-44.
    [22]卫华,樊明文,边专,等.变形链球菌耐酸性相关基因的初步研究[J].中华口腔医学杂志,2004,39(5):382-385.
    [23]邵彦春,丁月娣,陈福生,等.TAIL-PCR法快速分离红曲霉色素突变株T-DNA插入位点侧翼序列[J].微生物学通报,2007,34(2):323-326.
    [24]应革,武威,何朝族.TAIL-PCR方法快速分离Xcc致病相关基因序列[J].生物工程学报,2002,18(2):182-185.
    [25]林春花,贺春萍,王葵娣,等.稻瘟菌突变体T-DNA插入位点的精细定位和插入模式的研究[J].微生物学报,2007,47(4):588-592.
    [26]张霞,唐文华,张力群.枯草芽孢杆菌B931防治植物病害和促进植物生长的作用[J].作物学报,2007,33(2):236-241.
    [27]孙磊,孔文涛,孔健.乳酸乳球菌电转化条件的研究[J].山东大学学报,2005,40(3):121-124.
    [28]徐敏,马骏双,王正祥.高渗透压对细菌电转化率的影响[J].无锡轻工大学学报,2004,23(4):98-100.
    [29]Juan C,Viviana C,Maria E,et al.Biological control of postharvest spoilage caused by Penicillium expansum and Botrytis cinerea in apple by using the bacterium Rahnella aquatilis[J].International Journal of Food Microbiology,2007,113(3):251-257.
    [30]Chitarra G S,Breeuwer P Nout M J R.An antifungal compound produced by Bacillus subtilis YM 10220 inhibits germination of Penicillium roqueforti conidiospores[J].Journal of Applied Microbiology,2003,94:159-166
    [31]Bacon C W,Yates I E,Hinton D M,et al.Biological control of Fusarium moniliforme in maize[J].Environ.Health Perspect,2001,109:325-332.
    [32]Mizumoto S,Shoda M.Medium optimization of antifungal lipopeptide,iturin A,production by Bacillus subtilis in solid-state fermentation by response surface methodology[J].Appl Microbiol Biotechnol, 2007,76(1):101-108.
    [33] Romero D,de Vicente A,Rakotoaly RH, et al. The iturin and fengycin families of lipopeptides are key factors in antagonism of Bacillus subtilis towards Podosphaera fusca[J].Mol Plant Microbe Interact,2007,20(4):430-440.
    
    [34] Roongsawang N,Thaniyavarn J,Thaniyavarn S, et al. Isolation and characterization of a halotolerant Bacillus subtilis BBK-1 which produces three kinds of lipopeptides: bacillomycin L, plipastatin, andsurfactin [J].Extremophiles, 2002,6(6):499-506.
    [35] Chang W T, Chen Y C, Chia-Ling Jao.Antifungal activity and enhancement of plant growth by Bacillus cereus grown on shellfish chitin wastes [J].Bioresource Technology, 2007,98:1224-1230.
    [36] Ikegami T,Okada T,Hashimoto M, et al. Solution Structure of the Chitin-binding Domain of Bacillus circulans WL-12 Chitinase Al [J].Biol Chem,2000,275(18):13654-13661.
    [37] Maitinou A,Koutsioulis D,Bouriotis V.Cloning and expression of a chitin deacetylase gene (CDA2) from Saccharomyces cerevisiae in Escherichia coli purification and characterization of the recombinantenzyme [J].Enzyme Micro Technol,2003,32:757-763.
    [38] Stover A G, Driks A. Regulation of Synthesis of the Bacillus subtilis Transition-Phase, Spore-Associated Antibacterial Protein TasA[J].Bacteriology, 1999,181 (17):547-548.
    [39] Lin TP, Chen CL, Fu HC, et al. Functional analysis of fengycin synthetase FenD[J].Biochim Biophys Acta,2005,15,1730(2): 159-164.
    [40] Lightbourn G J, Jelesko J G, Veilleux R E.Retrotransposon-based markers from potato monoploidsused in somatic hybridization.Genome,2007,50(5):492-501
    [41] Tomich P K, An F Y, Clewell D B. Plasmid-Related Transmissibility and Multiple Drug Resistance in Streptococcus faecalis subsp. zymogenes Strain DS16 [J]. Antimicrob Agents Chemother.1979, 15(6): 828-830.
    [42] Franke A E, Clewell D B.Evidence for chomosome-borne resistance-transposon (Tn916) in Streptococcus faecalis that is capable of "Conjugal" transfer in absence of a conjugative plasmid [J]. Journal of Bactriology.1981,145(1):494-502.
    [43] Youngman P J, Perkins J B, Losick R.Genetic transposition and insertional mutagenesis in Bacillus subtilis with Streptococcus faecalis transposon Tn917[J].Proc Natl Acad Sci USA.1983, 80:2305-2309.
    [44] Vandeyar M A, Zahler S A.Chromosomal insertions of Tn917 in Bacillus subtilis[J]. J Bacteriol, 1986, 167(2):530-534.
    [45] Gavrilova A. Savchenko G V. Prozonov A A .The effect of various rec-mutations on the frequency of the Tn917 transposition in Bacillus subtilis cells [J].Mol Gen Microbiol Virusol, 1989,10:38-40.
    [46] Naohiro O,Satoru K,Hisakazu Y, et al.Characterization of ermB Gene Transposition by Tn1545 and Tn917 in Macrolide-Resistant Streptococcus pneumoniae Isolates[J].Clin Microbiol,2005, 43(1):168-173
    [47] Steller S,V611enbroich D,Leenders F, et al.Structural and functional organization of the fengycin synthetase multienzyme system from Bacillus subtilis b213 and A 1/3.J Chem Biol. 1999,6:31-41
    [48] Gardan R,Cossart P,Labadie J.Identification of Listeria monacytogenes genes involved in salt and alkaline-pH tolerance[J].Appl Enviromental Microbiol,2003,69:31-37.
    
    [49] Menendez A, Mayo B, Jose A, et al.Construction of transposition insertion libraries and specificgene inactivation in the pathogen Lactococcus garvieae[J] .Research in Microbiology, 2006, 157:575-581.
    
    [50] Garsin D A,Urbach J,Huguet J C, et al.Construction of an Enterococcus faecalis Tn917- mediated- gene-disruption library offers insight into Tn917 insertion patterns [J].J Bacteriol, 2004, 186(21):7280-7289
    
    [51] Johannes K,Max N,Kathrin K.Establishment of an Arbitrary PCR for Rapid Identification of Tn917 Insertion Sites in Staphylococcus epidermidis:Characterization of Biofilm-Negative and Nonmucoid Mutants[J]. Appl Environ Microbiol, 2003,69(10):5812-5818
    [52] Singer T, Burke E.High-throughput TAIL-PCR as a tool to identify DNA flanking insertions [J]. Methods Mol Biol, 2003,236:241-272.
    [53] Liu Y G,Chen Y.High-efficiency thermal asymmetric interlaced PCR for amplification of unknown flanking sequences[J].Biotechniques,2007,43(5):649-650.
    [54] Terauchi R, Kahl G.Rapid isolation of promoter sequences by TAIL-PCR: the 5'-flanking regions of Pal and Pgi genes from yams (Dioscorea) [J]. Mol Gen Genet, 2000,263(3):554-560.
    [55] Kati J H, Sirpa O K.Production of transgenic strawberries by temporary immersion bioreactor system and verification by TAIL-PCR [J].BMC Biotechnol, 2007,19:7-11.
    [56] Martint V,Glenn H,Glenn H.Rapid isolation and sequencing of purified plasmid DNA from Bacillus subtilis[J].Applied and environmental microbiology,1993,59:1138-1142
    [57] Turgeon N, Laflamme C,Jim H,et al.Elaboration of an electroporation protocol for Bacillus cereus ATCC14579[J]. Journal of Microbiological Methods.2006,67:543-548
    
    [58] Liu Y G, Whittier R F.Thermal asymmetric interlaced PCR: automatable amplification and sequencing of insert end fragments from P1 and YAC clones for chromosome walking[J]. Genomics.1995,25(3):674-681
    
    [59] Nicholas A, Bohall J R, Patricia S. Transposition of Tn917 in Bacillus megaterium[J].Journal of bacteriology. 1986, 8:716-718

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700