用户名: 密码: 验证码:
药物活性成份在线富集毛细管电泳分析方法及其与生物大分子之间相互作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文将毛细管电泳分离技术与在线推扫富集技术、中空纤维液相微萃取技术相结合,建立了中草药和生物样品中的马钱子生物碱、卡马西平的高效、灵敏和选择性好的CE分离检测方法。并研究了中草药中的马钱子生物碱、防己生物碱、槲皮素以及卡马西平与血清白蛋白的相互作用。在系统查阅有关文献资料的基础上,进行了以下研究工作:
     (1)采用在线推扫预富集—胶束毛细管电泳法建立了测定中草药中马钱子生物碱的新方法。经过实验优化,最佳分离条件为:分离缓冲溶液为50 mmol L~(-1) H_3PO_4(pH 2.0),100 mmol L~(-1) SDS,20%乙腈(v/v),分离电压-20 kV,在0.5 psi下进样270 s,检测波长为203 nm。与传统MEKC方法相比较,灵敏度提高了100倍(以峰高计)。以小檗碱为内标,士的宁与马钱子碱的浓度在0.5~15μg/mL范围内与其峰面积与内标峰面积的比值呈良好的线性关系,线性相关系数分别为0.998和0.997,检出限分别为0.05μg/mL和0.07μg/mL。本方法应用于测定中草药马钱子和中药制剂伸筋活络丸中马钱子碱的含量,获得满意结果。
     (2)首次将中空纤维液相微萃取(HF-LPME)与在线推扫富集胶束电动色谱法相结合,建立了测定尿样中马钱子生物碱的新方法。以小檗碱为内标,士的宁、马钱子碱与内标峰面积的比值与分析物浓度在20~200 ng/mL范围内呈良好的线性关系,线性相关系数分别为0.996和0.997,士的宁与马钱子碱的检出限分别为1ng/mL和2 ng/mL(S/N=3∶1)。
     (3)建立了在线推扫富集毛细管电泳紫外检测测定药物和人血清中卡马西平浓度的方法。以pH=3.0的50 mmol L~(-1) NaH_2PO_4,100 mmol L~(-1) SDS,20%乙腈为分离缓冲溶液,在0.5 psi下进样90 s,检测波长214 nm,分离电压为-20 kV。卡马西平浓度在0.5-40μg/mL范围内与其峰面积呈良好的线性关系,线性相关系数为0.998,检出限为0.1μg/mL(S/N=3∶1)。
     (4)建立了毛细管区带电泳紫外检测测定血清中左旋多巴和甲基多巴的新方法,以pH=9.5的40 mmol L~(-1)硼砂为分离缓冲溶液,在0.5 psi压力下进样7 s,分离电压22 kV,检测波长200 nm,检测温度25℃的条件下进行测定,甲基多巴和左旋多巴浓度分别在0.001~0.064 mg/mL和0.001~0.071 mg/mL范围内与峰面积呈良好线性关系,线性相关系数分别为0.9998和0.9994,检出限分别为0.6μg/mL和0.8μg/mL(信噪比为3∶1),已用于血清中甲基多巴和左旋多巴的测定。
     (5)应用荧光光谱和紫外光谱法研究了马钱子碱与牛血清白蛋白(BSA)的结合反应,求得它们之间的结合常数K_A和结合位点数n,分别为K_A=6,3×10~3,n=0.94(27℃);KA=7.7×10~3,n=0.97(37℃)。根据F(?)rster非辐射能量转移理论求出了马钱子碱与BSA之间的结合距离为3.99 nm(27℃)和4.21 nm(37℃)。探讨了马钱子碱的荧光猝灭机理,结果表明马钱子碱能够插入BSA内部形成基态复合物导致其内源荧光猝灭,猝灭机理主要是静态猝灭和非辐射能量转移。根据热力学参数确定了马钱子碱与BSA之间的作用力类型主要为疏水性相互作用。
     (6)在不同温度下,用荧光猝灭光谱、同步荧光光谱、三维荧光光谱和紫外.可见吸收光谱,研究了防己诺林碱和粉防己碱与牛血清白蛋白和人血清白蛋白(HSA)之间的相互作用。结果表明,防己诺林碱和粉防己碱对血清白蛋白有较强的荧光猝灭作用,根据不同温度下防己诺林碱和粉防己碱对血清白蛋白的荧光猝灭作用,确定他们对血清白蛋白的荧光猝灭作用属于静态猝灭。并根据F(?)rster非辐射能量转移理论计算出防己诺林碱和粉防己碱与血清白蛋白间的结合距离r、结合常数K_A和结合位点数n。防己诺林碱与牛血清白蛋白之间的K_A=1.05×10~5,n=1.4,r=2.53(t=27℃);K_A=3.31×10~5,n=1.3,r=2.70(t=37℃);K_A=7.24×10~5,n=1.2,r=2.92(t=47℃)。防己诺林碱与人血清白蛋白之间的K_A=5.04×10~5,n=1.2,r=3.52(t=27℃);K_A=5.38×10~5,n=1.3,r=3.81(t=37℃);K_A=5.67×10~5,n=1.4,r=4.38(t=47℃)。粉防己碱与牛血清白蛋白之间的K_A=1.52×10~5,n=1.2,r=2.34(t=27℃);K_A=2.03×10~5,n=1.3,r=2.48(t=37℃);K_A=2.89×10~5,n=1.4,r=2.71(t=47℃)。粉防己碱与人血清白蛋白之间的K_A=4.02×10~5,n=1.0,r=3.00(t=27℃);K_A=4.76×10~5,n=1.2,r=3.14(t=37℃);K_A=4.98×10~5,n=1.3,r=3.39(t=47℃)。并根据热力学数据确定了它们之间的主要作用力类型,同时用同步荧光光谱和三维荧光光谱探讨了防己诺林碱和粉防己碱对血清白蛋白构象的影响。
     (7)利用荧光光谱和紫外光谱法研究了槲皮素与牛血清白蛋白之间的相互作用。结果表明,静态猝灭和非辐射能量转移是导致槲皮素对BSA荧光猝灭的两大原因,槲皮素与BSA的结合常数K_A为2.8×10~8(26℃)和3.1×10~8(36℃),结合位点数为1.76±0.01,根据F(?)rster非辐射能量转移理论得到槲皮素与BSA之间的结合距离为3.25 nm(26℃)和3.30 nm(36℃),表明槲皮素的部分片段可以插入BSA分子内部。通过计算热力学参数,可知该药物与蛋白的相互作用是一个熵增加和吉布斯自由能降低的自发过程,并由此推断槲皮素与BSA之间的作用力是以疏水相互作用为主。
     (8)应用荧光光谱和紫外光谱法研究了卡马西平(CBZ)与牛血清白蛋白的结合反应,实验结果表明,卡马西平可以插入BSA分子内部形成CBZ-BSA复合物而产生荧光猝灭。研究表明静态猝灭和非辐射能量转移是导致卡马西平对BSA荧光猝灭的两大原因。求得CBZ与BSA之间的结合常数K_A分别为1.8×10~4(27℃);2.8×10~4(37℃)和结合位点数n:0.97(27℃);1.01(37℃)。根据F(?)rster非辐射能量转移理论求出了卡马西平与BSA之间的结合距离为3.6 nm(27℃)和3.4 nm(37℃)。CBZ与BSA的结合过程是熵增大,吉布斯自由能减小的过程,反应自发进行,它们之间主要靠疏水作用力结合。
In the thesis, CE was combined with on-line sweeping and hollow fiber-basedliquid-phase microextraction technique. Efficient and sensitive methods were developedfor the determination of Strychnos alkaloids, carbamazepine in Chinese herbal medicinesand biological samples. The interactions of Strychnos alkaloids, fangchinoline,tetrandrine and carbamazepine with serum albumin were studied by fluorescencequenching spectra, synchronous fluorescence spectra, three-dimensional fluorescencespectra and ultra-violet spectra. This thesis is mainly concerned with the followingaspects:
     (1) The investigation of an on-line sweeping preconcentration method in micellarelectrokinetic chromatography (MEKC) for the determination of Strychnos alkaloids,namely strychnine and brucine.
     After experimental optimizations, the best separation was achieved in 50 mmol L~(-1)H_3PO_4 (pH 2.0) containing 100 mmol L~(-1) SDS and acetonitrile in a ratio of 4:1 (v/v),with an applied voltage of -20 kV at 20℃. The sample matrix consisted of 100 mmol L~(-1)H_3PO_4 (pH 2.0), and sample introduction was performed at 0.5 psi for 270 s, withphotodiode array detection at 203 nm. Compared with the conventional MEKC injectionmethod, up to 100-fold improvement in concentration sensitivity was achieved in termsof peak height by using this sweeping injection technique. In the method, the compoundberberine was used as the internal standard for the improvement of the experimentalreproducibility. The calibration curve was linear over a range of 0.5-15μg mL~(-1) for bothstrychnine and brucine, with a correlation coefficient of 0.998 and 0.997, respectively.The detection limits (S/N=3:1) for strychnine and brucine were 0.05μg mL~(-1) and 0.07μg mL~(-1), respectively. The Sweeping-MEKC method has been successfully applied to theanalysis of strychnine and brucine in Strychnos nux-vomica L and its Chinese medicinalpreparations.
     (2) The establishment of a new method for the enrichment of Strychnos alkaloids inbiological samples via liquid-phase mieroextraction (LPME) based on porous polypropylene hollow fibers combined with on-line sweeping in micellar electrokineticchromatography (MEKC).
     Strychnos alkaloids were first extracted from urine sample, in which the concentrationof NaOH was 0.5 mmol L~(-1). The unionized analytes were subsequently extracted into1-octanol impregnated in the pores of hollow fibers, and then into 100 mmol L~(-1) H_3PO_4inside the hollow fiber. The extract was analyzed directly by on-line sweeping in micellarelectrokinetic chromatography (MEKC). In the method, the compound berberine wasused as the internal standard for the improvement of the experimental reproducibility.The calibration curve was linear over a range of 20-200 ng mL~(-1) for both strychnine andbrucine in human urine sample, with a correlation coefficient of 0.996 and 0.997,respectively. The detection limits (S/N=3:1) for strychnine and brucine were 1 ng ml~(-1)and 2 ng mL~(-1), respectively. The LPME-sweeping method has been successfully appliedto the analysis of strychnine and brucine in real urine sample, indicating thatLPME-sweeping-MEKC is a promising combination for the analysis of basic drugspresent at low levels in some biological matrices.
     (3) The development of a sensitive and simple micellar electrokinetic chromatography(MEKC) method for the determination of antiepileptic drug, Carbamazepine(CBZ), usingsweeping on-line concentration method with photodiode array detection.
     The effect of pH, concentration of the running buffer solution, organic modifier,voltage and injection time on the concentration efficiency was investigated. An untreatedfused-silica capillary was used (50 cm; effective length, 40 cm, 75μm i.d.) for theanalysis. The background solution (BGS) was 50 mmol L~(-1) NaH_2PO_4 (pH 3.0) and 100mmol L~(-1) SDS containing 20%acetonitrile with an applied voltage of -20 kV at 25℃.Sample introduction was performed at 0.5 psi for 90 s with diode array detection at 214nm. In the method validation, the calibration curve was linear over a range of 0.5-40μgmL~(-1) for CBZ with a correlation coefficient of 0.998. The detection limit (S/N=3:1) ofCBZ was 0.10μg mL~(-1). About 100-fold improvement in concentration sensitivity wasachieved in terms of peak height by the sweeping method compared to conventionalinjection method. The Sweeping-MEKC method has been successfully applied to theanalysis of CBZ in tablet and human serum.
     (4) The development of a simple capillary zone electrophoresis method for thedetermination of levodopa and methyldopa in human serum.
     The influence of pH, concentration of the running buffer solution, voltage andinjection time was investigated. The best separation was obtained with a fused-silicacapillary column(50 cm×75μm I. D.) in a running buffer of 40 mmol L~(-1) sodiumtetraborate (pH=9.5), with an applied voltage of 22 kV at 25℃. Sample introductionwas performed at 0.5 psi for 7 s combined with diode array detection at 200 nm. Thelinear range of methyldopa and levodopa were 0.001~0.064 mg mL~(-1) (r=0.9998) and 0.001~0.071 mg/mL (r=0.9994) respectively, the detection limit (S/N=3:1) ofmethyldopa and levodopa were 0.6μg mL~(-1) and 0.8μg mL~(-1).
     (5) The study on the interaction between brucine and bovine serum albumin (BSA)using fluorescence spectroscopy (FS) and ultraviolet spectroscopy (UV).
     The experimental results showed that brucine could quench the intrinsic fluorescenceof BSA. It was found that static quenching and non-radiation energy transfer were themain reasons leading to the fluorescence quenching. The apparent binding constants (K_A)between brucine and BSA were 6.3×10~3 (27℃) and 7.7×10~3 (37℃) and the bindingsites (n) were 0.94 (27℃) and 0.97 (37℃). According to the F(?)rster theory ofnon-radiation energy transfer, the binding distances (r) were also obtained. The processof binding was a spontaneous molecular interaction in which entropy increased andGibbs free energy decreased, which indicated that the interaction between brucine andBSA was driven mainly by hydrophobic force.
     (6) The study on the interaction of fangchinoline and tetrandrine with bovine serumalbumin and human serum albumin (HSA) under different temperatures by fluorescencequenching spectra, synchronous fluorescence spectra, three-dimensional fluorescencespectra and ultra-violet spectra.
     It was shown that fangchinoline and tetrandrine had a quite strong ability to quenchthe intrinsic fluorescence of BSA or HSA. The Stem-Volmer curve on the fluorescence ofBSA or HSA quenched by fangchinoline and tetrandrine indicated the quenchingmechanism between fangchinoline or tetrandrine and BSA or HSA was a staticquenching. According to the F(?)rster theory of non-radiation energy transfer, the bindingdistances (r), the binding constants (K_A) and the binding sites (n) were obtained. Forfangchinoline and BSA: K_A=1.05×10~5, n=1.4, r=2.53 (t=27℃); K_A=3.31×10~5,n=1.3, r=2.70(t=37℃); K_A=7.24×10~5, n=1.2, r=2.92 (t=47℃)。Forfangchinoline and HSA: K_A=5.04×10~5, n=1.2, r=3.52 (t=27℃); K_A=5.38×10~5,n=1.3, r=3.81 (t=37℃); KA=5.67×10~5, n=1.4, r=4.38 (t=47℃)。For tetrandrineandBSA:K_A=1.52×10~5, n=1.2, r=2.34(t=27℃); K_A=2.03×10~5, n=1.3, r=2.48 (t=37℃); K_A=2.89×10~5, n=1.4, r=2.71 (t=47℃)。For tetrandrine and HSA:K_A=4.02×10~5, n=1.0, r=3.00(t=27℃); K_A=4.76×10~5, n=1.2, r=3.14(t=37℃); K_A=4.98×10~5, n=1.3, r=3.39(t=47℃)。The thermodynamic parametersshowed that the interaction between fangchinoline or tetrandrine and BSA or HSA wasdriven mainly by hydrophobic force. Synchronous spectrum and three- dimensionalfluorescence spectrum were used to investigate the structural changes of BSA and HSA.
     (7) The investigation of interaction between quercetin and bovine serum albumin usingfluorescence spectroscopy and ultraviolet spectroscopy.
     The apparent binding constants (KA) between quercetin and BSA were 2.8×10~8 (26℃)and 3.1×10~8 (36℃) and the binding sites (n) were 1.7±0.02. According to the F(?)rster theory of non- radiation energy transfer, the binding distances (r) were also obtained. Theexperimental results showed that the quercetin could quenching the intrinsic fluorescenceof BSA by forming the quercetin-BSA complex. It was found that both static quenchingand non-radiation energy transfer were the main reasons leading to the fluorescencequenching. The process of binding was a spontaneous molecular interaction in whichentropy increased while Gibbs free energy decreased, which indicated that the interactionbetween quercetin and BSA was driven mainly by hydrophobic force.
     (8) The investigation of the interaction between bovine serum albumin and CBZusing fluorescence spectroscopy and ultraviolet spectroscopy.
     The experimental results showed that the CBZ could insert into the BSA molecular,quenching the intrinsic fluorescence of BSA by forming the CBZ-BSA complex. It wasfound that both static quenching and non-radiation energy transfer were the main reasonsleading to the fluorescence quenching. The apparent binding constants (KA) betweenCBZ and BSA were determined to 1.8×10~4 (27℃) and 2.8×10~4 (37℃). The bindingsites values (n) were 0.97 (27℃) and 1.01 (37℃), respectively. According to the F(?)rstertheory of non-radiation energy transfer, the binding distances (r) between BSA and CBZwere 3.6 nm (27℃) and 3.4 nm (37℃) respectively. The process of the binding was amolecular interaction in which entropy and Gibbs free energy both decreased, whichindicated that the interaction between CBZ and BSA was mainly driven by hydrogenbond and Vander Waals force.
引文
[1] Jorgenson J W, Lukas K D. Zone electrophoresis in open-tubular glass capillary [J]. Anal Chem, 1981, 53:1298-1302.
    [2] Terabe S, Otsuka K, Ichikawa K, Tscuchuya A, Ando T. Electrokinetic separations with micellar solution and open-tubular capillary [J]. Anal Chem, 1984, 56:111-113.
    [3] Hjerten S, Liao J, Yao K. Theoretical and experimental study of electrophoretic mobilization of isoelectric focused protein zones [J]. J Chromatogr, 1987, 387:127-136.
    [4] Cohen A, Karger B. High-performance sodium dodecyl sulfate polyacrylamide gel capillary electrophoresis of peptides and proteins[J]. J Chromatogr, 1987, 397: 409-415.
    [5] 陈义.毛细管电泳技术及应用(第二版)[M].北京:化学工业出版社,2006.
    [6] 徐晖,朱莹,余晓冬,陈洪渊.毛细管电泳中样品的在线富集[J].化学进展,2005,17(3):377-383.
    [7] Garcia-Ruiz C, Marina M L. Sensitive chiral analysis by capillary electrophoresis [J]. Electrophoresis, 2006, 27 (1): 195-212.
    [8] Lin C H, Kaneta T. On-line sample concentration techniques in capillary electrophoresis: Velocity gradient techniques and sample concentration techniques for biomolecules [J]. Electrophoresis, 2004, 25 (23-24): 4058-4073.
    [9] Palmer J F. High-salt stacking principles and sweeping: Comments and contrasts on mechanisms for high-sensitivity analysis in capillary electrophoresis [J]. J Chromatogr A, 2004, 1036 (2): 95-100.
    [10] Urbanek M, Krivankova L, Bocek P. Stacking phenomena in electromigration: From basic principles to practical procedures [J]. Electrophoresis, 2003, 24 (3): 466-485.
    [11] Quirino J P, Kim J B, Terabe S. Sweeping: Concentration mechanism and applications to high-sensitivity analysis in capillary electrophoresis [J]. J Chromatogr A, 2002, 965 (1-2): 357-373.
    [12] Pyell U. Micellar electrokinetic chromatography -From theoretical concepts to real samples (review) [J]. Anal Bioanal Chem, 2001, 371 (6): 691-703.
    [13] Quirino J P, Terabe S. Sample stacking of cationic and anionic analytes in capillary electrophoresis [J]. J Chromatogr A, 2000, 902 (1): 119-135.
    [14] Osbourn D M, Weiss D J, Lunte C E. On-line preconcentration methods for capillary electrophoresis [J]. Electrophoresis, 2000, 21 (14): 2768-2779.
    [15] Mikkers F E P, Everaerts F M, Verheggen T P E M. High-performance zone electrophoresis [J]. J Chromatogr, 1979, 169: 11-20.
    [16] Burgi D S, Chien R L. Optimization in sample stacking for high-performance capillary electrophoresis[J]. Anal Chem, 1991, 63: 2042-2047.
    [17] Chien R L, Helmer J C. Electroosmotic properties and peak broadening in field-amplified capillary electrophoresis[J]. Anal Chem, 1991, 63:1354-1361.
    [18] Basheer C, Wang H, Jayaraman A, Valiyaveettil S, Lee H K. Polymer-coated hollow fiber microextraction combined with on-column stacking in capillary electrophoresis[J]. J Chromatogr A, 2006, 1128(1-2): 267-272.
    [19] Peng Z L., Song G, Zhao L, Lin J M. Separation of organomercury species using nonaqueous capillary electrophoresis coupled with sample stacking and electrokinetic injection techniques[J]. Chromatographia, 2006, 64(5-6): 281-285.
    [20] Fang H, Zeng Z, Liu L. Centrifuge microextraction coupled with on-line back-extraction field-amplified sample injection method for the determination of trace ephedrine derivatives in the urine and serum[J]. Anal Chem, 2006, 78(17): 6043-6049.
    [21] Shi Y, Huang Y, Duan J, Chen H, Chen G. Field-amplified on-line sample stacking for separation and determination of cimaterol, clenbuterol and salbutamol using capillary electrophoresis[J]. J ChromatogrA, 2006, 1125(1): 124-128.
    [22] Acedo-Valenzuela M I, Galeano-Diaz T, Mora-Diez N, Silva-Rodriguez A Response surface methodology in the development of a stacking-sensitive capillary electrophoresis method by field-amplified injection for the analysis of tricyclic antidepressants in the presence of salts[J]. J Sep Sci, 2006, 29(13): 2091-2097.
    [23] Yang Y, Boysen R I, Heam M T W. Optimization of field-amplified sample injection for analysis of peptides by capillary electrophoresis-mass spectrometry[J]. Anal Chem, 2006, 78(14): 4752-4758.
    [24] Chen Y L, Jong Y J, Wu S M. Capillary electrophoresis combining field-amplified sample stacking and electroosmotic flow suppressant for analysis of sulindac and its two metabolites in plasma[J]. J Chromatogr A, 2006, 1119(1-2): 176-182.
    [25] Gong M, Wehmeyer K R, Limbach P A, Arias F, Heineman W R. On-line sample preconcentration using field-amplified stacking injection in microchip capillary electrophoresis[J]. Anal Chem, 2006, 78(11): 3730-3737.
    [26] Xu Y, Gao Y, Wei H, Du Y, Wang E. Field-amplified sample stacking capillary electrophoresis with electrochemiluminescence applied to the determination of illicit drugs on banknotes[J]. J Chromatogr A, 2006, 1115(1-2): 260-266.
    [27] Huang Y, Shi Y, Duan J, Chen G. Field-amplified on-line sample stacking for determination of camosine-related peptides by capillary electrophoresis[J]. J Sep Sci, 2006, 29(7): 1026-1030.
    [28] Weng Q, Xu G, Yuan K, Tang P. Determination of monoamines in urine by capillary electrophoresis with field-amplified sample stacking and amperometric detection[J]. J Chromatogr B, 2006, 835(1-2): 55-61.
    [29] Garcia-Villar N, Saurina J, Hemandez-Cassou S. Capillary electrophoresis determination of biogenic amines by field-amplified sample stacking and in-capillary derivatization[J]. Electrophoresis, 2006, 27(2): 474-483.
    [30] Fan L, Cheng Y, Li Y, Chert H, Chen X, Hu Z. Head-column field-amplified sample stacking in a capillary electrophoresis-flow injection system[J]. Electrophoresis, 2005, 26(22): 4345-4354.
    [31] Chien R L, Burgi D S. Sample stacking of an extremely large injection volume in high-performance capillary electrophoresis[J]. Anal Chem, 1992, 64: 1046-1050.
    [32] Kuo C Y, Chiou S S, Wu S M. Solid-phase extraction and large-volume sample stacking with an electroosmotic flow pump in capillary electrophoresis for determination of methotrexate and its metabolites in human plasma[J]. Electrophoresis, 2006, 27(14): 2905-2909.
    [33] Xiong Y, Park S R, Swerdlow H. Base stacking: pH-mediated on-column sample concentration for capillary DNA sequencing[J]. Anal Chem, 1998, 70: 3605-3611.
    [34] Gillogly J A, Lunte C E. pH-mediated acid stacking with reverse pressure for the analysis of cationic pharmaceuticals in capillary electrophoresis[J]. Electrophoresis, 2005, 26(3), 633-639.
    [35] Amett S D, Lunte C E. Investigation of the mechanism of pH-mediated stacking of anions for theanalysis of physiological samples by capillary electrophoresis[J]. Electrophoresis, 2003, 24(11): 1754-1752.
    [36] Zhao Y P, Lunte C E. pH mediated field amplification on-column preconcert- tration of anions in physiological samples for capillary electrophoresis [J]. Anal Chem, 1999, 71(18): 3985-3991.
    [37] Hoque M E, Amett S D, Lunte C E. On-column preconcentration of glutathione and glutathione disulfide using pH-mediated base stacking for the analysis of microdialysis samples by capillary electrophoresis[J]. J Chromatogr B, 2005, 827(1): 51-57.
    [38] Aebersold R, Morrison H D. Analysis of dilute peptide samples by capillary zone electrophoresis [J]. J Chromatogr, 1990, 516: 79-88.
    [39] Cao C X, He Y Z, Li M, Qian Y T, Yang L, Qu Q S, Zhou S L, Chi W K. Improving separation efficiency of capillary zone electrophoresis of tryptophan and phenylalanine with the transient moving chemical reaction boundary method [J]. J Chromatogr A, 2002, 952: 39-46.
    [40] Cao C X, He Y Z, Li M, Qian Y T, Gao M F, Ge L H, Zhou S L, Yang L, Qu Q S. Stacking ionizable analytes in a sample matrix with high salt by a transient moving chemical reaction boundary method in capillary zone electrophoresis[J]. Anal Chem, 2002, 74: 4167-4174.
    [41] Jung B, Bharadwaj R, Santiago J G. On-chip millionfold sample stacking using transient isotachophoresis [J]. Anal Chem, 2006, 78 (7): 2319-2327.
    [42] Timerbaev A R, Hirokawa T. Recent advances of transient isotachophoresis- capillary electrophoresis in the analysis of small ions from high-conductivity matrices [J]. Electrophoresis, 2006, 27 (1): 323-340.
    [43] Quirino J P, Terabe S. Exceeding 5000-fold concentration of dilute analytes in micellar electrokinetic chromatography [J]. Science, 1998, 282, 465-468.
    [44] Kitagawa F, Tsuneka T, Akimoto Y, Sueyoshi K, Uchiyama K, Hattori A, Otsuka K. Toward million-fold sensitivity enhancement by sweeping in capillary electrophoresis combined with thermal lens microscopic detection using an interface chip [J]. J Chromatogr A, 2006, 1106 (1-2): 36-42.
    [45] Musijowski J, Pobozy E, Trojanowicz M. On-line preconcentration techniques in determination of melatonin and its precursors/metabolites using micellar electrokinetic chromatography [J]. J Chromatogr A, 2006, 1104 (1-2): 337-345.
    [46] Chang Y S, Shih C M, Lin C H. UV light-emitting diode-induced fluorescence detection combined with online sample concentration techniques for capillary electrophoresis [J]. Anal Sci, 2006, 22 (2): 235-240.
    [47] Tsai C C, Liu J T, Shu Y R, Chan P H, Lin C H. Optimization of the separation and on-line sample concentration of phenethylamine designer drugs with capillary electrophoresis-fluorescence detection [J]. J Chromatogr A, 2006, 1101 (1-2): 319-323.
    [48] Shih C M., Lin C H. Low-temperature bath/coupled-capillary/sweeping-micellar electrokinetic capillary chromatography for the separation of naphthalene-2,3-dicarboxaldehyde-derivatized dopamine and norepinephrine [J]. Electrophoresis, 2005, 26 (11): 2165-2171.
    [49] Huang H M, Lin C H. Methanol plug assisted sweeping-micellar electrokinetic chromatography for the determination of dopamine in urine by violet light emitting diode-induced fluorescence detection [J]. J Chromatogr B, 2005, 816 (1-2): 113-119.
    [50] Sun S W, Tseng H M. Sensitivity improvement on detection of Coptidis alkaloids by sweeping in capillary electrophoresis [J]. J Pharm Biomed Anal, 2005, 37 (1): 39-45.
    [51] Chiu Y C, Chou S H, Liu J T, Lin C H. The bioactivity of 2,5-dimethoxy-4-ethylthio-phenethylamine (2C-T-2) and its detection in rat urine by capillary electrophoresis combined with an on-line sample concentration technique [J]. J Chromatogr B, 2004, 811 (2): 127-133.
    [52] 赵燕燕,杨更亮,阎宏远,岳强,陈义.胶束毛细管电泳在线推扫富集技术测定血液中环丙沙星含量[J].分析化学,2004,32(4):485-488.
    [53] Chen M C, Chou S H, Lin C H. Determination of corticosterone and 17-hydroxy-corticosterone in plasma and urine samples by sweeping techniques using micellar electrokinetic chromatography [J]. J Chromatogr B, 2004, 801 (2): 347-353.
    [54] Jia L, Liu B F, Terabe S, Nishioka T. Two-dimensional separation method for analysis of bacillus subtilis metabolites, via hyphenation of micro-liquid chromatography and capillary [J]. Anal Chem, 2004, 76 (5): 1419-1428.
    [55] Chiang H Y, Sheu S J. Analysis of ephedra-alkaloids using sweeping and cation-selective exhaustive injection and sweeping micellar electrokinetic chromatography methods [J]. Electrophoresis, 2004, 25 (4-5): 670-676.
    [56] Britz-McKibbin P, Ichihashi T, Tsubota K, Chen D D Y, Terabe S. Complementary on-line preconcentration strategies for steroids by capillary electrophoresis [J]. J Chromatogr A, 2003, 1013 (1-2): 65-76.
    [57] Britz-McKibbin, P, Terabe S. On-line preconcentration strategies for trace analysis of metabolites by capillary electrophoresis[J]. J Chromatogr A, 2003, 1000 (1-2): 917-934.
    [58] Wu C H, Chen M C, Su A K, Shu P Y, Chou S H, Lin C H. Determination of corticosterone in mouse plasma by a sweeping technique using micellar electrokinetic chromatography[J]. J Chromatogr B, 2003, 785(2): 317-325.
    [59] Cahours X, Daali Y, Cherkaoui S, Veuthey J L. Simultaneous analysis of polyhydroxylated alkaloids by capillary electrophoresis using borate complexation and evaluation of sweeping technique for sensitivity improvement[J]. Chromatographia, 2002, 55(3-4): 211-216.
    [60] Shih C M, Lin C H. Full-capillary sample stacking/sweeping-MEKC for the separation of naphthalene-2,3-dicarboxaldehyde-derivatized tryptophan and isoleucine[J]. Electrophoresis, 2005, 26(18): 3495-3499.
    [61] Markuszewski M J, Britz-McKibbin P, Terabe S, Matsuda K, Nishioka T. Determination of pyridine and adenine nueleotide metabolites in Bacillus subtilis cell extract by sweeping borate complexation capillary electrophoresis[J]. J Chromatogr A, 2003, 989(2): 293-301.
    [62] Leung S A, De Mello A J. On-column pre-concentration of alcohol dehydrogenase in capillary electrophoresis[J]. J Sep Sci, 2002, 25(18): 1346-1350.
    [63] Da Silva C L, De Lima E C, Tavares M F M. Investigation of preconcentration strategies for the trace analysis of multi-residue pesticides in real samples by capillary electrophoresis[J]. J Chromatogr A, 2003, 1014(1-2): 109-116.
    [64] Song G Q, Peng Z L, Lin J M. Comparison of two capillary electrophoresis online stacking modes by analysis of polyeyelic aromatic hydrocarbons in airborne particulates[J]. J Sep Sci, 2006, 29(13): 2065-2071.
    [65] Kruaysawat J, Marriott P J, Hughes J, Trenerry C. Large-volume stacking with polarity switching and sweeping for chlorophenols and chlorophenoxy acids in capillary electrophoresis[J]. Electrophoresis, 2003, 24(12-13): 2180-2187.
    [66] Takagai Y, Igarashi S. UV-detection capillary electrophoresis for benzo[a]pyrene and pyrene following a two-step concentration system using homogeneous liquid-liquid extraction and a sweeping method[J]. Analyst, 2001, 126(5): 551-552.
    [67] Yu L, Li S F Y. Dynamic pH junction-sweeping capillary electrophoresis for online preconcentration of toxic pyrrolizidine alkaloids in Chinese herbal medicine[J]. Electrophoresis, 2005, 26(22): 4360-4367.
    [68] Su A K, Chang Y S, Lin C H. Analysis of riboflavin in beer by capillary electrophoresis/blue light emitting diode (LED)-induced fluorescence detection combined with a dynamic pH junction technique[J]. Talanta, 2004, 64(4): 970-974.
    [69] Britz-McKibbin P, Markuszewski M J, Iyanagi T, Matsuda K, Nishioka T, Terabe S. Picomolar analysis of flavins in biological samples by dynamic pH junction-sweeping capillary electrophoresis with laser-induced fluorescence detection[J]. Anal Biochem, 2003, 313(1): 89-96.
    [70] Britz-Mckibbin P, Terabe S. High-sensitivity analyses of metabolites in biological samples by capillary electrophoresis using dynamic pH junction- sweeping [J]. Chem Rec, 2002, 2(6): 397-404.
    [71] Britz-McKibbin P, Otsuka K, Terabe S. On-line focusing of flavin derivatives using dynamic pH junction-sweeping capillary electrophoresis with laser-induced fluorescence detection[J]. Anal Chem, 2002, 74(15): 3736-3743.
    [72] Lin Y H, Li J H, Ko W K, Wu S M. Direct and sensitive analysis of methamphetamine, ketamine, morphine and codeine in human urine by cation-selective exhaustive injection and sweeping micellar electrokinetie chromatography[J]. J Chromatogr A, 2006, 1130: 281-286.
    [73] Gong M, Wehmeyer K R, Limbach P A, Heineman W R. Unlimited-volume electrokinetic stacking injection in sweeping capillary electrophoresis using a cationic surfactant[J]. Anal Chem, 2006, 78(17): 6035-6042.
    [74] Meng P, Fang N, Wang M, Liu H, Chert D D Y. Analysis of amphetamine, methamphetamine and methylenedioxy-methamphetamine by micellar capillary electrophoresis using cation-selective exhaustive injection[J]. Electrophoresis, 2006, 27(16): 3210-3217.
    [75] Isoo K, Terabe S. Analysis of metal ions by sweeping via dynamic complexation and cation-selective exhaustive injection in capillary electrophoresis[J]. Anal Chem, 2003, 75(24): 6789-6798.
    [76] Zhu L, Tu C, Lee H K. On-line concentration of acidic compounds by anion-selective exhaustive injection-sweeping-micellar electrokinetic chromatography[J]. Anal Chem, 2002, 74(22): 5820-5825.
    [77] Quirino J P, Terabe S. Approaching a million fold sensitivity increase in capillary electrophoresis with direct ultraviolet detection: Cation-selective exhaustive injection and sweeping[J]. Anal Chem, 2000, 72 (5): 1023-1030.
    [78] Quirino J P, Iwai Y, Otsuka K, Terabe S. Determination of environmentally relevant aromatic amines in the ppt levels by cation selective exhaustive injection-sweeping-micellar electrokinetic chromatography[J]. Electrophoresis, 2000, 21 (14): 2899-2903.
    [79] Raynie D E. Modernextraction techniques[J]. Anal Chem, 2004, 76: 4659-4664.
    [80] Wang Z, Hennion B, Urruty L, Montury M. Solid-phase microextraction coupled with high performance liquid chromatography: A complementary technique to solid-phase microextraction-gas chromatography for the analysis of pepsticide residues in strawberries[J]. Food Additives and Contaminants, 2000, 17(11): 915-923.
    [81] Falqui-Cao C, Wang Z, Urruty L, Pommier J J, Montury M. Focused microwave assistance for extracting some pesticide residues from strawberries into water before their determination by SPME/HPLC/DAD[J]. J Agri Food Chem, 2001, 49: 5092-5097.
    [82] Arthur C L, Pawliszyn J. Solid phase microextraction with thermal desorption using fused silica optical fibers[J]. Anal Chem, 1990, 62: 2145-2148.
    [83] Jearmot M A, Cantwell F. Solvent microextraction into a single drop [J]. Anal Chem, 1996, 68: 2236-2240.
    [84] Psillakis E, Kalogerakis N. Developments in single-drop microextraction [J]. Trends Anal Chem, 2002, 21(1): 53-64.
    [85] 刘景富,江桂斌.膜分离样品前处理技术[J].分析化学,2004,32(10):1389-1394.
    [86] Pederson-Bjergaard S, Rasmussen K E. Liquid-liquid-liquid microextraction for sample preparation of biological fluids prior to capillary electrophoresis[J]. Anal Chem, 1999, 71: 2650-2656.
    [87] Andersen S, Halvorsen T G, Pedersn-Bjergaard S, Rasmussen K E, Tanum L, Refsum H. Stereospecific determination of eitalopram and desmethylcialopram by capillary electrophoresis and liquid-phase microextraction[J]. J Pharm Biomed Anal, 2003, 33: 263-273.
    [88] De Jager L, Andrews A R J. Preliminary studies of a fast screening method for cocaine and cocaine metabolites in urine using hollow fibre membrane solvent microextraction (HFMSME)[J]. Analyst, 2001, 126: 1298-1303.
    [89] Muller S, Moder M, Schrader S, Popp P. Semi-automated hollow-fibre membrane extraction,a novel enrichment technique for the determination of biologically active compounds in water samples[J]. J Chromatogr A, 2003, 985: 99-106.
    [90] Zhu L, Lee H K. Liquid-liquid-liquid mieroextraction of nitrophenols with a hollow fiber membrane prior to capillary liquid chromatography[J]. J Chromatogr A, 2001, 924: 407-414.
    [91] Zhao L, Lee H K. Liquid-phase microextraction combined with hollow fiber as a sample preparation teshnique prior to gas chromatography mass spectrometry[J]. Anal Chem, 2002, 74: 2486-2492.
    [92] Jiang X M, Lee H K. Solvent bar microextraction[J]. Anal Chem, 2004, 76: 5591-5596.
    [93] Basheer C, Lee H K. Analysis of endocrine disrupting alkylphenois and chloropenols and bisphenol-A using hollow fiber-protecteded liquid-phase micro-extraction coupled with injection port-derivatization gas chromatography-mass spectrometry[J]. J Chromatogr A, 2004, 1057: 163-169.
    [94] Pederson-Bjergaard S, Rasmussen K E. Liquid-phase microextraction and capillary electrophoresis of acidic drugs[J]. Electrophoresis, 2000, 21: 579-585.
    [95] Zhu L Y, Ee Z K, Zhao L M, Lee H K. Analysis of phenoxy herbicides in bovine by means of liquid-liquid- liquid microextraction with a hollow-fiber membrance[J]. J Chromatogr A, 2002, 963: 335-343.
    [96] Halvorsen T G, Pederson-Bjergaard S, Rasmussen K E. Liquid-phase microextraction and capillary electrophoresis of citalopram, an antidepressant drug[J]. J. Chromatogr. A, 2001, 909: 87-93.
    [97] Li Hou, Wen XiuJuan, Tu Chuanhong, Lee H K. Combination of liquid-phase microextraction and on-column stacking for trace analysis of alcohols by capillary electroresis[J]. J Chromatogr A, 2002, 979: 163-169.
    [98] Ho T S, Halvorsen T G, Pederson-Bjergaard S, Rasmussen K E. Liquid-phase microextraction of hydrophilic drugs by cartier-mediated transpor[J]. J Chromatogr A, 2003, 998: 61-72.
    [99] Ho T S, Pederson-Bjergaard S, Rasmussen K E. Recovery, enrichment and selectivity in liquid-phase microextraction comparison with conventional liquid-liquid extraction[J]. J Chromatogr A, 2002, 963: 3-17.
    [100] Pederson-Bjergaard S, Ho T S, Rasmussen K E. Fundamental studies on delectivity in 3-phase liquid-phase microextraction (LPME) of basic drugs[J]. J Sep Sci, 2002, 25: 141-146.
    [101] Psillakis E, Kalogerakis N. Developments in Liquid-phase microextraction[J]. Trends Anal Chem, 2003, 22: 565-574.
    [102] Ho T S, Reubsaet J L E, Anthonsen H S, Pederson-Bjergaard S, Rasmussen K E. Liquid-phase microextraction based on carrier mediated transport combined with liquid chromatography-mass spectrometry: New concept for the determination of polar drugs in a single drop of human plasma[J]. J Chromatogr A, 2005, 1072: 29-36.
    [103] Rasmussen K E. Pederson-Bjergaard S. Developments in hollow fibre-based, liquid-phase microextraction[J]. Trends Anal Chem, 2004, 23(1): 1-10.
    [104] Bjorhovde A, Halvorsen T G, Rasmussen K E, Pederson-Bjergaard S. Liquid-phase microextraction of drugs from human breast milk[J]. Anal Chim Acta, 2003, 491: 155-161.
    [105] Andersen S, Halvorsen T G, Pederson-Bjergaard S, Rasmussen K E. Liquid-phase microextraction combined with capillary electrophoresis, a promising tool for the determination of chiral drugs in biological matrices[J]. J Chromatogr A, 2002, 963: 303-312.
    [106] Ho T S, Pederson-Bjergaard S, Rasmussen K E. Liquid-phase microextraction of protein-bound drugs under non-equilibtrium conditions[J]. Analyst, 2002, 127(5): 608-613.
    [107] Rasmussen K E, Pederson-Bjergaard S, Krogh M, Ugland H G, Gronhang T. Development of a simple in-vial liquid-phase microextraction device for drug analysis compatible with capillary gas chromatography, capillary electrophoresis and high-performance liquid chromatography[J]. J Chromatogr A, 2000, 873: 3-11.
    [108] Pederson-Bjergaard S, Rasmussen K E. Liquid-phase microextraction utilizing plant oils as intermediate extractionmedium-towards elimination of synthetic organic solvents in sample preparation[J]. J Sep Sci, 2004, 27: 1511-1516.
    [109] Wen X J, Tu C H, Lee H K. Two-step liquid-liquid-liquid microextraction of nonsteroidal antiinflammatory drugs in waste water[J]. Anal Chem, 2004, 76: 228-232.
    [110] De Jager L S, Andrews A R J. Development of a screening method for cocaine and cocaine metabolites in saliva using hollow fiber membrane solvent microextraction[J]. Anal Chim Acta, 2002, 458: 311-320.
    [111] Zhao L M, Zhu L Y, Lee H K. Analysis of aromatic amines in water samples liquid-liquid-liquid microextraction with hollow fibers and high-performance liquid chromatography[J]. J Chromatogr A, 2002, 963: 239-248.
    [112] Psillakis E, Kalogerakis N. Hollow-fibre liquid-phase microextraction of phthalate esters from water[J]. J Chromatogr A, 2003, 999: 145-153.
    [113] Shen Gang, Lee H K. Hollow Fiber-preotected liquid-phase microextraction of triazine herbicides[J]. Anal Chem, 2002, 74: 648-654.
    [114] Basheer C, Balasubramanian R, Lee H K. Determination of organic micropollutants in rainwater using hollow fiber membrane\liquid-phase microextraction combined with gas chromatography-mass spectrometry[J]. J ChromatogrA, 2003, 1016: 11-20.
    [115] Basheer C, Lee H K, Obbard J P. Determination of organochlorine in seawater using liquid-phase hollow fiber membrane microextrction and gas chromatography-mass spectrometry[J]. J Chromatogr A, 2002, 968: 191-199.
    [116] Basheer C, Obbard J P, Lee H K. Analysis of persistent organic pollutants in marine sediments using a novel microwave assisted solvent extraction and liquid-phase microextraction technique [J]. J Chromatogr A, 2005, 1068: 221-228.
    [117] King S, Meyer J S, Andrews A R J. Screening method for polycyclie aromatic hydrocarbons in soil using hollow fiber membrane solvent microextraction [J]. J Chromatogr A, 2002, 982: 201-208.
    [118] Pan H J, Ho W H. Determination of fungicides in water using liquid phase microextraction and gas chromatography with electron capture detection [J]. Anal Chim Acta, 2004, 527: 61-67.
    [119] Psillakis E, Mantzavinos D, Kalogerakis N. Development of a hollow fiber liquid phase microextraction method for the sonochemical degradation of explosives in water [J]. Anal Chim Acta, 2004, 501: 3-10.
    [120] Lambropoulou D A, Albanis T A. Application of hollow fiber liquid phase microextraetion for the determination ofinsecticides in water [J]. J Chromatogr A, 2005, 1072: 55-61.
    [121] Hou L, Shen G, Lee H K. Automated hollow fiber-protected dynamic liquid-phase microextraction of pesticides for gas chromatography-mass spectyometric analysis [J]. J Chromatogr A, 2003, 985: 107-116.
    [122] Jiang X M, Oh S Y, Lee H K. Dynamic liquid-liquid-liquid microextraction with automated movement of the acceptor phase [J]. Anal Chem, 2005, 77:1689-1695.
    [123] 吴厚铭.化学生物学—新兴的交叉前沿学科领域[J].化学进展,2000,12(4):423-430.
    [124] 刘雪峰.几种中药小分子与血清白蛋白的相互作用[D].无锡:江南大学,2005.
    [125] 何文英.若干中草药活性组分与几种球状蛋白质相互作用的研究[D].兰州:兰州大学,2006.
    [126] 李娜.药物分子与血清白蛋白相互作用的荧光光谱研究[D].石家庄:河北师范大学,2003.
    [127] 丁永生,林炳承.人血清白蛋白与手性药物相互作用的毛细管电泳研究:Ⅰ.液相预柱毛细管电泳技术定量可靠性的考察[J].色谱,1999,17(2):134-137.
    [128] Sur S, Rabbani L D, Libman L. Fluorescence studies of native and modified neurophysins: Effects of piptides and pH [J]. Biochem, 1979, 18 (6) :1026-1035.
    [129] Berry B, Rodney W K, Miriam R W. Correction for light absorption in flurecence studies of protein ligand interactions [J]. Anal. Biochem., 1983, 132:353-361.
    [130] 徐岩,黄汉国,沈含熙.喹诺酮类药物对人血清白蛋白的荧光猝灭研究[J].分析化学,1998,26(12):1494-1497.
    [131] Forster T. Ann Phys, 1948, 21:55.
    [132] Forster T. Modern Quantum Chemistry [M]. New York: Academic Press, 1965.
    [133] Ross P D, Subramanian S. Thermodynamics of protein association reactions: forces contributing to stability [J]. Biochemistry, 1981, 20:3096-3102.
    [134] 杨曼曼,席小莉,杨频.用荧光猝灭和荧光加强两种理论研究喹诺酮类新药与白蛋白的作用[J].高等化学学报,2006,27(4):687-691.
    [135] 毕淑云,丁兰,宋大千,田媛,张寒琦.几种抗生素与人血清白蛋白结合反应的研究[J].化学学报,2005,63(23):2169-2173.
    [136] 马正国,谭非,蒋勇军,郑柯文,郭明,余庆森.甲磺酸培氟沙星与人血清白蛋白之间结合模式的研究[J].物理化学学报,2005,21(2):123-127.
    [137] 张晓威,赵风林,李克安.环丙沙星与牛血清白蛋白相互作用的研究[J].高等学校化学学报,1999,20(7):1063-1067.
    [138] 易平贵,商志才,俞庆森,等.丝裂霉素C与牛血清白蛋白结合作用的研究[J].化学学报,2000,58(12):1649-1653.
    [139] Jiang C Q, Gao M X, Meng X Z. Study of the interaction between daunorubicin and human serum albumin, and the determination of daunorubicin in blood serum samples [J]. Spectrochim Acta Part A, 2003, 59:1605-1610.
    [140] Cui F L, Fan J, Li W. Fluorescence spectroscopy studies on 5-aminosalicylic acid and zinc 5-aminosalylicylate interaction with human serum albumin [J]. J Pharm Biomed Anal, 2004, 34:189-197.
    [141] 郭明,严建伟,俞庆森.加替沙星与牛血清白蛋白的结合反应研究[J].物理化学学报,2004,20(2):202-206.
    [142] 易平贵,俞庆森,商志才.牛血清白蛋白与金霉素结合反应的机制研究[J].化学物理学报,2003,16(5):420-424.
    [143] 刘洛生,赵丽,葛蔚颖.头孢克罗与人血清白蛋白相互作用机制[J].光谱学与光谱分析,2003,23(4):769-771.
    [144] 李桂芝,刘永明,虢新运,王进军.荧光法研究盐酸拓扑替康、盐酸依利替康喜树碱类药物和牛血清白蛋白的相互作用[J].化学学报,2006,64(7):679-685.
    [145] 黄波,邹国林,杨天鸣.阿霉素与牛血清白蛋白结合作用的研究[J].化学学报,2002,60(10):1867-1871.
    [146] 卢继新,张贵珠,赵鹏.金属离子存在下5-氟尿嘧啶与脱氧核糖核酸、血清白蛋白的相互作用[J].分析化学,2001,29(2):192-194.
    [147] Sulkowska A, wnicka J R, Bojko B, et al. Interaction of anticanccr drugs with human and bovine serum albumin [J]. J Mol Struc, 2003, 651-653: 133-140.
    [148] 江崇球,高明霞.盐酸表阿霉素与牛血清白蛋白相互作用的研究及药物在血清与尿样中含量的测定[J].光谱学与光谱分析,2003,23(5):937-940.
    [149] 徐文祥,庞月红,双少敏.荧光法研究氢氯噻嗪与人血清白蛋白的相互作用[J].分析化学,2004,32(12):1571~1574.
    [150] Kamat B P, Scetharamappa J. In vitro study on the interaction of mechanism of tricyclic compounds with bovine serum albumin [J]. J Pharm Biomed Anal, 2004, 35: 655-664.
    [151] Sulkowska A. Interaction of drugs with bovine and human serum albumin [J]. J Mol Struc, 2002, 614: 227-232.
    [152] Channu B C, Kalpana H N, Eregowda G B, et al. Interaction of substituted phenoxazine chemosensitizers with bovine serum albumin [J]. J Pharm Biomed Anal. 1999. 21: 775-785.
    [153] 颜承农,张华新,鞠香,梅平,刘义,潘祖亭.荧光光谱法研究钙试剂羧酸钠与牛血清白蛋白结合反应特征[J].分析化学研究报告,2005,33(6):759-762.
    [154] 查丹明,李舒婷,杨勇飞,涂楚桥,梁宏,申泮文.Mn(Ⅱ)、Co(Ⅱ)与HAS相互作用的荧光光谱研究[J].光谱学与光谱分析,1999,19(6):788-791.
    [155] 颜承农,张华新,刘义,梅平,李克华,童金强.百草枯与牛血清白蛋白结合作用的荧光光谱[J].化学学报,2005,63(1):1727-1732.
    [156] 鄢远,徐金钩,陈国珍.三维荧光光谱研究蛋白质溶液构象[J].中国科学(B辑),1997,27(1):16-22.
    [157] 杨曼曼,杨频,张立伟.荧光法研究咖啡酸类药物与白蛋白的作用[J].科学通报,1994,39(1):31-35.
    [158] Pal B, Bajpai P K, Baul T S B. Binding of 5-(2'-carboxyphenyl)azoquinolin-8-ol to bovine serum albumin: a spectroscopic study [J]. Spectrochimi Acta Part A, 2000, 56: 2453-2458.
    [159] Birla L, Cristian A M, Hillebrand M. Absorption and steady state fluorescence study of interaction between eosin and bovine serum albumin [J]. Spectrochim Acta Part A, 2004, 60:551-556.
    [160] 张保林,王文清,白凤莲.蒽醌及黄酮类化合物与人血清白蛋白的结合反应研究[J].高等学校化学学报,1994,15(3):373~378.
    [161] 刘媛,谢孟峡,康娟.三七总皂苷对牛血清白蛋白溶液构象的影响[J].化学学报,2003,61(8):1305-1310.
    [162] 刘永明,李桂芝,孙希芬.荧光法研究秋水仙碱和牛血清白蛋白的相互结合作用[J].分析化学,2004,32(5):615-618.
    [163] 赵长春,郑维发,李梦秋.小檗碱与人血清白蛋白的相互作用[J].光谱学与光谱分析,2004,24(1):111-113.
    [164] Tian J N, Liu J Q, Tian X, et al. Study of the interaction of kaempferol with bovine serum albumin [J]. J Mol Struc, 2004, 691: 197-202.
    [165] Liu J Q, Tian J N, He W Y, et al. Spectrofluorimetric study of the binding of daphnetin to bovine serum albumin [J]. J Pharm Biomed Anal, 2004, 35: 671-677.
    [166] Rawel H M, Rohn S, Kruse H P, et al. Structural changes induced in bovine serum albumin by covalent attachment of chlorogenic acid [J]. Food Chem, 2002, 78: 443-455.
    [167] The Committee of the Pharmacopoeia of the Ministry of Heath of the People's Republic of China [M]. Pharmacopoeia of the People's Republic of China, Chemical Industry Press, Beijing, 2000, Vol. 1, p. 38.
    [168] Grieve M. A Modern Herbal: The Medicinal, Culinary, Cosmetic and Economic Properties, Cultivation and Folk-Lore of Herbs, Grasses, Fungi, Shrubs & Trees with their Modern Scientific Uses [M]. 3rd ed., Tiger Books International, London, 1992, p. 592.
    [169] 顾志平,张曙明,王春兰,连文琰,肖培根,陈建民.高效液相色谱法测定马钱属植物中士的宁和马钱子碱的含量[J].药学学报,1997,32(10):791-794.
    [170] De B, Bisset N G, Separation of Strychnos nux-vomica alkaloids by high-performance liquid chromatography [J]. J Chromatogr, 1991, 587: 318-320.
    [171] Wang Z H, Zhao J Z, Xing J B, He Y, Guo D A. Analysis of strychnine and brucine in postmortem specimens by RP-HPLC: A case of fatal intoxication[J]. J Anal Toxicol, 2004, 28, 141-144.
    [172] Choi Y H, Sohn Y M, Kim, C Y Oh K Y, Kim J. Analysis of strychnine from detoxified seeds using liquid chromatography-electrospray mass spectrometry [J]. J Ethnopharm, 2004, 93: 109-112.
    [173] 杨玉林,温忆敏,芮振荣,沈朝烨.气相色谱-质谱联用技术分析中毒样品中四种生物碱[J].中国卫生检验杂志,2004,14(3):272-273.
    [174] Rosano T G, Hubbard J D, Meola J M, Swift, T A. Fatal Strychnine poisoning: Application of gas chromatography and tandem mass spectrometry [J]. J Anal Toxicol, 2000, 24: 642-647.
    [175] Frederich M, Choi Y H, Angenot L, Harnischfeger G, Lefeber A W M. Metabolomic anaylsis of Strychnos nux-vomica, Strychnos icaja and Strychnosignatii extracts by H-1 nuclear magnetic resonance spectrometry and multivariate analysis techniques [J]. Phytochem, 2004, 65: 1993-2001.
    [176] 贾克沛,迟芳振,王建华.骨筋丸胶囊中白芍及马钱子的薄层色谱鉴别[J].山东医药工业,2002,21(3):15.
    [177] Albin M, Grossman P D, Moring S E. Sensitivity enhancement for capillary electrophoresis [J]. Anal Chem, 1993, 65: 489A-498A.
    [178] Terabe S. MEKC belongs to a mode of CE but also to micro-LC [J]. Anal Chem, 2004, 76: 241A-246A.
    [179] Chen W S, Li L L, Li X, Li J W, Ji S G, Zhang G Q, Chai Y F. Separation and determination of strychnine and brucine in Strychnos nux-vomica L. and its preparation by capillary zone electrophoresis [J]. Biomed Chromatogr, 2000, 14: 541-543.
    [180] Feng H T, Li S F Y. Determination of five toxic alkaloids in two common herbal medicines with capillary electrophoresis [J]. J Chromatogr A, 2002, 973: 243-247.
    [181] Feng H T, Yuan L L, Li S F Y. Analysis of Chinese medicine preparations by capillary electrophoresis-mass spectrometry [J]. J Chromatogr A, 2003, 1014: 83-91.
    [182] Zhang J Y, Wang S F, Chen X G, Hu Z D. Capillary electrophoresis with field-enhanced stacking for rapid and sensitive determination of strychnine and brucine[J]. Anal Bioanal Chem, 2003, 376: 210-213.
    [183] Quirino J P, Terabe S. Sweeping of analyte zones in electrokinetic chromatography[J]. Anal Chem, 1999, 71: 1638-1644.
    [184] Kim J B, Quirino J P, Otsuta K, Terabe S. On-line sample concentration in micellar electrokinetic chromatography using cationic surfactants[J]. J Chromatogr A, 2001, 916: 123-130.
    [185] Richoll S M, Col6n I. Determination of triphenylphosphine oxide in active pharmaceutical ingredients by hollow-fiber liquid-phase microextraction followed by reversed-phase liquid chromatography[J]. J Chromatogr A, 2006, 1127(1-2): 147-153.
    [186] Wu H F, Lin C H. Direct combination of immersed single-drop microextraction with atmospheric pressure matrix-assisted laser desorption/ionization tandem mass spectrometry for rapid analysis of a hydrophilic drug via hydrogen-bonding interaction and comparison with liquid-liquid extraction and liquid-phase microextraction using a dual gauge microsyringe with a hollow fiber[J]. Rapid Commun Mass Spectro, 2006, 20(16): 2511-2515.
    [187] Lai B W, Liu B Ma, Malik P K, Wu H F. Combination of liquid-phase hollow fiber membrane microextraction with gas chromatography-negative chemical ionization mass spectrometry for the determination of dichlorophenol isomers in water and urine[J]. Anal Chim Acta, 2006, 576(1): 61-66.
    [188] Yamini Y, Reimann C T, Vatanara A, Jonsson J A. Extraction and preconcentration of salbutamol and terbutaline from aqueous samples using hollow fiber supported liquid membrane containing anionic cartier[J]. J Chromatogr A, 2006, 1124(1-2): 57-67.
    [189] Ouyang G, Pawliszyn J. Kinetic calibration for automated hollow fiber-protected liquid-phase microextraction[J]. Anal Chem, 2006, 78(16): 5783-5788.
    [190] Tung S H, Pedersen-Bjergaard S, Rasmussen K E. Experiences with carder-mediated transport in liquid-phase microextraction[J]. J Chromatogr Sci, 2006, 44 (6): 308-316.
    [191] Melwanki M B, Huang S D. Extraction of hydroxyaromatic compounds in fiver water by liquid-liquid-liquid microextraction with automated movement of the acceptor and the donor phase[J]. J Sep Sci, 2006, 29(13): 2078-2084.
    [192] Vora-adisak N, Varanusupakul P. A simple supported liquid hollow fiber membrane microextraction for sample preparation of trihalomethanes in water samples[J]. J Chromatogr A, 2006, 1121(2): 236-241.
    [193] Zhang J, Su T, Lee H K. Development and application of microporous hollow fiber protected liquid-phase microextraction via gaseous diffusion to the determination of phenols in water[J]. J Chromatogr A, 2006, 1121(1): 10-15.
    [194] Sarafraz-Yazdi A, Es'haghi Z. Comparison of hollow fiber and single-drop liquid-phase microextraction techniques for HPLC determination of aniline derivatives in water[J]. Chromatographia, 2006, 63(11-12): 563-569.
    [195] Chen P S, Huang S D. Determination of ethoprop, diazinon, disulfoton and fenthion using dynamic hollow fiber-protected liquid-phase microextraction coupled with gas chromatography-mass spectrometry[J]. Talanta, 2006, 69(3): 669-675.
    [196] Xia L, Hu B, Jiang Z, Wu Y, Chen R, Li L. Hollow fiber liquid phase microextraction combined with electrothermal vaporization ICP-MS for the speciation of inorganic selenium in natural waters[J]. J Anal Atom Spectro, 2006, 21(3): 362-365.
    [197] Wu H F, Yen J H, Chin C C. Combining drop-to-drop solvent microextraction with gas chromatography/mass spectrometry using electronic ionization and self-ion/molecule reaction method to determine methoxyacetophenone isomers in one drop of water[J]. Anal Chem, 2006, 78(5): 1707-1712.
    [198] Dubey D K, Pardasani D, Gupta A K, Palit M, Kanaujia P K, Tak V. Hollow fiber-mediated liquid-phase microextraction of chemical warfare agents from water[J]. J Chromatogr A, 2006, 1107(1-2): 29-35.
    [199] Leinonen A, Vuorensola K, Lepola L M, Kuuranne T, Kotiaho T, Ketola R A, Kostiainen R. Liquid-phase microextraction for sample preparation in analysis of unconjugated anabolic steroids in urine[J]. Anal Chim Acta, 2006, 559(2): 166-172.
    [200] Chen C-C, Melwanki MB, Huang S-D. Liquid-liquid-liquid microextraction with automated movement of the acceptor and the donor phase for the extraction of phenoxyacetic acids prior to liquid chromatography detection[J]. J Chromatogr A, 2006, 1104(1-2): 33-39.
    [201] Chia K J, Huang S D. Analysis of organochlorine pesticides in wine by solvent bar microextraction coupled with gas chromatography with tandem mass spectrometry detection[J]. Rapid Commun Mass Spectro, 2006, 20(2): 118-124.
    [202] Chia K J, Huang S D. Simultaneous derivatization and extraction of primary amines in river water with dynamic hollow fiber liquid-phase microextraction followed by gas chromatography-mass spectrometric detection[J]. J Chromatogr A, 2006, 1103(1): 158-161.
    [203] Melwanki M B, Huang S D. Three-phase system in solvent bar microextraction: An approach for the sample preparation of ionizable organic compounds prior to liquid chromatography[J]. Anal Chim Acta, 2006, 555(1): 139-145.
    [204] Melwanki M B, Hsu W H, Huang S D. Determination of clenbuterol in urine using headspace solid phase microextraction or liquid-liquid-liquid microextraction [J]. Anal Chim Acta, 2005, 552 (1-2): 67-75.
    [205] Jiang X, Basheer C, Zhang J, Hian K L. Dynamic hollow fiber-supported headspace liquid-phase microextraction [J]. J Chromatogr A, 2005, 1087 (1-2): 289-294.
    [206] International Olympic Committee Medical Code, World Anti-Doping Agency, website: www.wada-ama.org.
    [207] Chen X Q, Jin Y Y, Tang, G. Xin Bian Yao Wu Xue [M]. People's Medical Publishing House, Beijing, China, 2003.
    [208] Fedorova, G A, Baram, G I, Grachev, M A, Aleksandrov, Y A. Application of micro-column HPLC to the determination of Phenobarbital and carbamazepine in human blood serum [J]. Chromatographia, 2001, 53: 495-497.
    [209] Queiroz, M E C, Carrilho, E, Carvalho, D, Lancas, F M, Comparision of high-resolution gas chromatography and high-performance liquid chromatography for simultaneous determination of lamotrigine and carbamazepine in plama [J]. Chromatographia, 2001, 53: 485-489.
    [210] Miao, X S, Metcalfe, C D. Determination of carbamazepine and its metabolites in aqueous samples using liquid chromatography tandem mass spectrometry [J]. Anal Chem, 2003, 75: 3731-3738.
    [211] Gross C E, Ravenscroft P, Dovero S, Jaber M, Bioulac B, Bezard E. Pattern of levodopa-induced striatal changes is different in normal and MPTP-lesioned mice [J]. J Neurochem, 2003, 84(6): 1246-1255.
    [212] Bezard E, Brotchie J M, Gross C E. Pathophysiology of levodopa-induced dyskinesia: potential for new therapies [J]. Nat Rev, 2001, 2(8): 577-588.
    [213] Hassib S T. Derivative spectrophotometric determination of levodopa and benserazide hydrochloride [J]. Anal Lett 1990, 23(2): 2195-2198.
    [214] 王长连,黄品芳,刘亦伟.高效液相色谱-电化学法同时测定多巴丝肼片中2组分含量[J].中国医院药学杂志,2003,23(9):517-519.
    [215] 朱爱芝,刘军,傅承光.高效液相色谱法测定痕量左旋多巴、甲基多巴、多巴胺和去甲肾上腺素[J].分析测试学报,1997,16(6):47-49.
    [216] Saxer C, Niina M, Nakashima A, Nagae A, Masuda N. Simultaneous determination of levodopa and 3-O-methyldopa in human plasma by liquid chromatography with electrochemical detection [J]. J Chromatogr B, 2004, 802(2): 299-305.
    [217] Oliveira C H, Barrientos-Astigarraga R E, Sucupira M, Graudenz G S, Muscara M N, Nucci G D. Quantification of methyldopa in human plasma by high-performance liquid chromatography -electrospray tandem mass spectrometry application to a bioequivalence study [J]. J Chromatogr B, 2002, 768(2): 341-348.
    [218] Talebpour Z, Haghgoo S, Shamsipur M, H-1 nuclear magnetic resonance spectroscopy analysis for simultaneous determination of levodopa, carbidopa and methyldopa in human serum and pharmaceutical formulations [J]. Anal. Chim. Acta.,2004, 506(1): 97-104
    [219] 吕元琦,邬春华,袁倬斌.毛细管电泳法测定美多芭片剂中的左旋多巴和羟苄丝肼[J].化学试剂,2004,26(4):217-219.
    [220] 孟慧.高效毛细管电泳法测定血清中左旋多巴的含量[J].人民军医,2004,47(6):323-324.
    [221] 杨频,高飞.生物无机化学原理(M).北京:科学出版社,2002:121.
    [222] 杨曼曼,杨频,席小莉.荧光染料探针与蛋白质结合的研究[J].科学通报,1997,42(12):1276-1279.
    [223] 冯喜增,金瑞祥,曲芸,何锡文.各种离子对血卟啉与牛血清白蛋白相互结合反应的影响研究[J].高等学校化学学报,1996,17(6):866-869.
    [224] 江苏新医学院.中药大辞典[M].上海:上海科学技术出版社,1985,981-985.
    [225] 盛明智,郑维国.试述防已的合理应用[J].实用中医药杂志,2004,20(6):6-7.
    [226] 杨云,张晶,陈玉婷.天然药物化学成分提取分离手册[M].北京:中国中医药出版社,2003,p328-329.
    [227] Lakowicz J R, Weber G. Quenching of fluorescence by oxygen. Probe for structural fluctuations in macromolecules [J]. Biochemistry, 1973,12:4161-4170.
    [228] 常希俊,黄艳,贺群.铱(Ⅳ)离子与人血丙种球蛋白的作用研究[J].化学学报,2005,63(3):223-228.
    [229] 赵雪英,顾振纶.槲皮素对培养内皮细胞产生和释放内皮素和环磷酸鸟苷的影响[J].中国药理学报,1996,(5):442-445.
    [230] 龚珊,张玉英,俞光第,顾振纶,钱曾年.槲皮素镇痛作用的观察[J].中草药,1996,27(10):612-613.
    [231] 郭尧君.荧光实验技术及其在分子生物学中的应用[M].北京:科学出版社,1983.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700