用户名: 密码: 验证码:
超声化学原位合成颗粒增强7055基复合材料及其微结构研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
7055合金是航空航天领域的重要材料,近年来随着航空航天工业的飞速发展,对该材料的综合性能提出了更高的要求,进一步改性或强化7055合金已成为当前发展大飞机用材料的研究热点和重点之一。本课题通过稀土合金化和原位颗粒强化联合方法进一步提高7055合金的综合性能。探索了稀土合金化对7055铸态微结构的影响;研究了高能超声作用下7055Al-K_2TiF_6体系合成Al_3Ti颗粒增强7055基复合材料以及7055Al-K_2TiF_6-KBF_4体系合成TiB_2颗粒增强7055基复合材料的微结构和机制,并采用X-射线衍射仪(XRD)、扫描电镜(SEM)、能谱仪(EDS)等现代分析和测试方法,分析了稀土合金化和原位颗粒增强7055基复合材料的微观组织、相组成以及内生颗粒的形貌、大小、分布特征。获得的研究结果如下:
     1.在7055铝合金中添加单一稀土Y后铸态组织得到明显的细化,当Y加入量0.25wt.%时晶粒细化至20-30μm,并使原来骨骼状的第二相细化,局部出现球化,但当Y过量(>0.25wt.%)出现粗化,形成Al_6Cu_6Y相,并呈块状或条状分布于晶界;添加复合稀土(0.15wt.%Y+0.1wt.%Ce)时,晶粒进一步细化至15-20μm,晶界呈半连续分布,且较0.25wt.%Y时更为清晰、细小,共晶相尺寸显著细化,球化的第二相增多。
     2.高能超声作用下7055Al-K_2TiF_6体系原位生成的增强颗粒为Al_3Ti,颗粒尺寸在0.5-1.0μm之间,主要为短棒状或小块状,部分为粒状。添加单一稀土Y时,Al_3Ti在凝固过程析出的部分得到细化,使复合材料增强颗粒趋向均匀:当添加复合稀土0.15wt.%Y+0.1wt.%Ce时,增强相颗粒进一步细化。复合材料的重熔结果表明,随重熔保温时间及重熔次数的增加,Al_3Ti迅速长大,且当重熔次数达到2次时颗粒数量明显减少。一定超声强度下(0.66kW/cm~2),在1-7min范围内,随着超声作用时间的增加,内生颗粒的数量先增大后减小,尺寸先减小后增大,较佳作用时间为3min左右,此时内生颗粒最为细小,体积分数最高。对于7055Al-K_2TiF_6体系,在一定作用时间下(3min),随着超声作用强度的增大,复合材料中的内生Al_3Ti增强颗粒尺寸显著减小,数量也随之减少。
     3.高能超声作用下7055Al-K_2TiF_6-KBF_4体系原位生成的增强颗粒为TiB_2,尺寸在80-100nm之间,呈六棱粒状,部分颗粒出现“球化”现象。水淬试样的SEM和EDS结果表明,高能超声能显著地促进7055Al-K_2TiF_6-KBF_4体系的原位化学反应的进程,缩短化学反应的时间。探讨了高能超声作用下熔体反应法制备内生颗粒增强铝基复合材料的动力学及反应机制,认为主要是超声处理熔体时产生的声空化效应、声流效应、机械效应和热效应的综合作用。
7055 aluminum alloy is an important construction material, which is widly used in the fields of aerospace, automobiles and so on. With the development of economic the demands for properties of matericals are enhanced, such as stengenth at room and high temperature, fracture toughness and fatigue life et al. In the paper rare earth alloying and introducing endogenous particles in matrix were utilized in the fabricatioin of modified 7055.The aims are to optimize the structure and enhance the service performance of new materials.The paper is composed of three parts:(1) The effects of rere earth elements on the microstructure of as-cast 7055;(2)In situ Al_3Ti particulates reinfoeced 7055 composites using 7055Al-K_2TiF_6 components by sonochemistry;. (3) In situ TiB_2 particulates reinfoeced 7055 composites using 7055Al-K_2TiF_6-KBF_4 components by sonochemistry. The solidification microstructure, patterns of in-situ particulate, composition of phase were investigated with the help of Optical Microscope (OM), Scanning Electron Microscope (SEM), X-ray diffraction (XRD) and other modern equipments.
     The results show that the microtructure of 7055 alloy is refined with trace yttrium addition and the second phases are granulated, sphercized and fined. The blocky or stripy Al_6Cu_6Y phases can be observed on the boundries when the yttrium content is up to 0.25wt.%. When adding 0.15wt%.Y+0.10wt.%Ce the grian size ofα-Al and second phases are further refined, meanwhile the semi-continuous grain boundaries are finer. Moreover, the amounts of spheroidized phases are increased remarkably and eutectic phases are refined greatly.
     The particles synthesized under high intensity ultrasonic field in 7055Al-K_2TiF_6 are Al_3Ti, whose sizes are 0.5-1.5μm. The morphology of Al_3Ti exhibits as short beams, small block and granular. Al_3Ti particulates are refined and the sizes trend to uniform with 0.25wt.%Y addition.The particles tend to be further refined with 0.15wt.%Y +0.1wt.%Ce additon. The remelting of Al_3Ti/7055Al composite shows that Al_3Ti particulates grow up rapidly with holding time and remelting times increasing.
     In 7055Al-K_2TiF_6 system with constant ultrasonic intensity (0.66kW/cm~2) ,the sizes of Al_3Ti particles decrease firstly then increase in the range of 1-7min of ultrasonic radiation time. The smallest size and highest volume fraction are obtained when the ultrasonic radiation time is fixed at 3 minutes.When the ultrasonic radiation time is constant both the sizes of Al_3T particles and volume fraction are decreased when the ultrasonic intensity increase.
     TiB_2 particles are synthesized under high intensity ultrasonic field in 7055Al-K_2TiF_6-KBF_4, whose sizes are 80-100nm. The morphology of TiB_2 are six-rowed granular, parts of them are spheroidized The results indicate that the in situ chemical reactions are speeded up with the high intensity ultrasonic field introduced into the aluminum melt, and the reaction time reduced. The effects can be attributed to the cavitation effects, acoustic-streaming effects, mechanical effects and the thermal effects of the high-energy ultrasonic field.
引文
[1]Pucun Bai, Xiaohu Hou, Xiuyun Zhang, et al. Microstructure and mechanical properties of a large billet of spray formed Al-Zn-Mg-Cu alloy with high Zn content[J]. Materials Science and Engineering: A, 2009, 508(1-2): 23-27.
    [2]Warren A S.Developments and challenges for aluminum-a boeing perpective [J]. Proceedings of the 9th International Conference on Aluminum Alloys, 2004, 24.
    [3]甘卫平,范洪涛,许可勤等.Al-Zn-Mg-Cu系高强铝合金研究进展[J].铝加工, 2003,(3):6-11.
    [4]Kanno M, Araki I, Cui Q, Precipitation behaviour of 7000 alloys during retrogression and reaging treatment[J]. Mater Sci Techn, 1994,10(7): 599.
    [5]欧阳柳章,罗承萍,隋贤栋,骆灼旋.原位生成制备Al_2O_3增强铝基复合材料[J].中国有色金属学报.2000,10(2):159-162.
    [6]Tjong S C, Ma Z Y. Microstructural and mechanical characteristics of in situ metal matrix composites [J]. Mater Sci Eng, 2000, A29: 49-113.
    [7]Aikin R M, Jr. The mechanical properties of in-situ composites [J]. JOM, 1997, 35-39.
    [8]Yong Yang, Jie Lan, Xiaochun Li. Study on bulk aluminum matrixnano-composite fabricated by ultrasonic dispersionof nano-sized SiC particlesin molten aluminum alloy[J]. Materials Science and Engineering, 2004, A380: 378-383.
    [9]刘翠娟,杨治伟,慎爱民.超声化学的发展与应用.佳木斯大学学报(自然科学版)[J].2005,23(2):273-277.
    [10]丁加善,赵玉涛,张松利等.超声化学原位合成(Al_2O_3+Al_3Zr)_p/A356复合材料[J].2008,57(4):354-358.
    [11]张永安,韦强.喷射成形制备高性能铝合金材料[J].机械'I:程材料,2001,(4):22.
    [12]Jeffery B P. Structure and properties of spray formed 7150 containing Fe and Si [J]. Inter J PM, 1998, 30(3): 335.
    [13]曾渝,尹志,民潘青林等.超高强铝合金的研究现状及发展趋势[J].中南工业大学学报,2002,33(6):592-596.
    [14]陈康华,刘红卫,刘允中.强化固溶对7055铝合金力学性能和断裂行为的影响[J].中南工业大学学报,2002,31(6):528-531.
    [15]顾根大,陈玉勇,安阁英.铈对铝铜合金固液界面形态和稳定性的影响[J].中国稀土学报,1987,5(2):41.
    [16]孙伟成,张淑荣,候爱芹等.稀土在铝合金中的行为[M].北京:兵器工业出版社,1992.
    [17]阮海琼,金头男,杨军军等.含稀土Er的:Al-Zn-Mg合金的组织与性能[J].北京工业大学学报,2004,30(4):483-487.
    [18]赖人铭,熊计,赵国忠等.稀土元素La对6063铝合金组织和性能的影响[J].轻合金加工技术,2007,35(10):28-58.
    [19]Wang S.H., Zhou H.P., Kang Y.P.. The influence of rare earth elements on microstructures and properties of 6061 aluminum alloy vacuum-brazed joints [J]. Journal of Alloys and Compounds, 2003,352: 79-83.
    [20]陈越.稀土在铝及铝合金中的应用[J].上海有色金属,1998,19(3):136-140.
    [21]张建新,高爱华,谢玉芬.微量Sc对6063铝合金组织性能的影响[J].铸造,2006,55(8):847-849.
    [22]Jia Wenxu. Effects of Gd addition on microstructure and shape memory effect of Cu-Zn-Al alloy[J]. Alloys Compd. 2008,448: 331-335.
    [23]胡晓菊,高洪吴,李长茂等.微量元素对Mg-Al-Zn系合金铸态组织及性能的影响[J].上海有色金属,2004,25(3):100-105.
    [24]Li Hui-zhong,Liang Xiao-peng,LI Fang-fang,et al. Effect of Y content on microstructure and mechanical properties of 2519 aluminum alloy[J]. Trans. Nonferrous Met. Soc. China, 2007, 17: 1194-1198.
    [25]李杨勇,王金惠,刘莹颖,夏长清,孙振起.微量钇、铒对2519合金组织性能的影响[J].矿冶工程,2008,28(1):75-77.
    [26]王庆良,王大庆.稀土钇对AlZnM gCu合金组织及性能的影响[J].中国矿业大学学报,1999,28(4):382-385.
    [27]赵中魁,周铁涛,刘培英.Al-Zn-Mg-Cu-Li-Er合金时效组织中Er相的TEM观察[J].稀有金属材料与工程,2004,33(10):1108-1111.
    [28]李海,杨迎新,郑子樵等.少量Sc对7055铝合金组织与性能的影响[J].材料科学与工艺, 2004,14(1):46-49.
    [29]曹大力,石忠宁,杨少华等.稀土在铝及铝合金中的作用[J].稀土,2006,25(5):88-92.
    [30]Khatri Subhash, Michael Koczak. Formation of TiC in situ processed composites via solid-liquid and liquid-gas reaction in molten Al-Ti [J]. Materials Science and Engineering. 1993, 162A: 153-162.
    [31]M. Koczak and M. K. Premkumar, Emerging technologies for the in situ production of MMCs [J]. JOM. 1993, (1): 44-48.
    [32]陈洪美,于化顺,张静等.原位反应法制备Al_2O_3-TiC/Al复合材料[J].特种铸造及有色合金, 2006,26(10):674-675.
    [33]M.S.Newkirk, A.W.Urquhart, H.R. Zwicker, et al. Formation of Lanxide Ceramic Composite Materials[J]. J. Mater. Res., 1986, 1(1): 81-95.
    [34]Zhou Xiya, Tan Yuehua. Fabrication of Ceramic Composites by Directed Metal Oxidation [J]. Journal of Wuhan University of Technology Materials Science, 2004, 19 (1): 48-50.
    [35]林营,杨海波, 王芬.直接金属氧化法制备SiC/Al_2O_3-Al复合材料[J].机械工程材料,2005, 29 (6): 27-29.
    [36]A.W.Urquhart. Novel reinforced ceramics and metals: a review of Lanxide's composite technologies [J]. Mater. Sci. Eng., 1991,131A(1): 75-81.
    [37]营沼克昭,轻金属(日),1990,40(12):936-943.
    [38]M. K. Aghajanian, M. A. Rocazeua et al., J. Mater. Sci., 1991,26: 447.
    [39]Zulfia A, Hand R J. The Production of Al-Mg Alloy/SiC Metal Matrix Composites by Prssureless Infiltraction [J]. Materials Science, 2002,37: 955-961.
    [40]Munir Z.A. Synthesis of high temperature materials by self propagating combustion method [J]. S. Am. Ceram. Soc. Bull. 1988, 67(2): 342-349.
    [41]H. Erdem Camurlu, Filippo Maglia. Preparation of nano-size ZrB_2 powder byself-propagating high-temperature synthesis. Journalof the European Ceramic Society, 2009, 29:1501-1506.
    [42]Martin Marietta Corp. Process for forming metal-ceramic composites. US, pat: 4710348,1987.
    [43]朱和国,吴申庆,王恒志等.XD合成Al_2O_3,TiB_2/Al复合材料的热力学分析[J].中国有色金属学报,2001,11(3):382-385.
    [44]朱和国,王恒志,熊党生等.用XD法合成的铝基复合材料的组织与力学性能[J].金属学报, 2005,41(8):829-834.
    [45]T.G. Durai, Karabi Das, Siddhartha Das. Synthesis andcharacterization of Al matrix composites reinforced by in situ alumina particulates [J]. MaterialsScienceandEngineeringA, 2007, 445-446: 100-105.
    [46]王蕾,许伯藩等.原位生成TiC/Al基复合材料的制备.武汉科技大学学报(自然科学版)[J].2000,24(1):22-25.
    [47]Davies P., Kellie J. L. F., Wood J. V, Development of cast aluminum MMC [J]. Key Engineering Materials. 1993,77: 357-362.
    [48]P. Davies, J. L. F. Kellie and J. V. Wood. UK Patent 2257985A, 1992.
    [49]白亮,陈东,马乃恒,王浩伟.原位生成TiB_2/6351复合材料的组织和性能[J].热加工工艺,2007,36(12):30-33.
    [50]赵德刚,刘相法,潘义川等.(ZrAl_3+ZrB_2)/Al复合材料的制备和微观组织结构[J].铸造, 2005,54(6):542-544.
    [51]K. Sivaprasad, S. P. Kumaresh Babu, S. Natarajan, et al. Study on abrasive and erosive wear behaviour of Al 6063/TiB_2 in situ composites[J]. Materials Science and Engineering A, 2008, 498:495-500.
    [52]阴榆娟.(TiB_2+Al_3Ti)/ZL101原位复合材料的研究[D].西安工业大学硕十论文,2007
    [53]石益海,赵玉厚.(ZrB_2+Al_3Zr)/ZL101原位复合材料正交实验研究[J].铸造技术,2008,29(1):88-91.
    [54]Chrysanthou A, Erbaccio G, Wood J. V. In situ preparation of copper matrix compoites [J]. J. Mater. Sci.Lett. 1993, (12): 1635-1636.
    [55]赵玉厚,严文,周敬恩.原位Al_3Ti粒子增强ZL101铝基复合材料[J].中国有色金属学报, 2000,10:214-217.
    [56]赵玉厚,严文,苗瑞霞.原位增强体Al_3Ti形成热力学及合金元素对其形貌影响[J].铸造技术,2005,26(6):481-485.
    [57]杨滨,王峰,段先进,等.熔铸·原位反应喷射成型7075/TiC复合材料的拉伸性能[J].金属学报,2001,37(3):311-314.
    [58]Feng Wang, Huimin Liu, Bin Yang .Effect of in-situ TiC particulate on the wear resistance of spray-deposited 7075 Al matrix composite[J]. Mat. Chara. 2005,54(4-5): 446-450.
    [59]Hui Zhang, Yusong He, Luoxing Li.Tensile deformation and fracture behavior of spray-deposition 7075/15SiC_p aluminum matrix composite sheet at elevated temperatures [J]. Mat. Char. 2008,59(8): 1078-1082.
    [60]冯若,赵逸云.声化学-一个引人注目的新的化学分支[J].自然杂志,2004,26(3):160-163.
    [61]熊大民.声化学的研究与应用现状[J].昆明理工大学学报,2001,26(6):84-88.
    [62]V.I. Dobatkin, G.I. Eskin. The Effect of High Intensity Ultrasound on the Phase Interface in Metals [J]. Nauka,Moscow:1986, 87-93.
    [63]G.I. Eskin, Izvestiya Akad Nauk SSSR. OTN. Metallurgiya I Toplivo, 1963, (1):118.
    [64]G.I. Eskin, P. Yu, G.S. Makarov. Effect of cavitation melt treatment on the structure refinement and property improvement in cast and deformed hypereutectic Al-Si Alloys [J]. Mater Sci Forum. 1997,242: 65-70.
    [65]李英龙等.功率超声对Al-Si合金组织合性能的影响[J].中国有色金属学报,1999,9(4):719-723.
    [66]赵忠兴,穆光华等.超声波对铸造合金组织和性能的影响[J].铸造,1996,(3):21.
    [67]Tjong S C, Chen F. Wear behavior of as-cast Zn-A127/SiC particulate metal matrix composites under lubricated sliding condition [J]. Metallurgical and Matericals Transaction A, 1997, 28A(9): 1951-1955.
    [68]Wan H, Pan J, Yang D M. In-situ aluminium matrix composites prepared by ultrasonic vibration [A]. Tenth International Conference on Composite Meterials[C]. Canada: 1995,14-18.
    [69]潘蕾,陶杰,吴申庆等.高能超声作用下两种锌基复合材料的制备及研究[J].铸造,2005 ,54(12):1219-1222.
    [70]丁加善,赵玉涛.超声化学原位合成(Al_2O_3+Al_3Zr)p/A356复合材料[J].特种铸造及有色合金,2008,28(5):385-388.
    [71]吕一中等.金属基复合材料在航空航天领域的应用[J].北京工业职业技术学院学报,2007,6(3):1-4.
    [72]张元好,曾大新.颗粒增强金属基复合材料的制备及应用[J].湖北汽车工业学院学报,2002,16(4):24-28. ·
    [73]吴利英等.金属基复合材料的发展及应用[J].化工新型材料,2002,30(10):32-35.
    [74]Peijie Li, E.G. Kandalova, V.I. Nikitin. In situ synthesis of Al-TiC in aluminum melt [J]. Materials Letters. 2005,59 (19-20): 2545-2548.
    [75]S. Lakshmi, L. Lu, M. Gupta. In situ preparation of TiB2 reinforced Al based composites [J]. J.Mater. Proce. Tech., 1998,73(1-3): 160-166.
    [76] G. J. Zhang, M. Ando, J. F. Yang, T. Ohji, S. Kanzaki. Boron carbide and nitride as reactants for in situ synthesis of boride-containing ceramic composites [J]. J. Euro. Cermter. Soci., 2004, 24(2): 171-178.
    [77]H.Okamoto. Al-Y (Aluminum-Yttrium) [J]. Journal of Phase Equilibria and Diffusion, 2007, 29(1): 114.
    [78]李海,郑子樵,王芝秀.含少量Ag的7055铝合金组织与性能[J].中南大学学报(自然科学版),2004,35(1):1-5.
    [79]郭旭涛,李培杰,熊玉华等.稀土在铝、镁合金中的应用[J].材料工程,2004,(8):60-64.
    [80]Chelkowski.A, Talik.E, Szade.J, Solid solubility of rare earths in aluminium [J]. J.Less-Common Met, 1988,141(2): 213-218.
    [81]Zuo Yu-bo, Cui Jian-zhong, Dong Jie,et al. Effect of low frequency electromagnetic field on the constituents of a new super high strength aluminumalloy[J]. Journal of Alloys and Compounds, 2005,402:149-155.
    [82]Saccone A., Cacciamani G., Maccio D., et al. Contribution to the study of the alloys and intermetallic compounds of aluminium with the rare-earth metals [J]. Intermetallics, 1998, 6: 201-215.
    [83]赵玉厚,严文,周敬恩.Si、Mg对原位铝基复合材料中增强体Al_3Ti形貌的影响[J].兵器材料科学与工程,2001,24(2):34-37.
    [84]Yu Huashun, Chen Hongmei, Sun Liming. Preparation of Al_3Ti in situ composites by direct reaction method[J]. Rare Metals, 2006,25(1): 32-36.
    [85]郭峰,罗沛兰,毕秋,李克.金属熔体超声细化处理技术的研究进展[J].金属材料与冶金工程,2008,36(1):59-64.
    [86]PUSKAR A. The use of high-intensity ultrasonic [M]. Elsevier: Amsterdam, 1982.
    [87]赵玉厚,严文,苗瑞霞,李建平,董晟全.原位增强体Al_3Ti形成热力学及合金元素对其形貌影响[J].铸造技术,2005,26(6):481-485.
    [88]COMPBELL J. Effect of vibration during solidification [J]. Int Met Rev, 1981, (2): 71-104.
    [89]白晓清,赫冀成.超声波作用下微粒凝集过程参数的研究[J].东北大学学报,2001,22(4):413-416.
    [90]潘金生.材料科学基础[M].北京:清华大学出版社,1998.
    [91]乐永康,张建平,陈东.原位反应合成TiB_2的生长行为[J].特种铸造及有色合金.2008,28(2):102-105.
    [92]张虎,高文理 张二林等.Ti-54Al-xB合金中TiB_2的形貌演变及生长机理[J].金属学报,2002, 38(7):699-702.
    [93]冯若.声化学及其应用[M].合肥:安徽科技出版社,1990.
    [94]应崇福.超声学[M].北京:科技出版社,1984.
    [95]何柞镛.声学理论基础[M].北京:国防工业出版社,1981.
    [96]钱祖文.非线性声学[M].北京:科学出版社,1992.
    [97]Oh S Y. Wetting of ceramic particulates with liquid aluminum alloys [J]. Met Trans, 1989, (20A): 527-532.
    [98]潘蕾,陶杰,陈照峰等.高能超声在颗粒/金属熔体体系中的声学效应[J].材料工程.2006,1:35-38.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700