用户名: 密码: 验证码:
负载路易斯酸多相催化剂的制备及其在有机反应中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
路易斯酸是有机反应中常用的催化剂,在傅克烷基化和酰基化、酯化、脑文格尔缩合、迈克尔加成、狄尔斯-阿尔德等反应中,表现出优异的催化活性。作为高效均相催化剂,路易斯酸还是有一些不足之处,如腐蚀性、高毒性、副反应多、用量大、后处理产生大量废水。负载路易斯酸是一类清洁、环保的多相催化剂,和均相路易斯酸一样具有催化活性的负载路易斯酸有几个显著的特点:后处理简单、可回收和重复使用、无毒、稳定性好等。
     通过路易斯酸与树脂络合,制备了树脂负载四氯化钛(Ps-TiCl4)和树脂负载三氯化铁(Ps-FeCl3)。用TGA、BET、SEM、IR.吡啶红外、滴定等分析手段对催化剂进行了表征,滴定实验测定了Ps-TiCl4和Ps-FeCl3的负载量分别为0.35mmol/g和0.30mmol/g。两种催化剂对各种醇和酚的四氢吡喃化反应有很好的催化活性,同时,在两种催化剂存在下,四氢吡喃醚在甲醇中可以顺利的发生去四氢吡喃化反应。反应条件温和、后处理容易、副产物少、产率高是这一催化反应的优点。两种催化剂回收和重复使用5次,依然表现出良好的催化活性。
     通过氯化铝与树脂络合,制备了树脂负载氯化铝(Ps-AlCl3).用TGA、BET、IR、吡啶红外、滴定等分析手段对催化剂进行了表征,Ps-AlCl3的负载量为0.45mmol/g。无溶剂条件下,Ps-AlCl3可催化醛与1,3-二羰基化合物的脑文格尔缩合反应。这一催化方法简单高效,在Ps-AlCl3催化剂存在下,60℃,2-4h,缩合反应能顺利进行并获得较高的产率(87-98%)。Ps-AlCl3可应用于一系列芳香醛的缩合反应,且具有较好的可回收性,重复使用五次催化活性没有明显的下降。
     无溶剂条件下Ps-AlCl3能够催化各种胺与含吸电子基团的共轭烯烃的Aza-Michael加成反应。室温下,6mol%Ps-AlCl3,0.8-2h,各种不同的脂肪胺与共轭烯烃反应能以较高产率得到加成产物,然而对于芳香胺,70℃,15mol%Ps-AlCl3,2.1-3h,加成反应才比较理想。利用两类胺不同的反应活性,可以实现化学选择性加成,室温下,将脂肪胺与芳香胺等摩尔混合与共轭烯烃反应,只得到脂肪胺加成产物;同一分子中不同氨基的区域选择性加成也可顺利进行,室温下,只得到脂肪胺基加成产物。PS-AICl3有较好的可回收性,重复使用数次催化活性没有明显的下降。
     制备了三种新型多相催化剂(AlCl3/壳聚糖、AlCl3/甲壳素、AlCl3/乙酰化甲壳素)。用IR、ICP、BET、SEM和27Al固体NMR对催化剂进行了表征。A1Cl3/甲壳素的负载量为2.54mmol/g,高于硅胶负载氯化铝的负载量。三种催化剂对苯甲醚与苄氯的傅克烷基化及苯甲醚与苯甲酰氯的酰基化反应显示了良好的催化活性。三种催化剂的活性次序为AlCl3/壳聚糖>AlCl3/甲壳素:>AlCl3/乙酰化甲壳素。根据27Al固体核磁谱及三种催化剂的活性顺序,推测在27Al固体核磁谱上0ppm的特征峰是物理吸附的氯化铝而非六配位铝物种,且支持了Dube关于85ppm特征峰是由氯化铝与两个硅羟基接枝的观点。重复使用4次后,三种催化剂还具有催化活性。
Lewis acids which are commonly used catalysts in the organic reactions show excellent catalytic activity in Friedel-Crafts alkylations and acylations, esterification, Knoevenagel condensations, Michael additions, Diels-Alder reaction, etc. As efficient homogeneous catalysts, they still have several inadequacies such as being corrosive, high toxicity, side reactions, use of large amount, leading to a large quantity of waste liquid after workup. Supported Lewis acid is a class of clean, environmentally friendly heterogeneous catalysts, supported Lewis acids as active as its homogeneous counterparts have several distinguishing characteristics:easy workup, recyclability, reusability, nontoxicity and good stability, etc.
     Polystyrene supported TiCl4(Ps-TiCl4) and polystyrene supported FeCl3(Ps-FeCl3) were prepared by coordinating Lewis acids with polystyrene. The catalysts were characterized by TGA, BET, SEM, IR, pyridine-adsorbed IR and titration analysis. Titration experiments determined the loadings of Ps-TiCl4and Ps-FeCl3were0.35and0.3mmol g-1respectively. Both catalysts had good catalytic activity for the tetrahydropyranylation of various alcohols and phenols, at the same time, detetrahydropyranylation of tetrahydropyranyl ethers preceded smoothly in the presence of the two catalysts in methnol. Mild reaction conditions, easy workup, less by-products, high yields are the advantages of the catalytic reactions. Two catalysts can be recovered and reused for five times with good activity.
     Polystyrene supported AICl3(Ps-AlCl3) was prepared by coordinating aluminum chloride with polystyrene. The catalyst was characterized by TGA, BET, IR, pyridine-adsorbed IR and titration analysis, the loading of Ps-AlCl3was0.45mmol g-1. Knoevenagel condensations of1,3-dicarbonyl compounds with aldehydes could be catalyzed by PS-AICl3under solvent-free conditions. This catalytic method was simple and efficient; the condensations were carried out smoothly with high yields (87-98%) at60℃for2-4h in the presence of the Ps-AlCl3catalyst. Ps-AlCl3could be applicable to the condensations of a series of aromatic aldehydes, and had good recyclability and could be reused five times without apparent loss of activity.
     Aza-Michael additions of various amines with conjugated alkenes bearing electron withdrawing group could be catalyzed by polystyrene-supported aluminum chloride (PS-AICl3) without the use of any solvents. The aliphatic adducts could be synthesized through additions of various aliphatic amines and conjugated alkenes for0.8-2h using6mol%Ps-AlCl3under room temperature with high yields (91-94%), however, the additions of aromatic amines proceded well only when using15mol%Ps-AlCl3for2.1-3h, under70℃. Using the different reactivities of two types of amines, chemoselective additions were achieved under room temperature, a mixture (1:1) of aromatic amines and aliphatic amines was treated with conjugated alkenes, aliphatic adducts were obtained exclusively; Regioselective additions of two different amino groups in one molecule also proceeded smoothly, the aliphatic adducts were the only products under room temperature. Ps-AlCl3had good recyclability and could be reused several times without apparent loss of activity.
     Three novel heterogeneous catalysts (AlCl3/chitin, AlCl3/chitosan, AICl3/acetylated chitin) were prepared. The catalysts were characterized by IR, ICP, BET, SEM and27Al solid state NMR. The loading of AlCl3/chitin which was higher than that of silica supported AICl3was2.54mmol/g. The catalysts demonstrated good catalytic activity in Friedel-Crafts alkylation of anisole with benzyl chloride and acylation of benzene with benzoyl chloride. The order of the three catalysts'activity was AlCl3/chitosan>AlCl3/chitin>AlCl3/acetylated chitin. According to the27Al solid state NMR spectra and the order of the three catalysts'activity, we concluded the peak at0ppm in the27Al solid state NMR spectra was attributed to physical adsorbed aluminum chloride not to six-coordinate Al species, and supported the viewpoint of Dube which said peak at85ppm was assigned to an aluminum chloride grafted on two silanol groups. The catalysts still remained active after reuse of four times.
引文
1. (a) Jessop, P. G.; Ikariya, T.; Noyori, R., Homogeneous catalysis in supercritical fluids[J]. Chemical Reviews 1999,99 (2),475-493; (b) Cole-Hamilton, D. J., Homogeneous catalysis-new approaches to catalyst separation, recovery, and recycling[J]. Science 2003,299 (5613),1702-1706.
    2. Muller, C.; Nijkamp, M. G.; Vogt, D., Continuous homogeneous catalysis[J]. European Journal of Inorganic Chemistry 2005, (20),4011-4021.
    3. Zhang, Z.-H.; Yin, L.; Wang, Y.-M., An expeditious synthesis of benzimidazole derivatives catalyzed by Lewis acids[J]. Catalysis Communications 2007,8 (7), 1126-1131.
    4. Yoshikawa, N.; Doyle, A.; Tan, L.; Murry, J. A.; Akao, A.; Kawasaki, M.; Sato, K., An efficient and scalable synthesis of substituted phenanthrenequinones by intramolecular friedel-crafts reaction of imidazolides[J]. Organic Letters 2007,9 (21),4103-4106.
    5. Liu, C.; Zhang, W.; Dai, L.-X.; You, S.-L., Cascade dearomatization of N-substituted tryptophols via Lewis acid-catalyzed Michael reactions[J]. Organic & Biomolecular Chemistry 2012,10 (35),7177-7183.
    6. Bandgar, B. P.; Shaikh, K. A., Molecular iodine-catalyzed efficient and highly rapid synthesis of bis(indolyl)methanes under mild conditions[J]. Tetrahedron Letters 2003,44(9),1959-1961.
    7. Schubert, U., Catalysts made of organic-inorganic hybrid materials[J]. New Journal of Chemistry 1994,18 (10),1049-1058.
    8. Kong, L. Y.; Li, G.; Wang, X. S.; Wu, B., Oxidative desulfurization of organic sulfur in gasoline over Ag/TS-1[J]. Energy & Fuels 2006,20 (3),896-902.
    9. (a) Dessau, R. M.; Valyocsik, E. W.; Goeke, N. H., Aluminum zoning in ZSM-5 as revealed by selective silica removal[J]. Zeolites 1992,12 (7),776-779; (b) Le Van Mao, R.; Ramsaran, A.; Xiao, S.; Yao, J.; Semmer, V., pH of the sodium carbonate solution used for the desilication of zeolite materials[J]. Journal of Materials Chemistry 1995,5 (3),533-535; (c) Groen, J. C.; Moulijn, J. A.; Perez-Ramirez, J., Desilication:on the controlled generation of mesoporosity in MFI zeolites[J]. Journal of Materials Chemistry 2006,16 (22),2121-2131.
    10. (a) Jun, S.; Ryoo, R., Aluminum impregnation into mesoporous silica molecular sieves for catalytic application to Friedel-Crafts alkylation[J]. Journal of Catalysis 2000,195 (2),237-243; (b) Hu, X. C.; Chuah, G. K.; Jaenicke, S., Room temperature synthesis of diphenylmethane over MCM-41 supported AlCl3 and other Lewis acids[J]. Applied Catalysis A-General 2001,217 (1-2),1-9; (c) Hu, X.; Foo, M. L.; Chuah, G. K.; Jaenicke, S., Pore Size engineering on MCM-41:selectivity tuning of heterogenized AICl3 for the synthesis of linear alkyl benzenes[J]. Journal of Catalysis 2000,195 (2),412-415.
    11. (a) Drago, R. S.; Getty, E. E., Preparation and catalytic activity of a new solid acid catalyst[J]. Journal of the American Chemical Society 1988,110 (10), 3311-3312; (b) Drago, R. S.; Petrosius, S. C.; Chronister, C. W., Characterization and improvements in the synthesis of the novel solid superacid AlCl2(SG)n[J]. Inorganic Chemistry 1994,33 (2),367-372; (c) Drago, R. S.:Opetrosius, S. C.; Kaufman, P. B., (SG)n-AlCl2 in the cracking of hydrocarbon polymers[J]. New Journal of Chemistry 1994,18 (8-9),937-939.
    12. (a) Sage, V.; Clark, J. H.; Macquarrie, D. J., Cationic polymerization of styrene using mesoporous silica supported aluminum chloride[J]. Journal of Molecular Catalysis A-Chemical 2003,198 (1-2),349-358; (b) Shorrock, J. K.; Clark, J. H.; Wilson, K.; Chisem, J., Use of a supported aluminium chloride catalyst for the production of hydrocarbon resins[J], Organic Process Research & Development 2001,5 (3),249-253.
    13. Tang, H.; Ji, M.; Wang, X. K.; He, M.; Cai, T. X., Alkylation of naphthalene with propylene catalyzed by aluminum chloride immobilized on Al-MCM-41 [J]. Chinese Journal of Catalysis 2010,31 (7),725-728.
    14. (a) Sato, S.; Maciel, G. E., Structures of aluminum-chloride grafted on silica surface[J]. Journal of Molecular Catalysis A-Chemical 1995,101 (2),153-161; (b) Sato, S.; Nozaki, F.; Zhang, S. J.; Cheng, P., Liquid-phase alkylation of benzene with cyclohexene over SiO2-grafted AICl3 catalyst and accelerating effect of ultrasonic vibration[J]. Applied Catalysis A-General 1996,143 (2), 271-281.
    15. (a) Zhao, X. S.; Lu, M. G. Q.; Song, C., Immobilization of aluminum chloride on MCM-41 as a new catalyst system for liquid-phase isopropylation of naphthalene[J]. Journal of Molecular Catalysis A-Chemical 2003,191 (1),67-74; (b) Zhao, X. S.; Lu, G. Q.; Song, C., Mesoporous silica-immobilized aluminium chloride as a new catalyst system for the isopropylation of naphthalene[J]. Chemical Communications 2001, (22),2306-2307.
    16. Wang, Z. B.; Gao, B. J., Preparation, structure, and catalytic activity of aluminum chloride immobilized on cross-linked polyvinyl alcohol microspheres[J]. Journal of Molecular Catalysis A-Chemical 2010,330 (1-2), 35-40.
    17. (a) Neckers, D. C; Kooistra, D. A.; Green, G. W., Polymer-protected reagents-polystyrene aluminum chloride[J]. Journal of the American Chemical Society 1972,94 (26),9284-9285; (b) Blossey, E. C.; Turner, L. M.; Neckers, D. C., Polymer-protected reagents.3. acetal formation with polymer-protected aluminum chloride[J]. Journal of Organic Chemistry 1975,40 (7),959-960.
    18. Deshmukh, A. P.; Padiya, K. J.; Salunkhe, M. M., Friedel-Crafts acylation reaction using polymer supported aluminium chloride[J]. Journal of Chemical Research-S 1999, (9),568-569.
    19. (a) Dube, D.; Royer, S.; On, D. T.; Beland, F.; Kaliaguine, S., Aluminum chloride grafted mesoporous molecular sieves as alkylation catalysts[J]. Microporous and Mesoporous Materials 2005,79 (1-3),137-144; (b) Chouldhary, V. R.; Mantri, K., AlClx-grafted Si-MCM-41 prepared by reacting anhydrous AlCl3 with terminal Si-OH groups:an active solid catalyst for benzylation and acylation reactions[J]. Microporous and Mesoporous Materials 2002,56 (3),317-320; (c) Choudhary, V. R.; Mantri, K., AlCl3-grafted Si-MCM-41:Influence of thermal treatment conditions on surface properties and incorporation of Al in the structure of MCM-41 [J]. Journal of Catalysis 2002,205 (1),221-225.
    20. Clark, J. H.; Martin, K.; Teasdale, A. J.; Barlow, S. J., Environmentally friendly catalysis using supported reagents-evolution of a highly-active form of immobilized aluminum chloride[J]. Journal of the Chemical Society-Chemical Communications 1995, (19),2037-2040.
    21.卢攀峰;江玲,Al2O3固载AlC13催化剂的固载结构研究[J].万油化工2010,39(6),616-619.
    22. Moghadam, M.; Tangestaninejad, S.; Mirkhani, V; Mohammadpoor-Baltork, I.; Gharaati, S., Tetrahydropyranylation of alcohols and phenols catalyzed by a new polystyrene-bound tin(IV) porphyrin[J]. Journal of Molecular Catalysis A-Chemical 2011,337(1-2),95-101.
    23. Alleti, R.; Oh, W. S.; Perambuduru, M.; Ramana, C. V.; Reddy, V. P., Imidazolium-based polymer supported gadolinium triflate as a heterogeneous recyclable Lewis acid catalyst for Michael additions[J]. Tetrahedron Letters 2008, 49(21),3466-3470.
    24. Pandey, R. K.; Dagade, S. P.; Malase, K. M.; Songire, S. B.; Kumar, P., Synthesis of ceria-yttria based strong Lewis acid heterogeneous catalyst:Application for chemoselective acylation and ene reaction[J]. Journal of Molecular Catalysis A-Chemical 2006,245 (1-2),255-259.
    25. Lu, L.; Niu, H.; Dong, J. Y., Propylene polymerization over MgCl2-supported TiCl4 catalysts bearing different amounts of a diether internal electron donor: Extrapolation to the role of internal electron donor on active site[J]. Journal of Applied Polymer Science 2012,124(2),1265-1270.
    26. Liu, H. F.; Yin, D. H.; Yin, D. L.; Fu, Z. H.; Li, Q. H.; Lu, G. X., ZnCl2 supported on NaY zeolite by solid-state interaction under microwave irradiation and used as heterogeneous catalysts for high regioselective Diels-Alder reaction of myrcene and acrolein[J]. Journal of Molecular Catalysis A-Chemical 2004,209 (1-2),171-177.
    27. Choudhary, V. R.; Jha, R., Acylation of nitrobenzene and substituted nitrobenzenes by benzoyl chloride using GaClx-and GaAlClx-grafted meporous Si-MCM-41 catalysts[J]. Microporous and Mesoporous Materials 2009,119 (1-3),360-362.
    28. Choudhary, V. R.; Jha, R., GaAlClx-grafted Mont.K-10 clay:Highly active and stable solid catalyst for the Friedel-Crafts type benzylation and acylation reactions[J]. Catalysis Communications 2008,9 (6),1101-1105.
    29. Bao, Q. X.; Qiao, K.; Tomida, D.; Yokoyama, C, Acetalization of carbonyl compounds catalyzed by GaCl3 immobilized on imidazolium-styrene copolymers[J]. Catalysis Communications 2009,10 (12),1625-1628.
    30. Miller, J. M.; Goodchild, M.; Lakshmi, J. L.; Wails, D.; Hartman, J. S., Friedel-Crafts catalysis using supported reagents. Synthesis, characterization and catalytic application of ZnCl2 supported on fluoride-modified sol-gel-derived aluminosilicates[J]. Catalysis Letters 1999,63 (3-4),199-203.
    31. Boodhoo, K. V. K.; Dunk, W. A. E.; Vicevic, M.; Jachuck, R. J.; Sage, V.; Macquarrie, D. J.; Clark, J. H., Classical cationic polymerization of styrene in a spinning disc reactor using silica-supported BF3 catalyst[J]. Journal of Applied Polymer Science 2006,101 (1),8-19.
    32. Safari, J.; Khalili, S. D.; Banitaba, S. H., Three-Component, one-pot synthesis of 2,4,5-trisubstituted imidazoles catalyzed by TiClt-SiO2 under conventional heating conditions or microwave irradiation[J]. Synthetic Communications 2011, 41 (16),2359-2373.
    33. Choudhary, V. R.; Tillu, V. H.; Narkhede, V. S.; Borate, H. B.; Wakharkar, R. D., Microwave assisted solvent-free synthesis of dihydropyrimidinones by Biginelli reaction over Si-MCM-41 supported FeCl3 catalyst[J]. Catalysis Communications 2003,4 (9),449-453.
    34. Rahmatpour, A., Polystyrene-supported GaCl3:A new, highly efficient and recyclable heterogeneous Lewis acid catalyst for tetrahydropyranylation of alcohols and phenols[J]. Polyhedron 2012,44 (1),66-71.
    35. (a) Boroujeni, K. P., Synthesis of alpha-aminophosphonates using polystyrene supported Al(OTf)3 as a heterogeneous catalyst [J]. Synthesis and Reactivity in Inorganic Metal-Organic and Nano-Metal Chemistry 2011,41 (2),173-176; (b) Boroujeni, K. P., Polystyrene-supported, Al(OTf)3-catalyzed chemoselective synthesis of acylals from aldehydes[J]. Synthetic Communications 2011,41 (2), 277-284.
    36. Selvakumar, S.; Singh, A. P., Benzoylation of anisole over silicotungstic acid modified mesoporous alumina[J]. Catalysis Letters 2009,128 (3-4),363-372.
    37.(a)张继光,催化剂制备过程技术[M].中国石化出版社:北京,2004;p11-14;(b) Delmon, B., Preparation of heterogeneous catalysts[J]. Journal of Thermal Analysis and Calorimetry 2007,90 (1),49-65.
    38. Zhang, W.; Xu, S.; Han, X.; Bao, X., In situ solid-state NMR for heterogeneous catalysis:a joint experimental and theoretical approach[J]. Chemical Society Reviews 2012,41 (1),192-210.
    39. (a) Haw, J. F.; Xu, T., NMR Studies of Solid Acidity[M]. In Advances in Catalysis, D.D. Eley, W. O. H. B. G.; Helmut, K., Eds. Academic Press:1998; Vol. Volume 42, pp 115-180; (b) Haw, J. F., Zeolite acid strength and reaction mechanisms in catalysis[J]. Physical Chemistry Chemical Physics 2002,4 (22), 5431-5441.
    40. (a) Zhang, W.; Ma, D.; Liu, X.; Liu, X.; Bao, X., Perfluorotributylamine as a probe molecule for distinguishing internal and external acidic sites in zeolites by high-resolution 1H MAS NMR spectroscopy[J]. Chemical Communications 1999, (12),1091-1092; (b) Zhang, W.; Bao, X.; Guo, X.; Wang, X., A high-resolution solid-state NMR study on nano-structured HZSM-5 zeolite[J]. Catalysis Letters 1999,50(1),89-94.
    41. Zhang, W.; Ma, D.; Han, X.; Liu, X.; Bao, X.; Guo, X.; Wang, X., Methane dehydro-aromatization over Mo/HZSM-5 in the absence of oxygen:a multinuclear solid-state NMR study of the interaction between supported Mo species and HZSM-5 zeolite with different crystal sizes[J]. Journal of Catalysis 1999,188 (2),393-402.
    42. Ma, D.; Shu, Y.; Han, X.; Liu, X.; Xu, Y.; Bao, X., Mo/HMCM-22 catalysts for methane dehydroaromatization:a multinuclear MAS NMR Study[J]. The Journal of Physical Chemistry B 2001,105 (9),1786-1793.
    43. Hunger, M., Multinuclear solid-state NMR studies of acidic and non-acidic hydroxyl protons in zeolites[J]. Solid State Nuclear Magnetic Resonance 1996,6 (1),1-29.
    44. (a) Haw, J. F.; Hall, M. B.; Alvarado-Swaisgood, A. E.; Munson, E. J.; Lin, Z.; Beck, L. W.; Howard, T., Integrated NMR and Ab initio study of acetonitrile in zeolites:a reactive complex model of zeolite acidity[J]. Journal of the American Chemical Society 1994,116 (16),7308-7318; (b) Simperler, A.; Bell, R. G.; Anderson, M. W., Probing the acid strength of Bronsted acidic zeolites with acetonitrile:quantum chemical calculation of 1H,15N, and 13C NMR shift parameters[J]. The Journal of Physical Chemistry B 2004,108 (22),7142-7151.
    45. (a) Freude, D.; Hunger, M.; Pfeifer, H., Study of Bronsted acidity of zeolites using high-resolution proton magnetic resonance with magic-angle spinning[J]. Chemical Physics Letters 1982,91 (4),307-310; (b) Reddy Marthala, V. R.; Wang, W.; Jiao, J.; Jiang, Y.; Huang, J.; Hunger, M., Effect of probe molecules with different proton affinities on the coordination of boron atoms in dehydrated zeolite H-[B]ZSM-5[J]. Microporous and Mesoporous Materials 2007,99 (1-2), 91-97; (c) Huang, J.; Jiang, Y.; Marthala, V. R. R.; Thomas, B.; Romanova, E.; Hunger, M., Characterization and acidic properties of aluminum-exchanged zeolites X and Y[J]. The Journal of Physical Chemistry C 2008,112 (10), 3811-3818.
    46. (a) Lunsford, J. H.; Rothwell, W. P.; Shen, W., Acid sites in zeolite Y:a solid-state NMR and infrared study using trimethylphosphine as a probe molecule[J]. Journal of the American Chemical Society 1985,107 (6), 1540-1547; (b) Kao, H.-M.; Grey, C. P., Determination of the 31P-27A1 J-coupling constant for trimethylphosphine bound to the Lewis acid site of zeolite HY[J]. Journal of the American Chemical Society 1997,119 (3),627-628; (c) Zhao, B.; Pan, H.; Lunsford, J. H., Characterization of [(CH3)3P-H]+ complexes in normal H-Y, dealuminated H-Y, and H-ZSM-5 zeolites using 31P solid-state NMR Spectroscopy[J]. Langmuir 1999,15 (8),2761-2765.
    47. Wang, L.; Tao, L.; Xie, M.; Xu, G.; Huang, J.; Xu, Y., Dehydrogenation and aromatization of methane under non-oxidizing conditions [J]. Catalysis Letters 1993,21(1),35-41.
    48. (a) Ma, D.; Deng, F.; Fu, R.; Han, X.; Bao, X., MAS NMR studies on the dealumination of zeolite MCM-22[J]. The Journal of Physical Chemistry B 2001, 105 (9),1770-1779; (b) Ma, D.; Han, X.; Zhou, D.; Yan, Z.; Fu, R.; Xu, Y.; Bao, X.; Hu, H.; Au-Yeung, S. C. F., Towards guest-zeolite interactions:an NMR spectroscopic approach[J]. Chemistry-A European Journal 2002,8 (19), 4557-4561; (c) Ma, D.; Zhang, W.; Shu, Y.; Liu, X.; Xu, Y.; Bao, X., MAS NMR, ESR and TPD studies of Mo/HZSM-5 catalysts:evidence for the migration of molybdenum species into the zeolitic channels[J]. Catalysis Letters 2000,66 (3), 155-160.
    49. Bazin, D.; Lynch, J.; Rarnos-Fernandez, M., X-ray absorption spectroscopy and anomalous wide angle X-ray scattering:Two basic tools in the analysis of heterogeneous catalysts[J]. Oil & Gas Science and Technology-Revue d'Ifp Energies Nouvelles 2003,58 (6),667-683.
    50. Reed, J.; Eisenberger, P.; Teo, B.-K.; Kincaid, B. M., Structural effects of cross-linking in polymer-bound bromotris(triphenylphosphine)rhodium(Ⅰ) catalyst by X-ray absorption studies[J]. Journal of the American Chemical Society 1978,100 (8),2375-2378.
    51. (a) Cramer, S. P.; Hodgson, K. O.; Gillum, W. O.; Mortenson, L. E., The molybdenum site of nitrogenase. Preliminary structural evidence from X-ray absorption spectroscopy[J]. Journal of the American Chemical Society 1978,100 (11),3398-3407; (b) Cramer, S. P.; Gillum, W. O.; Hodgson, K. O.; Mortenson, L E.; Stiefel, E.l.; Chisnell, J. R.; Brill, W. J.; Shah, V. K., The molybdenum site of nitrogenase.2. a comparative study of molybdenum-iron proteins and the iron-molybdenum co factor by X-ray absorption spectroscopy[J]. Journal of the American Chemical Society 1978,700 (12),3814-3819; (c) Wolff, T. E.; Berg, J. M.; Warrick, C.; Hodgson, K. O.; Holm, R. H.; Frankel, R. B., The molybdenum-iron-sulfur cluster complex [Mo2Fe6S9(SC2H5)8]3. a synthetic approach to the molybdenum site in nitrogenase[J]. Journal of the American Chemical Society 1978,100 (14),4630-4632.
    52. Olah, G. A.; Malhotra, R.; Narang, S. C.; Olah, J. A., Heterogenous catalysis by solid superacids.11. perfluorinated resinsulfonic acid (Nafion-H) catalyzed friedel-crafts acylation of benzene and substituted benzenes[J]. Synthesis-Stuttgart 1978, (9),672-673.
    53. (a) Yamato, T.; Hideshima, C.; Prakash, G. K. S.; Olah, G A., Organic reactions catalyzed by solid superacids.5. Perfluorinated sulfonic acid resin (Nafion-H) catalyzed intramolecular Friedel-Crafts acylation[J]. Journal of Organic Chemistry 1991,56 (12),3955-3957; (b) Olah, G A.; Mathew, T.; Farnia, M.; Prakash, G K. S., Nafion-H catalysed intramolecular Friedel-Crafts acylation: Formation of cyclic ketones and related heterocycles[J]. Synlett 1999, (7), 1067-1068.
    54. LeBlond, C. R.; Andrews, A. T.; Sun, Y. K.; Sowa, J. R., Activation of aryl chlorides for Suzuki cross-coupling by ligandless, heterogeneous palladium [J]. Organic Letters 2001,3 (10),1555-1557.
    55. Heidenreich, R. G.; Kohler, K.; Krauter, J. G. E.; Pietsch, J., Pd/C as a highly active catalyst for Heck, Suzuki and Sonogashira reactions[J]. Synlett 2002, (7), 1118-1122.
    56. Chtourou, M.; Abdelhedi, R.; Frikha, M. H.; Trabelsi, M., Solvent free synthesis of 1,3-diaryl-2-propenones catalyzed by commercial acid-clays under ultrasound irradiation[J]. Ultrasonics Sonochemistry 2010,17(1),246-249.
    57. Kulkarni, A.; Torok, B., Microwave-assisted multicomponent domino cyclization-aromatization:an efficient approach for the synthesis of substituted quinolines[J]. Green Chemistry 2010,12 (5),875-878.
    58. Lopez,1.; Silvero, G.; Jose Arevalo, M.; Babiano, R.; Palacios, J. C.; Bravo, J. L., Enhanced Diels-Alder reactions:on the role of mineral catalysts and microwave irradiation in ionic liquids as recyclable media[J]. Tetrahedron 2007,63 (13), 2901-2906.
    59. Dintzner, M. R.; Little, A. J.; Pacilli, M.; Pileggi, D. J.; Osner, Z. R.; Lyons, T. W., Montmorillonite clay-catalyzed hetero-Diels-Alder reaction of 2,3-dimethyl-1,3-butadiene with benzaldehydes[J]. Tetrahedron Letters 2007,48 (9),1577-1579.
    60. Lei, Z. Q.; Wei, L. L.; Wang, R. R.; Ma, G. F., Baeyer-Villiger oxidation of ketones with hydrogen peroxide catalyzed by silica supported aluminum chloride[J]. Catalysis Communications 2008,9(15),2467-2469.
    61. Davies, L. J.; McMorn, P.; Bethell, D.; Bulman Page, P. C.; King, F.; Hancock, F. E.; Hutchings, G. J., Oxidation of crotyl alcohol using Ti-P and Ti-MCM-41 catalysts[J]. Journal of Molecular Catalysis A:Chemical 2001,165 (1-2), 243-247.
    62. Kawabata, T.; Ohishi, Y.; Itsuki, S.; Fujisaki, N.; Shishido, T.; Takaki, K.; Zhang, Q.; Wang, Y.; Takehira, K., Iron-containing MCM-41 catalysts for Baeyer-Villiger oxidation of ketones using molecular oxygen and benzaldehyde[J]. Journal of Molecular Catalysis A:Chemical 2005,236 (1-2), 99-106.
    63. Saidi, M. R.; Pourshojaei, Y.; Aryanasab, F., Highly Efficient Michael Addition Reaction of Amines Catalyzed by Silica-Supported Aluminum Chloride[J]. Synthetic Communications 2009,39 (6),1109-1119.
    64. Choudhary, V. R.; Mantri, K.; Jana, S. K., Selective esterification of tert-butanol by acetic acid anhydride over clay supported InCl3, GaCl3, FeCl3 and InCl2 catalysts[J]. Catalysis Communications 2001,2 (2),57-61.
    65. Dindulkar, S. D.; Puranik, V. G.; Jeong, Y. T., Supported copper triflate as an efficient catalytic system for the synthesis of highly functionalized 2-naphthol Mannich bases under solvent free condition[J]. Tetrahedron Letters 2012,53 (33), 4376-4380.
    66. Habibi, D.; Nasrollahzadeh, M., Synthesis of arylaminotetrazoles by ZnCl2/AlCl3/silica as an efficient heterogeneous catalyst[J]. Monatshefte Fur Chemie 2012,143 (6),925-930.
    67. Dindulkar, S. D.; Parthiban, P.; Jeong, Y. T., BF3 center dot SiO2 is a simple and efficient Lewis acid catalyst for the one-pot synthesis of polyfunctionalized piperidin-4-ones[J]. Monatshefte Fur Chemie 2012,143 (1),113-118.
    68. Wang, L.; Cai, C., Polystyrene-supported AlCl3:A highly active and reusable heterogeneous catalyst for the one-pot synthesis of dihydropyrimidinones[J]. Journal of Heterocyclic Chemistry2008,45 (6),1771-1774.
    69. Rahmatpour, A., Polystyrene-supported AICl3 as a highly active and reusable heterogeneous lewis acid catalyst for the one-pot synthesis of quinoxalines[J]. Heteroatom Chemistry 2012,23 (5),472-477.
    70. Moghadam, M.; Tangestaninejad, S.; Mirkhani, V.; Mohammadpoor-Baltork, I.; Gharaati, S., High-valent tin(IV) porphyrin:An efficient and reusable catalyst for tetrahydropyranylation of alcohols and phenols under mild conditions[J]. Inorganica Chimica Acta 2010,363 (7),1523-1528.
    71. Rahmatpour, A.; Aalaie, J., One-Pot Synthesis of N-substituted pyrroles catalyzed by polystyrene-supported aluminum chloride as a reusable heterogeneous Lewis acid catalyst[J]. Heteroatom Chemistry 2011,22 (1),85-90.
    72. Rahmatpour, A.; Aalaie, J., Polystyrene-supported aluminum chloride:an efficient and recyclable green catalyst for one-pot synthesis of 14-Aryl or Alkyl-14H-Dibenzo a, j Xanthenes[J]. Heteroatom Chemistry 2011,22 (1), 51-54.
    73. (a) Ackermann, L.; Kaspar, L. T., TiCl4-Catalyzed indirect anti-markovnikov hydration of alkynes:Application to the synthesis of benzo b furans[J]. Journal of Organic Chemistry 2007,72 (16),6149-6153; (b) Ackermann, L.; Kaspar, L. T.; Gschrei, C. J., TiCl4-catalyzed intermolecular hydroamination reactions of norbornene[J]. Organic Letters 2004,6 (15),2515-2518; (c) Basavaiah, D.; Rao, J. S.; Reddy, R. J.; Rao, A. J., TiCl4 catalyzed tandem construction of C-C and C-O bonds:a simple and one-pot atom-economical stereo selective synthesis of spiro-oxindoles[J]. Chemical Communications 2005, (20),2621-2623; (d) Niu, T.; Huang, L.; Wu, T.; Zhang, Y., FeCl3-promoted alkylation of indoles by enamides[J]. Organic & Biomolecular Chemistry 2011,9 (1),273-277; (e) Yang, L.; Lei, C.-H.; Wang, D.-X.; Huang, Z.-T.; Wang, M.-X., Highly efficient and expedient synthesis of 5-hydroxy-lH-pyrrol-2-(5H)-ones from FeCl3-catalyzed tandem intramolecular enaminic addition of tertiary enamides to ketones and 1,3-hydroxy rearrangement[J]. Organic Letters 2010,12 (17),3918-3921; (f) Huang, D.; Wang, H.; Xue, F.; Shi, Y., FeCl3/NaI-catalyzed allylic C-H oxidation of arylalkenes with a catalytic amount of disulfide under air[J]. Journal of Organic Chemistry 2011,76 (17),7269-7274.
    74. Williams, D. B. G.; Simelane, S. B.; Lawton, M.; Kinfe, H. H., Efficient tetrahydropyranyl and tetrahydrofuranyl protection/deprotection of alcohols and phenols with Al(OTf)3 as catalyst[J]. Tetrahedron 2010,66 (25),4573-4576.
    75. Branco, L. C.; Afonso, C. A. M., Ionic liquids as recyclable reaction media for the tetrahydropyranylation of alcohols[J]. Tetrahedron 2001,57(20),4405-4410.
    76. Namboodiri, V. V.; Varma, R. S., Solvent-free tetrahydropyranylation (THP) of alcohols and phenols and their regeneration by catalytic aluminum chloride hexahydrate[J]. Tetrahedron Letters 2002,43 (7),1143-1146.
    77. Khan, A. T.; Choudhury, L. H.; Ghosh, S., Cupric sulfate pentahydrate (CuSO4 center dot 5H2O):a mild and efficient catalyst for tetrahydropyranylation/depyranylation of alcohols and phenols[J]. Tetrahedron Letters 2004,45 (42),7891-7894.
    78. Wang, Y. G.; Wu, X. X.; Jiang, Z. Y., A mild and efficient selective tetrahydropyranylation of primary alcohols and deprotection of THP ethers of phenols and alcohols using PdCl2(CH3CN)2 as catalyst[J]. Tetrahedron Letters 2004,45(14),2973-2976.
    79. Pachamuthu, K.; Vankar, Y. D., Ceric ammonium nitrate-catalyzed tetrahydropyranylation of alcohols and synthesis of 2-deoxy-O-glycosides[J]. Journal of Organic Chemistry 2001,66 (22),7511-7513.
    80. Khazaei, A.; Rostami, A.; Mahboubifar, M, N,N'-Dibromo-N,N '-1,2-ethanediylbis(benzene sulfonamide) as a novel N-bromo reagent catalyzed tetrahydropyranylation/depyranylation of alcohols and phenols under mild conditions[J]. Catalysis Communications 2007,8 (3),383-388.
    81. Stephens, J. R.; Butler, P. L.; Clow, C. H.; Oswald, M. C.; Smith, R. C.; Mohan, R. S., Bismuth triflate:An efficient catalyst for the formation and deprotection of tetrahydropyranyl ethers[J]. European Journal of Organic Chemistry 2003, (19), 3827-3831.
    82. Namboodiri, V. V.; Varma, R. S., Microwave-assisted preparation of dialkylimidazolium tetrachloroaluminates and their use as catalysts in the solvent-free tetrahydropyranylation of alcohols and phenols[J]. Chemical Communications 2002, (4),342-343.
    83. Choudary, B. M.; Neeraja, V.; Kantam, M. L., Vanadyl(IV) acetate:a mild and efficient heterogeneous catalyst for the tetrahydropyranylation of alcohols, thiols and phenols[J]. Journal of Molecular Catalysis A-Chemical 2001,175 (1-2), 169-172.
    84. Babu, B. S.; Balasubramanian, K. K., Mild and efficient tetrahydropyranylation of alcohols-catalysis by lithium percholorate in diethyl ether[J]. Tetrahedron Letters 1998,39 (50),9287-9288.
    85. Karimi, B.; Maleki, W., Lithium triflate (LiOTf) catalyzed efficient and chemoselective tetrahydropyranylation of alcohols and phenols under mild and neutral reaction conditions[J]. Tetrahedron Letters 2002,43 (30),5353-5355.
    86. Kazemi, F.; Kiasat, A. R.; Ebrahimi, S., LiBF4:A mild and efficient catalyst for the tetrahydropyranylation of alcohols and their detetrahydropyranylation[J]. Synthetic Communications 2002,32 (16),2483-2487.
    87. Reddy, P. N.; Kumar, B. S.; Kumar, P. S.; Srinivasulu, N.; Reddy, Y. T.; Rajitha, B., A mild and efficient tetrahydropyranylation and detetrahydropyranylation of alcohols and phenols by VCl3[J]. Khimiya Geterotsiklicheskikh Soedinenii 2005, (11),1634-1636.
    88. (a) Hegedus, A.; Vigh, I.; Hell, Z., Zeolite-catalyzed environmentally friendly tetrahydropyranylation of alcohols and phenols[J]. Synthetic Communications 2004,34 (22),4145-4152; (b) Sabde, D. P.; Naik, B. G.; Hegde, V. R.; Hegde, S. G, Dithioacetalization of carbonyl compounds and tetrahydropyranylation of alcohols over H-Rho zeolite[J]. Journal of Chemical Research-S 1996, (11), 494-495.
    89. Narender, N.; Reddy, K. S. K.; Kumar, M. A.; Rohitha, C. N.; Kulkarni, S. J., Tetrahydropyranylation of Alcohols over Modified Zeolites[J]. Catalysis Letters 2010,134(1-2),175-178.
    90. Chandrasekhar, S.; Takhi, M.; Reddy, Y. R.; Mohapatra, S.; Rao, C. R.; Reddy, K. V., TaCls-silicagel and TaCl5 as new Lewis acid systems for selective tetrahydropyranylation of alcohols and thioacetalisation, trimerisation and aldolisation of aldehydes[J]. Tetrahedron 1997,53 (44),14997-15004.
    91. Ruicheng, R.; Shuojian, J.; Ji, S., Polymer-supported Lewis acid catalysts. I. polystyrene-gallium trichloride complex[J]. Journal of Macromolecular Science: Part A-Chemistry 1987,24 (6),669-679.
    92. Karimi, B.; Khalkhali, M, Solid silica-based sulfonic acid as an efficient and recoverable interphase catalyst for selective tetrahydropyranylation of alcohols and phenols[J]. Journal of Molecular Catalysis A-Chemical 2005,232 (1-2), 113-117.
    93. Khan, A. T.; Parvin, T.; Choudhury, L. H., Silica-supported perchloric acid (HClO4-SiO2):A versatile catalyst for tetrahydropyranylation, oxathioacetalization and thioacetalization[J]. Synthesis-Stuttgart 2006, (15), 2497-2502.
    94. Borujeni, K. P., Silica-gel-supported aluminium chloride:A stable, efficient, selective, and reusable catalyst for tetrahydropyranylation of alcohols and phenols[J]. Synthetic Communications 2006,36(18),2705-2710.
    95. Curini, M.; Epifano, F.; Marcotullio, M. C.; Rosati, O.; Costantino, U., Zirconium sulfophenyl phosphonate as a heterogenous catalyst in tetrahydropyranylation of alcohols and phenols[J]. Tetrahedron Letters 1998,39 (44),8159-8162.
    96. Palaniappan, S.; Ram, M. S.; Amarnath, C. A., Tetrahydropyranylation of alcohols catalyzed by polyaniline salts[J]. Green Chemistry 2002,4 (4),369-371.
    97. Eshghi, H.; Rahimizadeh, M.; Saberi, S., Selective monotetrahydropyranylation of symmetrical diols using P2O5/SiO2 under solvent-free conditions and their depyranylation[J]. Chinese Chemical Letters 2008,19 (9),1063-1067.
    98. (a) Ruicheng, R.; Shuojian, J., New polymer-supported catalysts-polystyrene-titanium tetrachloride complex[J]. Acta Polymerica Sinica 1985, (5),376-379; (b) Tamami, B.; Borujeny, K. P., Chemoselective protection of carbonyl compounds as dithioacetals using polystyrene and silica gel supported AlC3 and FeCl3[J]. Iranian Polymer Journal 2003,12 (6),507-513.
    99. Rahman, A.; Lemay, G.; Adnot, A.; Kaliaguine, S., Spectroscopic and catalytic study of p-modified ZSM-5[J]. Journal of Catalysis 1988,112 (2),453-463.
    100. Kamal, A.; Khan, M. N. A.; Srikanth, Y. V. V.; Reddy, K. S., Al(OTf)3-A highly efficient catalyst for the tetrahydropyranylation of alcohols under solvent-free conditions[J]. Canadian Journal of Chemistry-Revue Canadienne De Chimie 2008,56(12),1099-1104.
    101. Tamami, B.; Borujeny, K. P., Chemoselective tetrahydropyranylation of alcohols and phenols using polystyrene supported aluminium chloride as a catalyst[J]. Tetrahedron Letters 2004,45 (4),715-718.
    102. Devi, B. L. A. P.; Gangadhar, K. N.; Kumar, K. L. N. S.; Shanker, K. S.; Prasad, R. B. N.; Prasad, P. S. S., Synthesis of sulfonic acid functionalized carbon catalyst from glycerol pitch and its application for tetrahydropyranyl protection/deprotection of alcohols and phenols[J]. Journal of Molecular Catalysis A-Chemical 2011,345 (1-2),96-100.
    103. (a) Bigi, F.; Chesini, L.; Maggi, R.; Sartori, G, Montmorillonite KSF as an inorganic, water stable, and reusable catalyst for the knoevenagel synthesis of coumarin-3-carboxylic acids[J]. Journal of Organic Chemistry 1999,64 (3), 1033-1035; (b) Yu, N. F.; Aramini, J. M.; Germann, M. W.; Huang, Z. W., Reactions of salicylaldehydes with alkyl cyanoacetates on the surface of solid catalysts:syntheses of 4H-chromene derivatives[J]. Tetrahedron Letters 2000,41 (36),6993-6996; (c) Robichaud, B. A.; Liu, K. G., Titanium isopropoxide/pyridine mediated Knoevenagel reactions[J]. Tetrahedron Letters 2011,52(51),6935-6938.
    104. Han, J.; Xu, Y.; Su, Y.; She, X.; Pan, X., Guanidine-catalyzed Henry reaction and Knoevenagel condensation[J]. Catalysis Communications 2008,9 (10), 2077-2079.
    105. (a) Antonioletti, R.; Bovicelli, P.; Malancona, S., A new route to 2-alkenyl-1,3-dicarbonyl compounds, intermediates in the synthesis of dihydrofurans[J]. Tetrahedron 2002,58 (3),589-596; (b) Riveira, M. J.; Mischne, M. P., One-pot organocatalytic tandem aldol/polycyclization reactions between 1,3-dicarbonyl compounds and alpha,beta,gamma,delta-unsaturated aldehydes for the straightforward assembly of cyclopentab furan-Type derivatives:New insight into the Knoevenagel Reaction[J]. Chemistry (Weinheim an der Bergstrasse, Germany) 2012,18 (8),2382-8.
    106. Rahmati, A.; Vakili, K.,1-Histidine and 1-arginine promote Knoevenagel reaction in water[J]. Amino Acids 2010,39 (3),911-916.
    107. Hu, Y.; He, Y.-H.; Guan, Z., A simple method for the preparation of functionalized trisubstituted alkenes and alpha,beta,gamma,delta-unsaturated carbonyl compounds by using natural amino acid L-tryptophan[J]. Catalysis Communications 2010,11 (7),656-659.
    108. Karade, N. N.; Gampawar, S. V.; Shinde, S. V.; Jadhav, W. N., L-proline catalyzed solvent-free Knoevenagel condensation for the synthesis of 3-substituted coumarins[J]. Chinese Journal of Chemistry 2007,25 (11), 1686-1689.
    109. Kumbhare, R. M.; Sridhar, M., Magnesium fluoride catalyzed Knoevenagel reaction:an efficient synthesis of electrophilic alkenes[J]. Catalysis Communications 2008,9 (3),403-405.
    110. Yi, W.-B.; Cai, C., Perfluoroalkylated pyridine catalyzed Knoevenagel condensation:an important complement of fluorous catalysis without fluorous solvent[J]. Catalysis Communications 2008,9 (6),1291-1296.
    111. Sabitha, G.; Reddy, B. V. S.; Babu, R. S.; Yadav, J. S., LiCl catalyzed Knoevenagel condensation:Comparative study of conventional method vs microwave irradiation[J]. Chemistry Letters 1998, (8),773-774.
    112. Suresh; Sandhu, J. S., Knoevenagel reaction:alum-mediated efficient green condensation of active methylene compounds with arylaldehydes[J]. Green Chemistry Letters and Reviews 2009,2 (3),189-192.
    113. Venkatanarayana, M.; Dubey, P. K., PPh3-catalyzed knoevenagel condensation:A facile synthesis of 5-(1H-indol-3-yl)Methylene)-2,2-Dimethyl-1,3-Dioxane-4, 6-dione, and their N-alkyl derivatives by using PEG-600 as the reaction medium[J]. Heteroatom Chemistry 2012,23 (1),41-48.
    114.(a) Zhang, X.-R.; Chao, W.; Chuai, Y.-X; Ma, Y.; Hao, R.; Zou, D.-C.; Wei, Y.-G.; Wang, Y., A new N-type organic semiconductor synthesized by Knoevenagel condensation of truxenone and ethyl cyanoacetate[J]. Organic Letters 2006,8 (12),2563-2566; (b) Green, B.; Crane, R. I.; Khaidem, I. S.; Leighton, R. S.; Newaz, S. S.; Smyser, T. E., synthesis of steroidal 16,17-fused unsaturated delta-lactones[J]. Journal of Organic Chemistry 1985,50 (5),640-644; (c) Liu, Y.; Lai, H.; Rong, B.; Zhou, T.; Hong, J.; Yuan, C.; Zhao, S.; Zhao, X.; Jiang, B.; Fang, Q., Titanium-mediated direct carbon-carbon double bond formation to alpha-trifluoromethyl acids:a new contribution to the Knoevenagel Reaction and a high-yielding and stereoselective synthesis of alpha-trifluoromethylacrylic acids[J]. Advanced Synthesis& Catalysis 2011,353 (17),3161-3165.
    115. Cui, H. F.; Dong, K. Y.; Zhang, G W.; Wang, L.; Ma, J. A., Stereoselective construction of fluorinated indanone derivatives via a triple cascade Lewis acid-catalyzed reaction[J]. Chemical Communications 2007, (22),2284-2286.
    116. Leelavathi, P.; Kumar, S. R., Niobium (V) chloride catalyzed Knoevenagel condensation:An efficient protocol for the preparation of electrophilic alkenes[J]. Journal of Molecular Catalysis A:Chemical 2005,240 (1-2),99-102.
    117. Yi, W.-B.; Yin, Y.-Q.; Cai, C., Ytterbium perfluorooctanesulfonate-catalyzed Knoevenagel condensation in a fluorous biphasic system[J]. Organic Preparations and Procedures International 2007,39 (1),71-75.
    118. Attanasi, O.; Filippone, P.; Mei, A., Effect of metal-ions in organic-synthesis.16. knoevenagel condensations of aldehydes and tosylhydrazones with 2,4-pentanedione by copper (ii) chloride-catalyzed reaction[J]. Synthetic Communications 1983,13 (14),1203-1208.
    119. Reddy, G V.; Maitraie, D.; Narsaiah, B.; Rambabu, Y.; Rao, P. S., Microwave assisted knoevenagel condensation:A facile method for the synthesis of chalcones[J]. Synthetic Communications 2001,31 (18),2881-2884.
    120. Prajapati, D.; Sandhu, J. S., Bismuth(iii) chloride as a new catalyst for Knoevenagel condensation in the absence of solvent[J]. Chemistry Letters 1992, (10),1945-1946.
    121. Bartoli, G.; Beleggia, R.; Giuli, S.; Giuliani, A.; Marcantoni, E.; Massaccesi, M.; Paoletti, M., The CeCl3 center dot 7H2O-Nal system as promoter in the synthesis of functionalized trisubstituted alkenes via Knoevenagel condensation[J]. Tetrahedron Letters 2006,47 (37),6501-6504.
    122. Bartoli, G.; Bosco, M.; Carlone, A.; Dalpozzo, R.; Galzerano, P.; Melchiorre, P.; Sambri, L., Magnesium perchlorate as efficient Lewis acid for the Knoevenagel condensation between beta-diketones and aldehydes[J]. Tetrahedron Letters 2008, 49(16),2555-2557.
    123. (a) Tavakoli-Hoseini, N.; Heravi, M. M.; Bamoharram, F. F., Knoevenagel condensation reaction using Bronsted-acidic ionic liquids as green and reusable catalysts[J]. Asian Journal of Chemistry 2010,22 (9),7208-7212; (b) Santamarta, F.; Verdia, P.; Tojo, E., A simple, efficient and green procedure for Knoevenagel reaction in MMIm MSO4 ionic liquid[J]. Catalysis Communications 2008,9 (8), 1779-1781; (c) Yue, C.; Mao, A.; Wei, Y.; Lue, M., Knoevenagel condensation reaction catalyzed by task-specific ionic liquid under solvent-free conditions[J]. Catalysis Communications 2008,9 (7),1571-1574; (d) Ying, A.-g.; Liu, L.; Wu, G.-f.; Chen, X.-z.; Ye, W.-d.; Chen, J.-h.; Zhang, K.-y., Knoevenagel condensation catalyzed by DBU Bronsted ionic liquid without solvent[J]. Chemical Research in Chinese Universities 2009,25 (6),876-881; (e) Chen, X.; Song, H.; Li, X.; Wang, F.; Qian, Y., Catalytic performance of imidazolide basic ionic liquid in Knoevenagel reactions in aqueous media[J]. Chinese Journal of Catalysis 2011,32 (4),693-698.
    124. (a) Hu, W.; Guan, Z.; Deng, X.; He, Y.-H., Enzyme catalytic promiscuity:the papain-catalyzed Knoevenagel reaction[J]. Biochimie 2012,94 (3),656-61; (b) Evitt, A. S.; Bornscheuer, U. T., Lipase CAL-B does not catalyze a promiscuous decarboxylative aldol addition or Knoevenagel reaction[J]. Green Chemistry 2011,13 (5),1141-1142; (c) Feng, X.-W.; Li, C.; Wang, N.; Li, K.; Zhang, W.-W.; Wang, Z.; Yu, X.-Q., Lipase-catalysed decarboxylative aldol reaction and decarboxylative Knoevenagel reaction[J]. Green Chemistry 2009,11 (12), 1933-1936; (d) Lai, Y.-F.; Zheng, H.; Chai, S.-J.; Zhang, P.-F.; Chen, X.-Z., Lipase-catalysed tandem Knoevenagel condensation and esterification with alcohol cosolvents[J]. Green Chemistry 2010,12 (11),1917-1918.
    125. Tran, U. P. N.; Le, K. K. A.; Phan, N. T. S., Expanding applications of metal-organic frameworks:zeolite imidazolate framework ZIF-8 as an efficient heterogeneous catalyst for the Knoevenagel reaction[J]. Acs Catalysis 2011,1 (2), 120-127.
    126. Kan-nari, N.; Okamura, S.; Fujita, S.-i.; Ozaki, J.-i.; Araib, M., Nitrogen-doped carbon materials prepared by ammoxidation as solid base catalysts for Knoevenagel condensation and transesterification reactions[J]. Advanced Synthesis & Catalysis 2010,352 (9),1476-1484.
    127. Parida, K. M.; Mallick, S.; Sahoo, P. C.; Rana, S. K., A fecile method for synthesis of amine-functionalized mesoporous zirconia and its catalytic evaluation in Knoevenagel condensation[J]. Applied Catalysis A:General 2010, 381 (1-2),226-232.
    128. Angeletti, E.; Canepa, C.; Martinetti, G.; Venturello, P., Amino-groups immobilized on silica-gel-an efficient and reusable heterogeneous catalyst for the knoevenagel condensation[J]. Journal of the Chemical Society-Perkin Transactions 11989, (1),105-107.
    129. Brillon, D.; Sauve, G., Silica gel-catalyzed Knoevenagel condensation of peptidyl cyanomethyl ketones with aromatic-aldehydes and ketones-a novel michael acceptor functionality for C-modified peptides-the benzylidene and alkylidene cyanomethyl ketone function[J]. Journal of Organic Chemistry 1992, 57(6),1838-1842.
    130. Murase, T.; Nishijima, Y.; Fujita, M., Cage-catalyzed Knoevenagel condensation under neutral conditions in water[J]. Journal of the American Chemical Society 2012,134 (1),162-164.
    131. Gracia, M. D.; Jurado, M. J.; Luque, R.; Campelo, J. M.; Luna, D.; Marinas, J. M.; Romero, A. A., Modified SBA-1 materials for the Knoevenagel condensation under microwave irradiation[J]. Microporous and Mesoporous Materials 2009, 118(1-3),87-92.
    132. Shang, F.; Sun, J.; Wu, S.; Yang, Y.; Kan, Q.; Guan, J., Direct synthesis of acid-base bifunctional mesoporous MCM-41 silica and its catalytic reactivity in Deacetalization-Knoevenagel reactions[J]. Microporous and Mesoporous Materials 2010,134 (1-3),44-50.
    133. Wang, T.; Wu, G.; Guan, N.; Li, L., Nitridation of MgO-loaded MCM-41 and its beneficial applications in base-catalyzed reactions[J]. Microporous and Mesoporous Materials 2012,148(1),184-190.
    134. Yuan, S.; Li, Z.; Xu, L., Knoevenagel condensation of aldehydes with active methylene compounds catalyzed by MgC2O4/SiO2 under microwave irradiation and solvent-free conditions[J]. Research on Chemical Intermediates 2012,38 (2), 393-402.
    135. Shanmuganathan. S.; Greiner, L.; de Maria, P. D., Silica-immobilized piperazine: A sustainable organocatalyst for aldol and Knoevenagel reactions[J]. Tetrahedron Letters 2010,57 (50),6670-6672.
    136. (a) Bigi, F.; Conforti, M. L.; Maggi, R.; Piccinno, A.; Sartori, G., Clean synthesis in water:uncatalysed preparation of ylidenemalononitriles[J]. Green Chemistry 2000,2 (3),101-103; (b) Trotzki, R.; Hoffmann, M. M.; Ondruschka, B., Studies on the solvent-free and waste-free Knoevenagel condensation[J]. Green Chemistry 2008,10 (7),767-772; (c) Trotzki, R.; Hoffmann, M. M.; Ondruschka, B., The Knoevenagel condensation at room temperature[J]. Green Chemistry 2008,10 (8),873-878.
    137. (a) Saravanamurugan, S.; Palanichamy, M.; Hartmann, M.; Murugesan, V., Knoevenagel condensation over beta and Y zeolites in liquid phase under solvent free conditions[J]. Applied Catalysis A:General 2006,298,8-15; (b) Zhang, Y.; Xia, C, Magnetic hydroxyapatite-encapsulated gamma-Fe2O3 nanoparticles functionalized with basic ionic liquids for aqueous Knoevenagel condensation[J]. Applied Catalysis A:General 2009,366(1),141-147; (c) Zhang, F.; Wang, Y.-X.; Yang, F.-L.; Zhang, H.-Y.; Zhao, Y.-F., Efficient solvent-free knoevenagel condensation between beta-diketone and aldehyde catalyzed by silica sulfuric acid[J]. Synthetic Communications 2011,41 (3),347-356.
    138. Barluenga, J.; Riesgo, L.; Vicente, R.; Lopez, L. A.; Tomas, M., Rearrangement of propargylic esters:Metal-based stereospecific synthesis of (E)-and (Z)-Knoevenagel derivatives[J]. Journal of the American Chemical Society 2007, 129 (25),7772-+.
    139. Qiu, R.; Qiu, Y.; Yin, S.; Song, X.; Meng, Z.; Xu, X.; Zhang, X.; Luo, S.; Au, C.-T.; Wong, W.-Y., Facile separation catalyst system:direct diastereoselective synthesis of (E)-alpha,beta-unsaturated ketones catalyzed by an air-stable Lewis acidic/basic bifunctional organobismuth complex in ionic liquids[J]. Green Chemistry 2010, 12(10),1767-1771.
    140. Yadav, J. S.; Bhunia, D. C.; Singh, V. K.; Srihari, P., Solvent-free NbCl5 catalyzed condensation of 1,3-dicarbonyl compounds and aldehydes:a facile synthesis of trisubstituted alkenes[J]. Tetrahedron Letters 2009,50 (21), 2470-2473.
    141. Marrone, A.; Renzetti, A.; De Maria, P.; Gerard, S.; Sapi, J.; Fontana, A.; Re, N., Condensation of beta-diester titanium enolates with carbonyl substrates:a combined DFT and experimental investigation[J]. Chemistry-A European Journal 2009,15 (43),11537-11550.
    142. (a) Bartoli, G.; Cimarelli, C.; Marcantoni, E.; Palmieri, G.; Petrini, M., Chemoselective and diastereoselective reduction of beta-enamino esters-a convenient synthesis of both cis-gamma-amino and trans-gamma-amino alcohols and beta-amino esters[J]. Journal of Organic Chemistry 1994,59 (18), 5328-5335; (b) Cardillo, G.; Tomasini, C., Asymmetric synthesis of beta-amino acids and alpha-substituted beta-amino acids[J]. Chemical Society Reviews 1996, 25(2),117-&.
    143. Kobayashi, S.; Kakumoto, K.; Sugiura, M., Transition metal salts-catalyzed aza-Michael reactions of enones with carbamates[J]. Organic Letters 2002,4 (8), 1319-1322.
    144. Yang, L.; Xu, L.-W.; Xia, C.-G., Efficient catalytic aza-Michael additions of carbamates to enones:revisited dual activation of hard nucleophiles and soft electrophiles by InCl3/TMSCI catalyst system[J]. Tetrahedron Letters 2007,48 (9),1599-1603.
    145. Srivastava, N.; Banik, B. K., Bismuth nitrate-catalyzed versatile Michael reactions[J]. Journal of Organic Chemistry 2003,68 (6),2109-2114.
    146. Fadini, L.; Togni, A., Ni(Ⅱ) complexes containing chiral tridentate phosphines as new catalysts for the hydroamination of activated olefins[J]. Chemical Communications 2003, (1),30-31.
    147. Chaudhuri, M. K.; Hussain, S.; Kantam, M. L.; Neelima, B., Boric acid:a novel and safe catalyst for Aza-Michael reactions in water[J]. Tetrahedron Letters 2005, 46(48),8329-8331.
    148. Ardizzoia, G. A.; Brenna, S.; Therrien, B., Ni(Ⅱ) and Pd(Ⅱ) pyridinyloxazolidine-compounds:synthesis, X-ray characterisation and catalytic activities in the Aza-Michael reaction[J]. Dalton Transactions 2012,41 (3), 783-790.
    149. (a) Roy, S. R.; Chakraborti, A. K., Supramolecular assemblies in ionic liquid catalysis for Aza-Michael reaction[J]. Organic Letters 2010,12 (17),3866-3869; (b) Xu, L.-W.; Yang, M.-S.; Jiang, J.-X.; Qiu, H.-Y.; Lai, G.-Q., Ionic liquid-functionalized SBA-15 mesoporous material:Efficient heterogeneous catalyst in versatile organic reactions[J]. Central European Journal of Chemistry 2007,5 (4),1073-1083; (c) Chen, X.; Li, X.; Song, H.; Qian, Y.; Wang, F., Solvent-free Aza-Markovnikov and Aza-Michael additions promoted by a catalytic amount of imidazolide basic ionic liquids[J]. Tetrahedron Letters 2011, 52(28),3588-3591.
    150. (a) Lu, X.; Deng, L., Asymmetric Aza-Michael reactions of alpha, beta-unsaturated ketones with bifunctional organic catalysts[J]. Angewandte Chemie-International Edition 2008,47 (40),7710-7713; (b) Bandini, M.; Eichholzer, A.; Tragni, M.; Umani-Ronchi, A., Enantioselective phase-transfer-catalyzed intramolecular Aza-Michael reaction:Effective route to pyrazino-indole compounds[J]. Angewandte Chemie-International Edition 2008, 47 (17),3238-3241; (c) Yamagiwa, N.; Qin, H. B.; Matsunaga, S.; Shibasaki, M., Lewis acid-Lewis acid heterobimetallic cooperative catalysis:Mechanistic studies and application in enantioselective Aza-Michael reaction[J]. Journal of the American Chemical Society 2005,127 (38),13419-13427.
    151. Nguyen, L. T. L.; Nguyen, T. T.; Nguyen, K. D.; Phan, N. T. S., Metal-organic framework MOF-199 as an effcient heterogeneous catalyst for the Aza-Michael reaction[J]. Applied Catalysis A-General 2012,425,44-52.
    152. Li, L.; Liu, Z.; Ling, Q.; Xing, X., Polystyrene-supported Cul-imidazole complex catalyst for Aza-Michael reaction of imidazoles with alpha,beta-unsaturated compounds[J]. Journal of Molecular Catalysis A-Chemical 2012,353,178-184.
    153. Verma, S.; Jain, S. L.; Sain, B., An efficient biomaterial supported bifunctional organocatalyst (ES-SO3-C5H5NH+) for the synthesis of beta-amino carbonyls[J]. Organic & Biomolecular Chemistry 2011,9 (7),2314-2318.
    154. Wang, Y.; Yuan, Y.-Q.; Guo, S.-R, Silica sulfuric acid promotes Aza-Michael addition reactions under solvent-free condition as a heterogeneous and reusable catalyst[J]. Molecules 2009,14 (11),4779-4789.
    155. Khatik, G. L.; Sharma, G.; Kumar, R.; Chakraborti, A. K., Scope and limitations of HClO4-SiO2 as an extremely efficient, inexpensive, and reusable catalyst for chemoselective carbon-sulfur bond formation[J]. Tetrahedron 2007,63 (5), 1200-1210.
    156. (a) Kantam, M. L.; Roy, M.; Roy, S.; Sreedhar, B.; De, R. L., Polyaniline supported Cul:an efficient catalyst for C-N bond formation by N-arylation of N(H)-heterocycles and benzyl amines with aryl halides and arylboronic acids, and Aza-Michael reactions of amines with activated alkenes[J]. Catalysis Communications 2008,9 (13),2226-2230; (b) Kantam, M. L.; Roy, M.; Roy, S.; Subhas, M. S.; Sreedhar, B.; Choudary, B. M.; De, R. L., Polyaniline supported indium chloride:a reusable catalyst for organic transformations in water[J]. Journal of Molecular Catalysis A-Chemical 2007,265 (1-2),244-249.
    157. Das, B.; Chowdhury, N., Amberlyst-15:an efficient reusable heterogeneous catalyst for Aza-Michael reactions under solvent-free conditions[J]. Journal of Molecular Catalysis A-Chemical 2007,263 (1-2),212-215.
    158. Wang, X.; Quan, Z.; Wang, J.-K.; Zhang, Z.; Wang, M., A practical and green approach toward synthesis of N3-substituted dihydropyrimidinones:using Aza-Michael addition reaction catalyzed by KF/Al2O3[J]. Bioorganic & Medicinal Chemistry Letters 2006,16 (17),4592-4595.
    159. Bartoli, G.; Bartolacci, M.; Giuliani, A.; Marcantoni, E.; Massaccesi, M.; Torregiani, E., Improved heteroatom nucleophilic addition to electron-poor alkenes promoted by CeCl3 center dot 7H2O/NaI system supported on alumina in solvent-free conditions[J]. Journal of Organic Chemistry 2005,70 (1),169-174.
    160. (a) Nath, J.; Chaudhuri, M. K., Phosphate Impregnated Titania:An Efficient Reusable Heterogeneous Catalyst for Aza-Michael Reactions Under Solvent-Free Condition[J]. Catalysis Letters 2009,133 (3-4),388-393; (b) Kantam, M. L.; Laha, S.; Yadav, J.; Jha, S., Nanocrystalline copper(II) oxide catalyzed Aza-Michael reaction and insertion of alpha-diazo compounds into N-H bonds of amines[J]. Tetrahedron Letters 2009,50 (31),4467-4469; (c) You, L.; Feng, S.; An, R.; Wang, X.; Bai, D., Silica gel accelerated aza-Michael addition of amines to alpha,beta-unsaturated amides[J]. Tetrahedron Letters 2008, 49 (35),5147-5149; (d) Dhake, K. P.; Tambade, P. J.; Singhal, R. S.; Bhanage, B. M., Promiscuous Candida antarctica lipase B-catalyzed synthesis of beta-amino esters via Aza-Michael addition of amines to acrylates[J]. Tetrahedron Letters 2010,51 (33),4455-4458.
    161. (a) Boroujeni, K. P., Silica gel supported AlCl3 catalyzed Friedel-Crafts acylation of aromatic compounds[J]. Chinese Chemical Letters 2010,21 (12),1395-1398; (b) Boroujeni, K. P.; Shirazi, A. N., Silica Gel and Polystyrene Supported Aluminum Chloride as Heterogeneous Catalysts for the Preparation of alpha-Aminophosphonates[J]. Heteroatom Chemistry 2010,21 (6),418-422.
    162. Xu, T.; Kob, N.; Drago, R. S.; Nicholas, J. B.; Haw, J. F., A solid acid catalyst at the threshold of superacid strength:NMR, calorimetry, and density functional theory studies of silica-supported aluminum chloride[J]. Journal of the American Chemical Society 1997,119(50),12231-12239.
    163. Zhuravlev, L. T., Concentration of hydroxyl groups on the surfece of amorphous silicas[J]. Langmuir 1987,3 (3),316-318.
    164. Rinaudo, M., Chitin and chitosan:Properties and applications[J]. Progress in Polymer Science 2006,31 (7),603-632.
    165. Guibal, E., Heterogeneous catalysis on chitosan-based materials:a review[J]. Progress in Polymer Science 2005,30 (1),71-109.
    166. Pearson, F. G.; Marchessault, R. H.; Liang, C. Y., Infrared spectra of crystalline polysaccharides.5. chitin[J]. Journal of Polymer Science 1960,43(141),101-116.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700