用户名: 密码: 验证码:
农杆菌介导菊苣遗传转化体系的建立及富硫氨基酸基因的导入和表达定位
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
菊苣为菊科多年生草本植物,广泛分布于世界各地,是目前国内外广泛应用的主要饲草和蔬菜之一。菊苣体内含有多种重要的物质如倍半萜烯、内酯、内酯苷、黄酮类、香豆素、花色素甙、有机酸和细胞激肽类等,菊苣虽然营养丰富,但是蛋白质含量低。植物蛋白是包括人类在内的动物界所消耗蛋白质的主要来源。然而,作为日常蛋白质的主要来源,植物蛋白因缺乏某些人体必需氨基酸而营养不够平衡。一般来说,禾谷类蛋白质的赖氨酸含量较低;豆类和蔬菜蛋白质则缺乏含硫氨基酸,如蛋氨酸和半胱氨酸。含硫氨基酸在有效改善奶制品、肉类以及羊毛产量等方面起着决定性的作用,并可增加牲畜的重量。利用基因转化技术可以提高菊苣中含硫氨基酸的含量,改善菊苣品质。
     本研究在建立菊苣高频再生体系和遗传转化体系的基础上,将构建的植物表达载体pCMBIA1302-γ-zein和pCMBIA1302-zeolin通过农杆菌介导法转入菊苣中,获得抗性植株,对抗性植株进行了分子检测和表达定位研究.表明外源基因已整合进菊苣基因组中,并得到表达,为菊苣分子育种提供了基础材料和理论依据。主要研究结果如下:
     1、研究了培养基、基因型、外植体和激素等因素对菊苣再生的影响,建立了菊苣稳定高效再生体系:普那菊苣真叶在MS培养基中添加2.0mg/L 6-BA和0.2mg/L IBA的激素组合,能得到98.92%的愈伤诱导率,在相同培养基中分化率达到93.74%,平均每个外植体的分化芽数达到19.46个,分化芽在添加0.1 mg/L NAA的1/2 MS培养基中,生根率达到98.77%,炼苗后成活率达95%以上。
     2、利用RAPD分子标记技术研究了体细胞无性系的遗传稳定性。从12条引物中筛选出2条RAPD引物对15个来自同一叶片一次和二次体细胞再生的植株和原供体植株DNA进行检测,结果表明菊苣一次直接体细胞再生后代没有体细胞无性系变异,二次再生植株中有1株发生了1条DNA多态性差异,说明本研究建立的经一次组织培养获得的再生植株遗传稳定,不易发生体细胞无性系变异,可用于遗传转化。
     3、通过克隆载体pMD18-T的介导,将γ-zein和zeolin基因与质粒pCAMBIA1302相连,构建了以CaMV35S为启动子的植物表达载体pCM-γ-zein和pCM-zeolin,该载体含有hpt选择标记基因,并将该载体导入农杆菌LBA4404中,为遗传转化奠定了基础。
     4、建立起菊苣遗传转化筛选系统:共培养结束后,转化体在无hyg的预培养基上延迟培养1-2d,在愈伤培养和芽分化阶段添加25mg/L hyg;抗性芽扩繁阶段添加15mg/L hyg,生根阶段添加10mg/L hyg。农杆菌介导转化时以头孢霉素(Cef)为抑菌剂,愈伤培养和分化阶段添加500mg/L,植株再生阶段添加250mg/L。
     5、采用正交设计,利用叶盘转化法,对影响农杆菌介导菊苣遗传转化的预培养时间、农杆菌菌液浓度、浸染时间、共培养乙酰丁香酮(AS)浓度和共培养pH等因素进行了优化,以抗性率为指标,确定了农杆菌介导菊苣叶片转化的适宜条件为:预培养时间为2d,农杆菌悬浮液OD600值为0.4Abs,感染时间10min,共培养基pH值5.4~5.8,共培养时间3d,共培养基中添加100umol/L的AS,通过以上研究,构建了农杆菌介导菊苣叶片的遗传转化体系。用γ-zein和zeoin基因对该优化体系验证结果表明,两基因的Hyg抗性芽发生率平均为13.52%,比基本转化条件下的2.95%提高了3.58倍,证明了优化的参数能大幅度提高转化效率。
     6、对获得的抗性植株进行PCR检测、PCR-Southern、Dot blot、Southern杂交分析、RT-PCR检测、离体叶片潮霉素抗性鉴定,表明外源目的基因随机整合进菊苣基因组中,并在RNA水平上得到了转录。
     7、对转γ-zein基因的阳性植株进行了激光共聚焦显微镜定位观察,结果表明:转化的γ-zein基因主要在转基因菊苣表皮的细胞核中和根尖细胞膜上进行了表达。
     8、本次实验共获得14株转γ-zein基因的阳性植株,阳性率为42.42%,转化率为5.6%,12株转zeolin基因的阳性植株,阳性率为46.15%,转化率为6.38%。
Chicory (Cichorium intybus L.) is a member of the compositae family and a perennial herb, widely distributed in the world. It is one of the major forage and vegetable widely utilized at home and abroad. C. intybus L.contains large numbers of pharmaceutically important phytochemicals such as sesquiterpene lactones, glycosides, flavonoids, coumarins, anthocyanins, organic acids,and cytokinins. C. intybus has rich nutrition, but protein content is very few in its body. Phytoprotein is main source of protein for human and haplo-stomach animal, but the plant nutrition is not overall such as low content lysine and tryptophane in seed protein of grain crop and lack of methionine and cysteine in pulse and greengrocery. Sulphur-containing amino acid (SAAs) plays an imimportant role in improving the milk and meat quality and wool yield and the weight of livestock. It can increase the content of SAAs in C. intybus L.and improve the quality by utilizing the genetic transformation technology.
     Based on the construction of high frequency regeneration system and genetic transformation system of chicory (C.intybus L.).γ-zein and zeolin gene were transformed into cnicory leaf disc via Agrobacterium infection transformation. The transformed plants were gained. Molecule detection and expression location were carried out. It was showed that the exogenous gene had integrated into the genome of chicory. Now the major results studied in the paper are showed as followings:
     1. Effect of basal medium, genotype, explants, hormone type and concentration on regeneration of chicory were studied and a reliable and efficient regeneration system was established. The optimal regeneration medium for the euphylla of C.intybus L.cv.Puna was MS+6-2.0 mg/L BA +0.2mg/L IBA, with the max callus induction frequcy being 98.92% and the regeneration rate being 93.74%, the mean number of shoots per explan being 19.46.The regenerated shoots were transferred to 1/2 MS medium supplemented with 0.1mg/L NAA for rooting, and it was very easy to root and the rooting rate was 98.77% and survival rate was over 95%.
     2. The genetic stability of regenerated plants was analyzed using RAPD markers. The results of RAPD amplification showed that the genetic stability of the regenerated plantlets with the first culturing was maintained, though slight variations were found with the second-culturing regeneration plant. This suggested that in vitro regeneration were a good rapid propagation way to obtain genetic stable descends of chicory.
     3.Introduced by the cloning vector pMD18-T,γ-zein and zeolin gene and plasmid pCAMBIA1302 were joined, thus plant expression vector pCAM-γ-zein and pCAM-zeolin with selective marker hpt gene were constructed. The gene was controlled by CaMV35S promoter. The recombinant plasmid was transformed into Agrobacterium tumefaciens LBA4404 for genetic transformation.
     4.Establishment of a genetic transformation selection system for chicory:Transformant was cultured on pre-medium with no hyg for 1-2d after the co-culture, then add 25mg/L hyg at callus cultivation and shoot regeneration stage, while 15mg/L hyg at enlarge propagation period and 10 mg/L hyg at rooting period. Cefotaxime (Cef) was used for the bacteriostasis in Agrobacterium infection transformation and it was 500mg/L at callus cultivation and regeneration stage while 250mg/L Cef at rooting stage.
     5.Optimized protocols of Agrobacterium-mediated transformation for chicory and plant regeneration were developed by orthogonal design.The results indicated that the following conditions were outstanding for the improvement of transformation efficiency of chicory:Addition of 2mg/L6-BA and 0.2mg/LIBA to leaf Pre-culture medium, Pre-culture time of 2d, bacterial suspension OD600 of 0.4Abs, infection time of 10min, co-culture medium pH of 5.4-5.6, co-culture time of 3d and supplementation of 100umol/L acetosyringone to Agrobacterium co-culture medium.On the basis of the above studies, Agrobacterium-mediated transformation system of chicory euphyll has been set up. For verification the Agrobacterium-mediated transformation system,γ-zein gene and zeolin gene were incorporated into genomes of chicory, the result showed that the average resistant frequency of hyg was 13.52%.and it was 3.58 times more than that of basic transformation condition.
     6. Resistant plants were detected by PCR assay. PCR-Southern、Dot blot、Southern hybridization, RT-PCR detection and analysis identification of hygromycin resistance of in vitro leaves, and the result showed that the exogenous gene had integrated into the genome of chicory and were transcribed on RNA level.
     7.γ-zein gene was expressed in cell nucleus of leaf epidermis cell and cell membrane of root tip of transgenic chicory by confocal microscopy localization
     8. 14 positive plants withγ-zein gene and 12 positive plant with zeolin were obtained by this experiment,the positive plant frequency of transformationγ-zein gene and zeolin gene was 42.42% and 46.15% based on numbers of PCR, respectively. The averaged transformation frequency of two genes was 5.6% and 6.38%, respectively, based on numbers of resistant frequency and PCR of regenerated transgenic plants.
引文
[1]王关林,方宏筠.植物基因工程原理与技术[M].北京:科学出版社,1998.477
    [2]李晨.全球转基因作为种植面积突破1亿公顷大关http://www.sciencenet.cn/htmlnews/2007.1312042581562736.html.2007-1-31/2007-4-18
    [3]Mattews BF and Hughes CA.Nutritional improvement of the aspartate family of amino acids iedible crop plants.Amino acids.1993,4:21-34
    [4]Habben JE and Larkins BA.Genetic modification of seed proteins.Current Opinion iBiotechnology 1995,6:171-174
    [5]Sun SSM and Larkins BA.Transgenic plants for improving seed storage proteins In:Transgenic Plants.1993, vol.1, pp339-371
    [6]Jain.R.K, J.B.Chowdhury,D.R.Sharma.Genotypic and media effects on plant regeneration from cotyledon explants culture of some Brassica species.Plant Cell, Tissue and Organ Culture,1988, 14:197-206
    [7]李世军,孟征,李德葆,基因组对芸薹属作物原生质体培养及植株再生的影响[J].遗传学报,1994,21(3):222-226
    [8]Szasz A,Nervo G,Fari M.Screening for in virto shootforming capacity of seeding explants in red pepper(Capsicun annuum L.)genetypes and efficient plant regeneration using thidiazaron.Plant CellRep.1995,14(10):666-669
    [9]朱路英,刘玲,孟祥栋等.叶用莴苣离体培养和植株再生[J].园艺学报,2002,29(2):181-182;
    [10]黎定军,张宝玺,赵开军等.辣椒子叶高效植株再生体系的建立[J].园艺学报,2002,29(1):25-29
    [11]候爱菊,朱延明,杨爱馥等.诱导黄瓜直接器官发生只要影响因素的研究[J].园艺学报,2003,30(1):101-103
    [12]陶兴林,黄永红,赵长增等.厚皮甜瓜品种离体培养再生植株能力的基因型差异研究[J].果树学报.2005.22(3):252-255
    [13]武剑,龚义勤,邓波等.萝卜离体再生的影响因素[J].中国蔬菜,2003(6):6-8
    [14]潘瑞炽主编.植物组织培养(第三版)[M].江门:广东高等教育出版社,2003:35-36,39,56-57
    [15]张松,达克东,曹辰兴等.韭菜组织培养高频植株再生体系的研究[J].园艺学报,2002,29(2):141-144
    [16]Ramarosandratana A,Harvengt L,Bouvet A,et al. Effeets of earbohydrate souree,polyethylene glyeol and gellan fum coneentration on embryonal-suspensor mass(ESM) proliferation and maturation of maritime pine somatic embryos. In Vitro Cell.Dev.Biol-Plant 2001,37:29-34.
    [17]George E F.Plant Propagation by Tissue Culture Part 1 The Technology,2nd ed.Exegetics Ltd, 1993,Edington.
    [17]Tang G.X., WJ.Zhou, H.Z.Li, et al. Medium,explant and genotype factors influencing the shoot regeneration in oilseed Brassicas speeies. Journal of Agronomy&Crop Seienee,2003,189:351-358
    [19]Millam S, Davidson D, Powell W. The use of flax(Linum usitatissimum) as a model system for Studies on organogenesis in vitro:the effete of different carbohydrates. Plant Cell Tiss.Org.Cult.1992,28:163-166.
    [20]刘进生,韦庆华,姜旭红.培养基中NAA和6-BA浓度对红叶石楠外植体的影响[J].中国农学通报,2005,09:45-47
    [21]De Jong J, Rademaker W, Worragen ME Restoring adventitious shoot formation on chrysanthemum leaf explants following co-cultivation with Agrobacterium tumefaciens. Plant Cell, Tissue Organ Cult,1993,32:263-270
    [22]Teixeira da Silva J A, Fukai S. Gene introduction method affects regeneration of in vitro and greenhouse-grown chrysanthemum (Dendranthema x grandiflora (Ramat.)Kitamura).Afr J Bioteehnol.2003a,2:114-123
    [23]贾世荣,曹冬孙.转基因植物[J].植物学通报,1992,9(2):3-15
    [24]张献龙,唐克轩主编.植物生物技术[M],科学出版社,2004.
    [25]Barcelo P and Lazzeri P A.1998. Direct gene transfer:chemical, electrical and physical methods.In:Transgenic plant research:pp35-55.Edited by Keith Lindsev, Harwood Academic Publishers
    [26]王关林,方宏箔主编,,植物基因工程[M].学出版社,2002
    [27]Dai SH,Zheng P,Marmey P,et al. Comparative analysis of transgenic rice plants obtained by Agrobacterium-mediated transformation and particle bombardment, Molecular Breeding, 2001,7:25-33
    [28]Hamilton C M,Frary A,Lewis C,et al. Stable transfer of intact high molecular weight DNA into plant chromosomes.Proc Natl Acad Sci USA.1996,93(18):9975-9979
    [29]Shibata D, Liu YG. Agrobacterium-mediated plant transformation with large DNA fragments. Trends Plant Sci,2000,5:354-357
    [30]Ehilton MD,Randall K Saiki,Narendra Yadav.T-DNA from Agrobacterium Ti plasmid is in the nuclear DNA fraction of crown gall tumor cells[J].Proc Natl Acad Sci USA.1980 July,77(7):4060-4064
    [31]Nester E W, Gorden M P, Amasino R.Crown gall:a molecular and physiological analysis [J].Annual Review of Plant Physiology,1984,35:387-413
    [32]贾世荣,曹冬孙.转基因植物[J].植物学通报,1992,9(2):3-15
    [31]Smith,R.H., Hood, E.E.Agrobacterium tumefaciens transformation of monocotyledons.Crop Sci,1995,35(2):301-309
    [32]Fullner,K.J.,Lara,J.C.,Nester,E.W. Pilus assembly by Agrobacterium T-DNA transfer genes.Sci,1996,273:1107-1109
    [33]Sundberg,C.,Meek,L.,Carroll,K.,et al.VirE1 Protein mediates export of the single-stranded DNA-binding protein VirE from Agrobacterium tumefaciens into plant cells. J.Bacteriol,1996,178(4):1207-1212
    [34]Gelvin, S.B.Agrobacterium VirE protein can form a complex T strands in the plant cytoplasm.J.Bacteriol.1998,180(16):4300-4302
    [35]Deng,W,Chen,L,Liang,X,et al.VirE is a specific molecular chaperone for the export sing-stranded-DNA-binding protein VirE in Agrobacterium.Mol.Microbiol.,1999,31(6):1795-1807
    [36]Sundberg,C.D.,Rean,W.The Agrobacterium tumefaciens chaperone-like protein,VirEl,interacts with VirE at domains reguired for single-stranded DNA binding and cooperative interaction. J.Bacteriol.,1999,181(21):6850-6855
    [37]Wenck. A., Coako, M., Kanevski, I., et al.Frequent collinear long transfer of DNA inclusive of the whole binary vector during Agrobacterium-mediated transformation. Plant Mol.Biol.1997, 34:913-922
    [38]Yang F, Moss LG, Phillips Jr G N.The molecular structure of green fluorescent protein[J].Nature Biotech,1996,14:1246-1251
    [39]Prasher,D.,Eckenrode,V.,Ward,W.,et al.Primary structure of the Aequorea Victoria green-fluorescent protein[J].Gene.l992,111:229-33
    [40]刘祖强,胡敏,齐义鹏.绿色荧光蛋白的结构、发光机制及其应用研究[J].武汉大学学报,2000,46(2):211-214
    [41]Chung, BC:Kinl.JK and Nahm, BH et al. In planta visual monitoring of grcen fluoreseent Protein in transgnic rice plants.MolCells.2000,10(4):411-414
    [42]Harper,BK;Mabon,SA and Leffel,SM. Green fluorescent protein as a marker for expression of a second gene in transgenic plants. Nat Biotechnol,1999,17(11):1125-1129
    [43]Kim CK,Chung JD,Park SH,et al.Agrobacterium tumefaciens-mediated transformation of Rosa hybrids using the green fluorescent protein(GFP)gene[J].Plant Cell,Tissue and Organ Culture,2004,78:107-111
    [44]Zheng SJ,Henken B,Ahn YK,et al. The development of a reproducible Agrovacterium tumefaciens transformation system for garlic(Allium sativurn L.)and theproduction of transgenic garlic resistant to beet armyworm(Spodoptera exigua Hubner)[J].Molecular Breeding,2004,14:293-307
    [45]Zhu SW,Qin HM,Sun JS,et al.Application of GFP Gene in the Study of insect-Resistant Transgenic Plants[J].Acta Botanica Sinica,2003,45(6):654-658
    [46]黄国存,张寒霜,高鹏等.GFP基因在棉花转化中的应用[J].遗传,2001,23(2):131-134
    [47]杨国顺,谢丙炎,杨宇红等应用绿色荧光蛋白报告基因优化辣椒的遗传转化体系[J].园艺学报,2004,31(6):737-742
    [48]程在全,工玉梅,曾黎琼等.绿色荧光蛋白基因作为报告基因在水稻基因转化中的应用研究[J].云南植物研究,2002,24(3):341-351
    [49]Vain P,Worland B,Kohli A et al. The green fluorescent protein(GFP)as a vital screenable marker in rice transformation.Theor Appl Genet,2000,96:164-169
    [50]Molinier J,Himber C,Hahne G Use of green fluorescent protein for detection of transformed shoots and homozygous offspring.Plant Cell Rep,2000,19(3):219-223
    [51]Niwa Y,Hirano T,Yoshimoto K et al.Non-invasive quantitative detection and applications of non-toxiv,S65 T-type green fluorescent protein in living plants.Plant J,1999,18(4):455-463
    [52]Hunson LC,Chamberlain D,Stewart JR CN.GFP-tagged pollen to monitor pollen flow of transgenic plants[J].Molecular Ecology Notes,2001.1:321-324
    [53]贾洪革,吕玲飞,方荣祥等.用绿色荧光蛋白监测转基因植物中选抒标记基因的消除[J].生物工程学报2004,20(Ⅰ):10-15
    [54]Peng,J. Transgenic indica rice plants. Theor. Appl. Genet,1992,83:855-863
    [55]Aldemita,RR,and Hodges,TK. Agrobacterium tumefaciens-mediated transformation of japonica and indica rice varieties Planta,1997,199:612-617
    [56]Dalton S J,Bettany A J E,Timms E,et al.Transgenic plants of Lolium multiflorum.Lolium perenne,Festuca arundinacea and Agrostis stoloni.Wera by silicon carbide fibre-mediated transformation of cell suspension cultures[J].Plant Science Limerick,1998,132(1):31-43
    [57]Rathore,K.S.et al.Use of bar as selectable marker gene and for the production of herbicide-resistant rice plants from protoplasts.Plant MoL Biol.1993,21:871-884
    [58]Datta,S.K.et al. Herbicide-resistant indicia rice plants from IRRI breeding line IR72 after PEG-mediated transformation of protoplasts. Plant Mol Biol.1992,20:619-629
    [59]Kramcr,CM;Lima,JA and Reichek,N et al(1993) Regional differences in function within noninfarcted myocardium during left ventricular remodeling. Circulation. Sep;88(3):1279-88
    [60]Negrotto, D, Jolley. M. and Beer. S. et al.The use of phosphomannose isomerase as a selectable marker to recover transgenic maize plants (Zea mays L.)via,Agrobacterium transformation. Plant Cell Reports.2000,19:798-803
    [61]Meyer W,Zhang G,Lu S,et al.Transformation of Kentucky bluegrass(Poa pratensis L.)with betaine aldehyde dehydrogenase gene for salt and drought tolerance [A].Annual Meetings Abstracts American Society of Agronomy, Crop Science Society of America,SoilScience Society of American[C].MinneapolisMinnesota,2000,167
    [62]Yokoi,S.et al.Tapetum-specific expression of the Osg6B promoter-β-glucuronidase gene in transgenic rice Plant Cell Rep.1997b,16:363-367
    63] Zhang,S.Regeneration of fertile transgenic indica (group 1)rice plants following microprojectile transformation of embryogenic suspension culture cells. Plant Cell Rep.1996,15:465-469
    [64]Lehman C W,Trautman J K,Carroll D.Illegitimate recombination in Xenopus:characterization of end-joined junctions[J].Nucleic Acids Research,1994,22:434-442
    [65]Puchta H.Repair of genomic double-strand breaks in somatic cells by one-side invasion of homologous sequences [J].The Plant Journal,1998,13:331-339
    [66]De Buck S, Jacobs A,Van Montagu M,et al.The DNA sequences of T-DNA junctions suggest that complex T-DNA loci are formed by a recombination process resembling T-DNA integration[J].ThePlant Journal,1999,20:295-304.
    [67]Mayerhofer R,Koncz-Kalman Z.Nawrath C.et al.T-DNA integration:a model of illegitimate recombination in plants[J].EMBO Journal,1991,10(3):679-704.
    [68]Thomas C M,Jones D A.English J J.el al.Analysis of the chromosomal distribution of transposon-carrying T-DNAs in tomato using the inverse polymerase chain reaction[J].Molecular &General Genetics,1994,242:573-585
    [69]Robbins T P.Gerats A G M,Fiske H,et al.Suppression of recombination in wide hybrids of Petunnia hybridida as revealed by genetic mapping of marker transgenes[J].Theoretical and Applied Genetics,1995,90:957-968
    [70]Smith D,Yanai Y,Liu Y G,et al.Charaterization and mapping of Ds-GUS-T-DNA lines for targeted insertional mutagenesis[J].The Plant Journal,1996,10:721-732
    [71]De Neve M,De Buck S,Jacobs A,et al.T-DNA integration patters in co-transformed plant cells suggest that T-DNA repeats originate from ligation of separate T-DNAs[J].The Plant Journal,1997,11:15-29
    [72]Gheysen G, Angenon G, Van Montagu M. Agrobacterium-mediated plant transformation:A scientifically intriguing story with significant applications[J].Transgenic Plant Research,1998,1-33
    [73]Meyer, P, Heidmann I.Plant J,1993,4,89-10
    [74]闫新甫.转基因植物[M].北京:科学出版社.2003.1.
    [75]S Linquist.Annu.Rev.Biochem,1986,55.1151
    [76]Jacques Landry.A linear model for quantitating the accumulation of zeins and their fractions(α+δ, β & γ)in developing endosperm of wild-type and mutant maizes[J].Plant Science,2002, 163:111-115
    [77]Argos P.Pedersen K,Marks M D,et al,A structural model for maize zein proteins.J Biol Chen, 1982,257:9984-9990
    [78]Lee K M,Jones R A,Dabby A,et al.Genetic regulation of storage protein content in maize endosperm.Biochem Gen,1976,14:641-650
    [79]Pederen K,Argos P,Naravana S V,et al. Sequence analysis and characterization of a high sulfur zein proteion of Mr 15000.J Biol chem.,1986,261:6279-6284
    [80]Coleman CE, Larkins.BA The prolamins of maize. In Seed Proteins, P.R. Shewry and R. Casey, eds (Dordrecht, The Netherlands:Kluwer Academic Publishers), pp.1998,109-139
    [81]Esen A. Proposed nomenclature for the alcohol-soluble proteins (zeins) of maize (Zea mays L.). J. Cereal Sci.1987,5:117-128
    [82]Wilson CM. Multiple zeins from maize endosperm characterized by reverse-phase high performance liquid chromatography. Plant Physiol.1991,95:777-786
    [83]Woo YM, Hu DWN, and Larkins BA, et al. Genomics analysis of genes expressed in maize endosperm identifies novel storage proteins and clarifies patterns of zein gene expression. Plant Cell,2001,13:2297-2317
    [84]谢实勇.瘤胃保护性含硫氨基酸应有研究进展.《饲料广角》.2003.11.21-24
    [85]关宁.含硫氨基酸基因对烟草、百脉根的遗传转化及表达定位的研究[D].北京,中国农业科学院,2009
    [86]Lawrence MC,Suzuld E,Varghese JN,et al.The three-dimensional structure of the seed storage protein phaseolin at A resolution.EMBO J,1990.9:9-16
    [87]Hoffman LM,Donaldson DD and Herman EM.A modified storage protein is synthesized processed.and degraded in the seeds of transgenic plants.Plant Mol.Biol.1988,11:717-729
    [88]Reis P J,Effects of amino acids on the growth and properties of wool.Physiological and Environmental Liminations to Wool Growth,Amikdale:University of New England Publishing Unit,1979,223-242
    [89]Radcliffe B C,Hynd P I,Benevenga N Jet al.Effects of cysteine ethyl ester supplenments on wool growth rate.AustJ.Agri.Res,1985,36:709-715
    [90]Schroeder H E,Khan M R I,Kinbb W R,et al.Expressing of a chicken ovalbumin gene in three Lucerne cultivars[J].Aust J Plant Physiol,1991,18:495-505
    [91]De Clercq A, Vandewlele M, Van DJ, et al.Stable accumulation of modified 2S albumin seed storage proteins with higher methionine contents in transgenic plants.Plant Physiol.1990,94:970-979
    [92]Hoffman LM, Donaldson DD, Bookland R, et al.Synthesis and protein body deposition of maize 15-kDa zein in transgenic tobacco seeds, EMBO J.1987,6:3213-3221
    [93]Altenbach SB, Kuo CC, Staraci LC, et al.Accumulation of a Brazil nut albumin in seeds of transgenic canola results in enhanced levels of Reed nmtein methionine.Plant Mol.Biol.1992, 18:235-245
    [94]Wandelt C L, Khan M R I, Craig S, et al.Vicilin with carbory-terminal KDEL is retained in the endoplasmic reticulum and accumulates to high levels in the leaves of transgenic plants [J].Plant J,1992,2:181-192.
    [95]Baggo S, Sutton D, Kemp J D, Sengupea-Gopalan C, Constitutive expression of the beta-phaseolin gene in different tissues of transgenic alfalfa does not ensure phaseolin accumulation in non-seed tissue[J].Plant Mol Biol,199219:951-958
    [96]Ealing P M,Hancock K R,White D W R,Expression of the pea albumin 1 gene in transgenic white clover and tobacco[J].Transgenic Res,1994,3:344-354.
    [97]Tabe L M,Wardley-Richardson T M,Ceriotti A,et al.Genetic engineering of grain and pasture legumes for improved nutritive value[J].Genetica,1993:181-200
    [98]Khan M R I,Cerott A,Tabe L.et al.Accumulation of a sulphur-rich seed albumin from sunflower in the leaves of transgenic cubterranean clover[J].Transgenic Res,1996,5:179-185
    [99]Bellucci M, Lazzari B, Viotti A, et al.Differential expression of a y-zein gene in Medicago sativa, Lotus corniculatus and Nicotiana tabacum. Plant Sci.1997.127:161-169
    [100]王广立,唐茂芝,林忠平.富硫蛋白基因对牧草百脉根的转化[J].植物学报,1994,36(3):204-208
    [101]吕德扬,范云六,俞梅敏等.苜蓿高含硫氨基酸蛋白转基因植株再生[J].遗传学报,2000,27(4):331-337
    [102]Wang Z Y,Ye X D,Nagel J, et al. Expression of a sulphur rich sun-flower albumin gene in transgenic tall fescue (Festuca arundinacea Schreb.) plants[J]. Plant Cell Rep,2001,20:213-219
    [103]Christionsen P,Gibson J M, Moore A,et al. Transgenic Trifolium repens with foliage accumulating the high sulphur protein,sunflower seed albumin[J].Transgenic Res,2000,9:103-113
    [104]Sharma S B,Hancock K R,Ealing P M,et al.Expression of a sulfur-rich maize seed storage protein,8-zein,in while clover(Trifolium repens)to improve forage quality. Mol Breed,1998,4:435-448
    [105]Michele Bellucci.Sub-cellular localization of zeolin of zeins in transgenic plantsgenic plants[D].2002.
    [106]Bellucci M, Alpini A, Paolocci F, Cong L, Arcioni S. Accumulation of maize y-zein and y-zein: KDEL to high levels in tobacco leaves and differential increase of BiP synthesis in transformants. Theor Appl. Genet.2000,101:796-804
    [107]Bellucci M, Alpini A, Arcioni S. Zein accumulation in forage species (Lotus corniculatus and Medicago sativa) and coexpression of the y-zein:KDEL and y-zein:KDEL polypeptides in tobacco leaf. Plant Cell Rep.2002b,20:848-856
    [108]Michele Bellucci,Francesca De Marchis. Zeolin is a recombinant storage protein that can be used to produce value-added proteins in alfalfa (Medicago sativa L.). Plant Cell Tiss Organ Cult,2007, 90:85-91
    [109]Bellucci M, Lazzari B, Viotti A, Arcioni S.Differential expression of a y-zein gene in Medicago sativa, Lotus corniculatus and Nicotiana tabacum. Plant Sci.1997,127:161-169
    [110]张德纯,王德槟,王小琴.菊苣的软化栽培技术[J].北方园艺,1996(2):1-3
    [111]饶路路.菊苣[J].蔬菜,1997(3):12-13
    [112]陈默君,贾慎修主编,中国饲用植物[M].中国农业出版社.2000
    [113]Rumball,W. Grasslands Puna chicory(cichorium intybus L.)NZJ,Exp.Agric.1986,14:105-107
    [114]Westerdijk,C.E.Chicory(Cichorium intybus L.)for inulin production[J].Agri Food Industry Hi-Tech,1997,8:1-5
    [115]Sanderson,M.A.,Labreveux,M.,Hall,M.H.Nutritive value of chicory and English plantain forage.Crop Science.Crop Science Society of America,Madison,USA,2003,43(5):1747-1804
    [116]孙学忠,等.菊苣的栽培技术[J].中国野生植物,1989,(3):29-30.
    [117]刘大林.优质牧草高效生产技术手册.扬州:上海科学技术出版社.2004:187-189
    [118]蔡雁平,艾辛,刘明月等.菊苣氮钾肥用量和肉质根无土软化栽培方式[J].湖南农业大学学报(自然科学版),2004(4):14.
    [119]盛国华.菊苣纤维可促进人体钙吸收[J].食品工业科技,2000(4):4.
    [120]张冰,胡京红,刘小青等.菊苣正乙烷提取物药理活性研究[J].中药与监床,1998,14(5):16
    [121]Nicola C, Vincenzo BV, Harvesting time on yield and quality of stens. Sorece, Acta Horticulturae.2000,5(33):505-510
    [122]刘大林,张万鑫欧洲菊苣种子繁育技术的研究[J].草与畜杂志,1998,6:26
    [123]Binding H, Nehls R, Kock R, et al. Comparative studies on protoplast regeneration in herbaceous species of the Dicotyledoneae class. Z. Pflanzenphysiol,1981,101:119-130
    [124]Rambaud C, Dubois J & Vasseur J.Some factors related to protoplast culture and pgdebourg). Agronomie,1990,10:767-772
    [125]Varotto S, Lucchin M & Parrini P. Plant regeneration from protoplasts of Italian red chicory (C. intybus L.). J. Genet. Breed.1997,51:17-22
    [126]Chanabe C, Burrus M & Aibert G.Factors affecting the improvement of colony formation from sunflower protoplasts. Plant Sci.1989,64:125-132
    [127]Lenee P & Chupeau Y.Isolation and culture of sunflower protoplast (Helianthus annuus L.):factors influencing the viability of cell colonies derived from protoplasts. Plant Sci.1986,43:69-75
    [128]E. Nenz, S. Varotto, M. Lucchin. An efficient and rapid procedure for plantlet regeneration from chicory mesophyll protoplasts. Plant Cell, Tissue and Organ Culture.2000,62:85-88
    [129]Decout, E.,Dubois, T., Guedira, M., et al. Role of temperature as a triggering signal for organogenesis or somatic embryogenesis in wounded leaves of chicory cultured in vitro. J. Exp. Bot.,1994,45:1859-1865
    [130]Bellettre, A.,Couillerot, J. P.,Vasseur, J. Effect of glycerol on somatic embryogenesis in Cichorium leaves. Plant Cell Rep.19:26-31; 1999
    [131]Yasseen, M. Y.; Splittstoesser, W. E. Somatic embryogenesis in witloof chicory through leaf suspension culture. Plant Cell Rep.1995,14:804-806
    [132]Buhara Yucesan Arzu Ucar Turker Ekrem Gurel.TDZ-induced high frequency plant regeneration through multiple shoot formation in witloof chicory (Cichorium intybus L.) Plant Cell Tiss Organ Cult.2007,91:243-250
    [133]Vasseur, J. Action de lacide indolyl-acetique, de la kinetine et de l'hydrazide maleique sur la neoformation des bourgeons et al.synthesed RNA obsevees au cours dela culture in vitro de fragments de feuilles etiolees dendive. C. R. Acad. Sci. Paris 189:93-96; 1979a.
    [134]王绍明,张霞.菊苣花瓣的组织培养[J].植物生理学通讯,2001,37(3):231
    [135]尚宏芹,于士梅,戴洪义.菊苣的组织培养繁殖的研究[J].青岛农业大学学报(自然科学版)2007.4(1):31-34
    [136]程林梅,曹秋芬,高洪文,等.菊苣再生体系的建立及转AFL基因的研究[J].草地学报,2004,12(3):199-203
    [137]韩晓玲,王玉华,李红民等.菊苣高效不定芽直接发生及其植株再生[J].核农学报2006,20(6):482-485.
    [138]宋书锋,曹凤,杨培志等.普那菊苣高效再生体系建立和遗传转化研究[J].分子植物育种,2006,4(4):565-570
    [139]张丽君,程林梅,李贵全.影响普那菊苣高效再生相关因素的研究[J].山西农业科学2008,36(2):69-72
    [140]Sun LY. Touraud G, Charbonnier C & Tepfer D.Modification of phenotype in Belgian endive (Cichorium intybus) through genetic transformation by Agrobacterium rhizogenes:conversion from biennial to annual flowering. Transgenic Res.1991,1:14-22
    [141]Martin T, Wohner RV, Hummel S, et al.1992. The GUS reporter system as a tool to study plant gene expression.In:Gallagher SR (ed) GUS Protocols:Using the GUS Gene as a Reporter of Gene Expression (pp.23-43). Academic Press, San Diego, California
    [142]Vermeulen A, Vaucheret H, Pautot V & Chupeau Y. Agrobacteriumediated transfer of a mutant Arabidopsis acetolactate synthase gene confers resistance to chlorsulfuron in chicory (Cichorium intybus L.). Plant Cell Rep.1992,11:243-247
    [143]Fanny Frulleuxl, Guy Weyens & Michel Jacobs. Agrobacterium tumefaciens-mediatated transformation of shoot-buds of Chicory Plant Cell, Tissue and Organ Culture.1997,50:107-112
    [144]S. Pieron & B. Watillon.Expression of a chimeric GUS gene construct as a tool to study nodule morphogenesis in chicory leaves.Plant Cell, Tissue and Organ Culture.2001.66:159-165
    [145]高洪文.新型优良牧草—菊苣[J].山西农业科学,1990(5):28-29
    [146]Bais HP, Ravishankar GA. Cichorium intybus L.—cultivation, processing, utility, value addition and biotechnology,with an emphasis on current status and future prospects. J Sci Food Agric.2001,18:467-484
    [147]何轶,郭亚健,高云艳.菊苣根化学成分研究[J].中国中药杂志,2002,27(3):209-210
    [148]Nicola C,Vincenzo BV.Harvesting time on yield and quality of stens.Sorece,Acta Horticulturae.2000,5(33):505-510
    [149]刘大林,张万鑫.欧洲菊苣种子繁育技术的研究[J].草与畜杂志,1998,6:26
    [150]P. profumo,P.gastaldo,L.caffaro, et al. Callus Induction and Plantlet Regeneration in Cichorium intybus L.:II. Effect of Different Hormonal Treatments. Protoplasma,1985,126:215-220
    [151]梁美霞,戴洪义.苹果组培苗离体叶片诱导不定芽分化[J].湖南农业大学学报(自然科学版)2009,05:45-48
    [152]Buhara Yucesan Arzu Ucar Turker Ekrem Gurel.TDZ-induced high frequency plant regeneration through multiple shoot formation in witloof chicory (Cichorium intybus L.) Plant Cell Tiss Organ Cult.2007.91:243-250
    [153]R. Sidikou-Seyni, C. Rambaud, J. Dubois et al. Somatic embryogenesis and plant regeneration from protoplasts of Cichorium intybus L. × Cichorium endivia L. Plant Cell, Tissue and Organ Culture,1992,29:83-91
    [154]Varotto S, Lucchin M & Parrini P. Plant regeneration from protoplasts of Italian red chicory (C. intybus L.). J. Genet. Breed.1997,51:17-22
    [155]E. Nenz, S. Varotto, M. Lucchin. An efficient and rapid procedure for plantlet regeneration from chicory mesophyll protoplasts. Plant Cell, Tissue and Organ Culture,2000,62:85-88
    [156]程林梅,高洪文,赵茂林.菊苣组织培养与植株再生的研究[J].草业学报.2002,11(4):105-107
    [157]May RA, Triginano RN.Somatic Embryogenesis and plant regeneration from leaves of Dendranthema grandiflora[J].America Soeity Horticulture Science,1991,116(2):366-371
    [158]张彦妮.影响植物组织培养成功的因素[J].北方园艺,2006(3):117-119
    [159]李书平,刘世强,高增贵.春小麦愈伤组织诱导和植株再生的研究[J].沈阳农业大学学报,1998,29(4):297-301
    [160]信金娜,韩烈保,刘君等.草地早熟禾愈伤组织诱导及植株再生[J].中国草地.2004,26(4):46-50
    [161]Margara, J.,Rancillac, M. Recherches experimentales sur la neoformation de bourgeong I nflorescentiels ou vegetatifs in vitro a partir dexplantats dendive Cichorium intybus L. II. Observations surla vernalization prealable de laracine. Ann. Physiol. Veg.1966,8:39-47
    [162]Toponi, M. Action combinee dela kinetine et de lacide indolylacetique surla neoformation dorganes pardes fragments de feuilles dendive (Cichorium intybus L.) cultives in vitro. C. R. Acad. Sci. Paris.1963,257:3030-3033
    [163]Wagner, G. M.,Eneva, T. Positive effect of cefotaxime on plant regeneration from Cichorium intybus L. leaf material. Land bauforschung-Volkenrode (FAL), Germany 1996,46(4):166-168
    [164]Vasseur, J. Action de l'acide indolyl-acetique, de la kinetine et de l'hydrazide maleique sur la neoformation des bourgeons et al.synthese d'ARN obsevees au cours de la culture in vitro de fragments de feuilles etiolees d'endive. C. R. Acad. Sci. Paris 189:93-96
    [165]Bouriquet, R., Vasseur, J. Croissance etbourgeonnement destissus defeuilles dendive enfonction delagcetdulieu deprelevement desexplantats. Bull. Soc. Bot. Fr.120:27-32; 1973.
    [166]Eung, J. P., Tae, L.-H,Park, E. J.et al. Establishment of an efficient in vitro plant regeneration system in chicory (Cichorium intybus L. var. sativus). Acta Hortic.1999,483:367-370
    [167]Wagner, G. M., Eneva. T. Plant regeneration from Cichorium intybus L. var. sativum leaf midrib explants induced by ancimidol supplemented culture medium. Landbauforschung-Volkenrode (FAL), Germany 48(2):53-55; 1998.1979a.
    [168]Yasseen Mohamed-Yasseen and Walter E. Splittstoesser. Somatic embryogenesis from leaf of witloof chicory through suspension culture。Plant Cell Reports (1995) 14:804-806.
    [169]R. U. rehman, M. israr, P. S. Srivastava. From leaf explants and accumulation of esculin witloof.In Vitro Cell. Dev. Biol.Plant.2003,39:142-146.
    [170]Buhara Yucesan Arzu Ucar Turker Ekrem Gurel.TDZ-induced high frequency plant regeneration through multiple shoot formation in witloof chicory{Cichorium intybus L.) Plant Cell Tiss Organ Cult,(2007,91:243-250
    [171]王力,张云孙,陈屹,等.影响水稻愈伤组织植株再生频率的因素研究[J].云南大学学报(自然科学版),1999,21(2):113-115.
    [172]李修庆.植物人工种子研究.北京:北京大学出版社,1990,1-18.
    [173]Williams J G K,Kubelik A R,Livak K J,et al.DNA ployorphisms amplifies by arbitrary primers are useful as genetic markers[J].Nucleic Acids Res,1990,18:6531-6535
    [174]Isable N,et al.RAPDs as aid to evaluate the genetic integrity of somatic embryogenesis-drived population of Picra muruauma (Milt.)B.SP..Theor Appl Genet.1993.86:81-87.
    [175]Fourre JL,et al.Somatic embryogenesis and somaclonal variation in Norway spruce: morphogenetic, cytogenesis and molecular approaches. Theor Appl Genet.1997,94:159-169
    [176]Shoyama Y.et al.Micropropagation of Panax notoginseng by somatic embryogenesis and RAPD analysis of regenerated plantlets.Plant Cell Reports,1997,16:450-453.
    [177]汪恒英周守标,常志州.绿色荧光蛋白(GFP)研究进展[J].生物技术,2004,14:70-72
    [178]黄国存,朱生伟,董越梅.孙敬三.绿色荧光蛋白及其在植物研究中的应用[J].植物学通 报,1998,15:24-30
    [179]Chiu WL,Niwa Y,Zheng W. Engineered GFP as vital reporter in Plants.Curr Biol,1996,6:325-330
    [180]Elliott A R,Campbell J A,Dugdale B,Brettell R I S,Grof C P L.Green-fluoreseent Protein faeilitates rapid in vivo deteetion of genetieally transformed Plant cells. Plant Cell Rep,1999,18:707-714
    [181]SunilkumarG,Rathore K S,Transgenic cotton:factors influeneing Agrobaeterium-mediated transformation and regeneration.Mol Breed,2001,8:37-52
    [182]赵佩欧,谢科,郭泽建.水稻OsWRKY10与GFP融合基因的烟草转化及亚细胞定位观察[J].浙江农业学报,2006,18(3):159-162
    [183]Sam Brook J, Fritsch E F, Maniatis, et al. Molecular Cloning a Laboratory Manual [M].Beijing: Science Press,1991:530-532
    [184]P.Lombari,E.Ercolano,Alaoui,H.E.,M.Chiurazzi.2003.A new ransformation-regeneration procedure in the model legume Lotus japonicus:root explants a source of large numbers of cells susceptible to Agrobacterium-mediated transformation.Plant Cell Rep.21771-777
    [185]T.Aoki,A.Kamizawa,S.Ayabe.2002.Efficient Agrobacterium-mediated transformation of Lotus japonicus with reliable antibiotic selection.Plant Cell Rep,21238-243
    [186]Shelby RD, Hahn KM, Sullivan KF. Dynamic elastic behavior of alpha-satellite DNA domains visualized in situ in living human cells[J]. J Cell Biol,1996,135 (3):545
    [187]Zlokarnik G, NegulescuPA, KnappTE, et al. Quantitation of transcrip tion and clonal selection of single living cell with B-lactamase as reporter[J]. Science,1998,279 (5347):84
    [188]Chalfie M, Tu Y, Euskirchen 6, et al. Green fluorescent p rotein asmarker for gene exp ression[J]. Science,1994,263 (5148):802.
    [189]Xu W. Structural organization of the human vesicular monoamine transporter type geene and promoter analysis using the jelly fish green fluorescent protein as a reporter[J]. MolBrain Res. 1997
    [190]侯丙凯,夏光敏.植物基因工程表达载体的构建的改进和优化策略[J].遗传,2001,23(5):492497
    [191]V ermeulen A, Desprez B, Lancelin D, Bannerot H (1994) Relationships among Cichorium species and related genera as determined by analysis of mitochondrial RFLPs. Theor Appl Genet 88:159-166
    [192]Birch R G,Plant transformation:Problems and strategies for Practical application. Annu Rev Plant Physio Plant Mol Biol,1997,48:297-326
    [193]Shama K K, Bhatnagar P.Thorpe T A.Genetic transformation gechnology:status and problems. in vitro Cell Biol-Plant,2005,41:102-112
    [194]张桂华,巩振辉,张广辉等.农杆菌介导的芸蔓属作物遗传转化研究进展.西北农业大学学报,2000,28(2):80-84
    [195]钟名其,楼程富,谈建中.桑树遗传转化技术中抗生素的浓度优化研究[J].汕头大学学报(自然科学版).2001,16(2):1-6
    [196]梁机.转rolB基因改良毛白杨生根能力的研究[D].北京林业大学,2004
    [197]BaiY.Qu R.Factors influencing tissue culturer responses of mature seeds and immature embryo turf-type tall fescue.Plant Breed,2001,120(3):239-242
    [198]齐春辉,韩烈保,梁小红等.以基因枪法转化日本结缕草获得转基因植株[J].北京林业大学学报,2006,28(3):71-75
    [199]郑树松,安成才,李启任等.离体条件下抗生素对棉花愈伤组织生长的影响[J].棉花学报.2002,5:45-47
    [200]刘方,张宝红,姚长兵.卡那霉素对棉花胚性愈伤组织生长发育的影响[J].棉花学报,1999.2:32-35
    [201]张海霞,张少英.提高甜菜遗传转化频率的研究[J].中国糖料,2005,01:54-57
    [202]张国裕.王岩,程智慧等.农杆菌介导的菜心遗传转化体系的建立[J].西北农林科技大学学报(自然科学版),2006,34(9):60-64
    [203]朱路英,刘玲,张振贤.根癌农杆菌介导的高赖氨酸蛋白基因转化叶用莴苣的研究[J].应用与环境生物学报,2004,10(1):039-042
    [204]张晓英,甘敬,尹伟伦等.国槐遗传转化体系的优化[J]林业科学,2009,45(5):21-27
    [205]候法建,刘忘夷.世界科技研究进展,2000,5:68-72
    [206]朱常香,宋云枝,亓苏伟等.农杆菌介导水稻幼胚转化获转基因植株[J].山东农业大学学报(自然科学版),2001,31(1):1-7
    [207]Stachel SE,Messens E,Van Montagu M,et al, Identification of the signal molecules produced by wounded plangt cells that activate T-DNA transfer in Agrobacterium tumefaciens.Nature, 1985,318:624-629
    [208]Shimoda N,Toyoda-Yamamoto A,Nagamine J,et al, Control of expression of Agrobacterium vir gene by synergistic actions of phenolic signal molecules and monosaccharides.Proc Natl Acad Sci USA,1990,87:6684-6688
    [209]James D J,Uratsu S,Cheng J.et al,.Acetosyringone and osmoprotectants like begtaine or praline synergistica ly enhance Agrobacterium-mediated transformation of apple.Plant Cell Rep, 1993,12:559-563
    [210]郝贵霞,朱祯,朱之悌.豇豆蛋白酶抑制剂基因转化毛白杨研究.[J].植物学报,1999,41:1276-1282
    [211]Godwin I,Todd G, et al. The effect of Acetosyringone and pH on Agrobacterium-mediated transformation vary according to plant species[J].Plant Cell Reports,1991,9:671-675
    [212]王学景,孙毅,农杆菌介导的植物基因转化研究进展[J].生物技术通报,1999,1:7-13
    [213]付永彩,孙传清,李自超等.农杆菌介导的抑制衰老的嵌合基因转化籼稻的研究[J].农业生物技术学报,2000,8(1):28-32
    [214]Confalonieri M, Balestraxxi A, Cella R Genetic transformation of Populus deltoids and P.xeuramericana clones using Agrobacterium tumefaciens[J].Plant Cell Tiss Org Cult,1997,48: 53-61
    [215]张桂华,巩振辉,张广辉.农杆菌介导的芸薹属作物遗传转化研究进展[J].西北农业大学学报,2000,28(2):80-84
    [216]Zhang F L,Takahata Y,Watanabe M,et al.Agrobacterium-mediated transformation of cotyledonary explants of Chinese cabbag (Brassica campestris L.ssp.pekinensis)[J].Plant Cell Reports,2000,19:569-575
    [217]Chalabarty R,Viswakarma N,Bhar S R,et al.Agrobacterium-mediated transformation of cauliflower:optimization of protocol and development of Bt-transgenic cauliflower[J].Journal of Biosciences,2002,27(5):495-502
    [218]郝彦玲,朱本忠,朱鸿亮等.根癌农杆菌介导的向日葵遗传转化体系的建立[J].农业生物技术学报,2005,13(6):713-717
    [219]陈峥,金红,程奕等.提高黄瓜农杆菌遗传转化体系再生频率的研究[J].天津农业科学,2001,(4):4749
    [220]刘敬梅,陈大明,陈杭.甜蛋白基因MBLII对莴苣的遗传转化[J].园艺学报,2001,28(3):246-250
    [221]张七仙,敖光明.根癌农杆菌介导的甘蓝高效稳定的遗传转化系统的建立及对CpTI基因转化的研究[J].农业生物技术学报,2001,9(1):72-76
    [222]莽克强主编.农业生物工程.[M].北京:化学工业出版社,1998
    [223]邓平建,赵锦,刘建军.转基因食品安全性检验的核酸检测技术研究[J].卫生研究,2002,1:34-37
    [224]赵艳.转基因稻米加工食品的PCR检测技术研究[J].中国粮油学报,2006,03:56-58
    [225]盖树鹏,孟祥栋.转基因植物的筛选与检测[J].山东农业大学学报(自然科学版),2000,01:45-47
    [226]邢浩然,刘丽娟,刘国振。植物蛋白质的亚细胞定位研究进展[J].华北农学报,2006,21(增刊):1-6
    [227]Escobar NM, Haupt S, ThowG,et al. High-throughput viral expression of Cdna-green fluorescent protein fusions reveals novel subcellular addresses and identifies unique proteins that interact with plasmodesmata[J]. Plant Cell,2003,15(7):1507-1523

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700