用户名: 密码: 验证码:
TiO_2半导体薄膜的制备与气敏传感性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
环境保护是人类面临的共同问题,运用气敏传感器制作而成的气体检测与监控警报系统为环境保护提供了一种有效的监控手段。金属氧化物半导体作为制作气敏传感器的新型材料而备受关注。TiO2是一种具有良好物理化学性质的n型金属氧化物半导体,近年来,TiO2材料与纳米科技和微电子技术相结合发展起来的TiO2固体薄膜型气敏传感器适应了低能耗与微型化的发展要求,并不断运用许多办法来实现对其微观结构和电学特性的优化,从而达到对环境更有效的监控。
     本文通过不同的实验方法制备TiO2传感器薄膜并对其在气体环境中的气敏特性进行了系统的实验研究,运用缺陷化学的原理定性的分析薄膜表面性质、表面反应过程以及气体分压与薄膜表面电导率的关系。同时,还利用基于密度泛函理论的第一性原理方法定量的对TiO2的缺陷、掺杂以及吸附情况下的薄膜传感性质进行研究,主要内容如下:
     1.通过对Ti/W合金靶的反应射频溅射制备出W/TiO2薄膜,运用原子力显微镜和伏特安培计研究其结构特性与气敏传感特性,发现在600℃的退火温度下,Ti与W的浓度比为Ti:W=80%:20%时,薄膜具有最小的电阻系数。在退火温度为700℃时,实现了薄膜的P型掺杂。该方法制备的薄膜实现了对低浓度NO2与SO2气体的探测,并具有高灵敏度与低响应时间和恢复时间,甚至可以实现对100ppb浓度的NO2气体的探测,在汽车尾气检测方面具有很重要的应用价值。该实验研究是本论文的创新点之一。
     2.溶解乙酰丙酮化钛在纯甲醇溶液里,通过超声雾化热分解法制备了氧敏TiO2薄膜,并利用扫描电镜分析薄膜晶体的微观结构。实验发现,钌(Ru),铑(Rh),铱(Ir)掺杂的TiO2薄膜对氧气很敏感。纯TiO2薄膜在400℃的操作温度下对1500ppm到15000ppm的浓度的氧气具有弱传感性,而催化剂注入后,薄膜对氧气具有更高的灵敏度与更低的操作温度(250℃)。
     3.通过运用火焰喷雾高温分解法制备的纯TiO2和Cu、Nb掺杂的TiO2颗粒并沉积成薄膜,测试在400℃时对CO和酒精气体的气敏特性,并通过透射电镜与X射线衍射研究粉末的微观特性。测试结果发现Nb的掺入阻碍了在高温下TiO2从锐钛矿向金红石的转变。掺杂物改善了薄膜对CO的传感灵敏度,但是只有Nb的掺入能够改善薄膜对酒精气体的传感能力。该实验研究是本论文的创新点之二。
     4.通过溶胶-凝胶和旋涂法制备了TiO2-KTaO3单层和多层薄膜,并在不同的温度下退火一小时,通过扫描电镜和X射线衍射研究薄膜的形貌特性,发现薄膜具有纳米尺度并具有多孔特性。对薄膜的湿敏传感特性测试表明,在相对湿度变化为12%-97%,退火温度为500℃时,TiO2/KTaO3复合薄膜具有高灵敏度的湿敏传感特性。相比单层薄膜,双层薄膜的电导变化范围更大,其原因在于TiO2/KTaO3双层薄膜比表面积更大,薄膜表面对水的电解能力更强。
     5.通过电子束蒸发的办法制备了TiO2-WO3复合传感器薄膜并进行退火处理,该薄膜型传感器对丙酮和SO2气体有较强的敏感性,电阻变化率大,工作温度低,并且气体响应与复合浓度和操作温度有密切的关系。另外,该薄膜对于酒精气体只有在400℃左右,复合浓度较低时才有较高的灵敏度。实验表明,薄膜的复合浓度和工作温度对传感特性有很大影响。
     6.对TiO2的表面性质和表面反应过程及杂质对TiO2传感特性的影响进行了定性分析,研究TiO2对氢气、氧气和水的吸附过程,并通过K-V符号和点缺陷理论来讨论金属氧化物的气敏机理,总结出了电导率随氧分压变化的一般规律,在此基础上总结出TiO2在接近大气氧分压条件下的电导率与氧分压的? 16次方成正比,而在较低氧分压环境下,电导率与氧分压的? 14次方成正比。
     7.运用基于密度泛函理论(DFT)的第一性原理方法来计算金红石和锐钛矿缺陷引起的晶体能带结构、键能键长、电荷布居数及态密度变化。研究发现,氧空位缺陷使晶体的费米能量升高,在导带底产生杂质能级。钛空位缺陷使晶体的费米能量降低,在价带顶部产生了一个杂质能级,该能级与费米能级相差分别约0.4eV(金红石)和0.25eV(锐钛矿)。对TiO2缺陷的理论研究是本论文的创新点之三。
     8.在对N、S和C替代O原子掺杂锐钛矿相TiO2晶体的电子结构进行了研究,发现这三种掺杂均会在不同程度上使锐钛矿相TiO2晶体的费米能级向上移动从而导致体系的带隙变小,有利于提高TiO2电导率,提高材料的传感特性。而Si掺杂金红石TiO2后能带结构中出现了一条杂质能级,对光生电子-空穴对的分离非常有利,但带隙宽度没有明显减小,电子的非局域化性质更加明显。
     9.金红石型TiO2(110)的表面原子和电子的结构也通过DFT进行了研究。研究发现,金红石型TiO2(110)表面的原子结构发生了弛豫和重构,并随着原子层的增加相应的弛豫距离减小。金红石型TiO2(110)表面禁带宽度降低,具有准金属性。金红石型TiO2(110)表面的HOMO和LUMO轨道分别是由Ti4+原子的p轨道和d轨道构成,其表面活性位为Ti4+。
     10.运用第一性原理方法模拟金红石TiO2(110)表面对H2分子的吸附,发现吸附后H-H键变长,晶体内部Ti-O键断裂,H原子与晶格O形成H-O键。通过能带结构和态密度分析发现,表面禁带宽度明显减小,电导增大,形成sp杂化轨道,并在价带内形成一个类sp带,晶体表面电子局域化运动明显,从而证明了表面化学反应使电导率变化。通过对气体在晶体表面吸附过程的理论研究来揭示传感效应的本质是该论文的创新点之四。
The environmental protection is the common problem which the mankind faces. The alarm system for gas detection or regulation be manufactured by gas sensors provides a kind of effective supervision method to protect environment. Metal-oxide semiconductor which is regard as a new-style materials is subjected to close concern. TiO2 has been known as an n-type metal oxide semiconductor and an important inorganic function material. In recent years, TiO2 solid thin film sensor combining micro-electronics technical adapt the development request of low energy consumption and miniaturization. A lot of effective ways proposed to optimize the microstructure and electrical property of TiO2 solid thin film sensor in order to control the environment effectively.
     In this paper, TiO2 solid thin film was fabricated by different ways and the character in different gas environment was studied systematically. The property and process of TiO2 solid thin film surface and the influence of impurity upon the material function was been analysed. Simultaneity, the character of point defects, impurity defects, crystal surface and adsorption process of TiO2 was investigated by first-principles pseudopotential calculations based on density-functional theory (DFT). The main content is as follows:
     1.W/TiO2 thin film, deposited by RF reactive sputtering from a composite target of W and Ti, was investigated through AFM for structural characterization and by volt-amperometric technique for electrical and gas-sensing properties. It was found that the film with Ti and W concentration ratio of 80%:20% has the lowest resistivity at the 600℃annealing temperature. P type doped had been implemented with the 700℃annealing temperature. The film, which has high sensitivity, short response time and recovery time, could detect the low concentration gas of to NO2 and SO2. A detection limit lower than 100 ppb of NO2 was expected.
     2.TiO2 thin film was prepared on substrate by ultrasonic spray pyrolysis (USP) method from dissolving titanium oxide acetylacetonate in pure methyl alcohol. Scanning electron microscopy (SEM) was employed to analyze the crystalline and microscopic structure of the film. Results showed that the films doped Ru, Rh, Ir be sensitive to oxygen. The effects of catalyst incorporation on semiconductor gas sensors described in terms of the operation temperature and the response magnitude. It was conclude that pure TiO2 thin film measured at 400℃displayed a low response of oxygen of 1500ppm and 15000ppm, whereas TiO2 thin film using impregnated catalysts proved to have the highest response to O2 at an optimal operating temperature of 250℃.
     3.Pure TiO2 and Nb-doped and Cu-doped TiO2 nanoparticles were produced by flame spray pyrolysis (FSP) and tested for sensing of CO and ethanol at 400℃in dry air. The powders were characterized by transmission electron microscopy and X-ray diffraction. Niobium stabilized the anatase phase and retarded anatase change toward rutile. Both dopants improved the sensitivity towards CO over that of pure TiO2. In contrast, for ethanol a high increase in sensitivity was observed only for Nb/TiO2.
     4.TiO2 compound films also were fabricated in this study. Bilayered and monolayered TiO2-KTaO3 films had been fabricated by sol-gel spin-coating method and heated at deferent temperature for an hour. The humidity-sensing characterizations of the films were investigated. Morphological characterization had been studied by SEM and XRD. It proved that the films possessed nanosized gains and capillary nanoporous structure. During the relative humidity variation from 12% to 97%, TiO2/KTaO3 films annealed at 500℃exhibited the highest humidity sensitivity. Compared to monolayered films, the bilayered films showed the large change in impedance. The reasons of humidity sensing properties of TiO2-KTaO3 films also had been discussed.
     5.TiO2-WO3 composite thin films had been synthesized by E-beam evaporation and heated at 500℃for two hours. Morphological characterization had been studied by SEM and XRD. It showed that the films have very high sensitivity to alcohol, acetone and SO2. The influence of temperature, composite concentration and gas concentration on the gas sensing capability of the films had also been studied.
     6.Surface property and surface reaction process of TiO2 had been investigated and the influence of impurities upon the TiO2 had been researched. TiO2 adsorbing O2 H2 and H2O have been analyzed. K-V symbol and point defects had been used to discuss the mechanism of gas-sensor of metal-oxide. It was concluded that the electric conductivity coefficient of TiO2 thin film is proportional to oxygen pressure ? 16 square in normal atmosphere pressure and is proportional to oxygen pressure ? 14 square in low pressure.
     7 . In this paper, first-principles calculations within the Local Density Approximation (LDA) was carried out on studying the character of the band structure, bond length, density of states and population of TiO2 with defect. By comparing with perfect crystal, it was found that in the case of oxygen vacancy Fermi energy goes up and no defect level appears in the gap and in the case of titanium vacancy Fermi energy goes down and a defect level appears in the gap, which is about 0.4eV above Fermi energy in rutile and about 0.25eV above Fermi energy in anatase.
     8.The electronic structure of N, S, C doping TiO2 would made band gap narrow in different extent, which is advantageous to decrease the gap width and improve the sensor activity of TiO2.
     9.The atomic and electronic structure of rutile TiO2 (110) surface was given using DFT. It was found that the relaxation and restructure occur on (110) surface, and the corresponding distance of the relaxation decreases with increasing in the atomic layer thickness. The width of forbidden band gap at the surface decreases so that it shows the quasi-metal property. The highest occupied and the lowest unoccupied molecular orbits are composed of the p orbit s and d orbit s of the Ti atoms. The active sites are localized at the surface Ti4+ sites.
     10.Rutile TiO2(110) surface with absorption H2 were studied by using DFT. It was discovered that H-H band and Ti-O band split and O-H band combined. By analyzing band structure and density of states, it was found that the gap decreased and the conductance increased because of adsorption of H2. s-p hybrid orbital and similar s-p band was formed in value band. It was evidenced that electron moved locally in rutile (110) surface.
引文
[1] K. Zakrzewska. Mixed oxide as gas sensors[J].Thin solid films. 2001, 391:229-238.
    [2]徐毓龙, G. Heiland.金属氧化物气敏传感器(Ⅰ) [J].传感技术学报, 1995, 4:59-64.
    [3]田立强,潘国峰,赵彦晓等. TiO2薄膜氧敏元件的研究与发展[J].传感器世界, 2002, 7.
    [4]李岩,徐明霞,徐艳姬,田玉明,徐廷献.TiO2系薄膜型氧敏材料的研究与发展综述[J].传感器技术,2004, 23(11): 12-14.
    [5] Zheng Liao-ying, Xu Ming-xia, TiO2-x thin films as oxygen sensor[J]. Sensors and Actuators B, 2000,66: 28-30.
    [6]徐明霞,郑嘹赢,刘丽月,等.新型氧敏材料[J].材料研究学报,2001,15(1): 17-22.
    [7]姚红军,汪荣昌,戎瑞芬,等.TiO2薄膜氧敏特性研究[J].半导体技术,1997,2 (1): 50-52.
    [8]翟琳,仲飞,刘彭义.TiO2气敏传感器研究进展[J].传感器世界,2005,12: 6-9.
    [9]黄萍,裴素华.金红石型TiO2气敏材料的研究[J].电子元件与材料, 2006,25(8): 22-24.
    [10] W. Gopel, G. Rocker and R. Feierabend. Intrinsic defects of TiO2(110): interaction with chemisorbed O2 ,H2, CO and CO2[J]. Phy. Rev. B, 1983, 28: 3427~3438.
    [11] Wahlstrom E, Vestergaard E K. Electron transfer-induced dynamics of oxygen molecules on the TiO2(110) surface [J]. Science, 2004, 303 (23): 511 - 513.
    [12] HendersonM A, Ep lingW S, Perking C L. Interaction of molecular oxygen with the vacuum-annealed TiO2 (110) surface: molecular and dissociative channels [J]. J Phys Chem B, 1999 (103): 5328-5337.
    [13] Hird B, Armstrong R A. Surface relaxation of rutile TiO2 (110)-(1×1) from ion shadowing blocking measurements[J]. Surface Science, 1999, 420: 131.
    [14] Ma X G, Tang C Q, Huang J Q, Hu L F, Xue X, Zhou W B. First-principle calculations on the geometry and relaxation structure of anatase TiO2(101) surface [J]. Acta Phys. Sin., 2006 55(08): 4208-4214 (in Chinese) .
    [15] Ma X G, Tang C Q, Yang X H. Effect of relaxation on the energetics and structure of anatase TiO2(101) surface[J]. Surf, Rev. Lett. 2006, 13: 825.
    [16] Bak T, Nowotny J, Rekas M, Sorrell C C. Defect chemistry and semi-conducting properties of titanium dioxide. III. Mobility of electronic charge carriers [J], J. Phys. Chem. Solids, 2003, 64: 1057-1067.
    [17] Tilocca A, Selloni A. Reaction pathway and free energy barrier for defect induced water dissociation on the (101) surface of TiO2-anatase[J], J. Chem. Phys., 2003 119:7445.
    [18] Herman G S, Dohnalek Z, Ruzycki N, Diebold U. Experimental investigation of theinteraction of water and methanol with anatase-TiO2(101) [J]. Phys. Chem. B, 2003 107: 2788-2795.
    [19] Vittadini A, Selloni A.Small gold clusters on stoichiometric and partially reduced TiO2 anatase (101) and their interaction with CO: a density functional study [J]. Chem. Phys., 2002, 117: 353
    [20] Diebold U, Lehman J, Mahmoud T, et al. Intrinsic defects on a TiO2(110)(1×1) surface and their reaction with oxygen: a scanning tunneling microscopy study[J]. Surf. Sci., 1998, 411: 137-153.
    [21] Hebenstreit E L D, Hebenstreit W, Diebold U. Adsorption of sulfur on TiO2(110) studied with STM, LEED and XPS: Temperature-dependent change of adsorption sites combined with O-S exchange[J]. Surf. Sci., 2000,461: 87-97.
    [22] Hebenstreit W, Ruzycki N, Herman G S et al. Scanning Tunneling Microscopy Investigation of the TiO2 Anatase (101) Surface[J]. Phys. Rev. B, 2000, 62: 16334-16336.
    [23] Hengerer R, Belliger P, Erbudak M, et al. Structure and stability of the anatase TiO2(101) and (001) surfaces [J]. Surf. Sci., 2000, 460: 162-169.
    [24] Lazzeri M, Vittadini A. Selloni Structure and energetics of stochiometric TiO2 anatase surfaces[J]. Phys. Rev. B, 2001, 63: 155409-155418.
    [25] Lazzeri M, Vittadini A, Selloni A, Erratum. Structure and energetics of stoichiometric TiO2 anatase surfaces[J]. Phys. Rev. B, 2002, 65: 119901.
    [26] Beltran A , Sambrano J R , Calatayud M et al. Static simulation of bulk and selected surfaces of anatase TiO2[J]. Surf. Sci., 2001, 490(1): 116-124.
    [27] Xue-Qing Gong, Annabella Selloni. First-principles study of the structures and energetics of stoichiometric brookite TiO2 surfaces [J]. Physical Review B 2007 76: 235307.
    [28]徐毓龙.氧化物与化合物半导体基础[M].西安:西安电子科技大学出版社,1996:44~133.
    [29]杨邦朝,王文生.薄膜物理与技术[M]成都电子科技大学出版社1994,1:17-35,60-85, 118-132, 136-144.
    [30] H. Tang R. Sanjines, P. E. Schmid et al. Electrical and optical properties of TiO2 anatase thin films[J]. J. Appl. Phys., 1994 75(4): 2042~2047.
    [31] Dwi Wicaksana, Akihiko Kobayashi, Akira Kinbara. Process effects on structural properties of TiO2 thin films by reactive sputtering [J]. J. Vac. Sci. Technol. A, 1992, 10(4): 1479~1482.
    [32]胡安正,唐超群. Sol-Gel法制备纳米TiO2的原料配比和胶凝过程机理探研.功能材料[J].2002,33(4): 394~397.
    [33]过壁君.薄膜磁阻传感器[M]. 1993年6月第一版: 98-116.
    [34]周玉.材料分析测试技术——材料X射线衍射与电子显微分析[M].1998年8月第一版: 117-122.
    [35]冯庆,刘高斌,王万录.化学气相沉积TiO2薄膜的XPS研究[J].光电子技术,2003,23(1):35-37.
    [36]潘家来.光电子能谱在有机化学上的应用[M].北京,化学工业出版社,1987: 264-266.
    [37]王成国.材料分析测试方法[M]. 1994年10月: 1-21, 98-101.
    [38] G. Sberveglieri, L. Depero, S. Groppelli, P. Nelli. WO3 sputtered thin films for NOx monitoring[J]. Sens. Actuators, B, 1995, 26: 1–3. 89–92.
    [39] M. Ferroni, V. Guidi, G. Martinelli, G. Sberveglieri. Microstructural characterization of a titanium–tungsten oxide gas sensor[J]. J. Mater.Res., 1997, 12: 793.
    [40] U. Kirner, K.D. Schierbaum, W. Go¨pel, B. Leibold, N. Nicoloso, W. Weppner, D. Fisher, F. Chu.Preparation and characterisation of titanium–tungsten sensors[J]. Sens. Actuators, B, 1990, 1: 103.
    [41] V. Guidi, D. Boscarino, E. Comini, G. Faglia, M. Ferroni, C. Malagu`, G. Martinelli, V. Rigato, G. Sberveglieri, Preparation and characterisation of titanium–tungsten sensors[J]. Sens. Actuators, B, 1999, in press.
    [42] E.Comini,G.Sberveglieri,V.Guidi. Ti-W-O sputtered thin film as n-orp-type sensors[J]. Sens ActuatorsB, 2000,70:108-114.
    [43] C. Horrillo, I. Sayago, L. Are′s, J. Rodrigo, J. Gutie′rrez, A. Gotz, I. Gra`cia, L. Fonseca, C. Cane′, E. Lora-Tamayo. Detection of low NO2 concentrations with low power micromachined tin oxide gas sensors[M]., in: N.M. White-Ed.., Technical Digest, Eurosensors XII, Southampton, United Kingdom, 13–16 September vol. 1 Institute of Physics Publishing, Bristol, 1998: 645.
    [44] S. Capone, R. G.Leo, P. Rella, A. Siciliano, J.C. Ortz, V. Alonso. Tin Oxide thin films obtained from spray pyrolysis deposition for NO2 gas detection[M]. in: N.M. White _Ed.., Technical Digest, EurosensorsXII, Southampton, United Kingdom, 13–16 September vol. 1 Institute of Physics Publishing, Bristol, 1998: 681.
    [45]肖梦秋,汪荣昌,顾志光. TiO2薄膜敏感特性研究[J].传感技术学报,1999, 3.
    [46]陈玉峰,李懋强,薄膜型. TiO2氧传感器响应时间的测试与研究[J].传感器技术,1995, 3.
    [47] N. Yamazoe, J. Fuchigami, J.M. Kishikawa, T. Seiyama. Interactions of tin oxide surface with O2, H2O and H[J]. Surf. Sci., 1979, 86: 335–344.
    [48] L. Casta ?neda, J.C. Alonso, A. Ortiz, E. Andrade, J.M. Saniger, J.G. Ba?nuelos.Spray pyrolysis deposition and characterization of titanium oxide thin films[J]. Mater.Chem. Phys. 2002,77: 938–944.
    [49] Y. Shimizu, N. Kuwano, T. Hyodo, M. Egashira. High H2 sensing performance of anodically oxidized TiO2 film contacted with Pd [J]., Sens. Actuators B, 2002, 83: 195–201.
    [50] L.Castaneda, A.Maldonado, M.dela et al. Sensing properties of chemically sprayed TiO2 thin films using Ni, Ir, and Rh as catalysts[J]. Sens. Actuators B, 2008,133: 687–693.
    [51] E. Comini, M. Ferroni, V. Guidi, A. Vomiero, P.G. Merli, V. Morandi, M. Sacerdoti, G. Della Mea, G. Sberveglieri. Effects of Ta/Nb-doping on titania-based thin films for gas-sensing[J]. Sens. Actuators B Chem., 2005, 108: 21–28.
    [52] L. Madler, W.J. Stark, S.E. Pratsinis. Simultaneous deposition of Au nanoparticles during flame synthesis of TiO2 and SiO2[J]. J. Mater. Res., 2003, 18: 115–120.
    [53] T. Tani, L. Madler, S.E. Pratsinis. Homogeneous ZnO nanoparticles by flame spray pyrolysis[J]. J. Nanopart. Res., 2002, 4: 337–343.
    [54] R. Strobel, W.J. Stark, L. Madler, S.E. Pratsinis, A. Baiker. Flame-made platinum/alumina: structural properties and catalytic behaviour in enantioselective hydrogenation[J]. J. Catal., 2003, 213: 296–304.
    [55] T. Sahm, L. Madler, A. Gurlo, N. Barsan, S.E. Pratsinis, U.Weimar. Flame spray synthesis of tin dioxide nanoparticles for gas sensing[J]. Sens. Actuators B Chem. 2004, 98: 148–153.
    [56] A. Teleki, S.E. Pratsinis, K. Kalyanasundaram, P.I. Gouma. Sensing of organic vapors by flame-made TiO2 nanoparticles[J]. Sens. Actuators B Chem., 2006, 119: 683–690.
    [57] A. Ruiz, A. Calleja, F. Espiell, A. Cornet, J.R. Morante. Nanosized Nb-TiO2 gas sensors derived from alkoxides hydrolization[J]. IEEE Sens. J., 2003, 3: 189–194.
    [58] Withana Siripala, Anna Ivanovskaya, Thomas F. Jaramillo, et al. A Cu2O/TiO2 heterojunction thin film cathode for photoelectrocatalysis[J]. Solar Energy Materials Solar Cell. 2002, 89: 47~49.
    [59] N.Savage, B.Chwieroth, A.Ginwalla, B.R.Patton, S.A.Akbar, P.K.Dutta.Composite n-p semiconducting titanium oxides as gas sensors [J].Sens.Actuators B Chem. 2001,79:17-27.
    [60] W. P. Tai, J. G. kim, J. H. Oh. Preparation and sensing behaviors of nanostructured potassium tantalate: titania films[J].Sens. Actuators B, 2005,105:199-203.
    [61] R. J. Wu, Y. L. Sun, C. C. Lin, et al. Composite of TiO2 nanowires and nafion as humidity sensor material [J]. Sens. Actuators B, 2006, 115: 198-204.
    [62] L. L. W. Chow, M. M. F. Yuen, P. C. H. Chan, Reactive sputtered TiO2 thin films humidity sensors with negative substrate bias, [J] Sens. Actuators B 76 (2001) 310-315.
    [63] W. P. Tai, J. G. Kim. Preparation and humidity-sensing properties of nanostructured potassium tantalite thin films[J]. J.of Mat. Sci. Mat. In Elec., 2004, 15: 25-28.
    [64] C. Garzella, E. Comini, E. Tempesti, et al. TiO2 thin films by a novel sol-gel processing forgas sensor application[J]. Sens. Actuators B, 2000, 68: 189-196.
    [65] L. Francioso, D.S. Presicce, A.M. Taurino, R. Rella, P. Siciliano, A Ficarella. Automotive application of so]-gel TiO2 thin film-based sensor for lambda measurement[J]. Sensor and Actuators B, 2003, 95:66-72.
    [66] H. Madhusudhana and N. Chanodrkar. Response study of electron-beam evaporated thin-film tin oxide gas sensors[J]. Sensor and Actuator B, 1992: 1-8.
    [67] A.Wisitsoraat, A.Tuantranont, E.Comini. Gas sensing Properties of TiO2-WO3 and TiO2-MO3 Based Thin Film Prepares by Ion-assisted E-beam Evaporation[J]. Sensors, 2005 IEEE:1184–1187.
    [68] E. Comini, V. Guidi, M. Ferroni, and G., Sberveglieri. TiO2: Mo, MoO3: Ti, TiO+WO3 and TiO:W layer for land fill produced gases sensing[J]. Sens. Actuators B 2004, 100: 41-46.
    [69] K. Zakrzewska, M. Radecka, and M. Rekas, Effect of Nb, Cr, Sn additions on gas sensing properties of TiO2 thin films[J] Thin solid film, 1997, 310: 161-166.
    [70]徐毓龙,氧化物与化合物半导体基础[M].西安:西安电子科技大学出版社,1996:44~133.
    [71]徐毓龙, G. Heiland.金属氧化物气敏传感器(Ⅱ-Ⅳ)[J].传感技术学报1996,1:63-67,2:56-61,3:72-78.
    [72] GopelW, Rocker G, Feierabend R. Intrinsic defects of TiO2 (110):interaction with chemisorbed O2 , H2 , CO and CO2 [ J ]. J Phys.Rev B, 1983, 28 (6): 3427 - 3438.
    [73] Wahlstrom E, Vestergaard E K. Electron transfer2induced dynamics of oxygen molecules on the TiO2 (110) surface [ J ]. Science, 2004, 303 (23): 511 - 513.
    [74] HendersonM A, Ep lingW S, Perking C L. Interaction ofmolecular oxygen with the vacuum annealed TiO2 (110) surface:molecular and dissociative channels[J]. J Phys Chem B, 1999 (103):5328-5337.
    [75] A.L. Dawar and J. C. Joshi. Semiconducting transparent thin films: their properties and applications[J]. J. Mater Sci., 1984, 19: 1~35.
    [76] D. C. Cronemeyer. Electrical and Optical Properties of rutile single crystals[J]. Phys. Rev 1952, 87:876~886.
    [77] Y. W. Chung, W. J. Lo and G. A. Somorjai. Low energy electron diffraction and electron spectroscopy studies of the dean (110)and(100) titanium dioxide (rutile)crystal surfaces[J].Surf. Sci., 1977, 64:588~602.
    [78] L. J. Brillson. The structure and properties of metal-semiconductor interfaces[J]. Surf. Sci. Res., 1982, 2:123~326.
    [79] Heiland G. and Lueth. Adsorption on oxide in the Chemical Physics of solid surface and heterogeneous catalysis[J]. Vol. 3, 1983, 137~223.
    [80] Weisz P B.,J Chem phys 1953, 21:1531~1538.
    [81] S. Strassler and A. Reis. Simple models for n-type metal oxide gas sensors[J]. Sensors and Actuators 1983, 4: 465~472.
    [82] G. Sberveglieri, et al. Gas Sensors-Principles Operationand Developments[M]. Kluwer, Dordrencht, 1992.
    [83] N. Yamazoe and J. Fuchigami. Interaction of Tin Oxide surface with O2 H2O and H2, Surf. Sci. 1979, B5: 7~29.
    [84] N. Yamazoe, J. Fuchigame, M. Nishikawa et al. Tin oxide surface and O2, H2O and H2, Surface Sci, 1979, 86:334~344.
    [85]姚红军,汪荣昌,戎瑞芬.TiO2薄膜氧敏特性研究[J].传感技术学报,1997, 3.
    [86] Yamazoe N,Kurakow Y,Seirama T. Sensors and Actuators.1983,4:283~ 289.
    [87] Yamazoe N, Shimizu Y N, Yamazoe and Y. Shimizu. Humidity sensors: principles and applications[J]. Sens. Actuators 1986,10,379-398.
    [88] K. D. SCHIERBAUM. U. K. KIRNER et al. Schottky-barrier and conductivity Gas Sensors Based upon Pd/SnO2 and Pt/TiO2[J]. sensors and Actuators B, 1991,4:87~94.
    [89] Shinri Sato. Photoelectrochemical preparation of Pt/TiO2 catalysts[J]. J. Catalysis, 1985, 92.
    [90]孙振世,陈英旭,杨晔.Pt/TiO2膜光催化氧化降解高聚物的研究[J].太阳能学报,2001,22(1):87~89.
    [91] N. Yamazoe, Yurokawa and T. Seigama. Effects of additives on semiconductor gas sensors[J]. Sensors and Actuators, 1983, 4: 283~289.
    [92] W. Gopel. Chemisorption and charge transfer at semiconductor surfaces: implications for de signing gas sensor[J]. Prog. Surf. Sci. 1985, 20:9~25.
    [93] Tamaki J, Maekawa T, et al. Copper oxide promoted tin oxide element for highly sensitive and selective detection of H2S, conference volume of transducers 91, San Francisco, 150~153.
    [94] F. A. Kroeger, H. J. Vink and J. Volger: Philips Res. Rep. 1955 10:39.
    [95] T. Bak, J. Nowotny, M.K. Nowotny, L.R. Sheppard. Defect Chemistry of titanium dioxide effect of interfaces[J]. J. Aust. Ceram. Soc. 2007,43(1):49-55.
    [96] Mills A, Hwvte S L. A overview of semiconductor photocatalysis[J]. Photochem. Photobiol. A: Chem., 1997, 108: 1~35.
    [97] K. S. Cole, R. H. Cole, J. Chem. Phys. 1941,9: 341.
    [98] H. Tang R. Sanjines, P. E. Schmid et al. Electrical and optical properties of TiO2 anatase thin films[J]. J. Appl. Phys., 1994, 75(4):2042~2047.
    [99] Hohenberg P,Kohn W.Inhomogeneous electron gas[J].Phys. Rev.,1964,136:B864-B871.
    [100] Kohn W , Sham L J . Serf-consistent equations Including exchange and correlationefects[J].Phys. Rev.,1965,140:A1133-A1138.
    [101] Kohn W. Electronic structure of matter wave functions and density functionals[J]. Rev. Mod. Phys.,1999, 71: 1253-1266.
    [102] Bockstedte M, Kley A, Neugebauer J, et al. Density-functional theory calcul ations for poly-atomic system: electronic structure,static and elastic properties and ab initio molecular dynamics[J].Comput. Phys. Commun., 1997,107:187-222.
    [103] Perdew J P. Chvary J A, Vosko S H et al. Atoms, molecules, solids, and surfaces.applications of the generaltzed gradient approximation for exchange and correlation[J]. Phys. Rev., 1992, B46: 6671.
    [104] Becke A D. Density-functional thermochemistry 1: the effect of the exchange-only gradient correction [J]. J.chem, phys., 1992, 96:2155-2160.
    [105] Proynov E I, Ruiz E, Vela A, et al. J. Quantum Chem., 1995, S29: 61.
    [106] Hohenberg P,Kohn W.Inhomogeneous Electron Gas[J].Phys,Rev,1964,136:B864-B871.
    [107] Ziegler T.Approximate Density Functional Theory as a Practical Tool in Molecular Energetics and Dynamics[J].Chem,Rev,1991,91,651-667.
    [108] Juan Y M,Kaxiras E,Gordon R G.Use of the generalized gradient approximation in pseudopotential calculations of solids[J].Phys.,Rev.,1995,BSI: 9521-9525.
    [109] Hamann D R,Schliiter M,Chiang C.Norm-Conserving Pseudopotentials[J].Phys,Rev. Lett.,1979,43:1494-1497.
    [110] Barchelet G B,Hamann D R,Schluter M.Pseudopotentials that work: From H to Pu [J].Phys. Rev.B, 1982,26:4199-4228.
    [111]徐光宪,黎乐民,王德民.量子化学基本原理和从头计算法(上) [M].北京:科学出版社,1985.
    [112] Slater J C.A simplification of the hartree-fock method [J].Phys. Rev.,1951,81:385.
    [113] Perdew T P,Zunger A.Serf-interaction correction to density-functional approximations for many-electron systems[J].Phys. Rev. B,1981,23:5048.
    [114] Jones R O,Gunnarsson O.The density functional formalism,its applications and prospects[J].Rev. Mod. Phys.,1989,61:689.
    [115] Perdew J P,Wang Y.Accurate and simple density functional for the electronic exchange energy:Generalized gradient approximation[J].Phys.Rev.B, 1986,33:8800-8802.
    [116] Lee C,Yang W.Generalized grdient approximation made simple[J].Phys. Rev. B,1988,37:785.
    [117] Perdew J P,Wang Y.Accurate and simple analytic representation of the electron-gas correlation energy[J].Phys.Rev.B, 1992,45: 13244-13249.
    [118] Laasollen K,Pasquarello A,Car R,Lee C,Vanderbilt D.Car-Parrinello molecular dynamics with Vanderbilt ultra pseudopotential[J].Phys.Rev.B, 1993,47: 10142-10153.
    [119] Kohn W,Meir Y D E.Van der waals energies in density~functional theory[J].Phys. Rev. Lett.,1998,80:41.
    [120] Thomas L H.The calculation of atomic fields[M].Proc,Cambridge Philos,Soc,1927,23: S42-S48.
    [121] Rappe A M,Rabe K M,Kaxiras E,Joannopoulos J D.Optimized pseudopotentials [J].Phys.Rev.B, 1990,41: 1227-1230.
    [122] Laasonen K,Car R,Lee C,Vanderbilt D.Implementation of ultrasoft pseudopotentials in ab initio molecular dynamics[J].Phys.Rev.B, 1991,43: 6796-6799.
    [123] Jose A. Rodriguez, Jan Hrbek, Zhi peng Chang, et al. Importance of O vacancies in the behavior of oxide surfaces: Adsorption of sulfur on TiO2 (110) [J]. Physical Review B, 2002, 65: 235414.
    [124] Chutian Shu, N. Sukumar, and C. P. Ursenbach. Adsorption of O2 on TiO2(110):A theoretical study[J]. Journal of Chemical Physics 1999 110(21):10539-10544.
    [125] Seiji Kajita Taketoshi Minato, Hiroyuki S. Kato et al. First-principles calculations of hydrogen diffusion on rutile TiO2 (110) surfaces[J]. The Journal of Chemical Physics, 2007, 127:104709.
    [126] Devina Pillay and Gyeong S.H.wang. O2-coverage-dependent CO oxidation on reduced TiO2 (110): A first principles study[J].J.Chem.Phys.,2006,125:144706.
    [127] Xueyuan Wu,Annabella Selloni,Saroj K. Nayak.First principles study of CO oxidation on TiO2(110): The role of surface oxygen vacancies[J]. Journal of Chemical Physics, 2004, 120(9): 4512-4516.
    [128]赵宗彦,柳清菊,张瑾,等.3d过渡金属掺杂锐钛矿相TiO2的第一性原理研究[J].,物理学报2007 56(11): 6592-6600.
    [129] H. Weng, J. Dong, T. Fukumura, et al. First principles investigation of the magnetic circular dichroism spectra of Co-doped anatase and rutile TiO2[J]. Phy. Rev. B, 2006, 73: 12120.
    [130] P.Murugan, R.V.Belosludov, H.Mizuseki, et al. Electronic and magnetic properties of double-impurities-doped TiO2 (rutile): First-principles calculations[J]. J.Appl.Phys., 2006, 99: 08M105.
    [131]冯庆,王新强,刘高斌.金红石型TiO2点缺陷性质的第一性原理研究[J].原子与分子物理学报,2008,25 (5):1096-1100.
    [132]马新国,江建军梁培.锐钛矿型TiO2(101)面本征点缺陷的理论研究[J].物理学报, 2008,57(5):3120-3126.
    [133]赵宗彦柳清菊朱忠其.锐钛矿相TiO2电子结构和光学性质的第一性原理计算《半导体学报》2007, 28(10): 1555-1562.
    [134]侯清玉张跃陈粤.锐钛矿(TiO2)半导体的氧空位浓度对导电性能影响的第一性原理计算2008,57(1): 0438-0443.
    [135]冯少新,李宝会,金庆华,郭振亚,丁大同.金红石结构TiO2晶体点缺陷形成能的经验途径计算[J].物理学报2000, 49(7): 1307-1312.
    [136] Eunae Cho and Seung Han. First-Principles study of point defects in rutile TiO2-x[J].Phys. Rev. B, 2006, 73:193202.
    [137]侯清玉张跃张涛.高氧空位简并锐钛矿TiO2半导体电子寿命的第一性原理研究[J].物理学报, 2008, 57(5): 3155-3160.
    [138]冯庆.锐钛矿相TiO2空位缺陷性质的第一性原理研究[J].重庆师范大学学报,2009, 26(1):78-81.
    [139] Sutassana Na-Phattalung, M.F.Smith, Kwiseon Kim, et al. First-Principles study of native defects in anatase TiO2[J]. Physical Review B, 2006,73:125205.
    [140] Amilcare Iacomino, Giovanni Cantele, Domenico Ninno. Structural, electronic, and surface properties of anatase TiO2 nanocrystals from first principles[J]. Physical Review B, 2008, 78:075405.
    [141] Burdett J K,Hughbandks T,Miller G J,Richardson J W,Smith J V.Structural-electronic relationships in inorganic solids:powder neutron diffraction studies of the rutile and anatase polymorphs of titanium dioxide at 15 and 295 K. [J].J,Am,Chem,Soc,1987,109:3639-3646.
    [142] Asahi R,Taga Y,Mannstadt W,Freeman A J,Electronic and optical properties of TiO2[J].Phys,Rev,B 2000,61:7459-7465.
    [143]陈琦丽,唐超群.过渡金属掺杂金红石相TiO2能带结构的第一性原理计算[J].材料科学与工程学报,24(4):514-515.
    [144] J. Muscat, N. M. Harrison, G. Thornton.First-principles study of potassium adsorption on TiO2 surfaces[J]. Physical Review B, 1999 59(23) :15457-15463.
    [145] Mazharul M. Islam, Thomas Bredow, Andrea Gerson. Electronic properties of oxygen-deficient and aluminum-doped rutile TiO2 from first principles[J]. Physical Review B, 2007, 76: 045217.
    [146] Xiaosong Du, Qunxiang Li, Haibin Su et al. Electronic and magnetic properties of V-doped anatase TiO2 from first principles[J]. Physical Review, 2006, 74: 233201.
    [147]侯兴刚,刘安东. V+注入锐钛矿TiO2第一性原理研究[J].物理学报2007, 56(8):4896-4901.
    [148] Kesong Yang, Ying Dai, Baibiao Huang. Origin of the photoactivity in boron-doped anataseand rutile TiO2 calculated from first principles[J].Physical Review B, 2007, 76:195201.
    [149] Asahi R,Morikawa T,Ohwaki T et al. Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides[J]. Science, 2001, 293:269.
    [150] Irie H, Watanabe Y, Hashimoto K. Nitrogen-concentration dependence on photocatalytic activity of TiO2-xNx powders[J]. J. Phys. Chem., 2003 107(23):5483-5486.
    [151] Lindgren T, Mwabora JM, Avendano E, et al. Photoelectrochemical and optical properties of nitrogen doped titanium dioxide films prepared by reactive DC magnetron sputtering[J]. J. Phys. Chem B, 2003 107(24):5709-5716.
    [152] Morikawa T, Asahi R, Ohwaki T, et al. Band-gap narrowing of titanium dioxide by nitrogen doping[J]. Japan,J.Appl.Phys.Part2 Lett. 2001 40 (6A):L561-L563.
    [153]徐凌,唐超群,戴磊,等.N掺杂锐钛矿TiO2电子结构的第一性原理研究[J].物理学报,2007 56(2):1048-1054.
    [154]彭丽萍,徐凌,尹建武. N掺杂锐钛矿TiO2光学性能的第一性原理研究[J].物理学报,2007, (56)3:1585-1590.
    [155] Jung-Yup, Lee Jaewon Park, Jun-Hyung Cho. Electronic properties of N- and C-doped TiO2[J]. Applied Physics Letter, 2005 87:011904.
    [156] Irie H, Watanabe Y, Hashimoto K. Carbon-doped anatase TiO2 powders as a visible-light sensitive photocatalyst Chem. Lett.,2003, 32(8):772-773.
    [157] Choi Y, Umebayashi T, Yoshikawa M. Fabrication and characterization of C-doped anatase TiO2 photocatalysts[J]. J.Mater. Sci. 2004 39(5):1837-1839.
    [158] Umebayashi T, Yamaki T, Tanaka S, Asai K. Visible light-induced degradation of methylene blue on S-doped TiO2[J]. Chem.Lett., 2003, 32 (4):330-331.
    [159]赵宗彦,柳清菊,朱忠其等.S掺杂对锐钛矿相TiO2电子结构与光催化性能的影响[J].物理学报,2008,57(6): 3760-3769.
    [160] Naoto Umezawa, Anderson Janotti, Patrick Rinke. Optimizing optical absorption of TiO2 by alloying with TiS2[J]., Applied Physics Letters, 2008, 92:041104.
    [161] Yamaki T, Sumita T, Yamamoto S. Formation of TiO2-xFx compounds in fluorine-implanted TiO2[J]., J. Mater. Sci. Lett., 2002, 21(1):33-35.
    [162]宋桥台,杨苹,王锦标.磷掺杂金红石TiO2电子结构的第一性原理研究[J].材料科学与工程学报, 26(3):435-440.
    [163]郭玉宝,杨儒,金红石型纳米TiO2(110)表面原子结构和电子结构的理论研究[J].北京化工大学学报,2004 31(5):64-68.
    [164] J. Oviedo, M. A. San Miguel, J. F. Sanz. Oxygen vacancies on TiO2 (110) from first principles calculations[J]. Journal of Chemical Physics, 2004, 121(15):7427-7433.
    [165] K. J. Hameeuw, G. Cantele, D. Ninno, F. Trani, and G. Iadonisi.The rutile TiO2(110) surface: Obtaining converged structural properties from first-principles calculations[J]. The Journal of Chemical Physics, 2006, 124: 024708.
    [166] T. J. Beck, Andreas Klust, Matthias Batzill. Surface Structure of TiO2(011)2×1 Physical Review Letters 93(3):036104.
    [167] Xueyuan Wu, Annabella Selloni, Michele Lazzeri. Oxygen vacancy mediated adsorption and reactions of molecular oxygen on the TiO2(110) surface[J]. Physical Review B 2003,68:241402(R).
    [168] Scott J. Thompson,Steven P. Lewis. Revisiting the (110) surface structure of TiO2: A theoretical analysis[J]. Physical Review B, 2006, 73: 073403.
    [169] S. H. Ke, T. Uda, K. Terakura. First-principles studies of tip-sample interaction and STM-AFM image formation on TiO2 (110)1×1 and TiO2 (110)1×2 surfaces[J]. Physical Review B, 2002, 65:125417.
    [170] Bates S P, Kresse G, Gillan M J.,A systematic study of the surface energetic and structure of TiO2 (110) by first principles calculations[J]. Surface Science, 1997, 85: 386.
    [171] Michael Bowker, Peter Stone, Roger Bennett, et al. CO adsorption on a Pd/ TiO2 (110) model catalyst [J]. Surface Science, 2002, 497: 155.
    [172] Leconte J, Markovits A, Skalli M K, et al. Periodic ab-initio study of the hydrogenated rutile TiO2 (110) surface[J]. Surface Science, 2002, 497: 194.
    [173] Marlo M, Milman V. Density-functional study of bulk and surface properties of titanium nitride using different exchange-correlation functional[J].Phys. Rev., 2000 ,B62:2899.
    [174] Hird B, Armstrong R A. Surface relaxation of rutile TiO2(110)-(1×1)from ion shadowing blocking measurements[J]. Surface Science, 1999, 420: 131.
    [175] Simon D. Elliott1, Simon P, Bates. Assignment of the(1×2) surface of rutile TiO2.(110). from first principles[J]. Physical Review B, 2003, 67: 035421.
    [176] A. S. Foster, O. H. Pakarinen, J. M. Airaksinen, et al. Simulating atomic force microscopy imaging of the ideal and defected TiO2(110) surface[J]. Physical Review B, 2003, 68:195410.
    [177] Tristan Albaret, Fabio Finocchi, Claudine Noguera, First-principles study of the TiO2(110) surface reduction upon Na adsorption[J]. Physical Review B, 2001, 65: 035402.
    [178] J. Zhou, S. Dag, S. D. Senanayake. Adsorption, desorption, and dissociation of benzene on TiO2(110) and Pd/TiO2(110):Experimental characterization and first-principles calculations[J]. Physical Review B, 2006,74:125318.
    [179] P. Murugan, Vijay Kumar, Yoshiyuki Kawazoe1. Thickness dependence of the atomic and electronic structures of TiO2 rutile (110) slabs and the effects on the electronic and magneticproperties of supported clusters of Pd and Rh[J]. Physical Review B, 2006, 73:075401.
    [180] K. okazaki, Y. morikawa, et al. Effects of stoichiometry on electronic states of Au and Pt supported on TiO2(110) [J]. Journal of Materials Science, 2005,40: 3075– 3080.
    [181] Abu Md. Asaduzzaman, Peter Krüger. Adsorption and diffusion of a molybdenum atom on the TiO2(110)surface:A first-principles study[J]. Physical Review B, 2007, 76:115412.
    [182] K. Okazaki, Y. Morikawa, S. Tanaka, Electronic structures of Au on TiO2(110) by first-principles calculations[J]. Physical Review B, 2004,(69):235404.
    [183]张毅,孙以材,潘国峰.TiO2氧传感器的研究与进展[J].传感器技术,2005,24(2):8-10.
    [184]叶伟国,潘海波.TiO2表面氧吸附模拟与氧敏特性研究[J].传感器与微系统,2007, 26(4): 28-33.
    [185] Selloni A,Vittadini A, GratzelM. The adsorption of small molecules on the TiO2 anatase (101) surface by first-principles molecular dynamics[J]. J Surface Science, 1998(402-404):219-222.
    [186] Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor, electrode[J]. Nature, 1972, 37(1):238.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700