用户名: 密码: 验证码:
纳米银胶及载银蒙脱石的制备与抗菌性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
银纳米粒子已经被广泛地用在摄影、催化、生物传感器、光子学、光电子学、表面增强拉曼散射检测和抗菌等领域。许多研究已证实纳米银的性能与其尺寸、尺寸分布和形貌等因素密切相关,因此如何控制纳米银的形核与生长从而获得具有特定优异性能的纳米银的研究是目前的热点之一。在微生物对传统抗生素耐药性日渐增强的今天,开展对具有强烈的广谱抗菌活性且不易产生耐药性的纳米银的研究有着重大的现实意义。本文回顾了银系抗菌材料的研究进展,分别介绍了银离子和纳米银的抗菌机理,阐述了纳米银抗菌活性具有形貌、尺寸和尺寸分布依赖性。银粒子的尺寸越小、分布越均匀,其抗菌活性越强。然后,就如何简单、快速、绿色合成小粒径且分布均匀的银纳米粒子进行了详细探讨。主要内容如下:
     分别以AgNO_3、[Ag(NH_3)_2]NO_3(AgNO_3与NH_3·H_2O反应)、不含NO_3~-离子的银盐与NH_3·H_2O反应制备的[Ag(NH_3)_2]~+络合离子水溶液为前驱体,以聚乙烯吡咯烷酮(PVP)兼作还原剂和稳定剂,再加入少量的添加剂,通过紫外光还原法制备纳米银溶胶。紫外-可见光谱和透射电子显微镜分析表明:以不含NO_3~-离子的[Ag(NH_3)_2]~+络合离子水溶液为前驱体反应速率最快、粒径最小、分布最均匀、稳定性最好;[Ag(NH_3)_2]NO_3水溶液次之;AgNO_3水溶液最差。此外,以不含NO_3~-离子的[Ag(NH_3)_2]~+络合离子水溶液为前驱体,考察了PVP浓度、温度和pH值对形成的纳米银溶胶影响。结果表明:纳米银的形核速率随温度、PVP浓度的增大而增大,但当PVP/Ag~+离子的质量比超过10:1时,反应速率变化不明显,因此以PVP与Ag~+离子的质量比为10:1最好;当前驱体的pH值为12.68时,纳米银的形核速率最快,而当pH值小于或者大于12.68时,形核速率较小。在PVP/Ag~+为10:1,pH值为12.68条件下,通过紫外光还原法制备的纳米银粒子的粒径为1-3nm的球形银粒子,室温下避光存放三个月,未出现任何絮凝或者沉淀现象。
     前驱体、还原剂及添加剂的种类同上,通过微波辐射还原法制备纳米银溶胶。考察了前驱体种类、PVP浓度、微波功率、pH值等因素对形成的纳米银溶胶的影响。结果表明:以不含NO_3~-离子的[Ag(NH_3)_2]~+络合离子水溶液为前驱体、PVP/Ag~+为8:1(质量比)、pH值为12.4、微波辐射功率为中低火时,Ag~+离子的转化率最高,所得银纳米粒子的粒径小、单分散且稳定性好。
     以两高纯银片做电极,以去离子水为电解液,PVP作为辅助电解质和稳定剂,通过电解法制备高纯纳米银溶胶。探讨了PVP含量、电解时间、电流密度对形成的纳米银溶胶的影响。结果表明:当PVP含量为5%、电解150min、电流密度为1-2mA/cm~2时,所得球形银粒子的粒径约1.3nm左右、单分散,而且有极好的存放稳定性,室温避光存放6个月无任何可见的变化。
     分别以AgNO_3、不含NO_3~-离子的[Ag(NH_3)_2]~+络合离子水溶液与钠基蒙脱石(Na-MMT)在60℃进行离子交换,然后,加入一定量的PVP兼作还原剂和稳定剂,再加入少量的添加剂,通过微波辐射还原法制备了Ag-MMT。用X-射线衍射(XRD)测定了Na-MMT及Ag-MMT的结构,MMT的片层间距减小表明Ag~+离子或者Ag(NH_3)_2]~+络合离子与Na-MMT中的Na~+、K~+等发生了交换。用场发射扫描电子显微镜(FE-SEM)表征了Ag-MMT负载的银粒子的大小、形貌,表明银纳米粒子是球形的,粒径20-30nm左右。用X-射线荧光探针(XRF)分析了Ag-MMT样品中的银含量。用热重分析(TGA)对Na-MMT及Ag-MMT的热稳定性进行了表征,结果表明经[Ag(NH_3)_2]~+络合离子水溶液处理得到的Ag-MMT有更好的热稳定性。
     分别以大肠杆菌(E.coli)和金黄色葡萄球菌(S.aureus)为代表,研究了纳米银溶胶、Na-MMT和Ag-MMT的抗菌性能。结果显示无论通过紫外光辐射法、微波法还是通过电解法制备的纳米银溶胶的最小抑菌浓度(MIC)均为1.25ppm,最小杀菌浓度(MBC)均为2.0ppm,杀菌率均超过了99.9%。Na-MMT无抗菌活性,由AgNO_3和[Ag(NH_3)_2]~+络合离子水溶液处理得到的Ag-MMT的MIC分别为100ppm、150ppm,两者的杀菌率均超过了99.9%,但经[Ag(NH_3)_2]~+络合离子水溶液处理得到的Ag-MMT中的银有更好的缓释性能。用所制备的纳米银溶胶分别处理纱布、层压地板和木板膜,当所用纳米银溶胶的浓度达到20ppm时,产品的杀菌率都均超过了99.9%。
Silver nanoparticles of stable dispersions have been used mostly in areas such asphotography, catalysis, biosensor, photonics, optoelectronics, surface-enhanced Ramanscattering (SERS) detection and antibacterial. Many studies have demonstrated a closerelation between the properties of silver nanoparticles and their sizes, shapes and sizedistributions. Thus, to tailor silver nanoparticles with novel properties, it has been one offocuses that how to control deliberately the nucleation and growth of silver nanoparticles.Nowadays, microbes have a stronger and stronger resistance to traditional antibiotic, so ithas great practical significance to study nano-silver with a strong, broad-spectrumantibacterial activity and difficult to generate resistance. The development of silverantimicrobial materials was reviewed, and the antimicrobial mechanisms of nano-silverand silver ions were introduced, respectively. The antibacterial property of nano-silverdepened on morpholopy, size and size distribution. The smaller for size and moreuniform for size distribution, the stronger the antibacterial activity of silver particles is.Then, it have been explored in detail on how to synthesize the silver nanoparticles withsmall size and uniform size distribution.by an easy, fast and green method. The workmainly includes the following aspects:
     AgNO_3, [Ag(NH_3)_2]NO_3 and [Ag(NH_3)_2]~+ complex ion aqueous solutions withoutNO_3~- were used as precusors, and the colloidal silver nanoparticles were synthesized byUV irradiation of using poly(N-vinyl-2-pyrrolidone) (PVP) as both reducing andstabilizing agents after a little of additive was added, respectively,. The UV-Vis. spectraand transmission electron microscopy (TEM) showed that the nucleation rate of silvernanoparticles was the fastest, smallest in size and most uniform in size distribution andmost stable when [Ag(NH_3)_2]~+ complex ion aqueous solution without NO_3~- was used asprecursor; [Ag(NH_3)_2]NO_3, the second; and AgNO_3, the worst. In addition, the effects ofconcentration of PVP, temperature and pH value to the as-prepared silver sols were investigated using [Ag(NH_3)_2]~+ complex ion aqueous solutions without NO_3~- as precusor.The results indicated that the nucleation rate of silver nanoparticles increased withreaction temperature and concentration of PVP, however, the rate is almost unchangeablewhen the PVP/Ag~+ (weight ratio) was over 10:1. Therefore, it was the best weightratio 10:1 for PVP/Ag~+. The tests about the effects of pH values to the nucleation rate ofsilver nanoparticles showed the most appropriate pH value of the precursor solutions was12.68. The silver particles prepared in the most appropriate PVP/Ag~+ and pH value werespheric about 1-3 nm in diameter, and no flocculation or deposition appeared even if theywere placed in dark at room temperature for three months.
     The colloidal silver nanoparticles were synthesized by microwave irradiationreduction method, and the precusors, reductants and additives were all the same as theabove. The effects of precusors, concentrations of PVP, microwave powers and pHvalues to the as-prepared nano-silver sols have been investigated. The results showed thatthe silver ions had the highest conversion ratio using [Ag(NH_3)_2]~+ complex ion aqueoussolutions without NO_3~- as precursor, 8:1 for PVP/Ag~+ (wt ratio), low middle fire formicrowave power and 12.4 for pH value, and the silver particles were about 1-3 nm insize, monodispersion and fine stability.
     A highly pure nano-silver sols were prepared by electrolysis method using twohighly pure silver flakes as electrodes and deionized water as electrolytic solution, andPVP served as the supporting electrolyte and stabilizer. The effects of content of PVP,electrolytic time and current density to the colloidal silver nanoparticles were researched.The results indicated that as-synthesized particles were spherical about 1-3 nm in size,monodispersion under the condition of 5 wt % PVP with current density 1-2mA/cm~2 for150 min, moreover, the silver sol had such an excellent stability that it had not any changethough it was placed in dark at room temperature for six months.
     The hydrated sodium ions in Na-montmorillonite (Na-MMT) lamellars wereexchanged at 60℃by AgNO_3 and [Ag(NH_3)_2]~+ complex ion aqueous solutions without NO_3~-, respectively. Then the Ag-MMTs were attained by microwave irradiation usingPVP as both reducing and stabilizing agents. The structures of Na-MMT and Ag-MMTswere characterized by XRD, and the distance between two lamellars decreased indicatedthat the exchange had happened between Ag~+ ions or [Ag(NH_3)_2]~+ complex ions andNa~+、K~+ in the lamellars of MMT. The size and morphology of silver particles loaded onthe surface of Ag-MMT were investigated by field emission scan electron microscope(FE-SEM), and results showed the silver particles were spherical about 20-30 nm in size.The Ag contents of the Na-MMT and the Ag-MMTs were analysed comparatively withX-ray Fluorescent probe. Thermogravimetry analysis showed the Ag-MMT had a morestability from [Ag(NH_3)_2]~+ complex ion aqueous solutions without NO_3~- than fromAgNO_3.
     The antibacterial properties of nano-silver sols, Na-MMT and Ag-MMTs werestudied using E.coli and S.aureus as representative bacteria. The results showed that theminimal inhibitory concentrations (MIC) of nano-silver sols prepared either by UVphotoreduction, microwave irradiation or electrolysis method were all 1.25 ppm, minimalbactericidal concentrations (MBC) all 2.0 ppm, and bactericidal ratios were beyond 99.9%.The Na-MMT had not and antibacterial activity, and the MICs of Ag-MMTs prepared byAgNO_3 were 100 ppm and 150 ppm by [Ag(NH_3)_2]~+ complex ion, respectively. Both ofbactericidal ratios were beyond 99.9%. However, the Ag in the Ag-MMT had a betterslow release proterty from [Ag(NH_3)_2]~+ complex ion than from AgNO_3. The pledget,laminate wood flooring and boarding film were dealed with as-prepared nano-silver sols,respectively, and the bactericidal ratios of all the products were beyond 99.9% when theconcentrations of nano-silver sols were up to 20 ppm.
引文
[1] 季君晖,史维明.抗菌材料(第一版).北京:化学工业出版社,2003.1-3
    [2] 唐靓,李跃中,朱染枫.微生物对食品安全造成的危害及其控制.浙江省医学科学院学报, 2006,(3):46-48
    [3] Young P.. White House to expand response to infectious diseases. American Society for Microbiology News, 1996, 62 : 450-451
    [4] Labro M.T.. Antibacterial agents-phagocytes: new concepts for old in immunomodulation. International Journal of Antimicrobial Agents, 1998, 10(1): 11-21
    [5] 张环,刘敏江.国内外塑料用抗菌剂的发展状况.化工新型材料,2001,29(10):4-7
    [6] 银等无机抗菌剂的自主规格及其抗菌试验法.1995
    [7] Stoimenov P.K., Klinger R.L., Marchin G. L., et al. Metal oxide nanoparticles as bactericidal agents.Langmuir, 2002, 18(17): 6679-6686
    [8] Hamouda T., Myc A., Donovan B., et al.. A novel surfactant nanoemulsion with a unique non-irritant topical antimicrobial activity against bacteria, enveloped viruses and fungi. Microbiological Research, 2001, 156(1): 1-7
    [9] Dibrov P, Dzioba J, Gosink K.K, Hase C.C. Chemiosmotic mechanism of antimicrobial activity of Ag(+) in Vibrio cholerae. Antimicrobial Agents and Chemotherapy, 2002, 46(8): 2668-2670
    [10] Kim J. S., Kuk E., Yu K. N., et al. Antimicrobial effects of silver nanoparticles. Nanomedicine: Nanotechnology, Biology and Medicine, 2007, 3(1): 95-101
    [11] Mcdonnell, G., Russell A. D... Antiseptics and disinfectants: activity, action, and resistance. Clinical Microbiology Reviews, 1999, 12(1): 147-179
    [12] Feng, Q. L., Wu J., Chen G. Q., et al. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. Journal of Biomedical Materials Research, 2000, 52(4):662-668
    [13] Pal S., Tak Y. K., Song J. M.. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Applied And Environmental Microbiology, 2007, 73(6):1712-1720
    [14] Yamanaka, M., K. Hara, and J. Kudo.. Bactericidal actions of a silver ion solution on Escherichia coli, studied by energy-filtering transmission electron microscopy and proteomic analysis.Applied and Environmental Microbiology, 2005, 71(11) :7589-7593
    [15] Lu L., Rininsland F. H., Wittenburg S. K., et al. Biocidal activity of a light-absorbing fluorescent conjugated polyelectrolyte. Langmuir, 2005, 21(22): 10154-10159
    [16] Inoue, Y., Hoshino, M., Takahashi, H., et al. Bactericidal activity of Ag-zeolite mediated by reactive oxygen species under aerated conditions. Journal of Inorganic Biochemistry, 2002,92(1) : 37-42
    [17] Choi O., Hu Z.Q.. Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacterial Environment Science and Technology, 2008, 42 (12): 4583-4588
    [18] Matsumura Y., Yoshikata K., Kunisaki S., et al. Mode of bactericidal action of silver zeolite and its comparison with that of silver nitrate. Applied and Environmental Microbiology, 2003, 69(7) :4278-281
    [19] Sambhy V., MacBride M. M., Peterson B. R.. Silver bromide nanoparticle/polymer composites:dual action tunable antimicrobial materials. Journal of the American Chemical Society, 2006,128(30) : 9798-9808
    [20] Kong H.Y., Jang J.S.. Antibacterial properties of novel poly(methyl methacrylate) nanofiber containing silver nanoparticles. Langmuir, 2008, 24(5) : 2051-2056
    [21] Sharma V. K., Yngard R. A., Lin Y. Silver nanoparticles: Green synthesis and their antimicrobial activities. Advances in Colloid and Interface Science, 2009, 145(1-2): 83 - 96
    [22] Kvitek L., Panacek A., Soukupova J., et al. Effect of surfactants and polymers on stability and antibacterial activity of silver nanoparticles (NPs). Journal of Physics Chemistry C, 2008,112(15):5825-5834
    [23] Castellano J.J., Shafii S.M, Ko F, et al. Comparative evaluation of silver-containing antimicrobial dressings and drugs. International Wound Journal, 2007, 4(2) :114 - 22
    [24] Landsdown A.B.G.. Silver Ⅰ: its antibacterial properties and mechanism of action. Journal of Wound Care 2002, 11(4): 125 - 013
    [25] Morones J.R., Elechiguerra J.L., Camacho A., et al. The bactericidal effect of silver nanoparticles.Nanotechnology, 2005, (16): 2346-2353
    [26] 朱文涛.物理化学中的公式与概念(第一版).北京:清华大学出版社, 1998. 134-135
    [27] Li L.S., Hu J.T., Yang W. D., et al. Band gap variation of size- and shape-controlled colloidal Cdse quantum rods. Nano Letters, 2001, 1(7): 349-351
    [28] Dick L.A., Mcfarland A.D., Haynes C.L., et al. Metal film over nanosphere (mfon) electrodes for surface-enhanced raman spectroscopy (sers): improvements in surface nanostructure stability and suppression of irreversible loss. The Journal of Physical Chemistry B, 2002, 106 (4) :853-860
    [29] Lu Y., Liu G.L., Lee L.P.. High-density silver nanoparticle film with temperature-controllable interparticle spacing for a tunable surface enhanced raman scattering substrate.Nano Letters, 2005,5(1) : 5-9
    [30] Zhang J.T., Li X.L., Sun X.M., et al. Surface Enhanced Raman Scattering Effects of Silver Colloids with Different Shapes. The Journal of Physical Chemistry B, 2005, 109(25):12544-12548
    [31] Fleming J.G., Lin S.Y., El-Kady I., et al. All-metallic three-dimensional photonic crystals with a large infrared bandgap. Nature, 2002 , 417(6884): 52-55
    [32] Ullah M. H., Kim Ⅱ, Ha C.S. Preparation and optical properties of colloidal silver nanoparticles at a high Ag~+ concentration. Materials Letters, 2006, 60(12) : 1496-1501
    [33] Su M., Li S., Dravid V.P., Applied Physics Letters, 2003, 82(20): 3562-3564
    [34] Zhao G, Stevens J. S.E. Multiple parameters for the comprehensive evaluation of the susceptibility of Escherichia coli to the silver ion. Biometals, 1998, 11(1): 27- 32
    [35] Marini M., Niederhausern S. D., Iseppi R., et al. Antibacterial activity of plastics coated with silver-doped organic-inorganic hybrid coatings prepared by sol-gel processes. Biomacromolecules,2007, 8(4): 1246-1254
    [36] Dias H.V.R., Batdorf K. H., Fianchini M., et al. Antimicrobial properties of highly fluorinated silver (Ⅰ) tris(pyrazolyl)borates. Journal of Inorganic Biochemistry, 2006, 100(1): 158-160
    [37] Ramstedt M., Cheng N., Azzaroni O. et al. Synthesis and characterization of poly (3-sulfopropylmethacrylate) brushes for potential antibacterial applications Langmuir, 2007,23(6): 3314-3321
    [38] Sambhy V., MacBride M. M., Peterson, B. R., et al. Silver Bromide Nanoparticle/Polymer Composites: Dual Action Tunable Antimicrobial Materials. Journal of the American Chemical Society, 2006, 128 (30) : 9798-9808
    [39] Sondi I., Salopek-Sondi B.. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. Journal of Colloid and Interface Science, 2004, 275 (1):177-182
    [40] Jiang H., Manolache S., Wong A.C.L., et al. Plasma-enhanced deposition of silver nanoparticles onto polymer and metal surfaces for the generation of antimicrobial characteristics. Journal of Applied Polymer Science, 2004, 93(3): 1411-1422
    [41] Ebitani K., Choi K.M., Mizugaki T., et al. Novel preparation of palladium nanoclusters using metal nitrates and their catalysis for oxidative acetoxylation of toluene in the presence of molecular oxygen. Langmuir, 2002, 18(5) :1849-1855
    [42] Sau T.K., Pal A., Pal T.. Size regime dependent catalysis by gold nanoparticles for the reduction of eosin. The Journal of Physical Chemistry B, 2001, 105(38): 9266-9272
    [43] Sengupta S., Eavarone D., Capila I. et al. Temporal targeting of tumour cells and neovasculature with a nanoscale delivery system. Nature, 2005, 436(28): 568-572
    [44] Wiley B., Sun Y., Mayers B. et al. Shape-controlled synthesis of metal nanostructures: the case of silver. Chemistry - A European Journal, 2005, 11(2): 454-463
    [45] Sosa I. O., Noguez C, Barrera R. G. Optical properties of metal nanoparticles with arbitrary shapes. The Journal of Physical Chemistry B, 2003, 107(26): 6269-6275
    [46] Murphy C.J., Jana N.R.. Controlling the aspect ratio of inorganic nanorods and nanowires.Advanced Materials, 2002, 14 (1): 80-82
    [47] Kim F., Song J. H., Yang P.. Photochemical synthesis of gold nanorods. Journal of American Chemical Society, 2002, 124 (48): 14316-14317
    [48] Dick L.A., McEarland A.D., Haynes C.L., et al. Metal film over nanosphere (mfon) electrodes for surface-enhanced raman spectroscopy (sers): improvements in surface nanostructure stability and suppression of irreversible loss.The Journal of Physical Chemistry B, 2002, 106 (4) :853-860
    [49] Muniz-Miranda M.. On the occurrence of the central line (~1025 cm~(-1)) in the SERS spectra of pyridine adsorbed on silver hydrosols.Chemical Physics Letters, 2001, 340(5-6): 437-443
    [50] Sun Y.G., Xia Y.N.. Shape-controlled synthesis of gold and silver nanoparticles. Science, 2002,298:2176-2179
    [51] Shirtcliffe N., Nickel U., Schneider S.. Reproducible preparation of silver sols with small particle size using borohydride reduction: for use as nuclei for preparation of larger particles. Journal of Colloid and Interface Science, 1999, 211 (1) : 122-129
    [52] Lee P. C, Meisel D.. Adsorption and surface-enhanced Raman of dyes on silver and gold sols. The Journal of Physical Chemistry, 1982, 86 (17) : 3391-3395
    [53] Nickel U., Castell A.Z., Poppl K. A silver colloid produced by reduction with hydrazine as support for highly sensitive surface-enhanced raman spectroscopy. Langmuir, 2000, 16 (23): 9087-9091
    [54] Sondi I., GoiaD.V., Matijevi E.. Preparation of highly concentrated stable dispersions of uniform silver nanoparticles. Journal of Colloid and Interface Science, 2003, 260(1) : 75-81
    [55] Merga G, Wilson R., Lynn G. Redox catalysis on "naked" silver nanoparticles. The Journal of Physical Chemistry C, 2007, 111(33): 12220-12226
    [56] Chen Z.T., Gao L.. A facile and novel way for synthesis of nearly monodisperse silver nanoparticles. Materials Research Bulletin, 2007, 42(9): 1657-1661
    [57] Liu J.K., Yang X. H., Tian X.G.. Preparation of silver/hydroxyapatite nanocomposite spheres.Powder Technology, 2008, 184(1): 21-24
    [58] Tsuji T., Thang D. H., Okazaki Y. et al. Preparation of silver nanoparticles by laser ablation in polyvinylpyrrolidone solutions. Applied Surface Science, 2008, 254(16): 5224-5230
    [59] Tsujia T., Iryob K., Watanabeb N., et al. Preparation of silver nanoparticles by laser ablation in solution:influence of laser wavelength on particle size. Applied Surface Science, 2002, 202(1-2) :80-85
    [60] Mafune F., Kohno J.Y., Takeda Y., et al. Formation of gold nanoparticles by laser ablation in aqueous solution of surfactant. The Journal of Physical Chemistry B, 2001, 105 (22): 5114-5120
    [61] Pal A., Shah S., Devi S.. Preparation of silver, gold and silver-gold bimetallic nanoparticles in w/o microemulsion containing TritonX-100. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 302(1-3): 483-487
    [62] Balan L., Malval J.P., Schneider R., et al. Silver nanoparticles: New synthesis, characterization and photophysical properties. Materials Chemistry and Physics, 2007,104 (2-3): 417-421
    [63] Yin YD., Lu Y, Sun Y.G., et al. Silver nanowires can be directly coated with amorphous silica to generate well-controlled coaxial nanocables of silver/silica. Nano Letters, 2002, 2(4): 427-430
    [64] Sun Y.G., Gates B., Mayers B., et al. Crystalline silver nanowires by soft solution processing.Nano Letters, 2002, 2 (2): 165-168
    [65] Zong R.L., Zhou J., Li Q., et al. Synthesis and Optical Properties of Silver Nanowire Arrays Embedded in Anodic Alumina MembraneJ. Phys. Chem. B, 2004, 108 (43): 16713-16716
    [66] Govindaraj A., Satishkumar B.C., Nath M., et al. Metal nanowires and intercalated metal layers in single-walled carbon nanotube bundles Chemistru of Materials, 2000, 12(1): 202-205
    [67] Zhang D.B, Qi L.M., Ma J.M., et al. Formation of silver nanowires in aqueous solutions of a double-hydrophilic block copolymer.Chemistry of Materials, 2001, 13 (9): 2753-2755
    [68] Braun E., Eichen Y, Sivan U. et al. DNA-templated assembly and electrode attachment of a conducting silver wire. Nature, 1998, 391(6669): 775-778
    [69] Jana N. R., Gearheart L., Murphy C. J.. Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratio. Chemical Communications, 2001, 617-618
    [70] Gou L., Chipara M., Zaleski J. M.. Convenient, rapid synthesis of Ag nanowires. Chemistry of materials, 2007, 19(7) : 1755-1760
    [71] Caswell K.K., Bender CM., Murphy C.J.. Seedless, surfactantless wet chemical synthesis of silver nanowires. Nano Letters, 2003, 3 (5): 667-669
    [72] Liu S., Yue J., Gedanken A.. Synthesis of long silver nanowires from AgBr nanocrystals.Advanced Materials, 2001, 13(9): 656-658
    [73] Zhou Y., Yu S.H., Cui X.P., et al. Formation of silver nanowires by a novel solid-liquid phase arc discharge method. Chemistry of Materials, 1999, 11 (3) : 545-546
    [74] Zhou Y., Yu S.H., Wang C.Y., et al. A novel ultraviolet irradiation photoreduction technique for the preparation of single-crystal ag nanorods and ag dendrites. Advanced Materials, 1999,11(10): 850-852
    [75] Yu D., Yam V.W.W.. Controlled synthesis of monodisperse silver nanocubes in water. Journal of the American Chemical Society, 2004, 126 (41): 13200-13201
    [76] Dumestre F., Chaudret B., Amiens,C, et al. Superlattices od iron nanocubes synthesized from Fe[N(SiMe3)2]2. Science, 2004, 303 : 821-823
    [77] Yu D., Yam V.W.W.. Hydrothermal-induced assembly of colloidal silver spheres into various nanoparticles on the basis of htab-modified silver mirror reaction, 2005, 109 (12): 5497-5503
    [78] Wang Y.,Camargo P. H. C, Skrabalak S. E., et al. A Facile, water-based synthesis of highly branched nanostructures of silver. Langmuir, 2008, 24(20): 12042-12046
    [79] Yang Y., Matsubara S., Xiong L., et al. Solvothermal synthesis of multiple shapes of silver nanoparticles and their SERS properties. The Journal of Physical Chemistry C, 2007, 111(26) :9095-9104
    [80] Creighton J.A.. Surface raman electromagnetic enhancement factors for molecules at the surface of small isolated metal spheres: The determination of adsorbate orientation from sers relative intensities.Surface Science, 1983, 124(1): 209-219
    [81] Ponath H.E., Stegeman G.I.. Nonlinear Surface Electromagnetic Phenomena [monograph].Publishing Company : Sole distributors for the USA and Canada, Elsevier, 1991,15
    [82] Mie G. Beitrage zur optik truber Medien, speziell kolloidaler metallosungen. Annals of Physics, 1908,25:377-452
    [83] Link S., Mohamed M. B., El-Sayed M.A.. Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant .The Journal of Physical Chemistry B, 1999, 103 (16): 3073-3077
    [84] Lee G.J., Shin S. I, Kim Y.C., et al. Preparation of silver nanorods through the control of temperature and pH of reaction medium. Materials Chemistry and Physics, 2004, 84(2-3): 197-204
    [85] Chen S.H., Carroll D.L.. Synthesis and characterization of truncated triangular silver nanoplates, Nano Letters, 2002, 2(9): 1003-1007
    [86] Jin R.C., Cao Y.W, Mirkin C.A., et al. Photoinduced conversion of silver nanospheres to nanoprisms. Science, 2001, 294:1901-1903
    [87] Russell A.D., Hugo W.B.. Antimicrobial activity and action of silver. Progress in Medicinal Chemistry, 1994, (31):351-370
    [88] Fu-Ren E, Fan Allen J. Bard chemical, electrochemical, gravimetric, and microscopic studies on antimicrobialsilver films. Phys Chem B, 2002, 106(2):279-287.
    [89] Mirsattari S.M., Hammond R.R., Sharpe M..D.,et al. Myoclonic status epilepticus following repeated oral ngestion of colloidal silver. Neurology, 2004, 62(8): 1408-1410.
    [90] Klasen H.J.. A historical review of the use of silver in the treatment of bums. Ⅰ. Early uses. Burns, 2000, 26(2): 117-130
    [91] Klasen H.J.. A historical review of the use of silver in the treatment of burns. Ⅱ. Renewed interest for silver. Burns, 2000, 26(2): 131-138
    [92] Atiyeh B. S., Costagliola M., Hayek S. N., et al. Effect of silver on burn wound infection control and healing: Review of the literature. Burns, 2007, 33(2): 139-148
    [93] 张文钲,张羽天.Zeomic抗菌剂及相关产品.化工新型材料,1999,27(7):18-19
    [94] Rodriguez-Fuentes G., Ruiz-Salvador A.R., Mir M., et al. Thermal and cation influence on IR vibrations of modified natural clinoptilolite. Microporous and Mesoporous Materials, 1998, 20(4-6): 269-281
    [95] Mumpton F.A.Ormsby W.C.. Morphology of zeolites in sedimentary rocks by seanning electron microscope. Clays and Clay Minerals, 1976, 24(1): 1-23
    [96] Top A., Ulku S.. Silver, zinc, and copper exchange in a Na-clinoptilolite and resulting effect on antibacterial activity. Applied Clay Science, 2004, 27(1-2): 13-19
    [97] Rosa-Gomez I. D. L., Olguin M.T., Alcantara D.. Antibacterial behavior of silver-modified clinoptilolite-heulandite rich tuff on coliform microorganisms from wastewater in a column system. Journal of Environmental Management, 2008, 88 (4): 853-863
    [98] 王光华,张宝述,董发勤. 斜发沸石中Ag~+-Na~+离子交换实验研究.中国非金属矿工业导刊,2006,56(4):28-31
    [99] 侯文生,魏丽乔,戴晋明,等.载银4A沸石抗菌剂的制备及其抗菌性能的研究.无机材料学报,2005,20(4):907-913
    [100] 严建华,冯乃谦,翟凡,等.载银天然沸石抗菌耐久性的研究.硅酸盐通报,2002,21(3): 7-10
    [101] Park S. J., Jang Y.S.. Pore structure and surface properties of chemically modified activated Carbons for adsorption mechanism and rate of Cr(Ⅵ). Journal of Colloid and Interface Science, 2002, 249(2): 458-463
    [102] Park S.J., Jung W.Y.. Preparation and structural characterization of activated carbons based on polymeric resin. Journal of Colloid and Interface Science, 2002, 250(1) : 196-200
    [103] Wang Y. L., Wan Y. Z., Dong X. H.,et al. Preparation and characterization of antibacterial viscose-based activated carbonfiber supporting silver. Carbon, 1998, 36(11):1567-1571
    [104] Park S. J., Jang Y.S.. Preparation and characterization of activated carbon fibers supported with silver metal for antibacterial behavior. Journal of Colloid and Interface Science, 2003, 261(2): 238-243
    [105] Oya A., Yoshida S., Alcaniz-Monge J., et al. Preparation and properties of an antibacterial activated carbon fiber containing mesopores. Carbon, 1996, 34(1) : 53-57
    [106] Wan Y.Z., Wang Y.L., Cheng G.X.,et al. Preparation and characterization of activated carbon fiber supporting silverloaded mesoporous molecular sieves. Carbon, 2001,39(10): 1607-1610
    [107] Zhang S.T., Fu R.W., Wu D.C., et al. Preparation and characterization of antibacterial silver-dispersed activated carbon aerogels. Carbon, 2004, 42(15): 3209-3216
    [108] Jia H.S, Hou W.S, Wei L.Q., et al. The structures and antibacterial properties of nano-SiO_(2 基尼) supported silver/zinc - silver materials. Dental Materials, 2008, 24(2) : 244-249
    [109] 廖辉伟,车明霞.载银纳米SiO_2制备与抗菌性研究.稀有金属,2006,30(4):570-573
    [110] 王彬,毛健,侯廷红.载银多孔SiO2的抗菌性能.有色金属,2006,58(1):15-18
    [111] Shashikala V., Kumar V.S., Padmasri A.H., et al. Advantages of nano-silver-carbon covered alumina catalyst prepared by electro-chemical method for drinking water purification. Journal of Molecular Catalysis A: Chemical, 2007, 268(1-2): 95-100
    [112] 柳清菊,吴兴惠,张瑾,等.载银Al_2O_3抗菌剂的制备及性能研究.功能材料与器件学报,2005,11(1):83-86
    [113] Brook L.A., Evans P., Foster H.A., et al. Highly bioactive silver and silver/titania composite films grown by chemical vapour deposition. Journal of Photochemistry and Photobiology A: Chemistry, 2007, 187(1):53-63
    [114] 柳清菊,朱忠其,张瑾,等.载银ZrO_2无机抗菌剂的制备及性能研究.材料导报,2005,19(1):104-106
    [115] 柳清菊,张瑾,朱忠其,等.载银TiO_2无机抗菌剂的制备及性能研究.功能材料,2005,36(3):474-476
    [116] Li C.H., Hsieh Y.H., Chiu W.T., et al. Study on preparation and photocatalytic performance of Ag/TiO_2 and Pt/TiO_2 photocatalysts. Separation and Purification Technology, 2007, 58(1): 148-151
    [117] Liu Y., Liu C.Y., Rong Q.H., et al. Characteristics of the silver-doped TiO_2 nanoparticles. Applied Surface Science, 2003, 220 : 7-11
    [118] 张文钲.抗菌陶瓷.中国钼业,2001,25(5):17-18
    [119] 曹明礼,张明,刘世珍.有机膨润土制备及其对水溶液中苯胺吸附作用的研究.非金属矿,2003,26(1):52-53
    [120] Pandey J. K., Reddy K.R., Kumar A.P., et al. An overview on the degradability of polymer nanocomposites, Polymer Degradation and Stability, 2005, 88(2): 234-250
    [121] Magana S.M., Quintana P., Aguilar D.H.,et al. Antibacterial activity of montmorillonites modified with silver. Journal of Molecular Catalysis A: Chemical, 2008, 281: 192-199
    [122] Aceman S., Lahav N., Yariv S.. A thermo-XRD study of Al-pillared smectites differing in source of charge, obtained in dialyzed, non-dialyzed and washed systems. Applied Clay Science, 2000, 17: 99-126
    [123] Rivera-Garza M., Olguin M.T., Garcia-Sosa I., et al. Silver supported on natural Mexican zeolite as an antibacterial material. Microporous and Mesoporous Materials, 2000, 39: 431-444
    [124] Oya, A., S. Yoshida, Y. Abe, et al. Antibacterial activated carbon-fiber derived from phenolic resin containing silver-nitrate. Carbon, 1993, 31 (1):71-73
    [125] Ohashi F, Oya A, Duclaux L,et al.Structural model calculation of antimicrobial and antifungal agents derived from clay minerals. Applied Clay Science, 1998, 12 (6): 435-445.
    [126] Ohashi F., Oya A.. Antimicrobial and antifungal agent derived from clay minerals (Ⅷ). Journal of Materials Science, 1996, 31 (13): 3403-3407
    [127] 杨丹,袁鹏,朱建喜.邻二氮杂菲银/蒙脱石抗菌复合物的制备及表征.矿物岩石,2006,26(4):14-18
    [128] Arumugam S.K., Sastry T.P., Sreedhar B., et al. One step synthesis of silver nanorods by autoreduction of aqueous silver ions with hydroxyapatite: an inorganic- inorganic hybrid nanocomposite. Journal of Biomedical Materials Research Part A, 2007, 80A: 391-398
    [129] Rameshbabu N., Sampath Kumar T.S., Prabhakar T.G., et al. Antibacterial nanosized silver substituted hydroxyapatite:Synthesis and characterization. Journal of Biomedical Materials Research Part A, 2007, 80A : 581-591
    [130] 邹冬梅,施利毅,张大卫.载银羟基磷酸锆钠抗菌剂的制备.上海大学学报(自然科学版),2006,12(3):288-292
    [131] 周彦昭,王芬,孙媛媛.磷酸氢钙载银系抗菌材料的工艺研究.中国陶瓷,2005,41(1):35-38
    [132] 胡燕,彭冰清,赵书云,等.载银羟基磷灰石的制备及抗菌性.2007,43(2):163-165
    [133] Zhao K., Feng Q.L., Chen G.Q.. Antibacterial effects of silver loaded hydroxyapatite. Tsinghua Science and Technology, 1999, 4(3): 1570-1573
    [134] 张文钲,张羽天.载银抗菌材料及其制品.贵金属 1998,19(4):50-53
    [135] 张文钲.载银抗菌剂及其相关产品.化工新型材料,2001,29(10):14-16
    [136] Jones S.A., Bowler P.G., Walker M, et al. Controlling wound bioburden with a novel silver-containing Hydrofiber dressing. Wound Repair and Regeneration 2004; 12(3):288-294
    [137] Retchkiman-Schabes P.S., Canizal G., Becerra-Herrera R., et.al. Biosynthesis and characterization of Ti/Ni bimetallic nanoparticles. Optics Materials, 2006, 29(1): 95-99
    [138] Gu H., Ho P.L., Tong E.,et al. Presenting vancomycin on nanoparticles to enhance antimicrobial activities. Nano Letters, 2003, 3(9): 1261-1263
    [139] Gong P., Li H., He X., et al. Preparation and antibacterial activity of Fe_3O_4@Ag nanoparticles. Nanotechnology, 2007, 18: 1-7
    [140] Duran N., Marcarto P.D., De-Souza G.I.H., Alves O.L., et al. Antibacterial effect of silver nanoparticles produced by fungal process on textile fabrics and their effluent treatment. Journal of Biomedical Nanotechnology. 2007,3(2):203-208
    [141] Panacek A., Kvitek L., Prucek R., et al. Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity. The Journal of Physical Chemistry B, 2006, 110(33) : 16248-16253
    [142] Shahverdi A.R., Fakhimi A., Shahverdi H.R., et al. Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli. Nanomedicine: Nanotechnology, Biology, and Medicine, 2007,3(2): 168-171
    [143] Elechiguerra J L., Burt J. L, Morones J. R, et al. Interaction of silver nanoparticles with HIV-1. Journal of Nanobiotechnology, 2005, 3 (6): 1-10
    [144] Kameo A., Yoshimura T., Esumi K.. Preparation of noble metal nanoparticles in supercritical carbon dioxide. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2003, 215(1-3):181-189
    [145] Zou X.Q, Ying E.B., Dong S.J.. Preparation of novel silver-gold bimetallic nanostructures by seeding with silver nanoplates and application in surface-enhanced Raman scattering. Journal of Colloid and Interface Science, 2007, 306(2): 307-315
    [146] Tian X.L.,-Wang W.H., Cao G.Y.. A facile aqueous-phase route for the synthesis of silver nanoplates. Materials Letters. 2007,61(1):130-133
    [147] Mohan Y. M., Lee K., Premkumar T., et al. Hydrogel networks as nanoreactors: A novel approach to silver nanoparticles for antibacterial applications. Polymer, 2007, 48(1): 158-164
    [148] Khanna P.K.,Singh N.,Charan S., et al. Synthesis and characterization of Ag/PVA nanocomposite by chemical reduction method. Materials Chemistry and Physics, 2005,93(1) :117-121
    [149]Xie Y.W., Ye R.Q., Liu H.L.. Synthesis of silver nanoparticles in reverse micelles stabilized by natural biosurfactant. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006,279(1-3): 175-178
    [150]Zhang W.Z., Qiao X.L., Chen J.G.. Synthesis and characterization of silver nanoparticles in AOT microemulsion system. Chemical Physics, 2006, 330(3): 495-500
    [151] Chen P., Song L.Y., Liu Y.K.. Synthesis of silver nanoparticles by gamma-ray irradiation in acetic water solution containing chitosan. Radiation Physics and Chemistry 2007,76(7): 1165-1168
    [152] Xiong Y.Q.,Wu H., Guo Y., et al. Preparation and characterization of nanostructured silver thin films deposited by radio frequency magnetron sputtering[J]. Thin Solid Films, 2000,375(1-2):300-303
    [153] Khanna P.K.,Singh N.,Charan S., et al. Synthesis of Ag/polyaniline nanocomposite via an in situ photo-redox mechanism. Materials Chemistry and Physics, 2005, 92 (1): 214-219
    [154] Tsuji T., Watanabe N., Tsuji M.. Laser induced morphology change of silver colloids: formation of nano-size wires. Applied Surface Science, 2003, 211(1-4): 189-193
    [155] Zhou M., Chen S.H., Zhao S.Y.. One-step synthesis of Au-Ag alloy nanoparticles by a convenient electrochemical method. PhysicaE, 2006, 33(1):28-34
    [156] Chang J.Y., Chang J.J., Lo B., et al., Silver nanoparticles spontaneous organize into nanowires and nanobanners in supercritical water, Chemical Physics Letters, 2003, 379(3-4): 261-267
    [157] He S.T, Yao J.N., Jiang P., et al. Formation of silver nanoparticles and self-assembled two dimensional ordered superlattice. Langmuir, 2001, 17 (5) : 1571-1575
    [158] Yu D.G..Formation of colloidal silver nanoparticles stabilized by Na~+-poly( γ -glutamic acid)-silver nitrate complex via chemical reduction process. Colloids and Surfaces B:Biointerfaces, 2007, 59 (2) : 171-178
    [159] Barnickel P., Wokaun A., Sager W., et al. Size tailoring of silver colloids by reduction in W/O microemulsions. Journal of Colloid and Interface Science, 1992, 148(1): 80-90
    [160] Chen Z. T., Gao L., A facile and novel way for the synthesis of nearly monodisperse silver nanoparticles, Materials Research Bulletin, 2007,42 (9): 1657-1661
    [161] Xie Y.W., Ye R.Q., Liu H.L., Synthesis of silver nanoparticles in reverse micelles stabilized by natural biosurfactant, Colloids and Surfaces A: Physic'ochemical and Engineering, 2006, 279(1-3): 175-178.
    [162] Jiang P, Li S.Y., Xie S.S., et al. Machinable long PVP-stabilized silver nanowires. Chemistry - A European Journal, 2004, 10(19): 4817-4821
    [163] Mallick K., Witcomb, M.J., Scurrel M.S.. Polymer stabilized silver nanoparticles: a photochemical synthesis route. Journal of Materials Science and Technology, 2004,39: 4459-4463
    [164] Hoppe C. E., Lazzari M., Pardias-Blanco I., et al. One-step synthesis of gold and silver hydrosols using poly(N-vinyl-2-pyrrolidone) as a reducing agent. Langmuir, 2006, 22 (16):7027-7034
    [165] Huang H.H., Ni X.P., Loy G.L., et.al. Photochemical formation of silver nanoparticles in Poly(N-vinylpyrrolidone. Langmuir, 1996, 12(4): 909-912
    [166] Zhang Z. Q., Patel R. C, Kothari R., et al. Stable silver clusters and nanoparticles prepared in polyacrylate and inverse micellar solutions. Journal of Physical Chemistry B, 2000, 104(6):1176-1182
    [167] Kim D.J., Jeong S.H., Moon J.H.. Synthesis of silver nanoparticles using the polyol process and the influence of precursor injection. Nanotechnology, 2006, 17 : 4019-4024
    [168] Balan L., Schneider R., Lougnot D. J. A new and convenient route to polyacrylate/silver nanocomposites by light-induced cross-linking polymerization. Progress in Organic Coatings, 2008, 62 (3):351-357
    [169] Son W. K., Youk J. H., Park W. H., Antimicrobial cellulose acetate nanofibers containing silver nanoparticles, Carbohydrate Polymers, 2006 65(4) : 430-434
    [170] Bright R.M., M.D. Musick, M.J. Natan, Preparation and Characterization of Ag Colloid Monolayers. Langmuir, 1998, 14 (20) : 5695-5701
    [171] Yang S.C., Wang Y. P., Wang Q. F., et al. UV irradiation induced formation of Au nanoparticles at room temperature: The case of pH values. Colloids and Surfaces A: Physicochemical and Engineering Aspects Aspects. 2007, 301 (1-3):174-183
    [172] Sarkar S., Jana A. D., Samanta S. K., et al. Facile synthesis of silver nano particles with highly efficient anti-microbial property. Polyhedron, 2007, 26(15):4419-4426
    [173] 华彤文,陈景祖 等编著.普通化学原理(第一版).北京:北京大学出版社,1993.382-383
    [174] Popa M., Pradell T., Crespo D., et al. Stable silver colloidal dispersions using short chain polyethylene glycol. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 303(3):184-190
    [175] Fang Y.. Optical absorption of nanoscale colloidal silver: aggregate band and adsorbate-silver surface band. The Journal of Chemical Physics, 1998, 108(10): 4315-4318
    [176] Xu G.N., Qiao X.L., Qiu X.L., et al. Preparation and characterization of stable monodisperse silver nanoparticles via photoreduction. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 320(1-3): 222-226
    [177] Komarneni S., Li D.S., Newalkar B., et al. Microwave-polyol process for Pt and Ag nanoparticles. Langmuir, 2002, 18(15):5959-5962
    [178] Tsuji IM., Nishizawa Y., Matsumoto K., et al. Rapid synthesis of silver nanostructures by using microwave-polyol method with the assistance of Pt seeds and polyvinylpyrrolidone. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 293(1-3):185-194
    [179] He R, Qian X.F., Yin J., et al. Formation of silver dendrites under microwave irradiation. Chemical Physics Letters, 2003, 369(3-4):454-458
    [180] Liu F.K., Huang P.W., Chu T.C., et al. Gold seed-assisted synthesis of silver nanomaterials under microwave heating. Materials Letters, 2005, 59(8-9) :940-944
    [181] Chen J., Wang J., Zhang X., et al. Microwave-assisted green synthesis of silver nanoparticles by carboxymethyl cellulose sodium and silver nitrate. Materials Chemistry and Physics, 2008,108(2-3) :421-424
    [182] Hu B., Wang S.B., Wang K., et al. Microwave-assisted rapid Facile "Green" synthesis of uniform silver nanoparticles:self-assembly into multilayered films and their optical properties. The Journal of Physical Chemistry C, 2008, 112(30):11169-l 1174
    [183] Vigneshwaran N., Nachane R. P., Balasubramanya R. H.,et al. A novel one-pot 'green' synthesis of stable silver nanoparticles using soluble starch. Carbohydrate Research, 2006, 341(12) : 2012-2018
    [184] Perreux L., Loupy A.. A tentative rationalization of microwave effects in organic synthesis according to the reaction medium, and mechanistic considerations. Tetrahedron,, 2001, 57(45) :9199-9223
    [185] Eustis S., Hsu H.Y., El-Sayed M.A.. Gold nanoparticle formation from photochemical reduction of Au~(3+) by continuousexcitation in colloidal solutions. A proposed molecular mechanism. The Journal of Physical Chemistry B, 2005, 109(11): 4811-4815
    [186] Link S., El-Sayed M. A.. Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. Journal of Physical Chemistry B, 1999, 103 (40): 8410-8426
    [187] Wiley B., Sun Y., XIA Y.N.. Synthesis of silver nanostructures with controlled shapes and properties. Accounts of Chemical Research, 2007,40(10): 1067-1076
    [188] Mayya K.S., Patil V., Sastry M.. On the stability of carboxylic acid derivatized gold colloidal particles: the role of colloidal solution ph studied by optical absorption spectroscopy. Langmuir,1997,13(15) :3944-3947
    [189] Huang L., Zhai, M.L., Long D. W., et al. UV-induced synthesis, characterization and formation mechanism of silver nanoparticles in alkalic carboxymethylated chitosan solution. Journal of Nanoparticle Research, 2008, 10(7): 1193-1202
    [190] Petica A., Gavriliu S., Lungu M., et al. Colloidal silver solutions with antimicrobial properties. Materials Science and Engineering : B, 2008, 152(1-3) : 22-27
    [191] Huang S.X., Ma H.Y., Zhang X.K., et al. Electrochemical synthesis of gold nanocrystals and their 1D and 2Dorganization. The Journal of Physical Chemistry B, 2005, 109(42): 19823-19830
    [192] Yin B.S., Ma H.Y., Wang S.Y, et al. Electrochemical synthesis of silver nanoparticles under protection of Poly(N-vinylpyrrolidone.The Journal of Physical Chemistry B, 2003,107(34) : 8898-8904
    [193] Rodr(?)guez-S(?)nchez L., Blanco M.C., L(?)pez-Quintela M.A.. Electrochemical Synthesis of Silver Nanoparticles. The Journal of Physical Chemistry B, 2000, 104(41): 9683-9688
    [194] Zhang Z.T., Zhao B., Hu L.M.. PVP protective mechanism of ultrafine silver powder synthesized by chemical reduction processes. Journal of Solid State Chemistry, 1996, 121(1): 105-110
    [195] Ma H.Y, Yin B.S., Wang S.Y., et al. Synthesis of silver and gold nanoparticles by a novel electrochemical method. ChemPhysChem, 2004, 5 (1): 68-75
    [196] Zhu J., Zhu X., Wang Y.C.. Electrochemical synthesis and fluorescence spectrum properties of silver nanospheres. Microelectronic Engineering, 2005, 77(1) : 58-62
    [197] Filho N.L.D., Carmo D. R. D.. Study of an organically modified clay: Selective adsorption of heavy metal ions and voltammetric determination of mercury(Ⅱ). Talanta, 2006, 68(3): 919-927
    [198] Zhou Y.H., Xia M.S., Ye Y., et al. Antimicrobial ability of Cu~(2+)-montmorillonite. Applied Clay Science, 2004, 27(3-4) : 215-218
    [199] 付桂珍,龚文琪,曹敏.蒙脱石有机插层复合物的制备及表征.武汉理工大学学报,2006,28(8):50-53
    [200]马玉龙,郭彤,徐梓荣,等.载铜蒙脱石的制备与表征.硅酸盐学报,2005, 33(8): 1041-1044
    [201] Helier-Kallai L., Mosser C. Migration of Cu ions in Cu montmorillonite heartd with and without alkali halides. Clays and Clay Minerals, 1995, 43(6): 738-743
    [202] Mosser C., Michot L.J., Villieras F. et al. Migration of cations in copper (Ⅱ)-exchanged montmorillonite and laponite upon heating. Clays and Clay Minerals, 1997, 45(6): 789-802
    [203] Akyuz S.. Akyuz T.. Study on the interaction of nicotinamide with sepiolite, loughlinite and palygorskite by IR spectroscopy. Journal of Molecular Structure, 2005, 744-747 : 47-52
    [204] Zhao D.F., Zhou J., Liu N.. Preparation and characterization of Mingguang palygorskite supported with silver and copper for antibacterial behavior. Applied Clay Science, 2006,33(3-4): 161-170
    [205] Ding Z., Frost R. L.. Thermal study of copper adsorption on montmorillonites. Thermochimica Acta, 2004,416(1-2): 11-16
    [206] Belova V., Mohwald H., Shchukin D.G.. Sonochemical intercalation of preformed gold nanoparticles into multilayered clays. Langmuir, 2008, 24(17): 9747-9753
    [207] Smetana A.B., Klabunde K.J., Marchin G.R., Biocidal Activity of Nanocrystalline Silver Powders and Particles. Langmuir 2008,24(14): 7457-7464
    [208] Kolar M., Urbanek K., Latal T. Antibiotic selective pressure and development of bacterial resistance. International Journal of Antimicrobial Agents, 2001, 17 (5): 357-363
    [209] Martinez-Castanon G. A., Nino-Martinez N., Martinez-Gutierrez F.,et al. Synthesis and antibacterial activity of silver nanoparticles with different sizes. Journal of Nanoparticle Research, 2008, 10:1343-1348
    [210] Zhang L., Yu J. C, Yip H.Y., et al. Ambient light reduction strategy to synthesize silver nanoparticles and silver-coated TiO_2 with enhanced photocatalytic and bactericidal activities.Langmuir, 2003, 19(24) : 10372-10380
    [211] Buzea C, Blandino I.I. P., Robbie K.. Nanomaterials and nanoparticles: sources and toxicity.Biointerphases, 2007, 2 (4) : MR17 - MR172
    [212] Sun R.W.Y., Chen R., Chung N.P.Y., et al. Silver nanoparticles fabricated in hepes buffer exhibit cytoprotective activities toWard HIV-1 infected cells. Chemical Communications, 2005, 40:5059-5061
    [213] Kim S., Kim H.J.. Anti-bacterial performance of colloidal silver-treated laminate wood flooring. International Biodeterioration & Biodegradation, 2006, 57(3) : 155-162
    [214] Li Y., Leung P., Yao L., et al. Antimicrobial effect of surgical masks coated with nanoparticles. Journal of Hospital Infection, 2006, 62(1) : 58-63
    [215] 沈萍,范秀容,李广武.微生物学实验(第三版).北京:高等教育出版社,1999,59-98
    [216] Petica A., Gavriliu S., Lungu M., et al. Colloidal silver solutions with antimicrobial properties. Materials Science and Engineering B, 2008,152 (1-3): 22-27
    [217] Giolando S.T., Rapaport R.A., Larson R.J., et al. Environmental fate and effects of deedmac: a new rapidly biodegradable cationic surfactant for use in fabric softeners. Chemosphere, 1995, 30(6): 1067-1083

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700