用户名: 密码: 验证码:
高效复合光催化材料的设计制备及其催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文致力于高效复合光催化材料的设计制备、表征与催化性能研究,针对所合成复合光催化材料的特点,系统研究了不同合成方法对复合材料晶型结构与表面形貌的影响,考察了该系列复合材料在不同光源辐射下的光催化性能。
     利用溶胶-凝胶再结合程序升温溶剂热方法,制备了具有可见光光催化活性的H_3PW_(12)O_(40)掺杂TiO_2锐钛矿纳米双孔光催化材料-H_3PW_(12)O_(40)/TiO_2。通过电感耦合等离子原子发射光谱(ICP-AES)、固体核磁共振波谱(~(31)P MAS NMR)、X-射线粉末衍射(XRD)、紫外–可见漫反射光谱(UV/DRS)、红外光谱(FT-IR)和拉曼散射光谱等表征手段对合成材料进行了组成和结构表征。结果表明,复合材料中杂多酸H_3PW_(12)O_(40)的基本结构仍然保留,而且与二氧化钛之间通过化学作用相结合,并具有锐钛矿晶型结构。利用透射电镜(TEM)以及N_2吸附测定等表征手段对复合材料的形貌以及表面物理化学性质进行了表征。结果表明,H_3PW_(12)O_(40)/TiO_2具有微孔(0.6 nm)和介孔(3.0 nm)双重孔径,且BET比表面积有了较大提高。通过对有机杀虫剂-甲基对硫磷的可见光光催化实验,研究了H_3PW_(12)O_(40)/TiO_2在非均相体系中的光催化活性。结果表明,H_3PW_(12)O_(40)/TiO_2在可见光照射下具有较高的光催化活性,可有效降解上述有机污染物。H_3PW_(12)O_(40)/TiO_2较高的光催化活性源于该复合材料的光吸收特性、表面物理化学性质以及多酸和TiO_2之间的协同作用。另外,以有机染料孔雀石绿(MG)为模型分子,考察了微波无极灯的形状、微波功率、溶液初始浓度和催化剂用量对微波光催化降解效果的影响。在最佳微波反应条件下,考察了复合光催化材料H_3PW_(12)O_(40)/TiO_2对刚果红、酸性黑和酸性品红的光催化降解情况,并且分别进行了H_3PW_(12)O_(40)/TiO_2微波增强光催化降解MG以及在高压汞灯照射下的H_3PW_(12)O_(40)/TiO_2光催化降解MG的对比实验。结果表明,在微波场作用下,H_3PW_(12)O_(40)/TiO_2的光催化活性被显著增强。
     采用非离子表面活性剂C_(18)H_37(OCH_2CH_2)10OH(Brij-76)作为模板剂,通过溶胶-凝胶-程序升温溶剂热一步合成法制备了H_6P_2W_(18)O_(62)/TiO_2(Brij-76)复合光催化剂。分别采用电感耦合等离子原子发射光谱(ICP-AES)、X-射线粉末衍射(XRD)、扫描电镜(SEM-EDX)、透射电镜(TEM)、N_2吸附-脱附和红外光谱(FT-IR)等检测手段对合成材料的组成、结构与表面物理化学性质进行了表征。结果表明,使用非离子表面活性剂Brij-76制备的H_6P_2W_(18)O_(62)/TiO_2(Brij-76)复合光催化剂具有介孔结构(3.3 nm)和较大的比表面积(99.78 m2/g),且复合材料中多酸H_6P_2W_(18)O_(62)的基本结构未发生明显变化。与TiO_2相比,其孔径有序性大幅度提高,粒子的聚集度降低,表面酸性显著增加。在光催化性能研究中,选择一氯苯为探针分子,考察了复合光催化材料H_6P_2W_(18)O_(62)/TiO_2(Brij-76)在微波作用下的光催化活性,并与传统紫外和可见光光催化方式进行了对比。实验结果显示,H_6P_2W_(18)O_(62)/TiO_2(Brij-76)在可见光、紫外光以及微波增强光催化降解一氯苯的实验中表现出比锐钛矿型TiO_2和母体H_6P_2W_(18)O_(62)更高的催化活性。
     采用灼烧、溶胶-凝胶再结合程序升温溶剂热、模板等不同合成方法制备了复合金属氧化物光催化材料TiO_2-ZrO_2,并采用XRD、SEM-EDX、TEM、N_2吸附-脱附和TPD等表征手段对不同合成方法所制备的复合金属氧化物光催化材料的结构与表面物理化学性质进行了表征。合成过程中,研究了纳米复合材料TiO_2-ZrO_2中ZrO_2的掺杂量不同对复合材料的结构与催化性能的影响,并在合适的掺杂量下,分别采用程序升温溶剂热法和模板法合成了TiO_2-ZrO_2 (TPHT),TiO_2-ZrO_2 (P_(123)-TPHT)两种催化剂,探讨了不同合成方法对其催化活性的影响。通过紫外区和可见区的光催化降解染料亚甲基蓝、罗丹明B和水杨酸的实验,考察了不同合成方法制备的TiO_2-ZrO_2复合光催化材料的光催化活性。实验结果表明,所合成的复合材料TiO_2-ZrO_2的催化活性均高于单体TiO_2和ZrO_2。其中,采用非离子表面活性剂EO_(20)PO_(70)EO_(20)(EO=CH_2CH_2O;PO=CH_2(CH_3)CHO;P_(123))为结构导向剂,通过溶胶-凝胶和程序升温溶剂热方法制备的复合金属氧化物TiO_2-ZrO_2(P_(123)-TPHT)比表面积最大,催化活性最高。
A series high performance photocatalytic composits were prepared and well-characterized, and their catalytic activities were studied. Based on the characteristic of prepared nanocomposits, it was systemically discussed that the crystalline phase and surface morphology of the composites were affected by different synthesized methods. Moreover, the photocatalytic activities of as-prepared composites were studies under different light irradiation.
     New and efficient heterogeneous photocatalytic material, H_3PW_(12)O_(40)/TiO_2 with anatase crystalline phase, dual-pore structures (micro- and meso-porosity), and nanometer sizes (average particle size of 6 nm) was prepared by combination of the methods of sol-gel and hydrothermal treatment at a lower temperature (200°C, 2°C/min). Composition, structure, physicochemical properties, and surface morphology of the composite were characterized by inductively coupled plasma atomic emission spectrum (ICP-AES), X-ray diffraction (XRD) patterns, UV diffuse reflectance spectroscopy (UV/DRS), ~(31)P magic-angle spinning (MAS) NMR, Raman scattering spectra, nitrogen adsorption/desorption determination, and transmission electron microscopy (TEM), respectively. It indicated that the primary Keggin structure remained intact after immobilization of the unit into the TiO_2 network, and hydrogen bonding and chemical interactions between the unit and the anatase network existed in the composite. The composite exhibited visible-light photocatalytic activity to degradation of an aqueous organophosphorus pesticide, parathion-methyl. The high photoactivity of as-prepared nanocomposite could be attributed the higher surface, dual-pore structures, and the synergistic effect existed between the H_3PW_(12)O_(40) and the TiO_2 matrix. In addition, photodegradation of malachite green (MG) as the model molecular by microwave discharge electrodeless lamps (MDELs) was studied. The effects of different parameters in degradation of MG were discussed, including the MDEL shape, the microwave power, the initial solution concentration and the catalyst dosage. MG was degraded completely within 30 min by U-MDEL when microwave power was 600 W. Additionally, the photodegradation of congo red, acid black, acid fuchsine and salicylic acid had been investigated under the optimum reaction condition of the microwave-enhanced photocatalysis by the use of the composite H_3PW_(12)O_(40)/TiO_2. Compared with the results of the experiment with only MDEL, the time that complete degradation of four organic contaminants needed significantly reduced. The microwave-enhanced photocatalytic degradation took on a good effect, therefore, the use of microwave-enhanced photocatalysis was promising in treating organic contaminants.
     The H_6P_2W_(18)O_(62)/TiO_2 (Brij-76) composite was prepared by the combination of nonionic surfactant C_(18)H_37(OCH_2CH_2)10OH (Brij-76) as the template and a single-step sol-gel-hydrothermal method. As-synthesized composite was characterized by FT-IR, XRD, SEM, EDX, N_2 absorption-desorption and NH_3-TPD. The results showed that the average pore diameter of the composite H_6P_2W_(18)O_(62)/TiO_2 (Brij-76) was ca. 3.3 nm, and that of large surface area was 99.78 m~2/g. Additionally, the aggregation of particles was effectively inhibited, and surface acidity increased substantially. The photocatalytic eliminations of monochlorobenzene were used as model reaction to evaluate the mirowave enhanced photocatalytic activity of the composite, which was compared with conventional photocatalytic mode with UV-light and visible light. The results showed that the composite H_6P_2W_(18)O_(62)/TiO_2 (Brij-76) can more effectively degradate monochlorobenzene than anatase TiO_2 and H_6P_2W_(18)O_(62), and which took on a high catalytic activity under mirowave irradiation.
     The TiO_2-ZrO_2 mixed oxides were prepared by different synthesis methods about calcined or combination of the methods of sol-gel and hydrothermal treatment and template method. Structures, physicochemical properties, and surface morphology of the as-composites were characterized by XRD, nitrogen absorption-desorption, SEM-EDX and TPD techniques. Moreover, the effects of TiO_2-ZrO_2 with different proportion on the structure and their catalytic activities were researched. The results indicated that as-composites were active to decompose aqueous dyes methylene blue, rhodamine B and salicylic acid, and their photocatalytic activities were higher than TiO_2 and ZrO_2. Thereinto, TiO_2-ZrO_2(P_(123)-TPHT) mixed oxides was prepared by a one-step sol-gel-solvothermal method in the presence of a triblock copolymer surfactant,Poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethyleneglycol),P_(123)(EO_(20)PO_(70)EO_(20);EO=CH_2CH_2O; PO=CH_2(CH_3)CHO) as the template, of which the surface area and photocatalytic activity was the best.
引文
[1]曹怡,张建成.光化学技术[M],北京:化学工业出版社,2004,1-3.
    [2]Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972,238(37): 198-199.
    [3]Krishnamoorthy S, Rivas J A, Amiridis M D. Catalytic Oxidation of 1,2-Dichlorobenzene over Supported Transition Metal Oxides[J]. J Catal, 2000, 193(2): 264-272.
    [4]Lv K, Xu Y. Effects of polyoxometalate and fluoride on adsorption and photocatalytic degradation of organic dye X3B on TiO2: the difference in the production of reactive species [J]. J Phys Chem B, 2003, 110(2): 6204-6212.
    [5]Hoffmann M R, Martin S T, Chio W, et al. Environmental applications of semiconductor photocatalysis[J]. Chem Rev, 1995, 95(1): 69-96.
    [6]Stylidi M, Kondarides D I, Verykios X E. Pathways of solar light-induced photocatalytic degradation of azo dyes in aqueous TiO2 suspensions[J]. Appl Catal B, 2003, 40(4): 271-286.
    [7]Chatterjee D, Mahata A. Demineralization of organic pollutants on the dye modified TiO2 semiconductor parti- culate system using visible light[J]. Appl Catal B, 2001, 33(2): 119-125.
    [8]Seok J D, Cham K, Lee S G, et al. Development of photocatalytic TiO2 nanofibers by electrospinning and its application to degradation of dye pollutants[J]. J Hazar Mater, 2008, 154(1-3): 118-127.
    [9]Tayade R J, Surolia P K, Kulkarni R G, et al. Photocatalytic degradation of dyes and organic contaminants in water using nanocrystalline anatase and rutile TiO2[J]. Sci Technology of Advanced Mater, 2007, 8(6): 455-462.
    [10]Janus M, Morawski A W. New method of improving photocatalytic activity of commercial Degussa P25 for azo dyes decomposition[J]. Appl Catal B, 2007, 75(1-2): 118-123.
    [11]刘守新,刘鸿.光催化及光电催化基础与应用[M],北京:化学工业出版社,2005,51.52.
    [12]施利毅.纳米材料[M],上海:华东理工大学出版社,2006,164-165.
    [13]沈伟韧,赵文宽,贺飞.Ti02光催化反应及其在废水处理中的应用[J].化学进展,1998,10(4):349-361.
    [14]韩维屏.催化化学导论[M].北京:科学出版社,2003,599-600.
    [15]Zhang D, Qiu R, Song L, et al. Role of oxygen active species in the photocatalytic degradation of phenol using polymer sensitized TiO2 under visible light irradiation[J]. Hazard Mater, 2009, 163(2-3): 843-847.
    [16]张金龙,陈锋,何斌.光催化[M].上海:华东理工大学出版社,2004,4-5.
    [17]姜月顺,李铁津.光化学[M].北京:化学T业出版社,2005,91-100.
    [18]Frank S N, Bard A J. Heterogeneous photocatalytic oxidation of cyanide and sulfite in aqueoussolutions at semiconductor powders[J]. J Phys Chem, 1977, 81(15): 1484-1488.
    [19]廖代伟.催化科学导论[M].北京:化学工业出版社,2006,103-105.
    [20]尚德辉.固体催化剂[M].北京:化学工业出版社,1982.
    [21] Anpo M. Surface photochemistry, John Willey & Sons, 1996.
    [22]Herrmann J M, Heterogeneous photocatalysis: fundamentals and applications to the removal of varioustypes aqueous pollutants[J]. Catal Today, 1999, 53: 115-129.
    [23]Matthews R W. Photocatalytic oxidtion of organic contaminants in water: an aid to environmentalpreservation[J]. Pure &Appl Chem, 1992, 64: 1285-1292.
    [24]Mills A, Davies R H, Worsley D. Water purification by semiconductor photocatalysis [J]. Chem SocRev, 1993,22:417-425.
    [25]Hoffmann, Application of semiconductor photocatalysis [J]. Chem rev, 1995, 95: 69-96.
    [26]Turro N. Modern molecular photochemistry[M]. New York: Benjamin, 1978.
    [27]Wells C. Introduction to molecular photochemistry[M]. London: Chapman and Hall, 1972.
    [28]Boule P. Environment photochemistry[M]. Berlin: Springer, 1999.
    [29]Dhananjay S, Vishwas G, Anthony A. Photocatalytic degradation for environmental applications-areview[J], J Chem Technol Biotechnol, 2001, 77(3): 102-116.
    [30]Chen Y, Zhou X, Zhao X, et al. Crystallite structure, surface morphology and optical properties ofIn2O3-TiO2 composite thin films by sol-gel method[J]. Mater Sci Engin: B, 2008, 151(2): 179-186.
    [31]Jimmy C, Liang Wu, Jun Lin, et al. Microemulsion-mediated solvthermal systhesis of nanosizedCds-sensitized TiO2 crystalline photocatalyst[J], Chem Commun, 2003, 1552-1553.
    [32]Franco A, Neves M C, Ribeiro Carrott M L, et al. Photocatalytic decolorization of methylene blue inthe presence of TiO2/ZnS nanocomposites [J]. Hazard Mater, 2009, 161(1): 545-550.
    [33]Smith W, Zhao Y P. Superior photocatalytic performance by vertically aligned core-shell T1CVWO3nanorod arrays[J]. Catal Commun, 2009, 10(7): 1117-1121.
    [34]Yang X, Xu L, Yu X, et al. Enhanced photocatalytic activity of Eu2O3/Ta2O5 mixed oxides ondegradation of rhodamine B and 4-nitrophenol[J]. Colloids and Surfaces A, 2008, 320: 61-67.
    [35]Stefan H, Nabil S, Hieu L, et al. [Fe(bpy)3]2+/TiO2-codoped zeolites:synthesis, characterization, andfirst Application in photocatalysis, CHFMPHYSCHEM, 2002, 3: 401-407.
    [36]Dana D, Vlasta B, Milan M, et al. Investigations of metal-doped titanium dioxide photocatalysts, ApplCatal B, 2002, 37(2): 91-105.
    [37]Stengl V, Bakardjieva S, Murafa N. Preparation and photocatalytic activity of rare earth doped TiO2nanoparticles[J]. Mater Chem Phys, 2009, 114(1): 217-226.
    [38]Baran W, Adamek E, Sobczak A, et al. The comparison of photocatalytic activity of Fe-salts, TiO2 andTiO2/FeCl3 during the sulfanilamide degradation process[J]. Catal Comm, 2009, 10(6): 811-814.
    [39]Hakoda T, Matsumoto K, Mizuno A, et al. Role of metals loaded on a TiO2 surface in the oxidation ofxylene in air using anelectron beam irradiation/catalytic process[J]. Appl Catal A: Gen, 2009, 357(2):244-249.
    [40] Shanmugasundaram S, Horst K, Daylight photocatalysis by carbon-modified titanium dioxide[J].Angew, 2003, 42, 4908-4911.
    [40]Ren L, Zeng Y, Jiang D. Preparation, characterization and photocatalytic activities of Ag-depositedporous TiO2 sheets[J]. Catal Comm, 2009, 10(5): 645-649.
    [41]Yasushige K, Toshinori M, Kazunori Y, et al. Preparation of visible-light-responsive TiO2_xNxphotocatalyst by a sol-gel method: analysis of the active center on TiO2 that reacts with NH3[J]. Langmuir,2005,21(17): 8026-8034.
    [42]Jo W K, Kim J T. Application of visible-light photocatalysis with nitrogen-doped or unmodifiedtitanium dioxide for control of indoor-level volatile organic compounds[J]. Hazard Mater, 2009, 164(1):360-366.
    [43]Kathiravan A, Renganathan R. Effect of anchoring group on the photosensitization of colloidal TiO2nanoparticles with porphyrins [J]. Colloid and Interface Sci, 2009, 331(2):401-407.
    [44]Meen T H, Water W, Chen W R, et al. Application of TiO2 nano-particles on the electrode ofdye-sensitized solar cells[J]. J Phys Chem Solids, 2009, 70(2): 472-476.
    [45]Shen S, Zhao L, Guo L. Crystallite, optical and photocatalytic properties of visible-light-driven ZnIn2S4photocatalysts synthesized via a surfactant-assisted hydrothermal method[J]. Mater Res Bull, 2009, 44(1):100-105.
    [46]Shiraishi F, Ikeda S, Kamikariya N. Photocatalytic decompositions of gaseous HCHO over thin filmsof anatase titanium oxide converted from amorphous in a heated air and in an aqueoussolution of hydrogenperoxide[J]. Chem Engin, 2009, 148(2-3): 234-241.
    [47]Alaoui O T, Nguyen Q T, Mbareck C, et al. Touria Rhlalou Elaboration and study of poly(vinylidenefluoride)-anatase TiO2 compositemembranes in photocatalytic degradation of dyes[J]. Appl Catal A: Gen,2009, 358(1): 13-20.
    [48]Tayade R J, Surolia P K, Kulkarni R G, et al. Photocatalytic degradation of dyes and organiccontaminants in water using nanocrystalline anatase and rutile TiO2[J]. Sci Technol Advan Mater, 2007,8(6): 455-462.
    [48]Mozia S, Morawski A W, Toyoda M, et al. Application of anatase-phase TiO2 for decomposition of azodye in a photocatalytic membrane reactor[J]. Desalination, 2009, 241(1-3): 97-105.
    [49]Kumar A, Jain A K. Photophysics and photochemistry of colloidal CdS-TiO2 coupled semiconductors -photocatalytic oxidation of indole[J]. J Mol Catal A: Chem, 2001, 165(1-2): 265-273.
    [50]Li F, Jiang Y, Hu L, et al. Structural and luminescent properties of ZnO nanorods and ZnO/ZnSnanocomposites[J]. J Alloys Compounds, 2009, 474(1-2): 531-535.
    [51]Kim D, Yoo H. Thermopower of an asymmetric cell, Ag-AgI-Ag2S, involving a mixed conductor Ag2Sas an information transmitter [J]. Solid State Ionics, 1995, 81, (1-2): 135-143.
    [52]Marco S, Jose A P. Degradation of Reactive Black 5 by Fenton/UV-C and ferrioxalate/ H2O2/solar lightprocesses[J]. Dyes and Pigments, 2007, 74(3): 622-629.
    [53]Dong X, Ding W, Zhang X, et al. Mechanism and kinetics model of degradation of synthetic dyes byUV-vis/H2O2/FeiTioxalate complexes[J]. Dyes and Pigments, 2007, 74(2): 470-476.
    [54]Gouzerh P, Proust A. Main-group element, organic, and organometallic derivatives ofpolyoxometalates[J]. ChemRev, 1998, 98: 77-111.
    [55]王恩波,胡长文,许林.多酸化学导论[M],北京:化学工业出版社,1998(第一版).
    [56]Ai M. Effects of cations introduced into 12-molybdophosphoric acid on the catalyst properties[J]. ApplCatal, 1982, 4(3): 245-256.
    [57]Yoshida S, Niiyama H, Echigoya E. Reduction of heteropoly compounds with hydrogen. Roles ofcountercations[J]. J Phys Chem, 1982, 86(16): 3150-3154.
    [58]Knoth W H, Harlow R L. New tungstophosphates: Cs6W5P2O23, Cs7WioP036, and Cs7Na2WioP037[J]. JAmChemSoc, 1981, 103:1865-1867.
    [59]Canny J, Teze A, Thouvenot R, et al. Disubstituted tungstosilicates. 1. Synthesis, stability, and structureof the lacunary precursor polyanion of a tungstosilicate gamma-SiWio0368-[J]. Inorg Chem, 1986, 25(13):2114-2119.
    [60]Wassernann K, Palm R, Lunk H J, et al. Condensation of keggin anions containing chromium(III) andaluminum(III), respectively. 1. Synthesis and X-ray structural determination of[{A-.alpha.-Si04W903o(OH)3Cr3}2(OH)3]11-[J]. Inorg Chem, 1995, 34(20): 5029-5036.
    [61] James F K, Louis C W, Effects of counterions in heteropoly electrolyte chemistry. 1. Evaluations ofrelative interactions by NMR on kozik salts[J]. Inorg Chem, 1998, 37(21): 5537-5543.
    [62]Roushan K, Leila K, Farokhzad M Z. Dioxouranium complexes as ligand. Synthesis and character-ization of sandwich-type polyoxometalates [X2Wi8(UO2)2{(H2O)3M}2O68]10II (X = Asv and Pv) (M = CoII,CuII, MnII, NiII and ZnII) [J]. Inorg ChimActa, 2009, 362(4): 1223-1228.
    [63]Pizzio L R, Blanco M N. Preparation and characterization of transition metal-modified lacunaryKeggin 11-tungstophosphates supported on carbon[J]. Mater Lett, 2007, 61(3): 719-724.
    [64]Wassernann K, Lunk H J, Palm R, et al. Polyoxoanions derived from [y-Si04Wio032]8--containingoxo-centered dinuclear chromium(III) carboxylato complexes: synthesis and single-crystal structuraldetermination of [y-SiO4W10O32(OH)Cr2(OOCCH3)2(OH2)2]5-[J]. Inorg Chem, 1996, 35(11): 3273-3279.
    [65]Moffat J B. Cation-anion effects in heteropoly compounds with Keggin structures [J]. Polyhedron. 1986,5(1-2): 261-269.
    [66]Corma A, Martinez A, Martine C. Acidic Cs+, NH4+, and K+salts of 12-tungstophosphoric acid as solidcatalysts for isobutane/2-butene alkylation[J]. J Catal, 1996, 164(2): 422-432.
    [67]Misono M, Unique acid catalysis of heteropoly compounds (heteropolyoxometalates) in the solidstate[J]. ChemComm, 2001: 1141-1152.
    [68]Misono M, Okuhara T, Ichiki T, et al, Pesudoliquid behavior of heteropoly compound catalysts,unusual pressure dependencies of the rate and selectivity for ethanol dehydration[J]. J Am Chem Soc, 1987,109(18): 5535-5536.
    [69]许林,郭军.杂多酸性催化剂的应用研究及其进展[J].石油化工,1994,23(7):477-481.
    [70] Song I K, Lee J K, Park G I, et al. Selective oxidation catalysis over heteropoly acid supported onpolymer[J]. Stud Sur Sci Catal, 1997, 110: 1183-1192.
    [71]Sakamoto T, Toshikatsu T, Sakakura A, et al. Hydroxylation of benzene to phenol under air and carbon monoxide catalyzed by molybdovanadophosphates[J]. J Mol Catal, 2008, 288(1-2): 19-22.
    [72]Hanan A, Armbruster U, Andreas M. Dehydration of glycerol in gas phase using heteropolyacid catalysts as active compounds[J]. J Catal, 2008, 258(1): 71-82.
    [73]Balaraju M, Rekha V, Prasad P S, et al. Influence of solid acids as co-catalysts on glycerol hydrogenolysis to propylene glycol over Ru/C catalysts[J]. Appl Catal, 2009, 354(1-2): 82-87.
    [74]Mylonas A, Papaconstantinou E. On the mechanism of photocatalytic degradation of chlorinated phenols to CO2 and HC1 by polyoxometalates[J]. J Photochem Photobiol, 1996, 94(1): 77-82.
    [75]Androulaki E, Hiskia A, Dimotikali D, et al. Light Induced Elimination of Mono- and Polychlorinated Phenols from Aqueous Solutions by PW12O403-[J]. Environ Sci Technol, 2000, 34(10): 2024-2028.
    [76]Antonaraki S, Androulaki E, Dimotikali D, et al. Photolytic degradation of all chlorophenols with polyoxometallates and H2O2 [J]. J Photochem Photobiol, 2002, 148(1-3): 191-197.
    [77]Ozer R R, Ferry J L. Kinetic Probes of the Mechanism of Polyoxometalate-Mediated Photocatalytic Oxidation of Chlorinated Organics[J]. J Phys Chem, 2000, 104(40): 9444-9448.
    [78]Misono M, Ono I, Koyano G, et al. Heteropolyacids versatile green catalysts usable in a variety of reaction media[J]. Pure Appl Chem, 2000, 72(7): 1305-1311.
    [79]Seki Y, Mizuno N, Misono M. Catalytic performance of 11-molybdo-l-vanadophosphoric acid as a catalyst precursor and the optimization of reaction conditions for the oxidation of methane with hydrogen peroxide[J]. Appl Catal A: Genl, 2000, 194 (3): 13-20.Seki Y, Mizuno N, Misono M. Catalytic performance of 11-molybdo-l-vanadophosphoric acid as a catalyst precursor and the optimization of reaction conditions for the oxidation of methane with hydrogen peroxide[J]. Appl Catal A: Genl, 2000, 194 (3): 13-20.
    [80]Ivanov A V, Zausa E, Taarit Y B, et al. Mechanism of propene hydration over heteropolyacid catalysts[J].Appl Catal A: Gen, 2003, 256(1-2): 225-242.
    [81]Jentoft F C, Klokishner S, Krohnert J, et al. The structure of molybdenum-heteropoly acids under conditions of gas-phase selective oxidation catalysis: a multi-method in situ study [J]. Appl Catal A: Gen, 2003, 256(1-2): 291-317.
    [82]Pizzio L R, Vazquez P G, Caceres C V, et al. Supported Keggin type heteropolycompounds for ecofriendly reactions[J]. Appl Catal A, 2003, 256, (1-2): 125-139.
    [83]Izumi Y, Iida K, Usami K, et al. An efficient method for acetolysis of cyclic ethers catalyzed by . heteropolyacid[J].Appl Catal A: Gen, 2003, 256(1-2): 199-202.
    [84]Kozhevnikov I V. Friedel-Crafts acylation and related reactions catalysed by heteropoly acids [J].Appl Catal A: Gen, 2003, 256(1-2): 3-18.
    [85]Okuhara T. Microporous heteropoly compounds and their shape selective catalysis[J].Appl Catal A: Gen, 2003, 256(1-2): 213-224.
    [86]Dimitratos N, Vedrine, J C. Properties of Cs2.5 salts of transition metal M substituted Keggin-typeMi-xPViMxMon-x04o heteropolyoxometallates in propane oxidation[J]. Appl Catal A: Gen, 2003, 256(1-2):251-263.
    [87]Liu H, Iglesia E. Effects of support on bifunctional methanol oxidation pathways catalyzed bypolyoxometallate Keggin clusters[J]. J Catal, 2004, 223(1): 161-169.
    [88]Etienne E, Cavani F, Mezzogori R, et al. Chemical-physical characterization of Fe-doped, Keggin-typeP/Mo polyoxometalates, catalysts for the selective oxidation of isobutane to methacrylic acid[J]. Appl CatalA: Gen, 2003, 256(1-2): 275-290.
    [89]Hill C L. Introduction: polyoxometalates-multicomponent molecular vehicles to probe fundamentalissues and practical problems[J]. Chem Rev, 1998, 98(1): 1-2.
    [90]Hill C L. Progress and challenges in polyoxometalate-based catalysis and catalytic materialschemistry [J]. J Mol Catal A: Chem, 2007, 262(1): 2-6.
    [91]Sheppard S E, Eberlin L W, Ultra-violet sensitive layer [P]. U.S. Patent 1934,451, 1933.
    [92] Chambers R C, Hill C L. Comparative study of polyoxometalates and semiconductor metal oxides ascatalysts. Photochemical oxidative degradation of thioethers[J]. Inorg Chem, 1991, 30(13): 2776-2781.
    [93]Moffat J B. Cation-anion effects in heteropoly compounds with Keggin structures[J]. Polyhedron, 1986,5 (1-2): 261-269.
    [94]Gkika E, Troupis A, Hiskia A, et al. Photocatalytic reduction of chromium and oxidation of organics bypolyoxometalates[J]. Appl Catal B, 2006, 62(1-2): 28-34.
    [95] Androulaki E, Hiskia A, Dimotikali D, et al. Light Induced Elimination of Mono- and PolychlorinatedPhenols from Aqueous Solutions by PW12O403-[J]. Environ Sci Technol, 2000, 34(10): 2024-2028.
    [96]Antonaraki S, Androulaki E, Dimotikali D, et al. Photolytic degradation of all chlorophenols withpolyoxometallates and H2O2 [J]. J Photochem Photobiol A: Chem, 2002, 148(1-3): 191-197.
    [97]Ozer R R, Ferry J L. Kinetic Probes of the Mechanism of Polyoxometalate-Mediated PhotocatalyticOxidation of Chlorinated Organics[J]. J Phys Chem B, 2000, 104(40): 9444-9448.
    [98]Texier I, Giannotti C, Malato S, et al. Solar photodegradation of pesticides in water by sodiumdecatungstate[J]. Catal Today, 1999, 54(2-3): 297-307.
    [99]Friesen D A, Morello L, Headley J V, et al. Factors influencing relative efficiency in photo-oxidationsof organic molecules by CS3PW12O40 and TiO2 colloidal photocatalysts[J]. J. Photochem Photobiol A:Chem, 2000, 133(3): 213-220.
    [100]Yamase T. Water splitting by photoirradiation of alkylammonium polytungstates in homogeneoussolutions and detectable paramagnetic species[J]. Inorg Chim Acta, 1983, 76: L25-L27.
    [101]Yamase T, Watanabe R. Photochemical hydrogen-evolution from alkaline solution of alkylammoniumisopolyvanadate[J]. Inorg Chim Acta, 1983, 77: L193-L195.
    [102]Mylonas A, Papaconstantinou E, Roussis V. Photocatalytic degradation of phenol and p-cresol bypolyoxotungstates. mechanistic implications [J]. Polyhedron, 1996, 15(19): 3211-3217.
    [103]Mylonas A, Papaconstantinou E. On the mechanism of photocatalytic degradation of chlorinatedphenols to CO2 and HC1 by polyoxometalates[J]. Photochem Photobiol A: Chem, 1996, 94(1): 77-82.
    [104] Sun L, Bolton J R. Determination of the Quantum Yield for the Photochemical Generation of Hydroxyl Radicals in TiO2 Suspensions [J]. J Phys Chem, 1996, 100(10): 4127-4134.
    [105]Antonaraki S, Androulaki E, Dimotikali D, et al. Photolytic degradation of all chlorophenols with polyoxometallates and H2O2 [J] J Photochem Photobiol A: Chem, 2002, 148(1-3): 191-197.
    [106]Fox M A, Dulay M T. Heterogeneous photocatalysis [J]. Chem Rev, 1993, 93(1): 341-357.
    [107]Mirkhani V, Moghadam M, Tangestaninejad S, et al. Oxidation of alkanes with hydrogen peroxidecatalyzed by Schiff base complexes covalently anchored to polyoxometalate[J]. Cataly Commun, 2008,9(13): 2171-2174.
    [108]Jana S K, Kubota Y, Tatsumi T. Cobalt-substituted polyoxometalate pillared hydrotalcite: Synthesisand catalysis in liquid-phase oxidation of cyclohexanol with molecular oxygen[J]. J Catal, 2008, 255(1):40-47.
    [109]Kholdeeva O A, Trubitsina T A, Timofeeva M N, et al. The role of protons in cyclohexene oxidationwith H2O2 catalysed by Ti(IV)-monosubstituted Keggin polyoxometalate[J]. J Mol Catal A: Chem, 2005,232(1-2): 173-178.
    [110]TanielianC. Decatungstate photocatalysis[J]. Coord Chem Rev, 1998, 178-180: 1165- 1181.
    [111] Simoes M M Q, Coneicao C M M, Johustone R A W, et al. Keggin-type polyoxotungstates ascatalysts in the oxidation of cyclohexane by dilute aqueous hydrogen peroxide[J]. J Mol Catal A: Chem,1999, 144(3): 461-468.
    [112]Duncan D C, Fox M A. Early Events in Decatungstate Photocatalyzed Oxidations: A NanosecondLaser Transient Absorbance Reinvestigation[J]. J Phys Chem , 1998, 102(24): 4559-4567.
    [113]Jen S F, Anderson A B, Hill C L. Alkane reactions with photoactivated decatungstate in neutral andacid solution: molecular orbital theory [J]. J Phys Chem, 1992, 96(13): 5658-5662.
    [114]Einaga H, Misono M. Photocatalysis of H3PW1204o for 4-Chlorophenol decomposition in aqueousmedia[J]. Bull Chem Soc Jpn, 1996, 69(10): 3435-3441.
    [115]Texier I, Giannotti C, Malato S, et al. Solar photodegradation of pesticides in water by sodiumdecatungstate[J]. Cataly Today, 1999, 54(2-3): 297-307.
    [116]Guo Y, Hu C, Jiang S, et al. Heterogeneous photodegradation of aqueous hydroxy butanedioic acid bymicroporous polyoxometalates[J]. Appl Catal B, 2002, 36(1): 9-17.
    [117]Yamase T, Ikawa T, Kokado H, et al. Photochromism of dimethylammonium molyedate[J]. Chem Lett,1973, 2(6): 615-616.
    [118]Yamase T, Takabayashi N, Kaji M. Solution Photochemistry of tetrakis(tetrabutylammonium)decatungstate(VI) and catalytic hydrogen evolution from alcohols[J]. J Chem Soc Dalton Trans, 1984, 5:793-799.
    [119]Hill C L, Bouchard D A. Catalytic photochemical dehydrogenation of organic substrates bypolyoxometalates[J]. J Am Chem Soc, 1985, 107(18): 5148-5157.
    [120]Papaconstantinou E. Photochemistry of polyoxometalates of molybdenum and tungsten and/orvanadium[J]. Chem Soc Rev, 1989, 18: 1-31.
    [121]Prosser-McCartha C M, Kadkhodayan M, Williamson M M, et al. Photochemistry, spectroscopy, andX-ray structure of an intermolecular charge-transfer complex between an organic substrate and apolyoxometallate,α-H3PMoO40·6H20(tetramethylurea)[J]. J Chem Soc Chem Comm, 1986(24):1747-1748.
    [122]Hill C L, Bouchard D A, Kadkhodayan M, et al. Catalytic photochemical oxidation of organicsubstrates by polyoxometalates. Picosecond spectroscopy, photochemistry, and structural properties ofcharge-transfer complexes between heteropolytungstic acids and dipolar organic compounds[J]. J AmChem Soc, 1988, 110(16): 5471-5479.
    [123]Jen S-F, Anderson A B, Hill C L. Alkane reactions with photoactivated decatungstate in neutral andacid solution. Molecular orbital theory[J]. J Phys Chem, 1992, 5658-5662.
    [124]Jaynes B S, Hill C L. Selective ethylation and vinylation of alkanes via polyoxometalatephotocatalyzed radical addition reactions[J].J Am Chem Soc, 1993, 115(25): 12212-12213.
    [125]Renneke R F, Pasquali M, Hill C L. Polyoxometalate systems for the catalytic selective production ofnonthermodynamic alkenes from alkanes. Nature of excited-state deactivation processes and control ofsubsequent thermal processes in polyoxometalate photoredox chemistry[J]. J Am Chem Soc, 1990, 112(18):6585-6594.
    [126]Jaynes B S, Hill C L. Radical carbonylation of alkanes via polyoxotungstate photocatalysis[J]. J AmChem Soc, 1995, 117(16): 4704-4705.
    [127]Sattari D, Hill C L. Photochemical dehalogenation of carbon tetrachloride by alcohols catalysed bypolyoxotungstates[J]. J Chem Soc Chem Comm, 1990(8): 634-635.
    [128]Bregeault J, Vennat M, Salles L, et al. From polyoxometalates to polyoxoperoxometalats and backagain; potentail applications [J]. J Mol Catal A: Chem, 2006, 250(l-2):177-189.Chambers R C, Hill C L.
    [129]Jaynes B S, Hill C L. Radical carbonylation of alkanes via polyoxotungstate photocatalysis[J]. J AmChem Soc, 1995, 117(16): 4704-4705.
    [130]Yamase T, Watanabe R, Photoredox chemistry of Keggin dodecarungstoborate [BW12O40]5- and roleof heterogeneous catalysis in hydrogen formation[J]. J Chem Soc Dalton Trans, 1986(8): 1669-1675.
    [131]Yamase T, Usami T. Photocatalytic dimerization of olefins by decatungstate (VI), [W10O32]4-, inacetonitrile and magnetic resonance studies of photoreduced species[J]. J Chem Soc Dalton Trans, 1988(1):183-190.
    [132]Einaga H, Misono M. Photocatalyzed decomposition of 4-Chlorophenol by Keggin-typeheteropolytungstate[J]. Bull Chem Soc Jpn, 1997, 70(5): 1551-1557.
    [133]Hiskia A, Papaconstantinou E. Photocatalytic oxidation of organic compounds by polyoxometalates ofmolybdenum and tungsten catalyst regeneration by dioxygen [J]. Inorg Chem, 1992, 31(1): 163-167.
    [134]Androulaki E, Hiskia A, Papaconstantinou E. Light induced elimination of mono- and polychlorinatedphenols from aqueous solutions by PW12C403-. The case of 2,4,6-trichlorophenol[J]. Enoviron Sci Technol,2000, 34(10): 2024-2028.
    [135]Anastasia H, Aristidis T, Papaconstantinou E, et al, Polyoxometalate photocatalysis fordecontaminating the aquatic environment from organic and inorganic pollutants [J]. J Environ Analy Chem,2006, 86(3-4): 233-242.
    [136]Troupis A, Hiskia A, Papaconstantinou E. Photocatalytic reduction-recovery of silver usingpolyoxometalates[J]. Appl Catal B, 2003, 42(3): 305-315.
    [137]Henning H. Homogeneous photocatalysis by transition metal complex[J]. Coord Chem Rev. 1999,182(1): 101-123.
    [138]Texier I, Giannotti C, Malato S, et al. Solar photodegradation of pesticides in water by sodiumdecatungstate[J]. Catal Today, 1999, 54(2-3): 297-307.
    [139]Litter M I. Heterogeneous photocatalysis. Transition metal ions in photocatalytic systems[J]. ApplCatal B, 1999,23(1): 89-114.
    [140]Chemseddine A, Sanchez C, Livage J, et al. Electronchemical and photochemical reduction ofdecatungstate: Areinvestigation[J]. Inorg Chem, 1984, 23(17): 2609-2613.
    [141]Mizuno N, Misono M. Heteropolyacid catalysts[J]. Curr Opin Sol Sta Mater Sci, 1997, 2(1): 84-89.
    [142]Chen C, Lei P, Zhao J, et al. Photocatalysis by titanium dioxide and polyoxometalate/TiO2 cocatalysts.intermediates and mechanistic study[J]. Environ Sci Technol, 2004, 38(1): 329-337.
    [143]Mizuno N, Misono M. Heterogeneous catalysis[J]. Chem. Rev. 1998, 98, 199-217.
    [144]Guo Y, Wang Y, Hu C, et al. Microporous polyoxometalates POMs/SiO2: synthesis and photocatalyticdegradation of aqueous organocholorinepesticides[J]. Chem Mater, 2000, 12(11): 3501-3508.
    [145]Schroden R C, Holland B t, Melde B J, et al. Direct systhesis of ordered macroporous silica materialsfunctionalized with polyoxometalate cluster [J]. Chem Mater, 2001, 13(3): 1074-1081.
    [146]Izumi Y, Ono M, Hida T. Acid catalysis of silica-included heteropolyacid in polar reaction media[J].Appl Catal A, 1999,181(6): 277-282.
    [147]Guo Y, Yang Y, Hu C, et al. Preparation, characterization and photochemical properties of orderedmacroporous hybrid silica materials based on mono vacant Keggin-type polyoxometalates [J]. Mater Chem,2002, 12(2): 3046-3052.
    [148]Kozhevnilov I V, Kloetstra K R, Sinnema A, et al. Study of catalysts comprising heteropoly acidH3PW12O40 supported on MCM-41 molecular sieve and amorphous silica[J]. J Mole Catal A, 1996,114(l):287-298.
    [149]Guo Y, Wang Y, Hu C, et al. Microporous polyoxometalates POMs/SiO2: synthesis and photocatalyticdegradation of aqueous organocholorine Pesticides [J]. Chem Mater, 2000, 12(11): 3501-3508.
    [150]Guo Y, Hu C, Wang X, et al. Microporous Decatungstates: Synthesis and Photochemical Behavior[J].Chem Mater, 2001, 13(11): 4058-4064.
    [151]Guo Y, Li D, Hu C, et al. Photocatalytic degradation of aqueous organocholorine pesticide on thelayered double hydroxide pillared by Paratungstate A ion, Mg12Al6(OH)36(W7O24)·4H2O[J]. Appl Catal B,2001, 30(3-4): 337-349.
    [152]Guo Y, Yang Y, Hu C, et al. Preparation, characterization and photochemical properties of orderedmacroporous hybrid silica materials based on monovacant Keggin-type polyoxometalates [J]. Mater Chem,2002, 12(10): 3046-3052.
    [153]Guo Y, Li K, Yu X, et al. Mesoporous HsPW12O40-silica composite: Efficient and reusable solid acidcatalyst for the synthesis of diphenolic acid from levulinic acid[J]. Appl Catal B, 2008, 81(3): 182-191.
    [154]Andrea M, Alessandra M, Graziano V, et al. Immobilization of (n-Bu4N)4W10O32 on mesoporousMCM-41 and amorphous silicas for photocatalytic oxidation of cycloalkanes with molecular oxygen[J]. JCatal, 2002, 209(2): 210-216.
    [155]Hill C L, Renneke R F, Combs L. Anaerobic functionalization of remote unactivated carbonhydrogenbonds by polyoxometalatrs[J]. Tetrahedron, 1988, 44(24): 7499-7507.
    [156]Combs L A, Hill C L. Use of excited and ground-state redox properties of polyoxometalates forselective transformation of unactivated carbon-hydrogen centers remote from the functional group inketones[J]. JAm Chem Soc, 1992, 114(8): 938-946.
    [157]Li L, Liu C, Guo Y, et al. Preparation, characterization and photocatalytic applications ofamine-functionalized mesoporous silica impregnated with transition-metal-monosubstitutedpolyoxometalates[J]. Mater Res Bull, 2006,41(2): 319-322.
    [158]Li L, Wu Q, Guo Y, et al. Nanosize and bimodal porous polyoxotungstate-anatase TiO2 composites:Preparation and photocatalytic degradation of organophosphorus pesticide using visible-light excitation[J].Micro Meso Mater, 2005, 87(1): 1-9.
    [159]Guo Y, Li D, Hu C, et al. Layered double hydroxides pillared by tungsten polyoxometalates: synthesisand photocatalytic activity[J]. Inter J Inorg Mater, 2001, 3(2): 347-355.2002, 12(10): 3046-3052.
    [160]郭伊荇,李丹峰,胡长文等,仲钨酸盐A柱撑化合物Mg12Al6(OH)36(W7O24)·4H2O的合成及其光催化性能研究[J]。高等学校化学学报,2001,22(9):1453-1455。
    [161]Jiang S, Guo Y, Wang C, et al. One-step sol-gel preparation and enhanced photocatalytic activity of porous polyoxometalate-tantalum pentoxide nanocomposites[J]. J Col Inter Sci, 2007, 308(1): 208-215. [162]Li L, Li Y, Ma Y, et al. Preparation and photocatalytic behaviours of nanoporous polyoxotungstate-Anatase TiO2 omposcites[J], J Rare Earths, 2007, 25(1): 68-73.
    [163]Alaton I, Ferry J. Application of polyoxotungstates as environmental catalysts: wet air oxidation of acid dye Orange II[J]. Dyes and Pigments, 2002, 54(1): 25-36.
    [164]Jin H, Wu Q, Pang W, Photocatalytic degradation of textile dye X-3B using polyoxometalate-TiO2 hybrid materials[J]. J Hazard Mater, 2007, 141(1): 123-127.
    [165]Chen C, Lei P, Ji H, et al. Photocatalysis by titanium dioxide and polyoxometalate/TiO2 cocatalysts. Intermediates and Mechanistic Study[J]. Environ Sci Technol, 2004, 38(1): 329-337. [166]Lv K, Xu Y. Effects of polyoxometalate and fluoride on adsorption and photocatalytic degradation of organic dye X3B on TiO2: the difference in the production of reactive species[J]. J Phys Chem B, 110(2): 6204-6212.
    [167]Alaton I, Ferry J, Near-UV-VIS light induced acid orange 7 bleaching in the presence of SiWi2O404-catalyst[J]. J Potochem Photobio A: Chemical, 2002, 152(1-3): 175-181.
    [168]Zhang G, Xu Y. Polyoxometalate-mediated reduction of dichromate under UV irradiation [J]. InorgChem Comm, 2005, 8(6): 520-523.
    [169]李莉,郭伊荇,周萍.孔道结构H3Pwl2O40/TiO2的制备及其可见光光催化降解水溶液中染料的研究[J],催化学报,2005,3:259-262.
    [170]Yang Y, GuoY, Hu C, et al. Preparation of surface modifications of mesoporous titania with monosubstituted Keggin units and their catalytic performance for organochlorine pesticide and dyes under UV irradiation[J]. Appl Catal A, 2004, 273(1-2): 201-210.
    [171]Yang Y, Guo Y, Hu C, et al. Synergistic effect of Keggin-type [Xn+W11O39](12-n)- and TiO2 in macroporous hybrid materials [Xn+W11O39](12-n)--TiO2 for the photocatalytic degradation of textile dyes[J]. J Mater Chem, 2003, 13(7): 1686-1694.
    [172]Ryu J, Choi W. Effects of TiO2 surface modifications on photocatalytic oxidation of arsenite: the role of superoxides[J]. Envirn Sci Technol, 2004, 38(10): 2928-2933.
    [173]Park H, Choi W. Photoelectrochemical investigation on electron transfer mediating behaviors of polyoxometalate in UV-Illuminated suspensions of TiO2 and Pt/TiO2[J]. J Phys Chem B, 2003, 107(16): 3885-3890.
    [174]Peng G, Wang Y, Hu C, et al. Hereropolyoxometalates which are included in microporous silica, CsxH3-xPMo12O40/SiO2 and CsyH3-yPMo10V2O40/SiO2 as insoluble solid bifunctional catalysis: synthesis and selective oxidation of benzyl alcohol in liquid-solid systems[J]. Appl Catal A: Gen, 2001, 218(1-2): 91-99.
    [175]Yu X, Guo Y, Xu L, et al. A novel preparation of mesoporous CsxH3_xPWi2O40/TiO2 nanocomposites with enhanced photocatalytic activity[J]. Colloids and Surfaces A, 2008, 316(1-3): 110-118.
    [176]Qu X, Guo Y, Hu C. Preparation and heterogeneous photocatalytic activity of mesoporous H3PW12O40/ZrO2 composites[J]. Mol Cataly A: Chem, 2007, 262(1-2): 128-135.
    [177]Song W, Liu Y, Lu N, et al. Application of the sol-gel technique to polyoxometalates: towards a new chemically modified electrode[J]. Electro Chim Acta, 2000, 45(9): 1639-1644.
    [178]Yan Y, Hoshino Y, Duan Z, et al. Design and characterization of interconnected, microporous hybrid thin films by a sol-gel process[J]. Chem Mater, 1997, 9(11): 2583-2587.
    [179]Yun S K, Maier J. Synthesis and ionic conductivity of supramolecular layered silicate hybrids of phosphotungstates and polyethylene glycol dicarboxylates[J]. Chem Mater, 1999, 11(7): 1644-1647.
    [180]Ogawa M. Formation of novel oriented transparent films of layered silica-surfactant nanocomposites[J]. J Am Chem Soc, 1994, 116(17): 7941-7942.
    [181]Moriguchi I, Fendler J H. Characterization and electrochromic properties of ultrathin films self-assembled from poly(diallyldimethylammonium)chloride and sodium decatungstate[J]. Chem Mater, 1998, 10(8): 2205-2211.
    [182]Kurth D G, Volkmer D, Ruttorf M, et al. Ultra thin composite films incorporating the nanoporous isopolyoxomolybdate "Keplerate" (NH4)42[Mo132O372(CH3COO)30(H2O)72][J]. Chem Mater, 2000, 12(10): 2829-2831.
    [183]Bu W, Fan H, Wu L, et al. Surfactant-encapsulated polyoxoanion: structural characterization of itsLangmuir films and Langmuir-Blodgett films[J]. Langmuir, 2002, 18(16): 6398-6403.
    [184]Wu A, Talham D. Photoisomerization of azobenzene chromophores in organic/inorganic zirconium phosphonate thin films prepared using a combined Langmuir-Blodgett and self-assembled monolayer deposition[J]. Langmuir, 2000, 16(19): 7449-7456.
    [185]Cheng L, Niu L, Gong J, et al. Electrochemical growth and characterization of polyoxometalate-containing monolayers and multilayers on alkanethiol monolayers self-assembled on gold electrodes[J]. Chem Mater, 1999, 11(6): 1465-1475.
    [186]Tang Z, Liu S, Dong S, et al. Preparation, structures, and electrochemistry of a new polyoxometalate-based organic/inorganic film on carbon surfaces[J]. Langmuir, 2000, 16(13): 5806-5813.
    [187]Yang Y, Guo Y, Hu C, et al. Lacunary Keggin-type polyoxometalates-based macroporous composite films: preparation and photocatalytic activity[J]. Appl Catal A: Gen, 2003, 252(2): 305-314.
    [188]Li D, Guo Y, Hua C, et al. Preparation, characterization and photocatalytic property of the PW11O397-TiO2 composite film towards azo-dye degradation[J]. J Mol Catal A: Chem, 2004, 207(1-2): 181-191.
    [189]Hong J, Sun C, Yang S G, et al. Photocatalytic degradation of methylene blue in TiO2 aqueous suspensions using microwave powered electrodeless discharge lamps[J]. Hazard Mater, 2006, 133(1-3): 162-166.
    [190]Gao Z, Yang S, Sun C, et al. Microwave assisted photocatalytic degradation of pentachlorophenol in aqueous TiO2 nanotubes suspension[J]. Separation and Purification Technology, 2007, 58(1): 24-31.
    [191] Hong R Y, Wu Y J, Feng B, et al. Microwave-assisted synthesis and characterization of Bi-substituted yttrium garnet nanoparticles[J]. J Magnetism Magnetic Mater, 2009, 321(8): 1106-1110.
    [192]刘钟栋.微波技术在食品工业中的应用[M].北京:中国轻工业出版社,1999.
    [193]金钦汉.微波化学[M].北京:科学出版社,1999.
    [194]Zhang X, Sun D, Li G, et al. Investigation of the roles of active oxygen species in photodegradation of azo dye AO7 in TiO2 photocatalysis illuminated by microwave electrodeless lamp[J]. J Photochem photobiol A: Chem, 2008, 199(2-3): 311-315.
    [195]Miiller P, Klan P, Cirkva V. The electrodeless discharge lamp: a prospective tool for photochemistry: Part 5: Fill material-dependent emission characteristics[J]. J Photochem Photobiol A: Chem, 2005, 171(1): 51-57.
    [196]Muller P, Klan P, Cirkva V. The electrodeless discharge lamp: a prospective tool for photochemistry: Part 4. Temperature- and envelope material-dependent emission characteristics[J]. J Photochem Photobiol A: Chem, 2003, 158(1): 1-5.
    [197]Horikoshi S, Kajitani M, Horikoshi N, et al. Use of microwave discharge electrodeless lamps (MDEL): II. Photodegradation of acetaldehyde over TiO2 pellets[J]. J Photochem Photobiol A: Chem, 2008, 193(2-3): 284-287.
    [198]Literak J, Klan P. The electrodeless discharge lamp: a prospective tool for photochemistry: Part 2. Scope and limitation[J]. J Photochem Photobiol A: Chem, 2000, 137(1): 29-35.
    [199]Církva V, Zabova H, Hajek M. Microwave photocatalysis of mono-chloroacetic acid over nanoporoustitanium(IV) oxide thin films using mercury electrodeless discharge lamps[J]. J Photochem Photobiol A:Chem, 2008, 198(1): 13-17.
    [200]Cirkva V, Vlkova L, Relich S, et al. Microwave photochemistry IV: Preparation of the electrodelessdischarge lamps for photochemical applications[J]. J Photochem Photobiol A: Chem, 2006, 179(1-2):229-233.
    [201]Klan P, Hajek M, Cirkva V. The electrodeless discharge lamp: a prospective tool for photochemistry:Part 3. The microwave photochemistry reactor[J]. J Photochem Photobiol A: Chem, 2001, 140(3): 185-189.
    [202]Horikoshi S, Kajitani M, Sato S, et al. A novel environmental risk-free microwave dischargeelectrodeless lamp (MDEL) in advanced oxidation processes: Degradation of the 2,4-D herbicide[J]. JPhotochem Photobiol A: Chem, 2007, 189(2-3): 355-363.2005, 6(10): 62-65.
    [203]张西旺,王怡中.微波无极灯:一种具有前景的高效光催化光源[J].环境污染治理技术与设备,2005,6(10):62-65.
    [204]Literak J, Klan P. The electrodeless discharge lamp: a prospective tool for photochemistry: Part 2.Scope and limitation[J]. J Photochem Photobiol A: Chem, 2000, 137(1): 29-35.
    [205]Spigno G, Faveri D M. Microwave-assisted extraction of tea phenols: A phenomenological study[J]. JFood Engin, 2009, 93(2): 210-217.
    [206]He Z, Sun C, Yang S, Photocatalytic degradation of rhodamine B by Bi2WO6with electron acceptingagent under microwave irradiation: Mechanism and pathway[J]. J Hazard Mater, 2009, 162(2-3):1477-1486.
    [207]H Z, Yang S, Ju Y, et al. Microwave photocatalytic degradation of Rhodamine B using TiO2 supportedon activated carbon: Mechanism implication[J]. J Environ Sci, 2009, 21(2): 268-272.
    [208]Horikoshi S, Hidaka H, Serpone N. Environmental Remediation by an Integrated Microwave/UV-Illumination Method. 1. Microwave-Assisted Degradation of Rhodamine-B Dye in Aqueous TiO2Dispersions[J]. Environ Sci Technol, 2002, 36(6): 1357-1366.
    [209]Horikoshi S, Kajitani M, Sato S, et al. A novel environmental risk-free microwave dischargeelectrodeless lamp (MDEL) in advanced oxidation processes Degradation of the 2, 4-D herbicide[J]. JPhotochem A: Chem, 2007, 189(2-3): 355-363.
    [210]Klan P, Literak J, Hajek M. The electrodeless discharge lamp: a prospective tool forphotochemistry [J]. J Photochem Photobiol A: Chem, 1999, 128(1-3): 145-149.
    [211]Sakaguchi Y, Astashkin A V, Tadjikov B M. Pulsed microwave irradiation effects on the dynamicbehavior of a photochemically generated radical pair in a micellar solution[J]. Chem Phys Lett, 1997,280(5-6): 481-488.
    [212]Hang X, Sun D D, Li G, et al. Investigation of the roles of active oxygen species in photodegradationof azo dye AO7 in TiO2 photocatalysis illuminated by microwave electrodeless lamp[J]. J PhotochemPhotobiol A: Chem, 2008, 199(2-3): 311-315.
    [213]Gao Z, Yang S, Ta N, et al. Microwave assisted rapid and complete degradation of atrazine using TiO2nanotube photocatalyst suspensions[J]. J Hazard Mater, 2007, 145(3): 424-430.
    [214]Ai Z, Yang P, Lu X. Degradation of 4-Chlorophenol by microwave irradiation enhanced advancedoxidation processes[J]. Chemosphere, 2005, 60(6): 824-827.
    [215]Sun S, Jiang Y, Yu L, et al. Enhanced photocatalytic activity of microwave treated TiO2 pillaredmontmorillonite[J]. Mater Chem Phys, 2006, 98(2-3): 377-381.
    [216]Matusiewicz H, Stanisz E. Characteristics of a novel UV-TiO2-microwave integrated irradiationdevice in decomposition processes[J]. J Microchem, 2007, 86(1): 9-16.
    [217]Zhang L, Guo X, Yan F, et al. Study of the degradation behavior of dimethoate under microwaveirradiation[J]. J Hazard Mater, 2007, 149(3): 675-679.
    [218]Gao Z, Yang S, Sun C, et al. Microwave assisted photocatalytic degradation of pentachlorophenol inaqueous TiO2 nanotubes suspension[J]. Separation and Purification Technology, 2007, 58(1): 24-31.
    [219]He Z, Yang S, Ju Y, et al. Microwave photocatalytic degradation of Rhodamine B using TiO2supported on activated carbon: Mechanism implication[J]. J Environ Sci, 2009, 21(2): 268-272.
    [220]Ta N, Hong J, Liu T, et al. Degradation of atrazine by microwave-assisted electrodeless dischargemercury lamp in aqueous solution[J]. J Hazard Mater B, 2006, 138(1): 187-194.
    [221]He Z, Sun C, Yang S, et al. Photocatalytic degradation of rhodamine B by Bi2WO6 with electronaccepting agent under microwave irradiation: Mechanism and pathway[J]. J Hazard Mater, 2009, 162(2-3):1477-1486.
    [222]Hong J, Sun C, Yang S G, et al. Photocatalytic degradation of methylene blue in TiO2 aqueoussuspensions using microwave powered electrodeless discharge lamps[J]. J Hazard Mater, 2006, 133(1-3):162-166.
    [223]Liu R, Wang H, Zhao X, et al. Microwave electrodeless lamp assisted catalytic degradation of X-GRLwith manganese dioxides: Adsorption and manganese(IV) reductive dissolution effects[J]. Catal Today,2008, 139(1-2): 119-124.
    [224]Zhang Z, Shan Y, Wang J, et al. Investigation on the rapid degradation of congo red catalyzed byactivated carbon powder under microwave irradiation[J]. J Hazard Mater, 2007, 147(1-2): 325-333.
    [225]Lai T, Lee C, Wu K, et al. Microwave-enhanced catalytic degradation of phenol over nickel oxide[J].Appl Catal B: Environ, 2006, 68(3-4): 147-153.
    [226]Zhang X, Li G, Wang Y Microwave assisted photocatalytic degradation of high concentration azo dyeReactive Brilliant Red X-3B with microwave electrodeless lamp as light source[J]. Dyes and Pigments,2007, 74(3): 536-544.
    [227]Cirkva V, Vlkova L, Relich S, et al. Microwave photochemistry IV :Preparation of the electrodelessdischarge lamps for photochemical applications[J]. J Photochem Photobiol A: Chem, 2006, 179(1-2):229-233.
    [228]Hong J, Sun C, Yang S, et al. Photocatalytic degradation of methylene blue in TiO2 aqueoussuspensions using microwave powered electrodeless discharge lamps[J]. J Hazard Mater B, 2006, 133(1-3):162-166.
    [229]Liu B, Wen L, Zhao X. The study of photocatalysis under ultraviolet + visible two-beam lightirradiation using undoped nano-titanium dioxide[J]. Mater Chem Phys, 2008, 112(1): 35-40.
    [230]Hong J, Ta N, Yang S, et al. Microwave-assisted direct photolysis of bromophenol blue usingelectrodeless discharge lamps[J]. Desalination, 2007, 214(1-3): 62-69.
    [231]Horikoshi S, Kajitani M, Hidaka H, et al. Investigation of factors that influence TiO2 photoassisteddegradations under simultaneous illumination by UV and microwave radiation fields[J]. J PhotochemPhotobiol A: Chem, 2008, 196(2-3): 159-164.
    [232]Horikoshi S, Hidaka H, Serpone N. Environmental remediation by an integratedmicrowave/UV-illumination technique: IV. Non-thermal effects in the microwave-assisted degradation of 2,4-dichlorophenoxyacetic acid in UV-irradiated TiO2/H2O dispersions [J]. J Photochem Photobiol A: Chem,2003, 159(3): 289-300.
    [233]Horikoshi S, Hidaka H, Serpone N. Environmental remediation by an integrated microwave/UVillumination technique: VI. A simple modified domestic microwave oven integrating an electrodelessUV-Vis lamp to photodegrade environmental pollutants in aqueous media[J]. J Photochem Photobiol A:Chem, 2004, 161(2-3): 221-225.
    [234]Chang Y C, Yougen K. Enhancement of NOX Adsorption Capacity and Rate of Char by microwave[J].Carbon, 1995,33(8): 1141-1146.
    [235]Chih-Ju G J, Tai H S. Application of Granulated Activated Packed-Bad Reactor in MicrowaveRadiation Field to treat Phenol[J]. Chomsphere, 1998, 37(4): 685-698.
    [236]Zhang L, Guo X, Yan F, et al. Study of the degradation behavior of dimethoate under microwaveirradiation[J]. J Hazard Mater, 2007, 149(3): 675-679.
    [237]Wu H, Wang Q, Yao Y, et al. Microwave-assisted synthesis and highly photocatalytic activity ofMWCNT/ZnSe heterostructures[J]. Mater Chem Phys, 2009, 113(2-3): 539-543.
    [238]Zhang Y, Quan X, Chen S, et al. Microwave assisted catalytic wet air oxidation of H-acid in aqueoussolution under the atmospheric pressure using activated carbon as catalyst[J]. J Hazard Mater B, 2006,137(1): 534-540.
    [239]Gressel-Michel E, Chaumont D, Stuerga D. From a microwave flash-synthesized TiO2 colloidalsuspension to TiO2thin films[J]. J Coll Interf Sci, 2005, 285(1): 674-679.
    [240]Zhao D, Yang P, Huo Q, et al. Topological construction of mesoporous materials[J]. Current Opinionin Solid State and Materials Science, 1998,3(1): 111-121.
    [241]Wirnsberger G, Yang P, Scott B J, et al. Mesostructured materials for optical applications: from low-kdielectrics to sensors and lasers[J]. Spectrochimica Acta Part A: Mol Biomolecular Spectroscopy, 2001,57(10): 2049-2060.
    [242]Xu L, Yang X, Yu X, et al. Preparation of mesoporous polyoxometalate-tantalum pentoxide compositecatalyst for efficient esterification of fatty acid[J]. Catal Comm, 2008, 9(7): 1607-1611.
    [243]Yang X, Xu L, Yu X, et al. One-step preparation of silver and indium oxide co-doped TiO2photocatalyst for the degradation of rhodamine B[J]. Catal Comm, 2008, 9(6): 1224-1229.
    [244] Yu X, Xu L, Yang X, et al. Preparation of periodic mesoporous silica-included divacant Keggin units for the catalytic oxidation of styrene to synthesize styrene oxide[J]. Appl Surf Sci, 2008, 254(15): 4444.4451.
    [245]Xu L, Yang X, Yu X, et al.Preparation of mesoporous polyoxometalate-tantalum pentoxide compositecatalyst and its application for biodiesel production by esterification and transesterification[J]. Green Chem,2008, 10: 746-755.
    [246] Yang X, Wang Y, Xu L, et al. Silver and indium oxide codoped TiO2 nanocomposites with enhancedphotocatalytic activity[J]. J Phys Chem, 2008, 112: 11481-11489.
    [247]Guo Y, Li K, Yu X, et al. Mesoporous H3PWi204o-silica composite: Efficient and reusable solid acidcatalyst for.the synthesis of diphenolic acid from levulinic acid[J]. Appl Catal B: Environ, 2008, 81(3-4):182-191.
    [248]Xu L, Yang X, Yu X, et al. Preparation of mesoporous polyoxometalate-tantalum pentoxidecomposite catalyst for efficient esterification of fatty acid[J]. Catal Comm, 2008, 9(7): 1607-1611.
    [249]Dhananjay S B, Vishwas G P, Anthony A B. Photocatalytic degradation for environmentalapplications-areview[J], J ChemTechnol Biotechnol, 2001,77(l):102-l 16.
    [250] K. Tanaka, K.S.N. Reddy, Photodegradation of phenoxyacetic acid and carbamate pesticides onTiO2[J]. Appl Catal B, 2002, 39: 305-310.
    [251]王怡中.二氧化钛悬浆体系中八种染料的太阳光催化氧化降解,催化学报[J].2000,21(4):327-331.
    [252]Liu G, Zhao J. Photocatalytic degradation of sulforhodamine B: a comparative study of photocatalyiswith photosensitization[J]. New J Chem, 2000, 24(5): 411-417.
    [253]Li X , Kako T, Ye J. 2-Propanol photodegradation over lead niobates under visible light irradiation[J].Appl Catal A, 2007, 326(1): 1-7.
    [254]Haque M, Muneer M. Photodegradation of norfloxacin in aqueous suspensions of titanium dioxide[J].J Hazard Mater, 2007, 145(1-2): 51-57.
    [255]Chen C. Degradation pathways of ethyl violet by photocatalytic reaction with ZnO dispersions[J]. JMol Catal A, 2007, 264(1-2): 82-92.
    [256]Li L, Zhu W , Zhang P , et al. TiCVUV/CvBAC processes for removing refractory and hazardouspollutants in raw water[J]. J Hazard Mater, 2006, 128(2-3): 145-149.
    [257]Cirkva V, Hajek M. Photoinitiated radical addition of tetrahydrofuran to perfluorohexylethene undermicrowave irradiation[J]. J Photochem Photobiol A, 1999, 123(1-3): 21-23.
    [258]Zhang X, Wang Y, Li G. Effect of operating parameters on microwave assisted photocatalyticdegradation of azo dye X-3B with grain TiO2 catalyst[J]. J Mol Catal A, 2005, 237(1-2): 199-205.
    [259]Horihoshi S, Hidaka H, Serpone N. Environmental remediation by an integratedmicrowave/UV-illumination method II: Characteristics of a novel UV-VIS-microwave integratedirradiation device in photodegradation processes[J]. J Photochem Photobiol A, 2002, 153(1-3): 185-189.
    [260]Klan P, Hajek M, Cirkva V. The electrodeless discharge lamp: a prospective tool for photochemistry:Part 3. The microwave photochemistry reactor[J]. J Photochem Photobiol A: Chem, 2001, 140(3): 185-189.
    [261]Muller P, Klan P, Cirkva V. The electrodeless discharge lamp: a prospective tool for photochemistry:Part 5: Fill material-dependent emission characteristics[J]. J Photochem Photobiol A, 2005, 171(1): 51-57.
    [262]Klan P, Literak J, Hajek M. The electrodeless discharge lamp: a prospective tool forphotochemistry[J]. J Photochem Photobiol A, 1999, 128(1-3): 145-149.
    [263]Zhang W, Lu J, Han B, et al. Direct synthesis and characterization of titanium-substituted mesoporousmolecular sieve SB A-15 [J]. Chem Mater, 2002, 14(8): 3413-3421.
    [264]Kang M. Preparation of TiO2 photocatalyst film and its catalytic performance forl,l'-dimethyl-4,4'-bipyidium dichloride decomposition^]. Appl Catal B, 2002, 37(3): 187-196.
    [265]Miao L, Tanemura S, Toh S, et al. Fabrication, characterization and Raman study of anatase-TiO2nanorods by a heating-sol-gel template process[J]. J Crystal Growth, 2004, 264(1-3): 246-252.
    [266]Xu J, Ao Y, Fu D, et al. Study on photocatalytic performance and degradation kinetics of X-3B withlanthanide-modified titanium dioxide under solar and UV illumination[J]. J Hazard Mater, 2009, 164(2-3):762-768.
    [267]Kormali P, Dimoticali D, Tsipi D, et al. Photolytic and photocatalytic decomposition of fenitrothionby PW1204o3~ and TiO2: a comparative study[J]. Appl Catal B, 2004, 48(3): 175-183.
    [268]李莉,张秀芬,马禹.微波增强Ti02光催化降解染料和水杨酸[J].化工学报,2008,59(12):3067-3072.
    [269]Zhang L, Anderson W, Sawell S, et al. Mechanistic analysis on the influence of humidity onphotocatalytic decomposition of gas-phase chlorobenzene[J]. J Chemosphere, 2007, 68(3): 546-553.
    [270]Hidaka H, Saitou A, Honjou H, et al. Microwave-assisted dechlorination of polychlorobenzenes byhypophosphite anions in aqueous alkaline media in the presence of Pd-loaded active carbon[J]. J HazardMater, 2007, 148(1-2): 22-28.
    [271]Deng Q, Zhou W, Li X, et al. Microwave radiation solid-phase synthesis of phosphotungstatenanoparticle catalysts and photocatalytic degradation of formaldehyde[J]. J Mol Catal A: Chem, 2007,262(1-2): 149-155.
    [272]Kataoka S, Tompkins D T, Zeltner W A. Photocatalytic oxidation in the presence of microwaveirradiation: observations with ethylene and water[J]. J Photochem Photobiol A: Chem, 2002(1-3): 148:323-330.
    [273]Horihoshi S, Hidaka H, Serpone N. Environmental remediation by an integrated microwave/UVillumination technique: VI. A simple modified domestic microwave oven integrating an electrodelessUV-Vis lamp to photodegrade environmental pollutants in aqueous media[J]. J Photochem Photobiol A,2004, 161(2-3): 221-225.
    [274]Cirkva V, Hajek M. Microwave photochemistry. Photoinitiated radical addition of tetrahydrofuran toperfluorohexylethene under microwave irradiation[J]. J Photochem Photobiol A, 1999, 123(1-3): 21-23.
    [275]Satoshi H, Futoshi S, Masatsugu K, et al. Microwave frequency effects on the photoactivity of TiO2:Dielectric properties and the degradation of 4-chlorophenol, bisphenol A and methylene blue[J]. ChemPhys Letters, 2009, 470(4-6): 304-307.
    [276]Wang J, Ma T, Zhang Z, et al. Investigation on the transition crystal of ordinary rutile TiO2 powder bymicrowave irradiation in hydrogen peroxide solution and its sonocatalytic activity[J]. UltrasonicsSonochem, 2007, 14(5): 575-582.
    [277]Herrmann J M. Heterogeneous photocatalysis: fundamentals and applications to the removal ofvarious types of aqueous pollutants[J]. J Catal Today, 1999, 53(1): 115-129.
    [278]Vautier M, Guillard C, Herrmann J M. Photocatalytic Degradation of Dyes in Water: Case Study ofIndigo and of Indigo Carmine[J]. J Catal, 2001, 201(1): 46-59.
    [279]Hu C, Wang Y, Tang H. Influence of adsorption on the photodegradation of various dyes using surfacebond-conjugated TiO2/SiO2 photocatalyst[J]. Appl Catal B, 2001, 35(2): 95-105.
    [280]David K, Warren K, Thomas Nover, et al. Highly oxidation resistant inorganic-porphyrin analoguepolyoxometalate oxidation catalysts[J]. J Am Chem Soc, 1991,113(5):7209-7221.
    [281]Wang C H, Geng A, Guo Y, et al. A novel preparation of three-dimensionally ordered macroporousM/Ti (M = Zr or Ta) mixed oxide nanoparticles with enhanced photocatalytic activity [J]. J Col Interface Sci,2006, 301(1): 236-247.
    [282]Romanelli G P, Bennardi D, Ruiz D M. A solvent-free synthesis of coumarins using a Wells-Dawsonheteropolyacid as catalyst[J]. J Tetrahedron Lett, 2004, 45(48): 8935-8939.
    [283]Sing K S W, Everett D H, Harl R A W, et al. Reporting physisorption data for gas/solid systems withspecial reference to the determination of surface area and porosity[J]. Pure & Appl Chem, 1985, 57(4):603-619.
    [284]Sambeth J E, Baronetti G T, Thomas H. A theoretical-experimental study of Wells-Dawson acid: Anexplanation of their catalytic activity[J]. J Mol Catal A: Chem, 2003, 191(1): 35-43.
    [285]Chiou C H, Juang R S. Photocatalytic degradation of phenol in aqueous solutions by Pr-doped TiO2nanoparticles[J]. J Hazard Mater, 2007, 149(1): 1-7.
    [286]Zainal Z, Hui L K, Hussein M Z. Characterization of TiO2-Chitosan/Glass photocatalyst for theremoval of a monoazo dye via photodegradation-adsorption process[J]. J Hazard Mater, 2009, 164(1):138-145.
    [287]Zorn M E, Tompkins D T, Zeltner W A, et al. Photocatalytic oxidation of acetone vapor on TiO2/ZrO2thin films[J]. Appl catal B, 1999, 23(1): 1-8.
    [288]Sohn J R, Lee S H. Acidic properties of nickel sulfate supported on TiO2-ZrO2 and catalytic activityfor acid catalysis[J]. Appl catal A, 2004, 266(1): 89-97.
    [289]Mao D S, Lu G Z, Chen Q L. Influence of calcination temperature and preparation method ofTiO2-ZrO2 on conversion of cyclohexanone oxime to r-caprolactam over B203/Ti02-Zr02 catalyst[J].Appl Catal A, 2004, 263(1): 83-89.
    [290]Joung S K, Amemiya T, Murabayashi M, et al. Chemical adsorption of phosgene on TiO2 and itseffect on the photocatalytic oxidation of trichloroethylene[J]. Surface Sci, 2005, 598(1-3): 174-184.
    [292]Jiang X, Ding G, Lou L, et al. Catalytic activities of CuO/TiO2 and CuO-ZrO2/TiO2 in NO + COreaction[J]. J Mol Catal A, 2004, 218(2): 187-195.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700