用户名: 密码: 验证码:
表面微纳米图案化技术及细胞黏附临界面积等问题的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着生物材料从生物惰性向生物活性的不断发展,细胞与材料之间的相互作用研究也越来越受到人们的关注和重视,并成为将生物材料应用于再生医学和组织工程等环节中的一个重要课题。表面图案化材料可以将复杂的生物学问题进行简化,对其进行抽丝剥茧地研究,并因其规则、可控、可调、类型多变等特点,因而被大量用来进行材料表面细胞行为及其相互作用机理的研究,同时也成为调控细胞行为的一种重要手段。生物体系是一个复杂的多尺度体系,图案化技术在微米、纳米及微纳米不同尺度或跨尺度水平的不断发展,使得图案化材料可以方便地对细胞外基质进行细胞水平和分子水平的各种体外仿生与模拟。微米图案可以实现对细胞位置、尺寸、形状等方面的精确控制,因而被率先用于细胞黏附及凋亡行为的研究,并逐渐扩展到细胞增殖、取向、迁移、分化等各个方面;纳米图案可以在纳米尺度对细胞与材料相互作用中的黏附结构进行精细控制,因此也成为调控细胞行为的一种重要手段,并在揭示一些分子或超分子水平的相互作用机理方面具有独特的优势;微纳米图案可以实现对细胞位置、尺寸、形状与细胞黏附精细结构的同时控制,对于全面、系统地研究细胞—材料相互作用问题具有独到之处。
     本博士论文旨在运用表面图案化技术研究细胞黏附的一些基础科学问题,并且对现有的图案化表面技术作出改进,以制备新型的微纳米复合图案、拓展图案化技术在细胞黏附和干细胞分化等问题上的运用空间。
     本文的主要创新性工作包括以下几个方面:
     (1)首次提出了微米图案化表面细胞黏附具有多个临界面积的概念,并给出了获得这些基本参数的实验方法。
     本文定义了七种细胞在微米图案上黏附的特征面积:细胞凋亡—黏附之间的临界面积A*或Acl、单细胞黏附到多细胞黏附的临界面积Ac2、后期每增加一个黏附细胞所需增加的面积A△、细胞黏附数为1和2时对应分布几率最大的黏附面积Apeak(1)和Apeak(2)、平均细胞黏附数为1和2所对应的黏附面积AN(1)和AN(2)。通过在具有黏附反差和黏附面积精细变化的聚乙二醇(PEG)水凝胶基微米图案化材料表面进行细胞培养,证实了所定义特征面积的存在。然后对此尺寸依赖性进行了半定量的描述,并提出了实际可行的确定方法。进而通过另两种细胞类型的培养证实了特征面积的普适性,并分析了其在细胞类型间的差异性,最后揭示了这些特征面积的普遍性规律。此部分工作对具有特定黏附数量的细胞定位研究,提供了理论分析方法和基础数据,对生物材料的设计具有指导意义,于某些相关领域如细胞芯片或生物模拟等也有积极作用。
     (2)改进适于细胞研究的微纳米复合图案技术,不仅发展了nano-then-micro和micro-then-nano策略下的若干具体方法,还拓展到nanol-then-micro-then-nano2的综合策略、首次设计并成功制备了微米尺度嵌套的双间距纳米图案。
     论文发展了适于细胞研究的微纳米复合图案技术,对现有微纳米复合图案中的一种micro-on-nano图案的制备技术进行了方法改进,同时提出“先微米后纳米”的制备路线,并将该类型图案应用于解决微米图案化表面细胞定位黏附与自由铺展之间的矛盾,初步实现了单细胞的铺展定位(定位+铺展,在定位的同时保持铺展的形态),丰富了微纳米复合图案在细胞—材料相互作用研究中的应用,有望提高基于单细胞黏附的研究中对细胞外基质的仿生程度。论文对于nano-then-micro和micro-then-nano的策略进行了总结。
     论文进一步提出一种新的微米尺度嵌套的双纳米图案(我们称之为双间距纳米图案),这是一种nano1-then-micro-then-nano2的策略,其两种纳米阵列的纳米颗粒大小、间距、规整度等参数,具有独立可调性和可反转性,设计了“二次自组装”的技术路线,并成功制备出可反转的双间距图案;对现有的均一阵列两种颗粒尺寸的双纳米图案(简称为双点大小纳米图案)制备技术,引入巯基试剂溶液超声处理法,发展了一种纳米颗粒“减小”的制备路线,成功制备出可反转的双点大小纳米图案。这两种双纳米图案对进一步综合不同空间尺度研究细胞行为提供了重要的技术平台。
     (3)首次开展了纳米图案及微纳米图案化表面的干细胞共诱导分化行为研究。
     首次在纳米图案化表面进行了间充质干细胞的成骨成脂共诱导,研究了纳米间距对不同分化方向比例分配的影响作用,对于纳米图案化表面调控干细胞共分化行为具有指导意义。
     首次在我们所制备的新型微纳米复合图案表面进行了间充质干细胞的共诱导。提出“利用基底微纳米特征调控成骨成脂共分化空间分布”的设想,通过共诱导证实了其可行性,并指出此中纳米间距的重要性。本工作进一步扩展了微纳米复合图案的应用,为主动调控干细胞行为提供了新的研究工具和方法,对某些与不同分化方向间比例、分布等有关的疾病问题也有一定启迪。
     总之,本论文改进和拓展了现有的微纳米复合图案的制备技术,为考察和调控细胞在生物材料表面的行为提供了新工具,并丰富了微米、纳米及微纳米复合图案在细胞—材料相互作用中的基础知识和应用,对生物医用材料的设计具有一定的指导意义。
Cell-material interactions have been paid m(?)re attention with the development of biomaterials from the bioinert generation to the (?)oactive generation. The patterned surfaces have been applied to control and study c(?)llular responses to biomaterials and could draw deterministic conclusions for c mplex biological problems. Appropriate patterns are capable to mimic the extracellular matrix in vitro on cellular and molecular levels thanks for the progress of microscale and nanoscale patterning techniques. Micropatterns provide a unique tool for a precise control of the localization, spreading size and shape of cells, and nanopatterns allow a relatively fine control of adhesion complex that mediates the cell-biomaterial interactions. Micro/nano-composite patterns, which combine the features of micro-and nano-patterns, can achieve better control of cells, and yet the patterning technique needs to be developed.
     Besides exploring some basic cell behaviors such as adhesion areas on micropatterned surfaces, this Ph. D thesis is aimed to improve the techniques of micro/nano composite patterns and extend the space to use patterned surfaces to study cell behaviors including differentiation of stem cells.
     The main creative achievements in this thesis are as follows:
     (1) We first introduced the concept of a few critical areas of cell adhesion on micropatterned surfaces and put forward the approaches to determine these critical values experimentally.
     We defined seven characteristic areas of cell adhesion on micropatterned surfaces (A*, also named Ac1is the critical area from apoptosis to survival; Ac2, the critical area from single-to multi-cell adhesion; A△, the area for one more cell to adhere;Apeak(1), the area with respect to the maximum population among all microislands occupied exactly by a single cell;Apeak(2), the area with respect to the maximum population among all microislands occupied exactly by two cells; AN(1), the area of the microisland occupied by one cell on average; AN(2), the area of the microisland occupied by two cells on average), and justified their existence via cell culture on a micropatterned surface. On the surface, cell-adhesive RGD microislands were covalently linked to the non-fouling PEG hydrogels. We described semi-quantitatively the basic size-dependent behaviors of cell adhesion, and put forward the practical approaches of their determination. The concepts were justified for all of three cell lines we examined. The general relationships between these critical values were also revealed. This work provides a model surface with a preferred given number of cells localized on adhesive microislands, and seems also stimulating for design of cell chips with appropriate dimensions.
     (2) We extended the techniques of fabricating patterned surfaces appropriate for studies on cells. Not only the nano-then-micro and micro-then-nano strategies were summarized with inputs of some new approaches, but also a nano1-then-micro-then-nano2strategy was suggested to prepare microscale-nested dual nanopatterns.
     We improved the fabrication technique of micro-on-nano-pattern, a kind of micro/nano composite pattern, and meanwhile put forward a new route named as "micro-then-nano" method. We also applied the micro-on-nano-patterns for resolving the conflict between the controlled localization and free spreading of cells on micropatterned surface, and achieved the "spreading-localization" of single cells. This work extended the application of micro/nano composite patterns in the investigation on cell-biomaterial interactions.
     We suggested a nano1-then-micro-then-nano2strategy and prepared a new type of micro/nano composite patterns named as "microscale-nested dual-spacing nanopatterns". The dotsize, spacing and regularity of the two nanoarrays could be independently tuned and conveniently reversed. We designed a fabrication route named as "double self-assembly", and successfully obtained such reversible dual-spacing nanopattern. What's more, we also introduced thiol-reagent-assisted sonication method for fabricating another nested dual nanopattern with uniform lattice but two kinks of sizes of nanodots, denoted as "dual-dotsize nanopattern", and developed a new route via a selective diminishing method, and also successfully fabricated reversible dual-dotsize nanopatterns.
     (3) We first carried out the investigation on co-differentiation of mesenchymal stem cells on nanopatterned and micro/nano composite patterns.
     We first co-induced mesenchymal stem cells (MSCs) towards osteogenesis and adipogenesis on nanopatterned surfaces. The effect of nanospacing on the partition ratio between two directions was found.
     We also examined co-induction of MSCs on micro-on-nano-patterned surfaces. We proposed an assumption to modulate the spatial distribution of osteogenesis and adipogenesis which can be driven by micro/nano features of underlying material surface, and then verified its feasibility via co-induction of MSCs, which also revealed the importance of nano-spacing. This work further broadens the application of micro/nano composite pattern, suggests a new tool to regulate the co-differentiation behaviors of MSCs, and may provide cues for some diseases related to the balance and spatial distribution between different lineage commitments.
     In summary, this Ph. D thesis has improved the fabrication technique of micro/nano composite patterns, affords new tools for modulating cell behaviors on biomaterials, shed new insights upon cell-biomaterial interactions and basic cell behaviors such as cell adhesion and differentiation on micropatterns, nanopatterns, and micro-nano composite patterns. The fundamental study might be meaningful for design of biomaterials of the new generation.
引文
[1]Berrier AL, Yamada KM. Cell-matrix adhesion[J]. Journal of Cellular Physiology, 2007,213(3):565-573.
    [2]Geiger B, Spatz JP, Bershadsky AD. Environmental sensing through focal adhesions[J]. Nat Rev Mol Cell Biol,2009,10(1):21-33.
    [3]Huang JH, Ding JD. Nanostructured interfaces with RGD arrays to control cell-matrix interaction[J]. Soft Matter,2010,6:3395-3401.
    [4]Riveline D, Zamir E, Balaban NQ, et al. Focal contacts as mechanosensors: externally applied local mechanical force induces growth of focal contacts by an mDial-dependent and ROCK-independent mechanism[J]. J Cell Biol,2001,153(6): 1175-1185.
    [5]Zamir E, Katz M, Posen Y, et al. Dynamics and segregation of cell-matrix adhesions in cultured fibroblasts[J]. Nature Cell Biology,2000,2(4):191-196.
    [6]Loessner D, Stok KS, Lutolf MP, Hutmacher DW, Clements JA, Rizzi SC, Bioengineered 3D platform to explore cell-ECM interactions and drug resistance of epithelial ovarian cancer cells[J]. Biomaterials,2010,31(32):8494-8506.
    [7]Boraldi F, Croce MA, Quaglino D, et al. Cell-matrix interactions of in vitro human skin fibroblasts upon addition of hyaluronan[J]. Tissue & Cell,2003,35(1):37-45.
    [8]Erdmann T, Schwarz US. Bistability of cell-matrix adhesions resulting from nonlinear receptor-ligand dynamics[J]. Biophysical Journal,2006,91(6):L60-L62.
    [9]Lock JG, Wehrle-Haller B, Stromblad S. Cell-matrix adhesion complexes:master control machinery of cell migration[J]. Semin Cancer Biol,2008,18(1):65-76.
    [10]Cukiennan E, Pankov R, Stevens DR, Yamada KM. Taking cell-matrix adhesions to the third dimension[J]. Science,2001,294(5547):1708-1712.
    [11]翟中和,王喜忠,丁明孝.细胞生物学[M].北京:高等教育出版社,2007:505-535.
    [12]Elangbam CS, Qualls CW, Dahlgren RR. Cell adhesion molecules-update[J]. Vet Pathol,1997,34(1):61-73.
    [13]Stewart PL, Nemerow GR. Cell integrins:commonly used receptors for diverse viral pathogens[J]. Trends in Microbiology,2007,15(11):500-507.
    [14]Luo B-H, Springer TA. Integrin structures and conformational signaling[J]. Current Opinion in Cell Biology,2006,18(5):579-586.
    [15]Kanchanawong P, Shtengel G, Pasapera AM, et al. Nanoscale architecture of integrin-based cell adhesions[J]. Nature,2010,468(7323):580-584.
    [16]Biggs MJP, Richards RG, McFarlane S, Wilkinson CDW, Oreffo ROC, Dalby MJ. Adhesion formation of primary human osteoblasts and the functional response of mesenchymal stem cells to 330 nm deep microgrooves[J]. J R Soc Interface,2008, 5(27):1231-1242.
    [17]Petroll WM. Dynamic assessment of cell-matrix mechanical interactions in three-dimensional culture[J]. Methods Mol Biol,2007,370:67-82.
    [18]Docheva D, Popov C, Mutschler W, Schieker M. Human mesenchymal stem cells in contact with their environment:surface characteristics and the integrin system[J]. Journal of Cellular and Molecular Medicine,2007,11(1):21-38.
    [19]Evans EA, Calderwood DA. Forces and bond dynamics in cell adhesion[J]. Science,2007,316(5828):1148-1153.
    [20]Anthis NJ, Campbell ID. The tail of integrin activation[J]. Trends in Biochemical Sciences,2011,36(4):191-198.
    [21]Xiong JP, Stehle T, Diefenbach B, et al. Crystal structure of the extracellular segment of integrin alpha V beta 3[J]. Science,2001,294(5541):339-345.
    [22]Xiong JP, Stehle T, Zhang RG, et al. Crystal structure of the extracellular segment of integrin alpha Ⅴ beta 3 in complex with an Arg-Gly-Asp ligand[J]. Science,2002, 296(5565):151-155.
    [23]Niu G, Chen XY. Why integrin as a primary target for imaging and therapy [J]. Theranostics,2011,1:30-47.
    [24]Luo BH, Carman CV, Springer TA. Structural basis of integrin regulation and signaling[J]. Annu Rev Immunol,2007,25:619-647.
    [25]Gilcrease MZ. Integrin signaling in epithelial cells[J]. Cancer Lett,2007,247(1): 1-25.
    [26]Huang J, Grater SV, Corbellini F, et al. Impact of order and disorder in RGD nanopatterns on cell adhesion[J]. Nano Letters,2009,9(3):1111-1116.
    [27]Wilkinson A, Hewitt RN, McNamara LE, McCloy D, Meek RMD, Dalby MJ. Biomimetic microtopography to enhance osteogenesis in vitro [J]. Acta Biomaterialia, 2011,7(7):2919-2925.
    [28]Alam N, Goel HL, Zarif MJ, et al. The integrin-growth factor receptor duet[J]. Journal of Cellular Physiology,2007,213(3):649-653.
    [29]Siebers MC, ter Brugge PJ, Walboomers XF, Jansen JA. Integrins as linker proteins between osteoblasts and bone replacing materials. a critical review[J]. Biomaterials,2005,26(2):137-146.
    [30]Volberg T, Ulmer J, Spatz J, Geiger B. Chemical and mechanical micro-diversity of the extracellular matrix[A]. In:Garikipati K, Arruda EM. Iutam Symposium on Cellular, Molecular and Tissue Mechanics, Proceedings[C]. New York:Springer; 2010:69-79.
    [31]Extracellular matrix,cell junction and cell adhension: http://www.doc88.com/p-49635179678.html.
    [32]http://smkxxy.leu.edu.cn/biology/study/course/cell/ppt/11.ppt.
    [33]Cavalcanti-Adam EA, Volberg T, Micoulet A, Kessler H, Geiger B, Spatz JP. Cell spreading and focal adhesion dynamics are regulated by spacing of integrin ligands[J]. Biophysical Journal,2007,92(8):2964-2974.
    [34]Arnold M, Cavalcanti-Adam EA, Glass R, et al. Activation of integrin function by nanopatterned adhesive interfaces[J]. ChemPhysChem,2004,5(3):383-388.
    [35]Arnold M, Hirschfeld-Warneken VC, Lohmuller T, et al. Induction of cell polarization and migration by a gradient of nanoscale variations in adhesive ligand spacing[J]. Nano Letters,2008,8(7):2063-2069.
    [36]Arnold M, Schwieder M, Blummel J, et al. Cell interactions with hierarchically structured nano-patterned adhesive surfaces[J]. Soft Matter,2009,5(1):72-77.
    [37]Selhuber-Unkel C, Erdmann T, Lopez-Garcia M, Kessler H, Schwarz US, Spatz JP. Cell adhesion strength is controlled by intermolecular spacing of adhesion receptors[J]. Biophysical Journal,2010,98(4):543-551.
    [38]Pierschbacher MD, Ruoslahti E. Variants of the cell recognition site of fibronectin that retain attachment-promoting activity[J]. Proceedings of the National Academy of Sciences of the United States of America-Biological Sciences,1984, 81(19):5985-5988.
    [39]Bhat RR, Chaney BN, Rowley J, Liebmann-Vinson A, Genzer J. Tailoring cell adhesion using surface-grafted polymer gradient assemblies[J]. Adv Mater,2005, 17(23):2802-2807.
    [40]Reinhart B, Lee LEJ. Integrin-like substrate adhesion in RTG-2 cells, a fibroblastic cell line derived from rainbow trout[J]. Cell and Tissue Research,2002, 307(2):165-172.
    [41]Yeung T, Georges PC, Flanagan LA, et al. Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion[J]. Cell Motility and the Cytoskeleton,2005,60(1):24-34.
    [42]Chiu L-H, Yeh T-S, Huang H-M, Leu S-J, Yang C-B, Tsai Y-H. Diverse effects of type Ⅱ collagen on osteogenic and adipogenic differentiation of mesenchymal stem cells[J]. Journal of cellular physiology,2012,227(6):2412-2420.
    [43]Chen CS, Mrksich M, Huang S, Whitesides GM, Ingber DE. Geometric control of cell life and death[J]. Science,1997,276(5317):1425-1428.
    [44]Chen CS, Mrksich M, Huang S, Whitesides GM, Ingber DE. Micropatterned surfaces for control of cell shape, position, and function[J]. Biotechnol Prog,1998, 14(3):356-363.
    [45]Garcia AJ, Boettiger D. Integrin-fibronectin interactions at the cell-material interface:initial integrin binding and signaling[J]. Biomaterials,1999,20(23-24): 2427-2433.
    [46]Hozumi K, Otagiri D, Yamada Y, et al. Cell surface receptor-specific scaffold requirements for adhesion to laminin-derived peptide-chitosan membranes[J]. Biomaterials,2010,31(12):3237-3243.
    [47]Heydarkhan-Hagvall S, Gluck JM, Delman C, et al. The effect of vitronectin on the differentiation of embryonic stem cells in a 3D culture system[J]. Biomaterials, 2012,33(7):2032-2040.
    [48]Grzesik WJ, Ivanov B, Robey FA, Southerland J, Yamauchi M. Synthetic integrin-binding peptides promote adhesion and proliferation of human periodontal ligament cells in vitro[J]. J Dent Res,1998,77(8):1606-1612.
    [49]Kantlehner M, Schaffner P, Finsinger D, et al. Surface coating with cyclic RGD peptides stimulates osteoblast adhesion and proliferation as well as bone formation[J]. Chembiochem,2000,1(2):107-114.
    [50]DeLong SA, Gobin AS, West JL. Covalent immobilization of RGDS on hydrogel surfaces to direct cell alignment and migration[J]. J Control Release,2005,109(1-3): 139-148.
    [51]Tugulu S, Silacci P, Stergiopulos N, Klok HA. RGD-functionalized polymer brushes as substrates for the integrin specific adhesion of human umbilical vein endothelial cells[J]. Biomaterials,2007,28(16):2536-2546.
    [52]Comisar WA, Kazmers NH, Mooney DJ, Linderman JJ. Engineering RGD nanopatterned hydrogels to control preosteoblast behavior:a combined computational and experimental approach[J]. Biomaterials,2007,28(30):4409-4417.
    [53]Bae M-S, Lee KY, Park YJ, Mooney DJ. RGD island spacing controls phenotype of primary human fibroblasts adhered to ligand-organized hydrogels[J]. Macromolecular Research,2007,15(5):469-472.
    [54]Graeter SV, Huang JH, Perschmann N, et al. Mimicking cellular environments by nanostructured soft interfaces[J]. Nano Letters,2007,7(5):1413-1418.
    [55]Guarnieri D, De Capua A, Ventre M, et al. Covalent immobilized RGD gradient on PEG hydrogel scaffold influences cell migration parameters [J]. Acta Biomaterialia, 2010,6(7):2532-2539.
    [56]Dong Y, Li P, Chen C-b, Wang Z-h, Ma P, Chen G-Q. The improvement of fibroblast growth on hydrophobic biopolyesters by coating with polyhydroxyalkanoate granule binding protein PhaP fused with cell adhesion motif RGD[J]. Biomaterials,2010,31(34):8921-8930.
    [57]Lai Y, Xie C, Zhang Z, Lu W, Ding JD. Design and synthesis of a potent peptide containing both specific and non-specific cell-adhesion motifs[J]. Biomaterials,2010, 31(18):4809-4817.
    [58]Alvarez-Barreto JF, Landy B, VanGordon S, Place L, DeAngelis PL, Sikavitsas VI. Enhanced osteoblastic differentiation of mesenchymal stem cells seeded in RGD-functionalized PLLA scaffolds and cultured in a flow perfusion bioreactor[J]. Journal of Tissue Engineering and Regenerative Medicine,2011,5(6):464-475.
    [59]Yue XS, Murakami Y, Tamai T, et al. A fusion protein N-cadherin-Fc as an artificial extracellular matrix surface for maintenance of stem cell features [J]. Biomaterials,2010,31(20):5287-5296.
    [60]Nagaoka M, Koshimizu U, Yuasa S, et al. E-cadherin-coated plates maintain pluripotent ES cells without colony formation[J]. Plos One,2006,1(1):1-7.
    [61]Girard P, Bluemmel J, Spatz JP. Mimicking cadherin-mediated cell-cell adhesion[J]. European Biophysics Journal,2005,34(6):556.
    [62]Nagaoka M, Ise H, Akaike T. Immobilized E-cadherin model can enhance cell attachment and differentiation of primary hepatocytes but not proliferation[J]. Biotechnol Lett,2002,24(22):1857-1862.
    [63]Arnaout MA, Goodman SL, Xiong JP. Structure and mechanics of integrin-based cell adhesion[J]. Current Opinion in Cell Biology,2007,19(5):495-507.
    [64]Lee KY, Kong HJ, Mooney DJ. Quantifying interactions between cell receptors and adhesion ligand-modified polymers in solution[J]. Macromolecular Bioscience, 2008,8(2):140-145.
    [65]Giannone G, Sheetz MP. Substrate rigidity and force define form through tyrosine phosphatase and kinase pathways[J]. Trends Cell Biol,2006,16(4):213-223.
    [66]Tan JL, Tien J, Pirone DM, Gray DS, Bhadriraju K, Chen CS. Cells lying on a bed of microneedles:an approach to isolate mechanical force[J]. Proc Natl Acad Sci USA,2003,100(4):1484-1489.
    [67]Dembo M, Wang YL. Stresses at the cell-to-substrate interface during locomotion of fibroblasts[J]. Biophysical Journal,1999,76(4):2307-2316.
    [68]Yang MT, Sniadecki NJ, Chen CS. Geometric considerations of micro-to nanoscale elastomeric post arrays to study cellular traction forces[J]. Adv Mater,2007, 19(20):3119-3123.
    [69]Liu ZJ, Tan JL, Cohen DM, et al. Mechanical tugging force regulates the size of cell-cell junctions [J]. Proc Natl Acad Sci U S A,2010,107(22):9944-9949.
    [70]Wang JHC, Lin JS. Cell traction force and measurement methods[J]. Biomechanics and Modeling in Mechanobiology,2007,6(6):361-371.
    [71]Balaban NQ, Schwarz US, Riveline D, et al. Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates [J]. Nature Cell Biology,2001,3(5):466-472.
    [72]Rape AD, Guo W-h, Wang Y-1. The regulation of traction force in relation to cell shape and focal adhesions[J]. Biomaterials,2011,32(8):2043-2051.
    [73]Schwartz MA. Integrins and extracellular matrix in mechanotransduction[J]. Cold Spring Harbor Perspect Biol,2010,2(12):a005066.
    [74]Bol M, Reese S, Parker KK, Kuhl E. Computational modeling of muscular thin films for cardiac repair[J]. Computational Mechanics,2009,43(4):535-544.
    [75]Peng XL, Huang JY, Xiong CY, Fang J. Cell adhesion nucleation regulated by substrate stiffness:a Monte Carlo study[J]. Journal of Biomechanics,2012,45(1): 116-122.
    [76]Schwarz U. Soft matters in cell adhesion:rigidity sensing on soft elastic substrates[J]. Soft Matter,2007,3(3):263-266.
    [77]Bischofs LB, Schwarz US. Force-dependent kinetics of focal adhesions determines cell organization in soft media[J]. Biophysical Journal,2004,86(1): 58A-59A.
    [78]Erdmann T, Schwarz US. Stability of adhesion clusters under constant force[J]. Phys Rev Lett,2004,92(10):108102.
    [79]Erdmann T, Schwarz US. Stochastic dynamics of adhesion clusters under shared constant force and with rebinding[J]. J Chem Phys,2004,121(18):8997-9017.
    [80]Schwarz US, Erdmann T, Bischofs IB. Focal adhesions as mechanosensors:the two-spring model[J]. Biosystems,2006,83(2-3):225-232.
    [81]Fu RH, Wang YC, Liu SP, et al. Differentiation of stem cells:strategies for modifying surface biomaterials[J]. Cell Transplantation,2011,20(1):37-47.
    [82]Murry CE, Keller G. Differentiation of embryonic stem cells to clinically relevant populations:Lessons from embryonic development[J]. Cell,2008,132(4):661-680.
    [83]Odorico JS, Kaufman DS, Thomson JA. Multilineage differentiation from human embryonic stem cell lines[J]. Stem Cells,2001,19(3):193-204.
    [84]裴雪涛.干细胞生物学[M].北京:科学出版社,2003:3-20.
    [85]Conrad C, Huss R. Adult stem cell lines in regenerative medicine and reconstructive surgery[J]. Journal of Surgical Research,2005,124(2):201-208.
    [86]翟中和,王喜忠,丁明孝.细胞生物学[M].北京:高等教育出版社,2007:469-488.
    [87]Jung YJ, Bauer G, Nolta JA. Concise review:induced pluripotent stem cell-derived mesenchymal stem cells:progress toward safe clinical products[J]. Stem Cells,2012,30(1):42-47.
    [88]Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors[J]. Cell,2006,126(4): 663-676.
    [89]Junker JPE, Sommar P, Skog M, Johnson H, Kratz G. Adipogenic, chondrogenic and osteogenic differentiation of clonally derived human dermal fibroblasts[J]. Cells Tissues Organs,2010,191(2):105-118.
    [90]Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells[J]. Science,1999,284(5411):143-147.
    [91]Li W-J, Tuli R, Huang X, Laquerriere P, Tuan RS. Multilineage differentiation of human mesenchymal stem cells in a three-dimensional nanofibrous scaffold[J]. Biomaterials,2005,26(25):5158-5166.
    [92]Park JS, Yang HN, Woo DG, Jeon SY, Park KH. The promotion of chondrogenesis, osteogenesis, and adipogenesis of human mesenchymal stem cells by multiple growth factors incorporated into nanosphere-coated microspheres[J]. Biomaterials,2011,32(1):28-38.
    [93]Valtieri M, Sorrentino A. The mesenchymal stromal cell contribution to homeostasis[J]. Journal of Cellular Physiology,2008,217(2):296-300.
    [94]Tohma Y, Dohi Y, Ohgushi H, Tadokoro M, Akahane M, Tanaka Y. Osteogenic activity of bone marrow-derived mesenchymal stem cells (BMSCs) seeded on irradiated allogenic bone[J]. Journal of Tissue Engineering and Regenerative Medicine,2012,6(2):96-102.
    [95]Birmingham E, Niebur GL, McHugh PE, Shaw G, Barry FP, McNamara LM. Osteogenic differentiation of mesenchymal stem cells is regulated by osteocyte and osteoblast cells in a simplified bone niche[J]. European cells & materials,2012,23: 13-27.
    [96]Wang Y, Li J, Wang Y, et al. Effects of hypoxia on osteogenic differentiation of rat bone marrow mesenchymal stem cells[J]. Molecular and Cellular Biochemistry, 2012,362(1-2):25-33.
    [97]Zhao L, Liu L, Wu Z, Zhang Y, Chu PK. Effects of micropitted/nanotubular titania topographies on bone mesenchymal stem cell osteogenic differentiation[J]. Biomaterials,2012,33(9):2629-2641.
    [98]Hwang SH, Kim SY, Park SH, et al. Osteogenic differentiation of human turbinate mesenchymal stromal cells[J]. Tissue Engineering and Regenerative Medicine,2011,8(6):544-553.
    [99]Bhardwaj N, Kundu SC. Chondrogenic differentiation of rat MSCs on porous scaffolds of silk fibroin/chitosan blends[J]. Biomaterials,2012,33(10):2848-2857.
    [100]Hui TY, Cheung KMC, Cheung WL, Chan D, Chan BP. In vitro chondrogenic differentiation of human mesenchymal stem cells in collagen microspheres:Influence of cell seeding density and collagen concentration[J]. Biomaterials,2008,29(22): 3201-3212.
    [101]Merceron C, Portron S, Vignes-Colombeix C, et al. Pharmacological modulation of human mesenchymal stem cell chondrogenesis by a chemically oversulfated polysaccharide of marine origin:potential application to cartilage regenerative medicine[J]. Stem Cells,2012,30(3):471-480.
    [102]Chen CC, Liao CH, Wang YH, et al. Cartilage fragments from osteoarthritic knee promote chondrogenesis of mesenchymal stem cells without exogenous growth factor induction[J], Journal of Orthopaedic Research,2012,30(3):393-400.
    [103]Shanmugasundaram S, Logan-Mauney S, Burgos K, Nurminskaya M. Tissue transglutaminase regulates chondrogenesis in mesenchymal stem cells on collagen type XI matrices[J]. Amino Acids,2012,42(2-3):1045-1053.
    [104]Park JS, Chu JS, Tsou AD, et al. The effect of matrix stiffness on the differentiation of mesenchymal stem cells in response to TGF-beta[J]. Biomaterials, 2011,32(16):3921-3930.
    [105]Zare-Mehrjardi N, Khorasani MT, Hemmesi K, et al. Differentiation of embryonic stem cells into neural cells on 3D poly (D, L-lactic acid) scaffolds versus 2D cultures[J]. International Journal of Artificial Organs,2011,34(10):1012-1023.
    [106]Scott MA, Nguyen VT, Levi B, James AW. Current methods of adipogenic differentiation of mesenchymal stem cells[J]. Stem Cells and Development,2011, 20(10):1793-1804.
    [107]Yin L, Li Y, Wang Y. Dexamethasone-induced adipogenesis in primary marrow stromal cell cultures:mechanism of steroid-induced osteonecrosis[J]. Chin Med J, 2006,119(7):581-588.
    [108]Ghaedi M, Soleimani M, Shabani I, Duan YY, Lotfi AS. Hepatic differentiation from human mesenchymal stem cells on a novel nanofiber scaffold[J]. Cellular & Molecular Biology Letters,2012,17(1):89-106.
    [109]Lee KD, Kuo TKC, Whang-Peng J, et al. In vitro hepatic differentiation of human mesenchymal stem cells[J]. Hepatology,2004,40(6):1275-1284.
    [110]Yue WM, Liu W, Bi YW, et al. Mesenchymal stem cells differentiate into an endothelial phenotype, reduce neointimal formation, and enhance endothelial function in a rat vein grafting model[J]. Stem Cells and Development,2008,17(4):785-793.
    [111]Wang GS, Bunnell BA, Painter RG, et al. Adult stem cells from bone marrow stroma differentiate into airway epithelial cells:potential therapy for cystic fibrosis[J]. Proc Natl Acad Sci U S A,2005,102(1):186-191.
    [112]Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix elasticity directs stem cell lineage specification[J]. Cell,2006,126(4):677-689.
    [113]Meirelles LDS, Chagastelles PC, Nardi NB. Mesenchymal stem cells reside in virtually all post-natal organs and tissues[J]. Journal of Cell Science,2006,119(11): 2204-2213.
    [114]Anker PSI, Noort WA, Scherjon SA, et al. Mesenchymal stem cells in human second-trimester bone marrow, liver, lung, and spleen exhibit a similar immunophenotype but a heterogeneous multilineage differentiation potential [J]. Haematologica,2003,88(8):845-852.
    [115]Salingcarnboriboon R, Yoshitake H, Tsuji K, et al. Establishment of tendon-derived cell lines exhibiting pluripotent mesenchymal stem cell-like property[J]. Experimental Cell Research,2003,287(2):289-300.
    [116]Kuraitis D, Ruel M, Suuronen EJ. Mesenchymal stem cells for cardiovascular regeneration[J]. Cardiovascular Drugs and Therapy,2011,25(4):349-362.
    [117]Chamberlain G, Fox J, Ashton B, Middleton J. Concise review:mesenchymal stem cells:their phenotype, differentiation capacity, immunological features, and potential for homing[J]. Stem Cells,2007,25(11):2739-2749.
    [118]Stamm C, Westphal B, Kleine H-D, et al. Autologous bone-marrow stem-cell transplantation for myocardial regeneration[J]. The Lancet,2003,361(9351):45-46.
    [119]Moutsatsos IK, Turgeman G, Zhou S, et al. Exogenously regulated stem cell-mediated gene therapy for bone regeneration[J]. Mol Ther,2001,3(4):449-461.
    [120]Nixon AJ, Watts AE, Schnabel LV. Cell- and gene-based approaches to tendon regeneration[J]. Journal of Shoulder and Elbow Surgery,2012,21(2):278-294.
    [121]Ringe J, Kaps C, Burmester GR, Sittinger M. Stem cells for regenerative medicine:advances in the engineering of tissues and organs [J]. Naturwissenschaften, 2002,89(8):338-351.
    [122]Bernardo ME, Locatelli F, Fibbe WE. Mesenchymal stromal cells a novel treatment modality for tissue repair[A]. In Hematopoietic Stem Cells Vii[C].2009: 101-117.
    [123]Maumus M, Guerit D, Toupet K, Jorgensen C, Noel D. Mesenchymal stem cell-based therapies in regenerative medicine:applications in rheumatology [J]. Stem Cell Research & Therapy,2011,2.
    [124]Bajek A, Olkowska J, Drewa T. Mesenchymal stem cells as a therapeutic tool in tissue and organ regeneration[J]. Postepy Higieny I Medycyny Doswiadczalnej,2011, 65:124-132.
    [125]王恒湘,郭子宽.间充质干细胞在组织再生应用中的诸多问题[J].组织工程与重建外科杂志,2008,4(5):241-245.
    [126]Sensebe L, Krampera M, Schrezenmeier H, Bourin P, Giordano R. Mesenchymal stem cells for clinical application[J]. Vox Sanguinis,2010,98(2): 93-107.
    [127]张薇薇,郭子宽.间充质干细胞临床试验中的问题及其解决策略[J].中国实验血液学杂志,2007,15(4):901-904.
    [128]Li WL, Jiang K, Ding S. Concise review:a chemical approach to control cell fate and function[J]. Stem Cells,2012,30(1):61-68.
    [129]McBeath R, Pirone DM, Nelson CM, Bhadriraju K, Chen CS. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment[J]. Dev Cell, 2004,6(4):483-495.
    [130]Gao L, McBeath R, Chen CS. Stem cell shape regulates a chondrogenic versus myogenic fate through Rac1 and N-cadherin[J]. Stem Cells,2010,28(3):564-572.
    [131]Tang J, Peng R, Ding JD. The regulation of stem cell differentiation by cell-cell contact on micropatterned material surfaces[J]. Biomaterials,2010,31(9):2470-2476.
    [132]Kim E-K, Lim S, Park J-M, et al. Human mesenchymal stem cell differentiation to the osteogenic or adipogenic lineage is regulated by AMP-activated protein kinase[J]. Journal of Cellular Physiology,2012,227(4):1680-1687.
    [133]Ruiz SA, Chen CS. Emergence of patterned stem cell differentiation within multicellular structures[J]. Stem Cells,2008,26(11):2921-2927.
    [134]Kilian KA, Bugarija B, Lahn BT, Mrksich M. Geometric cues for directing the differentiation of mesenchymal stem cells[J]. Proc Natl Acad Sci U S A,2010, 107(11):4872-4877.
    [135]Peng R, Yao X, Ding JD. Effect of cell anisotropy on differentiation of stem cells on micropatterned surfaces through the controlled single cell adhesion[J]. Biomaterials,2011,32(32):8048-8057.
    [136]Hoshiba T, Kawazoe N, Chen G. The balance of osteogenic and adipogenic differentiation in human mesenchymal stem cells by matrices that mimic stepwise tissue development[J]. Biomaterials,2012,33(7):2025-2031.
    [137]Liu HY, Wu ATH, Tsai CY, et al. The balance between adipogenesis and osteogenesis in bone regeneration by platelet-rich plasma for age-related osteoporosis[J]. Biomaterials,2011,32(28):6773-6780.
    [138]Mikami Y, Lee M, Irie S, Honda MJ. Dexamethasone modulates osteogenesis and adipogenesis with regulation of osterix expression in rat calvaria-derived cells[J]. Journal of Cellular Physiology,2011,226(3):739-748.
    [139]Jaiswal N, Haynesworth SE, Caplan AI, Bruder SP. Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro[J]. Journal of Cellular Biochemistry,1997,64(2):295-312.
    [140]Park J, Bauer S, Pittrof A, Killian MS, Schmuki P, von der Mark K. Synergistic control of mesenchymal stem cell differentiation by nanoscale surface geometry and immobilized growth factors on TiO2 nanotubes[J]. Small,2011,8(1):98-107.
    [141]Hu Y, Cai K, Luo Z, et al. Regulation of the differentiation of mesenchymal stem cells invitro and osteogenesis invivo by microenvironmental modification of titanium alloysurfaces[J]. Biomaterials,2012,33(13):3515-3528.
    [142]欧阳菁.柚皮苷对大鼠骨髓间充质干细胞增殖和骨向分化的影响[D].广州:暨南大学,2006:
    [143]Hu W, Yu X, Xu L. Methods and research progress of differentiation of bone marrow stromal cells into osteoblasts[J]. Journal of Clinical Rehabilitative Tissue Engineering Research,2009,13(1):169-172.
    [144]Gugala Z, Davis AR, Fouletier-Dilling CM, Gannon FH, Lindsey RW, Olmsted-Davis EA. Adenovirus BMP2-induced osteogenesis in combination with collagen carriers[J]. Biomaterials,2007,28(30):4469-4479.
    [145]Tsai M-T, Lin D-J, Huang S, Lin H-T, Chang WH. Osteogenic differentiation is synergistically influenced by osteoinductive treatment and direct cell-cell contact between murine osteoblasts and mesenchymal stem cells[J]. International Orthopaedics,2012,36(1):199-205.
    [146]Sheehy EJ, Buckley CT, Kelly DJ. Oxygen tension regulates the osteogenic, chondrogenic and-endochondral phenotype of bone marrow derived mesenchymal stem cells[J]. Biochemical and Biophysical Research Communications,2011,417(1): 305-310.
    [147]Lennon DP, Edmison JM, Caplan AI. Cultivation of rat marrow-derived mesenchymal stem cells in reduced oxygen tension:effects on in vitro and in vivo osteochondrogenesis[J]. Journal of Cellular Physiology,2001,187(3):345-355.
    [148]Esposito M, Lucariello A, Riccio I, Riccio V, Esposito V, Riccardi G. Differentiation of human osteoprogenitor cells increases after treatment with pulsed electromagnetic fields[J]. In vivo (Athens, Greece),2012,26(2):299-304.
    [149]Vittorio O, Raffa V, Riggio C, Pietrabissa A, Cuschieri A. PC 12 interaction with magnetic nanotubes:effects on viability, cell differentiation and cell translocation induced by a magnetic field[J]. Current Nanoscience,2011,7(3):337-344.
    [150]Mayer-Wagner S, Passberger A, Sievers B, et al. Effects of low frequency electromagnetic fields on the chondrogenic differentiation of human mesenchymal stem cells[J]. Bioelectromagnetics,2011,32(4):283-290.
    [151]Yang X, Cai X, Wang J, et al. Mechanical stretch inhibits adipogenesis and stimulates osteogenesis of adipose stem cells[J]. Cell Proliferation,2012,45(2): 158-166.
    [152]Liu L, Yu B, Chen J, et al. Different effects of intermittent and continuous fluid shear stresses on osteogenic differentiation of human mesenchymal stem cells[J]. Biomechanics and modeling in mechanobiology,2012,11(3-4):391-401.
    [153]Nam J, Johnson J, Lannutti JJ, Agarwal S. Modulation of embryonic mesenchymal progenitor cell differentiation via control over pure mechanical modulus in electrospun nanofibers[J]. Acta Biomaterialia,2011,7(4):1516-1524.
    [154]Yamazaki S, Mizumoto T, Nasu A, et al. Regulation of osteogenetic differentiation of mesenchymal stem cells by two axial rotational culture[J]. Journal of Artificial Organs,2011,14(4):310-317.
    [155]Guvendiren M, Burdick JA. The control of stem cell morphology and differentiation by hydrogel surface wrinkles[J]. Biomaterials,2010,31(25): 6511-6518.
    [156]Discher DE, Sweeney L, Sen S, Engler A. Matrix elasticity directs stem cell lineage specification[J]. Biophysical Journal,2007, S:32A-32A.
    [157]Pek YS, Wan ACA, Ying JY. The effect of matrix stiffness on mesenchymal stem cell differentiation in a 3D thixotropic gel[J]. Biomaterials,2010,31(3): 385-391.
    [158]Mason C, Dunnill P. A brief definition of regenerative medicine[J]. Regenerative Medicine,2008,3(1):1-5.
    [159]王正国.再生医学——机遇与挑战[J].中华创伤杂志,2006,(1):72-75.
    [160]Williams DF. On the nature of biomaterials[J]. Biomaterials,2009,30(30): 5897-5909.
    [161]Martino S, D'Angelo F, Armentano I, Kenny JM, Orlacchio A. Stem cell-biomaterial interactions for regenerative medicine[J]. Biotechnology Advances, 2012,30(1):338-351.
    [162]Jean C, Gravelle P, Fournie JJ, Laurent G. Influence of stress on extracellular matrix and integrin biology[J]. Oncogene,2011,30(24):2697-2706.
    [163]McNamara LE, Burchmore R, Riehle MO, et al. The role of microtopography in cellular mechanotransduction[J]. Biomaterials,2012,33(10):2835-2847.
    [164]Wilson MJ, Liliensiek SJ, Murphy CJ, Murphy WL, Nealey PF. Hydrogels with well-defined peptide-hydrogel spacing and concentration:impact on epithelial cell behavior[J]. Soft Matter,2012,8(2):390-398.
    [165]Mima T, Narumi T, Kameoka S, Yasuoka K. Cell size dependence of orientational order of uniaxial liquid crystals in flat slit (vol 34, pg 761,2008)[J]. Mol Simul,2010,36(3):254-254.
    [166]Sochol RD, Higa AT, Janairo RRR, Li S, Lin L. Effects of micropost spacing and stiffness on cell motility[J]. Micro & Nano Letters,2011,6(5):323-326.
    [167]Pan Z, Yan C, Peng R, Zhao Y, He Y, Ding J. Control of cell nucleus shapes via micropillar patterns[J]. Biomaterials,2012,33(6):1730-1735.
    [168]Yan C, Sun J, Ding J. Critical areas of cell adhesion on micropatterned surfaces[J]. Biomaterials,2011,32(16):3931-3938.
    [169]Schwarz US, Bischofs IB. Physical determinants of cell organization in soft media[J]. Med Eng Phys,2005,27(9):763-772.
    [170]Hallab NJ, Bundy KJ, Oconnor K, Clark R, Moses RL. Cell adhesion to biomaterials:correlations between surface charge, surface roughness, adsorbed protein, and cell morphology [J]. Journal of Long-Term Effects of Medical Implants, 1995,5(3):209-231.
    [171]van Wachem PB, Hogt AH, Beugeling T, et al. Adhesion of cultured human endothelial cells onto methacrylate polymers with varying surface wettability and charge[J]. Biomaterials,1987,8(5):323-328.
    [172]Bet MR, Goissis G, Vargas S, Selistre-de-Araujo HS. Cell adhesion and cytotoxicity studies over polyanionic collagen surfaces with variable negative charge and wettability [J]. Biomaterials,2003,24(1):131-137.
    [173]Gentile F, Tirinato L, Battista E, et al. Cells preferentially grow on rough substrates[J]. Biomaterials,2010,31(28):7205-7212.
    [174]Wu Y, Zitelli JP, TenHuisen KS, Yu X, Libera MR. Differential response of staphylococci and osteoblasts to varying titanium surface roughness[J]. Biomaterials, 2011,32(4):951-960.
    [175]Wenzel RN. Surface roughness and contact angle[J]. The Journal of Physical and Colloid Chemistry,1948,53(9):1466-1467.
    [176]李成贵,李艳宁,刘杰郎,青山.表面粗糙度的表征参数分析[J].实用测试技术,1997,(6):18-32.
    [177]Vandeparre H, Gabriele S, Brau F, Gay C, Parker KK, Damman P. Hierarchical wrinkling patterns[J]. Soft Matter,2010,6(22):5751-5756.
    [178]Lim JY. Topographic control of cell response to synthetic materials[J]. Tissue Engineering and Regenerative Medicine,2009,6(1-3):365-370.
    [179]Decuzzi P, Ferrari M. Modulating cellular adhesion through nanotopography[J]. Biomaterials,2010,31(1):173-179.
    [180]Kingham EJ, Tsimbouri M, Gadegaard N, Dalby MJ, Oreffo ROC. Nanotopography induced osteogenic differentiation of human stem cells[J]. Bone, 2011,48:S108-S109.
    [181]Brydone AS, Dalby MJ, Berry CC, Meek RMD, McNamara LE. Grooved surface topography alters matrix-metalloproteinase production by human fibroblasts[J]. Biomedical Materials,2011,6(3):035005.
    [182]McGarry JP, Fu J, Yang MT, et al. Simulation of the contractile response of cells on an array of micro-posts[J]. Philos Trans R Soc A-Math Phys Eng Sci,2009, 367(1902):3477-3497.
    [183]Thery M, Racine V, Pepin A, et al. The extracellular matrix guides the orientation of the cell division axis[J]. Nature Cell Biology,2005,7(10):947-953.
    [184]Thery M, Racine V, Piel M, et al. Anisotropy of cell adhesive microenvironment governs cell internal organization and orientation of polarity [J]. Proc Natl Acad Sci U SA,2006,103(52):19771-19776.
    [185]Thery M, Pepin A, Dressaire E, Chen Y, Bornens M. Cell distribution of stress fibres in response to the geometry of the adhesive environment[J]. Cell Motility and the Cytoskeleton,2006,63(6):341-355.
    [186]Jiang XY, Bruzewicz DA, Wong AP, Piel M, Whitesides GM. Directing cell migration with asymmetric micropatterns[J]. Proc Natl Acad Sci U S A,2005,102(4): 975-978.
    [187]Ghosh K, Pan Z, Guan E, et al. Cell adaptation to a physiologically relevant ECM mimic with different viscoelastic properties[J]. Biomaterials,2007,28(4): 671-679.
    [188]Franke RP, Grafe M, Schnittler H, Seiffge D, Mittermayer C, Drenckhahn D. Induction of human vascular endothelial stress fibers by fluid shear-stress [J]. Nature, 1984,307(5952):648-649.
    [189]Levesque MJ, Nerem RM. The elongation and orientation of cultured endothelial-cells in response to shear-stress [J]. J Biomech Eng-Trans ASME,1985, 107(4):341-347.
    [190]Burger EH, Klein-Nulend J. Microgravity and bone cell mechanosensitivity[J]. Bone,1998,22(5):127S-130S.
    [191]Neidlinger-Wilke C, Grood ES, Wang JHC, Brand RA, Claes L. Cell alignment is induced by cyclic changes in cell length:studies of cells grown in cyclically stretched substrates[J]. Journal of Orthopaedic Research,2001,19(2):286-293.
    [192]Discher DE, Janmey P, Wang YL. Tissue cells feel and respond to the stiffness of their substrate[J]. Science,2005,310(5751):1139-1143.
    [193]Saha K, Keung AJ, Irwin EF, et al. Substrate modulus directs neural stem cell behavior[J]. Biophysical Journal,2008,95(9):4426-4438.
    [194]Wang Y, Wang G, Luo X, Qiu J, Tang C. Substrate stiffness regulates the proliferation, migration, and differentiation of epidermal cells[J]. Burns,2011,38(3): 414-420.
    [195]Horning M, Kidoaki S, Kawano T, Yoshikawa K. Rigidity matching between cells and the extracellular matrix leads to the stabilization of cardiac conduction[J]. Biophysical Journal,2012,102(3):379-387.
    [196]DeLong SA, Moon JJ, West JL. Covalently immobilized gradients of βFGF on hydrogel scaffolds for directed cell migration[J]. Biomaterials,2005,26(16): 3227-3234.
    [197]Seidi A, Ramalingam M, Elloumi-Hannachi I, Ostrovidov S, Khademhosseini A. Gradient biomaterials for soft-to-hard interface tissue engineering[J]. Acta Biomaterialia,2011,7(4):1441-1451.
    [198]Lo CM, Wang HB, Dembo M, Wang YL. Cell movement is guided by the rigidity of the substrate[J]. Biophysical Journal,2000,79(1):144-152.
    [199]Brown AEX, Discher DE. Conformational changes and signaling in cell and matrix physics[J]. Curr Biol,2009,19(17):R781-R789.
    [200]Sands RW, Mooney DJ. Polymers to drect cell fate by controlling the microenvironment[J]. Current Opinion in Biotechnology,2007,18(5):448-453.
    [201]Kumar G, Tison CK, Chatterjee K, et al. The determination of stem cell fate by 3D scaffold structures through the control of cell shape[J]. Biomaterials,2011,32(35): 9188-9196.
    [202]Kraehenbuehl TP, Langer R, Ferreira LS. Three-dimensional biomaterials for the study of human pluripotent stem cells[J]. Nature Methods,2011,8(9):731-736.
    [203]Martinez E, Engel E, Planell JA, Samitier J. Effects of artificial micro- and nano-structured surfaces on cell behaviour[J]. Annals of Anatomy-Anatomischer Anzeiger,2009,191(1):126-135.
    [204]Qian TC, Wang YX. Micro/nano-fabrication technologies for cell biology [J]. Medical & Biological Engineering & Computing,2010,48(10):1023-1032.
    [205]Smith KH, Tejeda-Montes E, Poch M, Mata A. Integrating top-down and self-assembly in the fabrication of peptide and protein-based biomedical materials[J]. Chemical Society Reviews,2011,40(9):4563-4577.
    [206]Dumond JJ, Low HY. Recent developments and design challenges in continuous roller micro- and nanoimprinting[J]. Journal of Vacuum Science & Technology B,2012,30(1):010801.
    [207]Kane RS, Takayama S, Ostuni E, Ingber DE, Whitesides GM. Patterning proteins and cells using soft lithography[J]. Biomaterials,1999,20(23-24): 2363-2376.
    [208]Kane RS, Takayama S, Ostuni E, Ingber DE, Whitesides GM, Williams DF. Patterning proteins and cells using soft lithography [A]. In The Biomaterials:Silver Jubilee Compendium[C]. Oxford:Elsevier Science; 2006:161-174.
    [209]Gates BD, Xu QB, Stewart M, Ryan D, Willson CG, Whitesides GM. New approaches to nanofabrication:molding, printing, and other techniques[J]. Chem Rev, 2005,105(4):1171-1196.
    [210]von der Mark K, Park J, Bauer S, Schmuki P. Nanoscale engineering of biomimetic surfaces:cues from the extracellular matrix[J]. Cell and Tissue Research, 2010,339(1):131-153.
    [211]Aydin D, Schwieder M, Louban I, et al. Micro-nanostructured protein arrays:a tool for geometrically controlled ligand presentation[J]. Small,2009,5(9):1014-1018.
    [212]Kulangara K, Leong KW. Substrate topography shapes cell function[J]. Soft Matter,2009,5(21):4072-4076.
    [213]Chou SY, Cheng CM, Leduc PR. Composite polymer systems with control of local substrate elasticity and their effect on cytoskeletal and morphological characteristics of adherent cells[J]. Biomaterials,2009,30(18):3136-3142.
    [214]Kim DH, Han K, Gupta K, Kwon KW, Suh KY, Levchenko A. Mechanosensitivity of fibroblast cell shape and movement to anisotropic substratum topography gradients[J]. Biomaterials,2009,30(29):5433-5444.
    [215]Nishikuboand T, Kudo H. Recent development in molecular resists for extreme ultraviolet lithography[J]. Journal of Photopolymer Science and Technology,2011, 24(1):9-18.
    [216]Marconi MC, Wachulak PW. Extreme ultraviolet lithography with table top lasers[J]. Progress in Quantum Electronics,2010,34(4):173-190.
    [217]Wua BQ, Kumar A. Extreme ultraviolet lithography:a review[J]. Journal of Vacuum Science & Technology B,2007,25(6):1743-1761.
    [218]Selzer R, Heaton J. Using X-ray lithography to make sub 100 nm MMICs[J]. Microelectronic Engineering,2000,53(1-4):591-594.
    [219]Kolodziej CM, Maynard HD. Electron-beam lithography for patterning biomolecules at the micron and nanometer scale[J]. Chemistry of Materials,2012, 24(5):774-780.
    [220]Komarneni M, Shan J, Chakradhar A, Kadossov E, Cabrini S, Burghaus U. Adsorption dynamics of CO on silica supported CuO(x) clusters:utilizing electron beam lithography to study methanol synthesis model systems[J]. Journal of Physical Chemistry C,2012,116(9):5792-5801.
    [221]Walz MM, Vollnhals F, Rietzler F, Schirmer M, Steinrueck HP, Marbach H. Investigation of proximity effects in electron microscopy and lithography [J]. Applied Physics Letters,2012,100(5):053118.
    [222]Baglin JEE. Ion beam nanoscale fabrication and lithography-a review[J]. Applied Surface Science,2011,258(9):4103-4111.
    [223]Chen J-K, Qui J-Q, Fan S-K, et al. Using colloid lithography to fabricate silicon nanopillar arrays on silicon substrates [J]. Journal of Colloid and Interface Science, 2011,367:40-48.
    [224]Varasanec M, Radovic IB, Pastuovic Z, Jaksic M. Creation of microstructures using heavy ion beam lithography[J]. Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms,2011,269(20): 2413-2416.
    [225]Winston D, Manfrinato VR, Nicaise SM, et al. Neon ion beam lithography (NIBL)[J]. Nano Letters,2011,11(10):4343-4347.
    [226]Chou SY, Krauss PR, Renstrom PJ. Imprint lithography with 25-nanometer resolution[J]. Science,1996,272(5258):85-87.
    [227]Chou SY, Krauss PR, Renstrom PJ. Imprint of sub-25 nm vias and trenches in polymers[J]. Applied Physics Letters,1995,67(21):3114-3116.
    [228]Takei S, Ogawa T, Deschner R, Jen K, Hanabata M, Willson CG. Development of spin-on hard mask materials under resist in nano imprint lithography [A]. In Advances in Resist Materials and Processing Technology Xxvii, Pts 1 and 2[C].2010.
    [229]Lee KB, Park SJ, Mirkin CA, Smith JC, Mrksich M. Protein nanoarrays generated by dip-pen nanolithography[J]. Science,2002,295(5560):1702-1705.
    [230]Hong SH, Zhu J, Mirkin CA. Multiple ink nanolithography:toward a multiple-pen nano-plotter[J]. Science,1999,286(5439):523-525.
    [231]Piner RD, Zhu J, Xu F, Hong SH, Mirkin CA. "Dip-pen" nanolithography[J]. Science,1999,283(5402):661-663.
    [232]Curran JM, Stokes R, Irvine E, et al. Introducing dip pen nanolithography as a tool for controlling stem cell behaviour:unlocking the potential of the next generation of smart materials in regenerative medicine[J]. Lab Chip,2010,10(13):1662-1670.
    [233]McMullan JM, Wagner NJ. Directed self-assembly of colloidal crystals by dielectrophoretic ordering[J]. Langmuir,2012,28(9):4123-4130.
    [234]Krishnamoorthy S, Hinderling C, Heinzelmann H. Nanoscale patterning with block copolymers[J]. Mater Today,2006,9(9):40-47.
    [235]Gao X, Zhu SP, Sheardown H, Brash JL. Nanoscale patterning through self-assembly of hydrophilic block copolymers with one chain end constrained to surface[J]. Polymer,2010,51(8):1771-1778.
    [236]Berman B.3-D printing:The new industrial revolution[J]. Business Horizons, 2012,55(2):155-162.
    [237]Salvo P, Raedt R, Carrette E, Schaubroeck D, Vanfleteren J, Cardon L. A 3D printed dry electrode for ECG/EEG recording[J]. Sensors and Actuators a-Physical, 2012,174:96-102.
    [238]3D printing of bonelike scaffolds[J]. American Ceramic Society Bulletin,2012, 91(1):17-17.
    [239]Fedorovich NE, Alblas J, Hennink WE, Oner FC, Dhert WJA. Organ printing: the future of bone regeneration? [J]. Trends in Biotechnology,2011,29(12):601-606.
    [240]Lee JW, Kang KS, Lee SH, Kim J-Y, Lee B-K, Cho D-W. Bone regeneration using a microstereolithography-produced customized poly(propylene fumarate)/diethyl fumarate photopolymer 3D scaffold incorporating BMP-2 loaded PLGA microspheres[J]. Biomaterials,2011,32(3):744-752.
    [241]Choi J-W, MacDonald E, Wicker R. Multi-material microstereolithography[J]. International Journal of Advanced Manufacturing Technology,2010,49(5-8): 543-551.
    [242]Anderson JR, Chiu DT, Jackman RJ, et al. Fabrication of topologically complex three-dimensional microfluidic systems in PDMS by rapid prototyping[J]. Analytical Chemistry,2000,72(14):3158-3164.
    [243]Hagiwara T, Tsuji S, Fuiji K, et al. Sub-40-nm pattern fabrication in 157-nm interferometric immersion lithography [A]. In Optical Microlithography Xix, Pts 1-3[C].2006:U2510-U2521.
    [244]Whitesides GM, Ostuni E, Takayama S, Jiang XY, Ingber DE. Soft lithography in biology and biochemistry[J]. Annu Rev Biomed Eng,2001,3:335-373.
    [245]Orava J, Kohoutek T, Greer AL, Fudouzi H. Soft imprint lithography of a bulk chalcogenide glass[J]. Optical Materials Express,2011,1(5):796-802.
    [246]Rajput D, Costa L, Terekhov A, Lansford K, Hofmeister W. Silica coating of polymer nanowires produced via nanoimprint lithography from femtosecond laser machined templates[J]. Nanotechnology,2012,23(10):105304.
    [247]Hsu QC, Hsiao JJ, Ho TL, Wu CD. Fabrication of photonic crystal structures on flexible organic light-emitting diodes using nanoimprint[J]. Microelectronic Engineering,2012,91:178-184.
    [248]Smith CLC, Desiatov B, Goykmann I, Fernandez-Cuesta I, Levy U, Kristensen A. Plasmonic V-groove waveguides with Bragg grating filters via nanoimprint lithography [J]. Optics Express,2012,20(5):5696-5706.
    [249]Domanski M, Luttge R, Lamers E, et al. Submicron-patterning of bulk titanium by nanoimprint lithography and reactive ion etching[J]. Nanotechnology,2012,23(6): 065306
    [250]Peroz C, Dhuey S, Cornet M, Vogler M, Olynick D, Cabrini S. Single digit nanofabrication by step-and-repeat nanoimprint lithography [J]. Nanotechnology,2012, 23(1):015305.
    [251]Marcovich A, Shinn T. Instrument research, tools, and the knowledge enterprise 1999-2009:birth and development of dip-pen nanolithography[J]. Science Technology & Human Values,2011,36(6):864-896.
    [252]Nakashima H, Higgins MJ, O'Connell C, Torimitsu K, Wallace GG. Liquid deposition patterning of conducting polymer ink onto hard and soft flexible substrates via dip-pen nano lithography [J]. Langmuir,2012,28(1):804-811.
    [253]Chang YH, Wang CH. Electroless deposition of Cu nanostructures on molecular patterns prepared by dip-pen nanolithography[J]. J Mater Chem,2012,22(8): 3377-3382.
    [254]Narui Y, Salaita KS. Dip-pen nanolithography of optically transparent cationic polymers to manipulate spatial organization of proteolipid membranes[J]. Chemical Science,2012,3(3):794-799.
    [255]Yadav PK, McKavanagh F, Maguire PD, Lemoine P. Adsorption of bovine serum albumin on amorphous carbon surfaces studied with dip pen nanolithography[J]. Applied Surface Science,2011,258(1):361-369.
    [256]Son JY, Shin YS, Shin YH. Nanoscale resistive random access memory consisting of a NiO nanodot and Au nanowires formed by dip-pen nanolithography[J]. Applied Surface Science,2011,257(23):9885-9887.
    [257]Becerril HA, Woolley AT. DNA-templated nanofabrication[J]. Chemical Society Reviews,2009,38(2):329-337.
    [258]Wang DC, Chen GY, Chen KY, Tsai CH. DNA as a template in self-assembly of Au nano-structure[J]. let Nanobiotechnology,2011,5(4):132-135.
    [259]Goswami N, Saha R, Pal SK. Protein-assisted synthesis route of metal nanoparticles:exploration of key chemistry of the biomolecule[J]. Journal of Nanoparticle Research,2011,13(10):5485-5495.
    [260]Leon L, Su W, Matsui H, Tu R. Interfacial templating of inorganic nanostructures using a growth directing and reducing peptide[J]. Soft Matter,2011, 7(21):10285-10290.
    [261]Zhang G, Wang DY. Colloidal lithography-the art of nanochemical patterning[J]. Chemistry-an Asian Journal,2009,4(2):236-245.
    [262]Liou JY, Sun YS. Monolayers of diblock copolymer micelles by spin-coating from o-xylene on SiOx/Si studied in real and reciprocal space[J]. Macromolecules, 2012,45(4):1963-1971.
    [263]Sastry M, Kumar A, Datar S, Dharmadhikari CV, Ganesh KN. DNA-mediated electrostatic assembly of gold nanoparticles into linear arrays by a simple drop-coating procedure[J]. Applied Physics Letters,2001,78(19):2943-2945.
    [264]Lohmueller T, Bock E, Spatz JP. Synthesis of quasi-hexagonal ordered arrays of metallic nanoparticles with tuneable particle size[J]. Adv Mater,2008,20(12): 2297-2302.
    [265]Kim DH, Sun ZC, Russell TP, Knoll W, Gutmann JS. Organic-inorganic nanohybridization by block copolymer thin films[J]. Adv Funct Mater,2005,15(7): 1160-1164.
    [266]Glass R, Arnold M, Cavalcanti-Adam EA, et al. Block copolymer micelle nanolithography on non-conductive substrates[J]. New Journal of Physics,2004,6: 1367-2630.
    [267]Li X, Goring P, Pippel E, Steinhart M, Kim DH, Knoll W. Fabrication of Au/titania composite nanodot arrays from Au-loaded block copolymer micellar films[J]. Macromolecular Rapid Communications,2005,26(14):1173-1178.
    [268]Polleux J, Rasp M, Louban I, Plath N, Feldhoff A, Spatz JP. Benzyl alcohol and block copolymer micellar lithography:a versatile route to assembling gold and in situ generated titania nanoparticles into uniform binary nanoarrays[J]. Acs Nano,2011, 5(8):6355-6364.
    [269]Engel E, Michiardi A, Navarro M, Lacroix D, Planell JA. Nanotechnology in regenerative medicine:the materials side[J]. Trends in Biotechnology,2008,26(1): 39-47.
    [270]Ross AM, Jiang ZX, Bastmeyer M, Lahann J. Physical aspects of cell culture substrates:topography, roughness, and elasticity [J]. Small,2012,8(3):336-355.
    [271]Jiang XY, Xu QB, Dertinger SKW, Stroock AD, Fu TM, Whitesides GM. A general method for patterning gradients of biomolecules on surfaces using microfluidic networks[J]. Analytical Chemistry,2005,77(8):2338-2347.
    [272]Roam JL, Xu H, Nguyen PK, Elbert DL. The formation of protein concentration gradients mediated by density differences of poly(ethylene glycol) microspheres[J]. Biomaterials,2010,31(33):8642-8650.
    [273]Ostuni E, Chapman RG, Liang MN, et al. Self-assembled monolayers that resist the adsorption of proteins and the adhesion of bacterial and mammalian cells[J]. Langmuir,2001,17(20):6336-6343.
    [274]Abdelghani-Jacquin C, Abdelghani A, Chmel G, Kantlehner M, Sackmann E. Decorated surfaces by biofunctionalized gold beads:application to cell adhesion studies[J]. Eur Biophys J Biophys Lett,2002,31(2):102-110.
    [275]Beganskiene A, Raudonis R, Jokhadar SZ, Batista U, Kareiva A. Modified sol-gel coatings for biotechnological applications[A]. In Functional Materials and Nanotechnologies:Fm&Nt-2007[C].2007.
    [276]Mei Y, Wu T, Xu C, et al. Tuning cell adhesion on gradient poly(2-hydroxyethyl methacrylate)-grafted surfaces[J]. Langmuir,2005,21(26):12309-12314.
    [277]Fan XW, Lin LJ, Dalsin JL, Messersmith PB. Biomimetic anchor for surface-initiated polymerization from metal substrates[J]. Journal of the American Chemical Society,2005,127(45):15843-15847.
    [278]Fan XW, Lin LJ, Messersmith PB. Cell fouling resistance of polymer brushes grafted from Ti substrates by surface-initiated polymerization:Effect of ethylene glycol side chain length[J]. Biomacromolecules,2006,7(8):2443-2448.
    [279]Schwarz A, Rossier JS, Roulet E, Mermod N, Roberts MA, Girault HH. Micropatterning of biomolecules on polymer substrates[J]. Langmuir,1998,14(19): 5526-5531.
    [280]Yoshikawa C, Goto A, Tsujii Y, et al. Protein repellency of well-defined, concentrated poly(2-hydroxyethyl methacrylate) brushes by the size-exclusion effect[J]. Macromolecules,2006,39(6):2284-2290.
    [281]Ma HW, Wells M, Beebe TP, Chilkoti A. Surface-initiated atom transfer radical polymerization of oligo(ethylene glycol) methyl methacrylate from a mixed self-assembled monolayer on gold[J]. Adv Funct Mater,2006,16(5):640-648.
    [282]Aydin D, Louban I, Perschmann N, et al. Polymeric substrates with tunable elasticity and nanoscopically controlled biomolecule presentation[J]. Langmuir,2010, 26(19):15472-15480.
    [283]Zalipsky S, Harris JM. Introduction to chemistry and biological applications of poly(ethylene glycol)[A]. In Poly(Ethylene Glycol)[C]. Washington:Amer Chemical Soc; 1997:1-13.
    [284]徐静.聚乙二醇修饰蛋白质类药物的研究现状及展望[J].国外医学预防诊断治疗用生物制品分册,2004,27(2):75-78.
    [285]Gallant ND, Michael KE, Garcia AJ. Cell adhesion strengthening:contributions of adhesive area, integrin binding, and focal adhesion assembly[J]. Molecular Biology of the Cell,2005,16(9):4329-4340.
    [286]Brock A, Chang E, Ho CC, et al. Geometric determinants of directional cell motility revealed using microcontact printing[J]. Langmuir,2003,19(5):1611-1617.
    [287]Vanapalli SA, Duits MHG, Mugele F. Microfluidics as a functional tool for cell mechanics[J]. Biomicrofluidics,2009,3(1):012006.
    [288]Bettinger CJ, Orrick B, Misra A, Langer R, Borenstein JT. Microfabrication of poly (glycerol-sebacate) for contact guidance applications[J]. Biomaterials,2006, 27(12):2558-2565.
    [289]Moroni L, Lee LP. Micropatterned hot-embossed polymeric surfaces influence cell proliferation and alignment[J]. Journal of Biomedical Materials Research Part A, 2009,88A(3):644-653.
    [290]Kirmizidis G, Birch MA. Microfabricated grooved substrates influence cell-cell communication and osteoblast differentiation in vitro[J]. Tissue Eng Part A,2009, 15(6):1427-1436.
    [291]Bischofs IB, Schwarz US. Cell organization in soft media due to active mechanosensing[J]. Proc Natl Acad Sci U S A,2003,100(16):9274-9279.
    [292]Yuan B, Li Y, Wang D, et al. A general approach for patterning multiple types of cells using holey PDMS membranes and microfluidic channels[J]. Adv Funct Mater, 2010,20(21):3715-3720.
    [293]Biggs MJP, Richards RG, Gadegaard N, Wilkinson CDW, Oreffo ROC, Dalby MJ. The use of nanoscale topography to modulate the dynamics of adhesion formation in primary osteoblasts and ERK/MAPK signalling in STRO-1+ enriched skeletal stem cells[J]. Biomaterials,2009,30(28):5094-5103.
    [294]Kafi MA, El-Said WA, Kim T-H, Choi J-W. Cell adhesion, spreading, and proliferation on surface functionalized with RGD nanopillar arrays[J]. Biomaterials, 2012,33(3):731-739.
    [295]Hsiong SX, Carampin P, Kong H-J, Lee K-Y, Mooney DJ. Differentiation stage alters matrix control of stem cells[J]. Journal of Biomedical Materials Research Part A, 2008,85A(1):145-156.
    [296]Lee KY, Alsberg E, Hsiong S, et al. Nanoscale adhesion ligand organization regulates osteoblast proliferation and differentiation[J]. Nano Letters,2004,4(8): 1501-1506.
    [297]Jaehrling S, Thelen K, Wolfram T, Pollerberg GE. Nanopatterns biofunctionalized with cell adhesion molecule DM-GRASP offered as cell substrate: spacing determines attachment and differentiation of neurons[J]. Nano Letters,2009, 9(12):4115-4121.
    [298]McMurray RJ, Gadegaard N, Tsimbouri PM, et al. Nanoscale surfaces for the long-term maintenance of mesenchymal stem cell phenotype and multipotency[J]. Nature Materials,2011,10(8):637-644.
    [299]Deeg JA, Louban I, Aydin D, Selhuber-Unkel C, Kessler H, Spatz JP. Impact of local versus global ligand density on cellular adhesion[J]. Nano Letters,2011,11(4): 1469-1476.
    [300]Park J, Bauer S, von der Mark K, Schmuki P. Nanosize and vitality:TiO2 nanotube diameter directs cell fate[J]. Nano Letters,2007,7(6):1686-1691.
    [301]Gorzolnik B, Mela P, Moeller M. Nano-structured micropatterns by combination of block copolymer self-assembly and UV photolithography [J]. Nanotechnology,2006,17(19):5027-5032.
    [302]Liu P, Sun JG, Huang JH, Peng R, Tang J, Ding JD. Fabrication of micropatterns of nanoarrays on a polymeric gel surface[J]. Nanoscale,2010,2(1):122-127.
    [303]Hung AM, Stupp SI. Simultaneous self-assembly, orientation, and patterning of peptide-amphiphile aanofibers by soft lithography[J]. Nano Letters,2007,7(5): 1165-1171.
    [304]Martin L, Arias FJ, Alonso M, Garcia-Arevalo C, Rodriguez-Cabello JC. Rapid micropatterning by temperature-triggered reversible gelation of a recombinant smart elastin-like tetrablock-copolymer[J]. Soft Matter,2010,6(6):1121-1124.
    [305]Liu P, Ding JD. Fabrication of micro-nano hybrid patterns on a solid surface[J]. Langmuir,2010,26(1):492-497.
    [1]Berrier AL, Yamada KM. Cell-matrix adhesion[J]. Journal of Cellular Physiology, 2007,213(3):565-573.
    [2]Geiger B, Spatz JP, Bershadsky AD. Environmental sensing through focal adhesions[J]. Nat Rev Mol Cell Biol,2009,10(1):21-33.
    [3]Huang JH, Ding JD. Nanostructured interfaces with RGD arrays to control cell-matrix interaction[J]. Soft Matter,2010,6:3395-3401.
    [4]Riveline D, Zamir E, Balaban NQ, et al. Focal contacts as mechanosensors: externally applied local mechanical force induces growth of focal contacts by an mDial-dependent and ROCK-independent mechanism[J]. J Cell Biol,2001,153(6): 1175-1185.
    [5]Zamir E, Katz M, Posen Y, et al. Dynamics and segregation of cell-matrix adhesions in cultured fibroblasts[J]. Nature Cell Biology,2000,2(4):191-196.
    [6]Loessner D, Stok KS, Lutolf MP, Hutmacher DW, Clements JA, Rizzi SC. Bioengineered 3D platform to explore cell-ECM interactions and drug resistance of epithelial ovarian cancer cells[J]. Biomaterials,2010,31(32):8494-8506.
    [7]Boraldi F, Croce MA, Quaglino D, et al. Cell-matrix interactions of in vitro human skin fibroblasts upon addition of hyaluronan[J]. Tissue & Cell,2003,35(1):37-45.
    [8]Erdmann T, Schwarz US. Bistability of cell-matrix adhesions resulting from nonlinear receptor-ligand dynamics[J]. Biophysical Journal,2006,91(6):L60-L62.
    [9]Lock JG, Wehrle-Haller B, Stromblad S. Cell-matrix adhesion complexes:master control machinery of cell migration[J]. Semin Cancer Biol,2008,18(1):65-76.
    [10]Cukierman E, Pankov R, Stevens DR, Yamada KM. Taking cell-matrix adhesions to the third dimension[J]. Science,2001,294(5547):1708-1712.
    [11]Curran JM, Chen R, Hunt JA. The guidance of human mesenchymal stem cell differentiation in vitro by controlled modifications to the cell substrate[J]. Biomaterials,2006,27(27):4783-4793.
    [12]Williams DF. On the mechanisms of biocompatibility[J]. Biomaterials,2008, 29(20):2941-2953.
    [13]Scharnagl N, Lee S, Hiebl B, Sisson A, Lendlein A. Design principles for polymers as substratum for adherent cells[J]. J Mater Chem,2010,20(40):8789-8802.
    [14]Martino S, D'Angelo F, Armentano I, Kenny JM, Orlacchio A. Stem cell-biomaterial interactions for regenerative medicine[J]. Biotechnology Advances, 2012,30(1):338-351.
    [15]Kraehenbuehl TP, Langer R, Ferreira LS. Three-dimensional biomaterials for the study of human pluripotent stem cells[J]. Nature Methods,2011,8(9):731-736.
    [16]den Braber ET, de Ruijter JE, Ginsel LA, von Recum AF, Jansen JA. Orientation of ECM protein deposition, fibroblast cytoskeleton, and attachment complex components on silicone microgrooved surfaces[J]. Journal of Biomedical Materials Research,1998,40(2):291-300.
    [17]Balaban NQ, Schwarz US, Riveline D, et al. Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates[J]. Nature Cell Biology,2001,3(5):466-472.
    [18]Falconnet D, Csucs G, Grandin HM, Textor M. Surface engineering approaches to micropattem surfaces for cell-based assays[J]. Biomaterials,2006,27(16): 3044-3063.
    [19]Charest JL, Garcia AJ, King WP. Myoblast alignment and differentiation on cell culture substrates with microscale topography and model chemistries[J]. Biomaterials, 2007,28(13):2202-2210.
    [20]Biggs MJP, Richards RG, Gadegaard N, Wilkinson CDW, Oreffo ROC, Dalby MJ. The use of nanoscale topography to modulate the dynamics of adhesion formation in primary osteoblasts and ERK/MAPK signalling in STRO-1+ enriched skeletal stem cells[J]. Biomaterials,2009,30(28):5094-5103.
    [21]Chien H-W, Chang TY, Tsai W-B. Spatial control of cellular adhesion using photo-crosslinked micropatterned polyelectrolyte multilayer films [J]. Biomaterials, 2009,30(12):2209-2218.
    [22]Prodanov L, te Riet J, Lamers E, et al. The interaction between nanoscale surface features and mechanical loading and its effect on osteoblast-like cells behavior[J]. Biomaterials,2010,31(30):7758-7765.
    [23]Curran JM, Stokes R, Irvine E, et al. Introducing dip pen nanolithography as a tool for controlling stem cell behaviour:unlocking the potential of the next generation of smart materials in regenerative medicine[J]. Lab Chip,2010,10(13):1662-1670.
    [24]McNamara LE, Burchmore R, Riehle MO, et al. The role of microtopography in cellular mechanotransduction[J]. Biomaterials,2012,33(10):2835-2847.
    [25]Ross AM, Jiang ZX, Bastmeyer M, Lahann J. Physical aspects of cell culture substrates:topography, roughness, and elasticity[J]. Small,2012,8(3):336-355.
    [26]Kingham EJ, Tsimbouri M, Gadegaard N, Dalby MJ, Oreffo ROC. Nanotopography induced osteogenic differentiation of human stem cells[J]. Bone, 2011,48:S108-S109.
    [27]Yim EKF, Darling EM, Kulangara K, Guilak F, Leong KW. Nanotopography-induced changes in focal adhesions, cytoskeletal organization, and mechanical properties of human mesenchymal stem cells[J]. Biomaterials,2010, 31(6):1299-1306.
    [28]Decuzzi P, Ferrari M. Modulating cellular adhesion through nanotopography [J]. Biomaterials,2010,31(1):173-179.
    [29]Lim JY. Topographic control of cell response to synthetic materials[J]. Tissue Engineering and Regenerative Medicine,2009,6(1-3):365-370.
    [30]Kulangara K, Leong KW. Substrate topography shapes cell function[J]. Soft Matter,2009,5(21):4072-4076.
    [31]Li WL, Jiang K, Ding S. Concise review:a chemical approach to control cell fate and function[J]. Stem Cells,2012,30(1):61-68.
    [32]Whitesides GM, Ostuni E, Takayama S, Jiang XY, Ingber DE. Soft lithography in biology and biochemistry[J]. Annu Rev Biomed Eng,2001,3:335-373.
    [33]Chen CS, Mrksich M, Huang S, Whitesides GM, Ingber DE. Geometric control of cell life and death[J]. Science,1997,276(5317):1425-1428.
    [34]McBeath R, Pirone DM, Nelson CM, Bhadriraju K, Chen CS. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment[J]. Dev Cell, 2004,6(4):483-495.
    [35]Thery M, Racine V, Pepin A, et al. The extracellular matrix guides the orientation of the cell division axis[J]. Nature Cell Biology,2005,7(10):947-953.
    [36]Dusseiller MR, Schlaepfer D, Koch M, Kroschewski R, Textor M. An inverted microcontact printing method on topographically structured polystyrene chips for arrayed micro-3-D culturing of single cells[J]. Biomaterials,2005,26(29):5917-5925.
    [37]Nagaoka M, Koshimizu U, Yuasa S, et al. E-cadherin-coated plates maintain pluripotent ES cells without colony formation[J]. Plos One,2006,1(1):1-7.
    [38]Lee MH, Adams CS, Boettiger D, et al. Adhesion of MC3T3-E1 cells to RGD peptides of different flanking residues:detachment strength and correlation with long-term cellular function[J]. Journal of Biomedical Materials Research Part A,2007, 81A(1):150-160.
    [39]Neuhuber B, Swanger SA, Howard L, Mackay A, Fischer I. Effects of plating density and culture time on bone marrow stromal cell characteristics[J]. Experimental Hematology,2008,36(9):1176-1185.
    [40]Ingber DE. Tensegrity-based mechanosensing from macro to micro[J]. Prog Biophys Mol Biol,2008,97(2-3):163-179.
    [41]Lai Y, Xie C, Zhang Z, Lu W, Ding JD. Design and synthesis of a potent peptide containing both specific and non-specific cell-adhesion motifs[J]. Biomaterials,2010, 31(18):4809-4817.
    [42]Tuleuova N, Lee JY, Lee J, Ramanculov E, Zern MA, Revzin A. Using growth factor arrays and micropatterned co-cultures to induce hepatic differentiation of embryonic stem cells[J]. Biomaterials,2010,31(35):9221-9231.
    [43]Tang J, Peng R, Ding JD. The regulation of stem cell differentiation by cell-cell contact on micropatterned material surfaces[J]. Biomaterials,2010,31(9):2470-2476.
    [44]Gallant ND, Michael KE, Garcia AJ. Cell adhesion strengthening:contributions of adhesive area, integrin binding, and focal adhesion assembly[J]. Molecular Biology of the Cell,2005,16(9):4329-4340.
    [45]Jean RP, Chen CS, Spector AA. Analysis of the deformation of the nucleus as a result of alterations of the cell adhesion area[J]. ASME Conference Proceedings,2003, 2003(37106):121-122.
    [46]Gao L, McBeath R, Chen CS. Stem cell shape regulates a chondrogenic versus myogenic fate through Racl and N-cadherin[J]. Stem Cells,2010,28(3):564-572.
    [47]Garcia AJ, Boettiger D. Integrin-fibronectin interactions at the cell-material interface:initial integrin binding and signaling[J]. Biomaterials,1999,20(23-24): 2427-2433.
    [48]Xiong JP, Stehle T, Zhang RG, et al. Crystal structure of the extracellular segment of integrin alpha V beta 3 in complex with an Arg-Gly-Asp ligand[J]. Science,2002, 296(5565):151-155.
    [49]Garcia AJ. Get a grip:integrins in cell-biomaterial interactions [J]. Biomaterials, 2005,26(36):7525-7529.
    [50]Ginsberg MH, Partridge A, Shattil SJ. Integrin regulation[J]. Current Opinion in Cell Biology,2005,17(5):509-516.
    [51]Siebers MC, ter Brugge PJ, Walboomers XF, Jansen JA. Integrins as linker proteins between osteoblasts and bone replacing materials. a critical review[J]. Biomaterials,2005,26(2):137-146.
    [52]Luo B-H, Springer TA. Integrin structures and conformational signaling[J]. Current Opinion in Cell Biology,2006,18(5):579-586.
    [53]Stewart PL, Nemerow GR. Cell integrins:commonly used receptors for diverse viral pathogens[J]. Trends in Microbiology,2007,15(11):500-507.
    [54]Alam N, Goel HL, Zarif MJ, et al. The integrin-growth factor receptor duet[J]. Journal of Cellular Physiology,2007,213(3):649-653.
    [55]Takada Y, Ye XJ, Simon S. The integrins[J]. Genome Biol,2007,8(5):215
    [56]Luo BH, Carman CV, Springer TA. Structural basis of integrin regulation and signaling[J]. Annu Rev Immunol,2007,25:619-647.
    [57]Arnold M, Cavalcanti-Adam EA, Glass R, et al. Activation of integrin function by nanopatterned adhesive interfaces[J]. ChemPhysChem,2004,5(3):383-388.
    [58]Arnold M, Hirschfeld-Warneken VC, Lohmuller T, et al. Induction of cell polarization and migration by a gradient of nanoscale variations in adhesive ligand spacing[J]. Nano Letters,2008,8(7):2063-2069.
    [59]Arnold M, Schwieder M, Blummel J, et al. Cell interactions with hierarchically structured nano-patterned adhesive surfaces[J]. Soft Matter,2009,5(1):72-77.
    [60]Selhuber-Unkel C, Erdmann T, Lopez-Garcia M, Kessler H, Schwarz US, Spatz JP. Cell adhesion strength is controlled by intermolecular spacing of adhesion receptors[J]. Biophysical Journal,2010,98(4):543-551.
    [61]Elangbam CS, Qualls CW, Dahlgren RR. Cell adhesion molecules-update[J]. Vet Pathol,1997,34(1):61-73.
    [62]Pierschbacher MD, Ruoslahti E. Variants of the cell recognition site of fibronectin that retain attachment-promoting activity [J]. Proceedings of the National Academy of Sciences of the United States of America-Biological Sciences,1984, 81(19):5985-5988.
    [63]Bhat RR, Chaney BN, Rowley J, Liebmann-Vinson A, Genzer J. Tailoring cell adhesion using surface-grafted polymer gradient assemblies[J]. Adv Mater,2005, 17(23):2802-2807.
    [64]Reinhart B, Lee LEJ. Integrin-like substrate adhesion in RTG-2 cells, a fibroblastic cell line derived from rainbow trout[J]. Cell and Tissue Research,2002, 307(2):165-172.
    [65]Kantlehner M, Schaffner P, Finsinger D, et al. Surface coating with cyclic RGD peptides stimulates osteoblast adhesion and proliferation as well as bone formation[J]. Chembiochem,2000,1(2):107-114.
    [66]DeLong SA, Gobin AS, West JL. Covalent immobilization of RGDS on hydrogel surfaces to direct cell alignment and migration[J]. J Control Release,2005,109(1-3): 139-148.
    [67]Comisar WA, Kazmers NH, Mooney DJ, Linderman JJ. Engineering RGD nanopatterned hydrogels to control preosteoblast behavior:a combined computational and experimental approach[J]. Biomaterials,2007,28(30):4409-4417.
    [68]Tugulu S, Silacci P, Stergiopulos N, Klok HA. RGD-functionalized polymer brushes as substrates for the integrin specific adhesion of human umbilical vein endothelial cells[J]. Biomaterials,2007,28(16):2536-2546.
    [69]Huang J, Grater SV, Corbellini F, et al. Impact of order and disorder in RGD nanopatterns on cell adhesion[J]. Nano Letters,2009,9(3):1111-1116.
    [70]Guarnieri D, De Capua A, Ventre M, et al. Covalent immobilized RGD gradient on PEG hydrogel scaffold influences cell migration parameters [J]. Acta Biomaterialia, 2010,6(7):2532-2539.
    [71]Zhang Z, Lai YX, Yu L, Ding JD. Effects of immobilizing sites of RGD peptides in amphiphilic block copolymers on efficacy of cell adhesion[J]. Biomaterials,2010, 31(31):7873-7882.
    [72]Alvarez-Barreto JF, Landy B, VanGordon S, Place L, DeAngelis PL, Sikavitsas Ⅵ. Enhanced osteoblastic differentiation of mesenchymal stem cells seeded in RGD-functionalized PLLA scaffolds and cultured in a flow perfusion bioreactor[J]. Journal of Tissue Engineering and Regenerative Medicine,2011,5(6):464-475.
    [73]Sun JG, Graeter SV, Yu L, Duan SF, Spatz JP, Ding JD. Technique of surface modification of a cell-adhesion-resistant hydrogel by a cell-adhesion-available inorganic microarray[J]. Biomacromolecules,2008,9(10):2569-2572.
    [74]Bogdanowich-Knipp SJ, Jois DSS, Siahaan TJ. The effect of conformation on the solution stability of linear vs. cyclic RGD peptides[J]. J Pept Res,1999,53(5): 523-529.
    [75]Perlin L, MacNeil S, Rimmer S. Production and performance of biomaterials containing RGD peptides[J]. Soft Matter,2008,4(12):2331-2349.
    [76]Moody NR, Adams DP, Volinsky AA, Kriese MD, Gerberich WW. Annealing effects on interfacial fracture of gold-chromium films in hybrid microcircuits[A]. In: Carter CB, Hall EL, Nutt SR, Briant CL. Interfacial Engineering for Optimized Properties Ii[C]. Warrendale:Materials Research Society; 2000:195-206.
    [77]Yu L, Zhang Z, Zhang H, Ding JD. Mixing a sol and a precipitate of block copolymers with different block ratios leads to an injectable hydrogel[J]. Biomacromolecules,2009,10(6):1547-1553.
    [78]Chang GT, Yu L, Yang ZG, Ding JD. A delicate ionizable-group effect on self-assembly and thermogelling of amphiphilic block copolymers in water[J]. Polymer,2009,50(25):6111-6120.
    [79]Kim JH, Seong JM, Moon HJ, et al. Effects of pharbitidis semen extract on osteoblast differentiation in MC3T3-E1 cells[J]. Tissue Engineering and Regenerative Medicine,2010,7(2):230-236.
    [80]Liu DD, Zhang JC, Yi CQ, Yang MS. The effects of gold nanoparticles on the proliferation, differentiation, and mineralization function of MC3T3-E1 cells in vitro[J]. Chin Sci Bull,2010,55(11):1013-1019.
    [81]Khatiwala CB, Peyton SR, Metzke M, Putnam AJ. The regulation of osteogenesis by ECM rigidity in MC3T3-E1 cells requires MAPK activation[J]. Journal of Cellular Physiology,2007,211(3):661-672.
    [82]Maeda T, Matsunuma A, Kurahashi I, Yanagawa T, Yoshida H, Horiuchi N. Induction of osteoblast differentiation indices by statins in MC3T3-E1 cells[J]. Journal of Cellular Biochemistry,2004,92(3):458-471.
    [83]Bruinink A, Wintermantel E. Grooves affect primary bone marrow but not osteoblastic MC3T3-E1 cell cultures[J]. Biomaterials,2001,22(18):2465-2473.
    [84]Wyatt LW, Chung CY, Carlsen B, et al. Bone morphogenetic protein-2 (BMP-2) and transforming growth factor-beta 1 (TGF-beta 1) alter connexin 43 phosphorylation in MC3T3-E1 cells[J]. BMC Cell Biol,2001,2:14.
    [85]Torii Y, Hitomi K, Tsukagoshi N. L-ascorbic-acid 2-phosphate promotes osteoblastic differentiation of MC3T3-E1 mediated by accumulation of type-I collagen[J]. J Nutr Sci Vitaminol,1994,40(3):229-238.
    [86]Miyahara T, Nemoto M, Tukamoto SI, et al. Induction of metallothionein and stimulation of calcification by dexamethasone in cultured clonal osteogenic cells, MC3T3-E1[J]. Toxicol Lett,1991,57(3):257-267.
    [87]Kodama H, Amagai Y, Sudo H, Ohno T, Iijima K. Culture conditions affecting the differentiation and calcification in Mc3t3-E1 osteogenic cell-line[J]. Bone,1985, 6(6):478-479.
    [88]Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells[J]. Science,1999,284(5411):143-147.
    [89]Li W-J, Tuli R, Huang X, Laquerriere P, Tuan RS. Multilineage differentiation of human mesenchymal stem cells in a three-dimensional nanofibrous scaffold[J]. Biomaterials,2005,26(25):5158-5166.
    [90]Park JS, Yang HN, Woo DG, Jeon SY, Park KH. The promotion of chondrogenesis, osteogenesis, and adipogenesis of human mesenchymal stem cells by multiple growth factors incorporated into nanosphere-coated microspheres[J]. Biomaterials,2011,32(1):28-38.
    [91]Valtieri M, Sorrentino A, The mesenchymal stromal cell contribution to homeostasis[J]. Journal of Cellular Physiology,2008,217(2):296-300.
    [92]翟中和,王喜忠,丁明孝.细胞生物学[M].北京:高等教育出版社,2007:469-488.
    [93]Jung YJ, Bauer G, Nolta JA. Concise review:induced pluripotent stem cell-derived mesenchymal stem cells:progress toward safe clinical products[J]. Stem Cells,2012,30(1):42-47.
    [94]Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors[J]. Cell,2006,126(4): 663-676.
    [1]Biggs MJP, Richards RG, McFarlane S, Wilkinson CDW, Oreffo ROC, Dalby MJ. Adhesion formation of primary human osteoblasts and the functional response of mesenchymal stem cells to 330 nm deep microgrooves[J]. J R Soc Interface,2008, 5(27):1231-1242.
    [2]Riveline D, Zamir E, Balaban NQ, et al. Focal contacts as mechanosensors: externally applied local mechanical force induces growth of focal contacts by an mDial-dependent and ROCK-independent mechanism[J]. J Cell Biol,2001,153(6): 1175-1185.
    [3]Xiong JP, Stehle T, Diefenbach B, et al. Crystal structure of the extracellular segment of integrin alpha V beta 3[J]. Science,2001,294(5541):339-345.
    [4]Xiong JP, Stehle T, Zhang RG, et al. Crystal structure of the extracellular segment of integrin alpha V beta 3 in complex with an Arg-Gly-Asp ligand[J]. Science,2002, 296(5565):151-155.
    [5]Arnold M, Cavalcanti-Adam EA, Glass R, et al. Activation of integrin function by nanopatterned adhesive interfaces[J]. ChemPhysChem,2004,5(3):383-388.
    [6]Lee KY, Alsberg E, Hsiong S, et al. Nanoscale adhesion ligand organization regulates osteoblast proliferation and differentiation[J]. Nano Letters,2004,4(8): 1501-1506.
    [7]Arnold M, Hirschfeld-Warneken VC, Lohmuller T, et al. Induction of cell polarization and migration by a gradient of nanoscale variations in adhesive ligand spacing[J]. Nano Letters,2008,8(7):2063-2069.
    [8]Huang J, Grater SV, Corbellini F, et al. Impact of order and disorder in RGD nanopatterns on cell adhesion[J]. Nano Letters,2009,9(3):1111-1116.
    [9]McNamara LE, Burchmore R, Riehle MO, et al. The role of microtopography in cellular mechanotransduction[J]. Biomaterials,2012,33(10):2835-2847.
    [10]Kingham EJ, Tsimbouri M, Gadegaard N, Dalby MJ, Oreffo ROC. Nanotopography induced osteogenic differentiation of human stem cells [J]. Bone, 2011,48:S108-S109.
    [11]Brydone AS, Dalby MJ, Berry CC, Meek RMD, McNamara LE. Grooved surface topography alters matrix-metalloproteinase production by human fibroblasts[J]. Biomedical Materials,2011,6(3):035005.
    [12]Wilkinson A, Hewitt RN, McNamara LE, McCloy D, Meek RMD, Dalby MJ. Biomimetic microtopography to enhance osteogenesis in vitro[J]. Acta Biomaterialia, 2011,7(7):2919-2925.
    [13]Biggs MJP, Richards RG, Gadegaard N, Wilkinson CDW, Oreffo ROC, Dalby MJ. The use of nanoscale topography to modulate the dynamics of adhesion formation in primary osteoblasts and ERK/MAPK signalling in STRO-1+ enriched skeletal stem cells[J]. Biomaterials,2009,30(28):5094-5103.
    [14]McMurray RJ, Gadegaard N, Tsimbouri PM, et al. Nanoscale surfaces for the long-term maintenance of mesenchymal stem cell phenotype and multipotency[J]. Nature Materials,2011,10(8):637-644.
    [15]Graeter SV, Huang JH, Perschmann N, et al. Mimicking cellular environments by nanostructured soft interfaces[J]. Nano Letters,2007,7(5):1413-1418.
    [16]Selhuber-Unkel C, Erdmann T, Lopez-Garcia M, Kessler H, Schwarz US, Spatz JP. Cell adhesion strength is controlled by intermolecular spacing of adhesion receptors[J]. Biophysical Journal,2010,98(4):543-551.
    [17]Cavalcanti-Adam EA, Volberg T, Micoulet A, Kessler H, Geiger B, Spatz JP. Cell spreading and focal adhesion dynamics are regulated by spacing of integrin ligands[J]. Biophysical Journal,2007,92(8):2964-2974.
    [18]Hsiong SX, Carampin P, Kong H-J, Lee K-Y, Mooney DJ. Differentiation stage alters matrix control of stem cells[J]. Journal of Biomedical Materials Research Part A, 2008,85A(1):145-156.
    [19]Jaehrling S, Thelen K, Wolfram T, Pollerberg GE. Nanopatterns biofunctionalized with cell adhesion molecule DM-GRASP offered as cell substrate: spacing determines attachment and differentiation of neurons[J]. Nano Letters,2009, 9(12):4115-4121.
    [20]Arnold M, Schwieder M, Blummel J, et al. Cell interactions with hierarchically structured nano-patterned adhesive surfaces[J]. Soft Matter,2009,5(1):72-77.
    [21]Gorzolnik B, Mela P, Moeller M. Nano-structured micropatterns by combination of block copolymer self-assembly and UV photolithography [J]. Nanotechnology, 2006,17(19):5027-5032.
    [22]Glass R, Arnold M, Cavalcanti-Adam EA, et al. Block copolymer micelle nanolithography on non-conductive substrates[J]. New Journal of Physics,2004,6: 1367-2630.
    [23]Smith KH, Tejeda-Montes E, Poch M, Mata A. Integrating top-down and self-assembly in the fabrication of peptide and protein-based biomedical materials[J]. Chemical Society Reviews,2011,40(9):4563-4577.
    [24]Aydin D, Schwieder M, Louban I, et al. Micro-nanostructured protein arrays:a tool for geometrically controlled ligand presentation[J]. Small,2009,5(9):1014-1018.
    [25]Liu P, Sun JG, Huang JH, Peng R, Tang J, Ding JD. Fabrication of micropatterns of nanoarrays on a polymeric gel surface[J]. Nanoscale,2010,2(1):122-127.
    [26]Hung AM, Stupp SI. Simultaneous self-assembly, orientation, and patterning of peptide-amphiphile aanofibers by soft lithography[J]. Nano Letters,2007,7(5): 1165-1171.
    [27]Martin L, Arias FJ, Alonso M, Garcia-Arevalo C, Rodriguez-Cabello JC. Rapid micropatterning by temperature-triggered reversible gelation of a recombinant smart elastin-like tetrablock-copolymer[J]. Soft Matter,2010,6(6):1121-1124.
    [28]Liu P, Ding JD. Fabrication of micro-nano hybrid patterns on a solid surface[J]. Langmuir,2010,26(1):492-497.
    [29]Hwang WS, Truong PL, Sim SJ. Size-dependent plasmonic responses of single gold nanoparticles for analysis of biorecognition[J]. Analytical Biochemistry,2012, 421(1):213-218.
    [30]Ma HL, Gao F, Liang WZ. Plasmon resonance of isolated gold hollow nanoparticles and nanoparticle pairs:insights from electronic structure calculations[J]. Journal of Physical Chemistry C,2012,116(2):1755-1763.
    [31]Brown KR, Natan MJ. Hydroxylamine seeding of colloidal Au nanoparticles in solution and on surfaces[J]. Langmuir,1998,14(4):726-728.
    [32]Brown KR, Walter DG, Natan MJ. Seeding of colloidal Au nanoparticle solutions. 2. improved control of particle size and shape[J]. Chemistry of Materials,1999,12(2): 306-313.
    [33]Brown KR, Lyon LA, Fox AP, Reiss BD, Natan MJ. Hydroxylamine seeding of colloidal Au nanoparticles.3. controlled formation of conductive Au films[J]. Chemistry of Materials,1999,12(2):314-323.
    [34]Lohmueller T, Bock E, Spatz JP. Synthesis of quasi-hexagonal ordered arrays of metallic nanoparticles with tuneable particle size[J]. Adv Mater,2008,20(12): 2297-2302.
    [35]Liou JY, Sun YS. Monolayers of diblock copolymer micelles by spin-coating from o-xylene on SiOx/Si studied in real and reciprocal space[J]. Macromolecules, 2012,45(4):1963-1971.
    [36]黄静欢.纳米图案化仿细胞外基质表面的制备及细胞黏附行为的研究[D].上海:复旦大学,2010:46-48.
    [37]黄静欢.纳米图案化仿细胞外基质表面的制备及细胞黏附行为的研究[D].上海:复旦大学,2010:179.
    [38]Lai Y, Xie C, Zhang Z, Lu W, Ding JD. Design and synthesis of a potent peptide containing both specific and non-specific cell-adhesion motifs[J]. Biomaterials,2010, 31(18):4809-4817.
    [39]Abdelghani-Jacquin C, Abdelghani A, Chmel G, Kantlehner M, Sackmann E. Decorated surfaces by biofunctionalized gold beads:application to cell adhesion studies[J]. Eur Biophys J Biophys Lett,2002,31(2):102-110.
    [40]Chen CS, Mrksich M, Huang S, Whitesides GM, Ingber DE. Geometric control of cell life and death[J]. Science,1997,276(5317):1425-1428.
    [41]Beganskiene A, Raudonis R, Jokhadar SZ, Batista U, Kareiva A. Modified sol-gel coatings for biotechnological applications [A]. In Functional Materials and Nanotechnologies:Fm&Nt-2007[C].2007.
    [42]Tang J, Peng R, Ding JD. The regulation of stem cell differentiation by cell-cell contact on micropatterned material surfaces[J]. Biomaterials,2010,31(9):2470-2476.
    [43]Yan C, Sun J, Ding J. Critical areas of cell adhesion on micropatterned surfaces[J]. Biomaterials,2011,32(16):3931-3938.
    [44]黄静欢.纳米图案化仿细胞外基质表面的制备及细胞黏附行为的研究[D].上海:复旦大学,2010:62-63.
    [45]刘鹏.材料表面微米-纳米杂合图案的制备技术研究[D].上海:复旦大学,2009:52-56.
    [46]刘鹏.材料表面微米-纳米杂合图案的制备技术研究[D].上海:复旦大学,2009:55.
    [47]刘鹏.材料表面微米-纳米杂合图案的制备技术研究[D].上海:复旦大学,2009:141-148.
    [1]Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells[J]. Science,1999,284(5411):143-147.
    [2]Li W-J, Tuli R, Huang X, Laquerriere P, Tuan RS. Multilineage differentiation of human mesenchymal stem cells in a three-dimensional nanofibrous scaffold[J]. Biomaterials,2005,26(25):5158-5166.
    [3]Park JS, Yang HN, Woo DG, Jeon SY, Park KH. The promotion of chondrogenesis, osteogenesis, and adipogenesis of human mesenchymal stem cells by multiple growth factors incorporated into nanosphere-coated microspheres[J]. Biomaterials,2011, 32(1):28-38.
    [4]Valtieri M, Sorrentino A. The mesenchymal stromal cell contribution to homeostasis[J]. Journal of Cellular Physiology,2008,217(2):296-300.
    [5]Meirelles LDS, Chagastelles PC, Nardi NB. Mesenchymal stem cells reside in virtually all post-natal organs and tissues[J]. Journal of Cell Science,2006,119(11): 2204-2213.
    [6]Anker PSI, Noort WA, Scherjon SA, et al. Mesenchymal stem cells in human second-trimester bone marrow, liver, lung, and spleen exhibit a similar immunophenotype but a heterogeneous multilineage differentiation potential [J]. Haematologica,2003,88(8):845-852.
    [7]Salingcarnboriboon R, Yoshitake H, Tsuji K, et al. Establishment of tendon-derived cell lines exhibiting pluripotent mesenchymal stem cell-like property[J]. Experimental Cell Research,2003,287(2):289-300.
    [8]Hoshiba T, Kawazoe N, Chen G. The balance of osteogenic and adipogenic differentiation in human mesenchymal stem cells by matrices that mimic stepwise tissue development[J]. Biomaterials,2012,33(7):2025-2031.
    [9]Liu HY, Wu ATH, Tsai CY, et al. The balance between adipogenesis and osteogenesis in bone regeneration by platelet-rich plasma for age-related osteoporosis[J]. Biomaterials,2011,32(28):6773-6780.
    [10]Gao L, McBeath R, Chen CS. Stem cell shape regulates a chondrogenic versus myogenic fate through Racl and N-cadherin[J]. Stem Cells,2010,28(3):564-572.
    [11]McBeath R, Pirone DM, Nelson CM, Bhadriraju K, Chen CS. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment[J]. Dev Cell, 2004,6(4):483-495.
    [12]Tang J, Peng R, Ding JD. The regulation of stem cell differentiation by cell-cell contact on micropatterned material surfaces[J]. Biomaterials,2010,31(9):2470-2476.
    [13]Kim E-K, Lim S, Park J-M, et al. Human mesenchymal stem cell differentiation to the osteogenic or adipogenic lineage is regulated by AMP-activated protein kinase[J]. Journal of Cellular Physiology,2012,227(4):1680-1687.
    [14]Ruiz SA, Chen CS. Emergence of patterned stem cell differentiation within multicellular structures [J]. Stem Cells,2008,26(11):2921-2927.
    [15]Kilian KA, Bugarija B, Lahn BT, Mrksich M. Geometric cues for directing the differentiation of mesenchymal stem cells[J]. Proc Natl Acad Sci U S A,2010, 107(11):4872-4877.
    [16]Peng R, Yao X, Ding JD. Effect of cell anisotropy on differentiation of stem cells on micropatterned surfaces through the controlled single cell adhesion[J]. Biomaterials,2011,32(32):8048-8057.
    [17]Jaiswal N, Haynesworth SE, Caplan AI, Bruder SP. Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro[J]. Journal of Cellular Biochemistry,1997,64(2):295-312.
    [18]Song IH, Caplan AI, Dennis JE. Dexamethasone inhibition of confluence-induced apoptosis in human mesenchymal stem cells[J]. Journal of Orthopaedic Research,2009,27(2):216-221.
    [19]Mikami Y, Lee M, Irie S, Honda MJ. Dexamethasone modulates osteogenesis and adipogenesis with regulation of osterix expression in rat calvaria-derived cells[J]. Journal of Cellular Physiology,2011,226(3):739-748.
    [20]张维成.不同浓度地塞米松对骨髓基质细胞成脂、成骨分化的影响[J].中国临床康复,2006,10(29):98-100.
    [21]庞金辉,黄煌渊,张权,纪斌,曾成福.不同浓度地塞米松对入骨髓间充质干细胞生物学特性的影响[J].创伤外科杂志,2009,11(3):248-252.
    [22]魏宽海,裴国献,郑磊,王前,金丹,胡罢生.地塞米松对骨髓基质细胞生物学特性的影响[J].中国修复重建外科杂志,2001,15(4):232-234.
    [23]Yin L, Li Y, Wang Y. Dexamethasone-induced adipogenesis in primary marrow stromal cell cultures:mechanism of steroid-induced osteonecrosis[J]. Chin Med J, 2006,119(7):581-588.
    [24]Coelho MJ, Fernandes MH. Human bone cell cultures in biocompatibility testing. Part Ⅱ:effect of ascorbic acid, beta-glycerophosphate and dexamethasone on osteoblastic differentiation[J]. Biomaterials,2000,21(11):1095-1102.
    [25]张维成,陈志信,王和平,刘林.大鼠骨髓基质细胞体外成脂、成骨分化的研究[J].中国骨质疏松杂志,2005,11(1):45-48.
    [26]Tang QQ, Jiang MS, Lane MD. Repressive effect of Sp1 on the C/EBP alpha gene promoter:role in adipocyte differentiation[J]. Molecular and Cellular Biology, 1999,19(7):4855-4865.
    [27]Rosen ED, Hsu CH, Wang XZ, et al. C/EBP alpha induces adipogenesis through PPAR gamma:a unified pathway[J]. Genes & Development,2002,16(1):22-26.
    [28]Cui Q, Wang GJ, Balian G. Steroid-induced adipogenesis in a pluripotential cell line from bone marrow[J]. Journal of Bone and Joint Surgery-American Volume,1997, 79A(7):1054-1063.
    [29]Schultheiss J, Seebach C, Henrich D, Wilhelm K, Barker JH, Frank J. Mesenchymal stem cell (MSC) and endothelial progenitor cell (EPC) growth and adhesion in six different bone graft substitutes[J]. European Journal of Trauma and Emergency Surgery,2011,37(6):635-644.
    [30]Neuhuber B, Swanger SA, Howard L, Mackay A, Fischer 1. Effects of plating density and culture time on bone marrow stromal cell characteristics[J]. Experimental Hematology,2008,36(9):1176-1185.
    [31]Biggs MJP, Dalby MJ. Focal adhesions in osteoneogenesis[J]. Proc Inst Mech Eng Part H-J Eng Med,2010,224(H12):1441-1453.
    [32]裴雪涛.干细胞生物学[M].北京:科学出版社,2003:3-20.
    [33]王埸,吴文,李正,王小娜.骨髓问充质干细胞向成骨细胞的定向诱导分化[J].广东医学,2011,32(3):401—403.
    [34]Urena P, Hruby M, Ferreira A, Ang KS, deVernejoul MC. Plasma total versus bone alkaline phosphatase as markers of bone turnover in hemodialysis patients[J]. Journal of the American Society of Nephrology,1996,7(3):506-512.
    [35]Woitge HW, Seibel MJ, Ziegler R. Comparison of total and bone-specific alkaline phosphatase in patients with nonskeletal disorders or metabolic bone diseases[J]. Clinical Chemistry,1996,42(11):1796-1804.
    [36]Gregoire FM, Smas CM, Sul HS. Understanding adipocyte differentiation[J]. Physiological Reviews,1998,78(3):783-809.
    [37]赵琳,杨志明,邓力,解慧琪,李秀群.人骨髓基质干细胞体外诱导成脂过程形态学变化的观察[J].中国康复理论与实践,2004,10(1):15-16.
    [38]王鑫,刘秀华.前脂肪细胞的增殖、分化及其调控[J].淮海医药,2006,24(4):350-352.
    [39]Pang T, Cui L. Regulation of bone marrow stromal cells adipogenic differentiation and its efects on esteoporosis[J]. Chin J Osteoporos,2007,13(9): 675-680.
    [40]Huang J, Grater SV, Corbellini F, et al. Impact of order and disorder in RGD nanopatterns on cell adhesion[J]. Nano Letters,2009,9(3):1111-1116.
    [41]Arnold M, Cavalcanti-Adam EA, Glass R, et al. Activation of integrin function by nanopatterned adhesive interfaces[J]. ChemPhysChem,2004,5(3):383-388.
    [42]Hsiong SX, Carampin P, Kong H-J, Lee K-Y, Mooney DJ. Differentiation stage alters matrix control of stem cells [J]. Journal of Biomedical Materials Research Part A, 2008,85A(1):145-156.
    [43]Selhuber-Unkel C, Erdmann T, Lopez-Garcia M, Kessler H, Schwarz US, Spatz JP. Cell adhesion strength is controlled by intennolecular spacing of adhesion receptors[J]. Biophysical Journal,2010,98(4):543-551.
    [44]Cavalcanti-Adam EA, Volberg T, Micoulet A, Kessler H, Geiger B, Spatz JP. Cell spreading and focal adhesion dynamics are regulated by spacing of integrin ligands[J]. Biophysical Journal,2007,92(8):2964-2974.
    [45]Lee KY, Alsberg E, Hsiong S, et al. Nanoscale adhesion ligand organization regulates osteoblast proliferation and differentiation[J]. Nano Letters,2004,4(8): 1501-1506.
    [46]Smith E, Redman RA, Logg CR, Coetzee GA, Kasahara N, Frenkel B. Glucocorticoids inhibit developmental stage-specific osteoblast cell cycle dissociation of cyclin a-cyclin-dependent kinase 2 from E2F4-p130 complexes[J]. Journal of Biological Chemistry,2000,275(26):19992-20001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700