用户名: 密码: 验证码:
白芷细胞外钙调素结合蛋白(ECBP21)cDNA克隆及鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,对植物Ca~(2+)信号系统各组分(Ca~(2+)、CaM和CaMBPs等)的研究不断取得更为深入的成果。在植物细胞内鉴定了许多CaM调节或结合的靶酶或靶蛋白(CaBMPs),并证明它们在Ca~(2+)-CaM信号转导途径中发挥重要作用,参与了许多生命活动过程。我室多年的研究证实植物细胞外也普遍存在CaM,并且可能作为一种多功能肽类信使在植物生长发育过程中发挥重要作用。这已成为植物钙调素研究的最新进展之一。
     我室在对植物细胞外CaM的研究过程中,发现细胞外还可能存在CaMBPs,并首次从白芷悬浮培养细胞外纯化了一种依赖Ca~(2+)的、分子量约为21kD的细胞外CaMBP(Tang等,1996)(定名为:ECBP21)。生理实验初步表明ECBP21影响白芷悬浮培养细胞的增殖(毛国红等,1999)。这些生物化学和生理学实验,仅为细胞外CaMBPs的存在及可能的功能提供了初步证据。为了进一步利用分子生物学手段证实细胞外ECBP21真实存在,并进一步研究其生物学功能,本实验从克隆基因入手进行了以下工作:
     1.ECBP21全长cDNA克隆:将纯化的ECBP21蛋白经SDS—PAGE分离后电转移到PVDF膜上,氨基酸测序获得N-末端20个氨基酸序列;根据N-末端8个氨基酸序列合成兼并性引物,通过RT-PCR和5’-RACE方法,获得其cDNA序列。Northern blot分析表明克隆的cDNA序列为全长cDNA。ECBP21 cDNA全长947bp,编码216个氨基酸,序列分析显示其N端1-25氨基酸为信号肽,26-216氨基酸为成熟蛋白肽段,并且不具有跨膜结构域。将此cDNA成熟蛋白编码区核苷酸片断构建到pET-28b(+)表达载体,在大肠杆菌表达系统中诱导了该蛋白的表达,经CaM-gel overlay检测证实表达蛋白具有Ca~(2+)依赖的CaM结合特性,从而进一步证实了ECBP21为一种Ca~(2+)依赖的CaMBP。通过缺失表达分析实验证实CaMBD结构域位于ECBP21的羧基端。Southern blot检测表明白芷基因组中可能存在两个ECBP21基因拷贝。从而首次克隆并鉴定了一个细胞外CaMBP的全长cDNA。
     2.ECBP21亚细胞定位:以重组ECBP21蛋白为抗原制备了特异性抗体。利用特异性抗体通过免疫金标定位研究表明ECBP21主要分布于细胞壁。进一步利用GFP荧光标记,通过瞬时表达方法研究显示转ECBP21-GFP
    
    毛国红:白芷细胞外钙调素结合蛋白(ECBPZI)cDNA克隆及鉴定
    融合基因细胞的细胞壁上有较强绿色荧光,而转缺失信号肤的
    乙去乙岁苍介分户融合基因及贷尹基因的细胞中,细胞壁上无绿色荧光,表
    明ECBP21是一种主动分泌到细胞外的分泌蛋白。由此进一步证实ECBP21
    确为一种质外体多肤。本实验为细胞外CaMBPS的存在提供了直接证据。
     3.ECBP21表达分析:Northern blot分析表明:在白芷悬浮培养细
    胞生长周期中,ECBP21和CaM都为组成型表达,0一12天ECBP21表达量
    逐渐增加,第12天达到最高,随后12一21天,ECBP21表达量稍有下降,
    维持在一个比较稳定状态;而O一6天时,CaM表达量逐渐上升,第6一9
    天达到最大表达量,随后,9一21天,CaM表达量有所下降。表明ECBP21
    可能参与白芷悬浮培养细胞生长周期调控。热激、渗透、盐胁迫及JA处
    理时,ECBPZI表达量下降,而6一BA、ABA及GA3处理时,不影响ECBPZI
    的表达。推测ECBP21还可能与逆境胁迫相关。
     4.初步开展了转基因研究:为了进一步确定ECBP21在植物生长发
    育过程中的作用,构建了ECBP21植物表达二元载体,通过真空渗透法转
    化了拟南芥并获得了转基因植株。表型观察仍在进行之中。
     总之,通过上述研究我们首次克隆及鉴定了一种细胞外CaMBP
     (EC即21) CDNA,并首次提供了细胞外存在CaMBPS的直接证据。本实验
    结果也为利用分子生物学方法研究ECBP21的生物学功能奠定了基础,并
    将有助于阐明胞外 CaM的作用机制及丰富植物质外体多肤的研究。
In recent years, Ca~(2+) signal system (Ca~(2+) , CaM, and CaMBPs) has been thoroughly researched. Many intracellular CaMBPs have been detected and studied. In our laboratory, a series of experiments has provided evidence that the presence of CaM in the apoplast area is universal, and extracellular calmodulin plays an important role in the plant growth and development as a polypeptide signal. This has become one of the latest progresses in plant CaM research work.
    In the process of study for the extracellular CaM, the research in our lab indicates that CaMBPs also possibly exist in cell wall area. For the first time, an extracellular Ca~(2+)-dependent CaMBP (named: ECBP21) was purified from 0.1mol/L CaCl_(2) extracts of Angelica dahurica suspension-cultured cells (Tang et al. 1996). Furthermore, our preliminary evidence shows that the ECBP21 protein influences on proliferation of this cultured cell (Mao et al. 1999). By using methods of biochemistry and physiology, the above experiments only provided preliminary evidence for the existence and possible functions of the extracellular CaMBPs. In order to prove the real existence of the extracellular ECBP21 and its functions by means of molecular biology, we first cloned and identified the full-length cDNA for an extracellular CaMBP (ECBP21).
    The purified protein was electrobloted onto PVDF membrane and the amino acid sequences from 1 to 20 were determined. Using degenerate oligonucleotides of the sequence, a full-length cDNA coding for ECBP21 was isolated by a combination of RT-PCR and 5 "RACE cloning. The cDNA contains 947 nucleotides that codes for a precursor protein of 216 amino acids. Sequence analysis shows that the N-terminal 1-25 amino acid sequence is a predicted signal peptide and other 26-216 amino acid sequence is a mature peptide which has no transmembrane domain. The fragment of encoding the mature protein was cloned into pET-28b(+) and transformed into E.coli BL21(DE3). A protein with relative molecular mass 21kD was expressed in E.coli. Using a biotinylated-CaM gel overlay technique, the expression protein has the ability to bind CaM in the presence of Ca~(2+). These
    
    
    
    results further defined ECBP21is a Ca~(2+)-dependent CaM-binding protein. Following researches verified that the CaM-binding domain exists in the C-terminal of ECBP21. Southern blot analysis shows that there are two ECBP21 gene copies in genome.
    Second, The ECBP21 was localized in the cell wall area by immuno-gold electron microscopy and by using GFP as a reporter. The results indicted that ECBP21 is a kind of secretive protein and ECBP21 is an apoplast polypeptide. These experiments provided the first and direct evidence for the existence of the extracellular CaMBPs.
    Third, we examined the expression of ECBP21 dynamics during the incubation of Angelica suspension-cultured cells and stress treatments through Northern blot analysis. During the incubation of Angelica suspension-cultured cells, the expression of ECBP21 gene increased from 0 to 12th day, and it reached a peak on the twelfth day. While the expression of CaM gene increased from 0 to 9th day, and it reached a peak during the 6th-9th day. These results indicated that ECBP21 may involve in the regulation of cell growth. The stress treatments (such as: heat shock, osmotic and salt stresses) and JA (100uM) treatment repressed the expression of ECBP21 gene. They indicated that ECBP21 may have some relative with the response to stress treatments.
    Further more, we constructed the binary vector containing ECBP21-GFP chimeric gene and got transgenic plants by using the Agrobacterium vacuum infiltration method. The phenotype observation is still in progress.
    Thought the above studies, we first cloned and identified an extracellular CaMBP (ECBP21) cDNA, and provided direct evidence for the existence of the extracellular CaMBPs. This work laid a foundation for elucidating the functions of ECBP21 by means of molecular biology. Further studies about ECBP21 may be benefit to elucidating the mechanism of apoplast calmodulin o
引文
1. 顾红雅,瞿礼嘉,明小天,潘乃穟,陈章良.(1995)《植物基因与分子操作》.北京大学出版社,.78—79
    2. 郭毅,马力耕,张璐,孙大业.(2000) 异三聚体G蛋白在细胞外钙调素调控rbcS基因表达中的作用.科学通报,45:2195—2200
    3. 康彬.(1995)植物愈伤组织发生过程中激素诱导的钙调素结合蛋白的变化.河北师范大学硕士毕业论文
    4. 李家旭,白娟,王学臣,孙大业.(1994)生物素标记钙调素用于植物钙调素结合蛋白的检测.植物生理学报,20:157—162
    5. 梁述平,汪杏芬,L.J.Feldman,吕应堂.(2001)钙调素依赖型蛋白激酶在植物开花调控种的作用.中国科学(C辑),31:306—311
    6. 凌启阆,李翠凤,尚克进,任丽英,杜立林,葛常辉.(1993)CaM BP-10对生长素诱导的小麦芽鞘伸长及介质酸化的抑制作用.科学通报,38:2005—2008
    7. 刘德龙,孙大业,杨燕生.(1997)花椰菜胞外CaM的性质及促进植物生长作用.中山大学学报,36(3):126—127
    8. 刘宏涛(2001)钙—钙调素信号途径与小麦热激基因转录.河北师范大学硕士研究生学位论文.
    9. 刘曼.(2003)利用GFP标记对植物细胞外钙调素定位的研究.河北师范大学硕士学位论文.
    10.马力耕,崔素娟,徐小冬,孙大业.(1997)G蛋白在细胞外钙调素启动花粉萌发和花粉管伸长中的作用.自然科学进展,7:751—754
    11.马力耕,孙大业.(2000)植物细胞多肽第一信使.科学通报,45:1920—1927
    12.马力耕,徐小冬,崔素娟,孙大业.(1998) 肌醇磷脂信号途径参与胞外钙调素启动花粉萌发和花粉管伸长.植物生理学报,24:196—200
    13.马力耕,周君莉,张素巧,刘强,孙大业.(2000)细胞外钙调素对转基因烟草悬浮细胞rbcS-GUS基因表达的促进作用.科学通报,45:2075—2080
    14.毛国红,汤文强,孙大业.(1999)白芷细胞外21kD钙调素结合蛋白的生理功能初探.植物生理学报,25:165—170
    15.尚克进,凌启阆,李翠凤,曹又佳.(1991)一种新的植物钙调素结合蛋白.生物化学与生物物理学报,23:416—422
    
    
    16.尚忠林,马力耕,王学臣,孙大业.(2001)细胞外钙调素对百合花粉细胞内钙离子浓度的影响.植物学报,43:12—17
    17.宋春风,李向印,白娟,孙大业.(1997)白芷细胞外钙调素结合蛋白的胶体金电镜定位研究.实验生物学报,30:313—321
    18.孙大业,马力耕.(2001 b)细胞外钙调素—一种植物中的多肽信使? 中国科学,31:289—297
    19.孙大业,唐军,李红兵.(1995)细胞外钙调素的研究及意义.科学通报,40:1453—1459
    20.孙大业,郭艳林,马力耕,崔素娟.(2001) 《细胞信号转导》科学出版社
    21.孙大业.(2000)质外体—决定细胞命运的重要信号源.植物学报,42:441—445
    22.孙大业.(1999)兼有胞内、胞外功能的信号分子的普遍性及生物学意义.科学通报,44:1576—1581
    23.唐军.(1994)植物细胞外钙调素结合蛋白的检测及白芷悬浮培养细胞外21kD钙调素结合蛋白的纯化.河北师范大学硕士学位论文.
    24.王关林,方宏筠.(1998) 《植物基因工程原理与技术》.科学出版社.
    25.王昕,崔素娟,马力耕,孙大业.(2000)PLC-IP_3-IP_3R信使系统参与花粉萌发和花粉管伸长的显微注射研究.植物学报,42:697—702
    26.叶正华,孙大业,郭季芳.(1988) 小麦细胞壁钙调素研究初报.科学通报,33:624—626
    27.叶正华,孙大业,郭季芳.(1989)小麦黄化胚芽鞘的细胞壁钙调素和钙调素结合蛋白.植物生理学报,15:223—229
    28.张来群,李芳,孙大业.(2001)细胞外钙调素对烟草悬浮培养细胞蛋白质磷酸化作用的影响.植物生理学报,27(3):201—206
    29.张素巧,马力耕,孙大业.(2000)细胞外钙调素诱导番茄悬浮细胞rbcS-3A基因表达.植物学报,42:653—655
    30.赵保华,孙大业,赵连元.(1993) 外源钙调素对珍珠栗原体质体持续分裂的影响.科学通报.38:1344—1350
    31.赵鸿娟,朱玉贤.(1996)外源钙调蛋白对植物细胞分裂增殖作用的研究.生物化学杂志,12:413—417
    32.周华林,马力耕,刘曼,毛国红,孙大业.(2001)转SCaM-GFP融合基因烟草中钙调素分泌特性的研究.植物学报,43:1300—1302
    33. Abdel-Ghany S E, Reddy A S N. (2000) A novel c alium/calmodulin-regulated kinesin-like protein is highly conserved between monocots and dicots. DNA and
    
    Cell Biology, 19:567-578
    34. Andersson M, Cariquist M, Maletti M, Marie J C. (1993) Simultaneous solubilization of high-affinity receptors for VIP and glucagons and of a low-afgfinity protein for V IP,shown to b e identical to c almodulin. FEBS L ett. , 318:35-40
    35. Arazi T, Baum G, Snedden W A, Shelp B J, Fromm H. (1995) Molecular and biochemical analysis of calmodulin interactions with calmodulin-binding domain of plant glutamate decarboxylase. Plant Physiol. 108:551-561
    36. Arazi T, Kaplan B, Fromm H. (2000) A high-affinity calmodulin-binding site in a tobacco plasma-membrane channel protein coincides with a characteristic element of cyclic nucleotide-binding domains. Plant molecular Biology , 42:591-601
    37. Arazi T, Sunkar R, Kaplan B , Fromm H . (1999) A tobacco plasma membrane calmodulin-binding transporter confers Ni2+ tolerance and Pb2+ hypersensitivity in transgenic plants. Plant Journal. 20(2) :171-182
    38. Aurisano N, Bertani A.Reggiani R. (1995) Involvement of calcium and calmodulin in protein and amino acid metabolism in rice roots under anoxia. Plant Cell Physiology, 36:1525-1529
    39. Babu Y S, Bugg C E, Cook W J. (1988) Structure of calmodulin refined at 2. 2A resolution. J. Mol. Biol., 204:191-204.
    40. Baum G, Chen Y, Arazi T, Takatsuji H, Fromm H. (1993) A plant glutamate decarboxylase containing a calmodulin binding domain. Journal of Biological Chemistry, 268:19610-19617
    41. Baum G, Lev-Yadun S, Fridmann Y, Arazi T, Katsnelson H, Zik M, Fromm H. (1996) Calmodulin binding to glutamate decarboxylase is required for regulation of gultamate and GABA metabolism and normal development in plants. EMBO Journal. 15:2988-2996
    42. Benghezal M., Geoffrey O., Jones D. A. (2000) The C-Terminal dilysine motif confers endoplasmic reticulum localization to type I membrane protein in plants. Plant Cell, 12: 1179-1201
    43. Bent A F. (2000) Arabidopsis in planta transformation. Uses, mechanisms, and prospects for transformation of other species. Plant physiology. 124:1540-1547
    44. Billingsley M L, Polli J W, Pennypacker K R, Kincaid R L. (1990)
    
    Identification of calomdulin-binding proteins. Methods Enzymol. 184:451-467
    45. Biro R L, Sun D Y, Serlin B S, Terry M E, Datta N, Sopory S K, Roux S J. Characterization of oat calmodulin and radioimmunoassay of its subcellular distribution. Plant Physiology, 75:382-386
    46. Bisseling T. (1999) The role of plant peptides in intercellular signalling. Current Opinion in Plant Biology, 2: 365-368
    47. Bouche N, Scharlat A, Snedden W, Bouchez D, Fromm H. (2002) A novel family of calmodulin-binding transcription activators in multicellular organisms. Journal of Biological Chemistry. 277:21851-21861
    48. Bowser J, Reddy A S N. (1997) Localization of a kinesin-like calmodulin-binding protein in dividing cells of Arabidopsis and tobacco. Plant Journal, 12:1429-1437
    49. Boynton A L, Whitfield J F, MacManus J P. (1980) Calmodulin stimulates DNA synthesis by rat liver cells. BBRC, 95(2) : 745-749
    50. Braam J, Davis R W. (1990) Rain-, wind-, and touch-induced expression of calmodulin and calmodulin-related genes in Arabidopsis. Cell, 60:357-364
    51. Braam J. (1992) Regulated expression of the calmodulin-related TCH genes in cultured Arabidopsis cells: induction by calcium and heat shock. Proc. Nad. Acad. Sci. USA, 89:3213-3216
    52. Brawley S H, Roberts D M. (1989) Calmodulin-binding proteins are developmentally regulated i n g ametes a nd e mbryos o f fucoid algae. Dev B iol., 131(2) :313-20.
    53. Brownlee C. (2002) Role of the extracellular matrix in cell-cell signalling: paracrine paradigms. Current Opinion in Plant Biology, 5:396-401
    54. Charbonneau H, Cormier M J. (1979) Purfication of plant calmodulin by fluphenazine-Sepharose affinity chromatography. Biochemical and Biophysical Research Communication, 90:1039-1047
    55. Chen Y, Baum, Fromm H. (1994) The 58-Kilodalton calmodulin-binding glutamate decarboxylase is a ubiquitous protein in petunia organs and its expression is developmentally regulated. Plant Physiol, 106:1381-1387
    56. Cho M J, Vaghy P L, Kondo R, Lee S H, Davis J P, Rehl R, Heo W D, Johnson D. (1998) Reciprocal regulation of mammalian nitric oxide synthase and calcineunn by plant calmodulin isoforms. Biochemistry, 37: 15593-15597
    
    
    57. Choi J.Y., Lee S.H., Park C.Y., Heo W D, Kim J C, Kim M C, Chung W S, Moon B C, Cheong Y H, Kim C Y, Yoo J H, Koo J C, Ok H M, Chi S, Ryu S, Kee S Y, Lim C O, Cho M J. (2002) Identification of calmodulin isoform-specific binding peptides from a phage-displayed random 22-mer peptide library. Journal of Biological Chemistry. 277:21630-21638
    58. Chung W S, Lee S H, Kim J C, Heo W D, Kim M C, Park C Y, Park H C, Lim C O, Kim W B, Harper J F, Cho M J. (2000) Identification of a calmodulin-regulated soybean Ca2+-ATPase(SCAl) that is located in the plasma membrane. Plant Cell, 12:1393-1407
    59. Clough S J, Bent A F. (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant Journal. 16:735-743
    60. Cocucci M, Negrini N. (1988) Changes in the levels of calmodulin and of a calmodulin inhibitor in the early phases of radish (Raphanus sativus L.) seed germination. Plant Physiol, 88:910-914
    61. Crocker D G, Dawson R A, Barton C H, Mac Neil S. (1988) An extracellular role for calmodulin-like activity in cell proliferation. Biochem. J.,253:877-884
    62. Dauwalder M, Roux S J, Hardison L. (1986) Distribution of calmodulin in pea seedling: immunocytochemical localization in plumules and root apices. Planta, 168:461-470
    63. Deavours B E, Reddy A S N, Walker R A. (1998) Ca2+/calmodulin regulation of the Arabidopsis kinesin-like calmodulin-binding protein. Cell Motility and the Cytoskeleton, 40:408-416
    64. Duval F D, Renard M, Jaquinod M, Biou V, Montrichard F, Macherel D. (2002) Differential expression and functional analysis of three calmodulin isoforms in germinating pea(Pisum sativum L.) seeds. Plant Journal, 32:481-493
    65. Fromm H, Chua N H, (1992) Cloning of plant cDNAs encoding calmodulin-binding proteins using 35S-labeled recombinant calmidulin as a probe. Plant Molecular Biology Reporter, 10:199-206
    66. Gawienowski M C, Szymanski D, Perera I Y, Zielinski R E. (1993) Calmodulin isoforms in Arabidopsis encoded by multiple divergent mRNAs. Plant Molecular Biology, 22:215-225.
    67. Geisler M, Frangne N, Gomes E, Martinoia E, Palmgren M G. (2000) The ACA4
    
    gene of Arabidopsis encodes a vacuolar membrane calcium pump that improves salt tolerance in yeast. Plant Physiology; 124:1814-1827
    68. Gerendasy D D, Herron S R, Watson J B, Sutcliffe J G. (1994) Mutational and biophysical studies suggest RC3/neurogranin regulates calmodulin availability. Journal of Biological Chemistry,269:22420-22426
    69. Gong M, Yang Z H, Cao Z X. (1994) Involvement of calmodulin in pollen germination and pollen tube growth. Acta Phytophysiologica Sinica, 20(3) :240-248
    70. Hames B D. (1990) One-dimensional polyacrylamide gel electrophoresis. In: Hames B D, Rickwood D.(eds). Gel Electrophoresis of Proteins. New York: Oxford University Press, 93-96
    71. Harding S A, Oh S, Roberts D M. (1997) Transgenic tobacco expressing a foreign calmodulin gene shows an enhanced production of active oxygen species. EMBO Journal, 16:1137-1144
    72. Harmon A C, Gribskov M, Harper J F. (2000) CDPKs-a kinase for every Ca2+ signal? Trends in plant science, 5:154-158
    73. Haseloff J, Siemering K R, Prasher D C, Hodge S. (1997) Removal of a cryptic intron and subcellular localization of green fluorescent protein are required to mark transgenic Arabidopsis plants brightly. Applied Biological Sciences, 94:2122-2117
    74. Heijne G V. (1983) Patterns of amino acids near signal-sequence cleavage sites. Eur.J.Biochem., 131:17-21
    75. Heijne G V. (1998) Life and death of a signal peptide. Nature, 396: 111-113
    76. Heo W D, Lee S H, Kim M C, Kim J C, Chung W S, Chun H J, Lee K J, Park C Y, Park H C, Choi J Y, Cho M J. (1999) Involvement of specific calmodulin isoforms in salicylic acid-independent activation of plant disease resistance responses. Proc. Natl. Acad. Sci. USA, 96: 766-771
    77. Hepler P K. (1997) Tip growth in pollen tubes: calcium leads the way. Trends in Plant Sci.,2:79-80
    78. Hoeflich K P, Ikura M. (2002) Calmodulin in action: diversity in target recognition and activation mechanisms. Cell, 108:739-742
    79. Houston Donald S., Craig W., Carson, Charles T., Esmon. (1997) Endothelial cells a nd e xtracellular c almodulin i nhibit monocyte T umor N ecrosis F actor release and augment neutrophil elastase release. Journal of Biological
    
    Chemistry,212: 11778-11785
    80. Ikezaki H, Patel M, Onyuksel H, Akhter S R, Gao X, Rubinstein I. (1999) Exogenous calmodulin potentiates vasodilation elicited by phospholipids-associated VIP in vivo. Am. J. Physiol. 276: R1359-R1365
    81. Ikura M, Kay L E, Krinks M, Bax A. (1991) Triple resonance multidimensional NMR study of calmodulin complexed with the binding domain of skeletal muscle myosin light-chain kinase: Indication of a conformational change in the central helix. Biochemistry, 30:5498-504.
    82. James P, Vorherr T, Carafoli E. (1995) Calmodulin-binding domains: just two faced or multi-faceted? Trends. Biol. Sci, 20:38-42
    83. Josefina H N, Aldasars J J, Rodriguez D. (1985) Localization of calmodulin on embryonic Cice aricium L. In: Trewavas A J, ed. Molecular and cellular aspects of calcium in plant development. New York, London: Plemun Press. 313
    84. Kaether C, Gerdes H. (1995) Visualization of protein transport along the secretory pathway using Green fluorescent protein. FEBS Letters, 369:267-271
    85. Kao Y L, Deavours B D, Phelps K K, Walker R A, Reddy A S. (2000) Bundling of microtubules by motor and tail domains of a kinesin-like calmodulin-binding protein from Arabidopsis: regulation by Ca2+/Calmodulin. Biochem. Biophys. Res. Commun., 267:201-207
    86. Kiegle E, Moore C A, Haseloff J, Tester M A, Knight M R. (2000) Cell-type-specific calcium responses to drought, salt and cold in the Arabidopsis root. Plant 1,23:267-278
    87. Kim M C, Lee S H, Kim J K, Chun H J,Choi M S, Chung W S, Moon B C, Kang C H, Park C Y, Yoo J H, Kang Y H, Koo S C, Koo Y D, Yung J C, Kim S T, Schulze-Lefert P, Lee S Y, Cho M J. (2002 a) Mlo, a modulator of plant defense and cell death, is a novel calmodulin-binding protein. Journal of Biological Chemistry, 277:19304-19314
    88. Kim M C, Panstruga R, Ellio C, Muller J, Devoto A, Yoon H W, Park H C, Cho M J, Schulze-Lefert P. (2002 b) Calmodulin interacts with MLO protein to regulate defense against mildew in barley. Nature, 416:447-450
    89. Knight M R, Read N D, Campbell A K, Trewawas A J. (1993) Imaging calcium dynamics in living plants using semi-synthetic recombinant aequorins. J. Cell. Biol., 121:83-90
    
    
    90. Kohler C, Merkle T, Neuhaus G (1999) Characterisation of a novel gene family of putative cyclic nucleotide-and calmodulin-regulated ion channels in Arabidopsis thaliana. Plant Journal, 18:97-104
    91. Kohler C, N euhaus G, (2000) C haracterisation o f c almodulin b inding t o c yclic nucleotide-gated ion channels from Arabidopsis thaliana. FEBS Letters, 4710:133-136
    92. Kurek I, Aviezer K, Erel N, Herman E, Breiman A. (1999) The wheat peptidyl prolyl cis-trans-lsomerase FKBP77 is heat induced and developmentally regulated. Plant physiology, 119:693-703
    93. Kurek I, Pirkl F, Fischer E, Bucnner J, Breiman A. (2002) Wheat FKBP73 functions in vitro as a molecular chaperone independently of its peptidyl prolyl cis-trans isomerase activity. Planta, 215:119-126
    94. Labas Y A, Gurskaya N G, Yanushevich Y G, Fradkov A F, Lukyanov K A, Lukyanov S A, Matz M V. (2002) Diversity and evolution of the green fluorescent protein family. Proc. Natl. Acad. Sci. USA, 99:4256-4261
    95. Laemmli U K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature,227:680-685
    96. Lee S H, Johnson J D, Walsh M P, Van Lierop J E, Sutherland C, Xu A, Snedden W A, Kosk-Kosicka D, Fromm H, Narayanan N, Cho M J. (2000) Differential regulation of Ca2+/calmodulin-dependent enzymes by plant calmodulin isoforms and free Ca2+ concentration. Biochem. J.,350:299-306
    97. Lee S H, Kim M C, Heo W D, Kim J C, Chung W S, Park C Y, Park H C, Cheong Y H, Kim C Y, Lee S, Lee K J, Bahk J D, Lee S Y, Cho M J. (1999) Competitive binding of calmodulin isoforms to calmodulin-binding proteins: implication for the function of calmodulin isoforms in plants. Biochimica et Biophsica Acta, 1433:56-67
    98. Lee S.H., Kim J.C., Lee M.S., Heo W.D., Seo H.Y., Yoon H.W.,Hong J C, Lee S Y, Bahk J D, Hwang I, Cho M J. (1995) Identification of a novel divergent calmodulin isoform form soybean which has differential ability to activate calmodulin-dependent enzymes. Journal of Biological. Chemistry, 270:21806-21812
    99. Lee S.H.,S eo H.Y.,K im J.C.,Heo W.D.,Chung W S, Lee K J, Kim M C , Cheong Y H, Choi J Y, Lim C O, Cho M J. (1997) Differential Activation of NAD Kinase by Plant Calmodulin Isoforms. Journal of Biological.
    
    Chemistry, 272:9252-9259
    100. Lenartowska M, Rodbiguez-garcia M I, Bednarska E. (2001) Calmodulin and calmodulin-like protein are involved in pollen-pistil interaction: immunocytochemical studies on Petunia hybrida hort. Acta Biologica Cracoviensia, 43:117-123
    101. Li J X, Liu J W, Sun D Y. (1993) Immunoeletron microscopic localization of calmodulin in maize root cell. Cell Research, 3:11-20
    102. Liao B, Gawienowski M C, Zielinski R E. (1996) Differential stimulation of NAD kinase and binding of peptide substrates by wild-type and mutant plant calmodulin isoforms. Archives of Biochemistry and Biophysics, 327:53-60
    103. Ling V, Perera I, Zielinski R E. (1991) Primary structures of Arabidopsis calmodulin isoforms deduced from the sequences of cDNA clones. Plant Physiology, 96:1196-1202
    104. Ling V, Snedden W A, Shelp B, Assmann M. (1994) Analysis of a Soluble calmodulin binding protein from fava bean roots : identification of glutamate becabixylase as a calmodulin-activated enzume. Plant Cell, 6:1135-1143
    105. Liu H, Xue L, Li C F, Zhang R, Ling Q. (2001) Calmodulin-binding protein BP-10, a probable new member of plant nonspecific lipid transfer protein superfamily. Biochemical and Biophysical Research Communications, 285:633-638
    106. Lu Y T, Dharmasiri MAN, Harrington H M. (1995) Characterization of a cDNA encoding a novel heat-shock protein that binds to calmodulin. Plant Physiol, 108:1197-1202
    107. Lu Y, Harrington H M. (1994) Isolation of tobacco cDNA clones encoding calmodulin-binding proteins and characterization of a known calmodulin-binding domain. Plant Physiol. Biochem., 32:413-422
    108. Ma L G, Fan Q S, Yu Z Q, Zhou H L, Zhang F S, Sun D Y. (2000) Does aluminum inhibit pollen germination via extracellular calmodulin? Plant Cell Physiol., 41:372-376
    109. Ma L G, Sun D Y. (1997) The effects of extracellular calmodulin on initiation of Hippeastrun rutilun pollen germination and tube growth, Planta, 202:336-340
    110. Ma L, Xu X, Cui S, Sun D.(1999) The presence of a Heterotrimeric G protein and its role in signal transduction of extracellular calmodulin in pollen germination and tube growth. Plant Cell, 11 : 1351-1363
    
    
    111. Mac Neil S, Walber S W, Senior H J, Bleehen S S, Tomlinson S. (1984) Effects of extracellular calmodulin and calmodulin antagonists on B16 melanoma cell growth. J. Invest. Dermatol., 83:15-19
    112. Matsubayashi Y, Yang H, Sakagami Y. (2001) Peptide signals and their receptors in higher plants. Trends in Plant Science, 6(12) :573-577
    113. McAnish M R, Hetherington A M, (1998) Encoding specificity in Ca2+ signaling systems. Trends in Plant Sci.,3:32-36
    114. Meador W E, Means A R, Quiocho F A. (1993) Modulation of calmodulin plasticity in molecular recognition on the basis of x-ray structure. Science, 262:1718-1721.
    115. Narasimhulu S B, Reddy A S N. (1998) Characterization of microtubule binding domains in the Arabidopsis kinesin-like calmodulin binding protein. Plant Cell, 10:957-965
    116. O'Neil K, Degrado W F. (1990) How calmodulin binds its targets: sequence independent recognition of amphiphilic a-helices. Trends in Biochem. Sci. 15:59-64
    117. Oh S H, Steiner H Y, Dougall D K, Roberts D M. (1992) Modulation of calmodulin levels, calmodulin methylation, and calmodulin binding proteins during carrot cell growth and embryogenesis. Arch Biochem Biophys., 15;297(1) :28-34.
    118. Oppenheimer D G, Pollock M A, Vacik Joshua, Szymanski D B, Ericson B, Feidmann K, Marks M D. (1997) Essential role of a kinesin-like protein in Arabidopsis trichome morphogenesis. Proc. Nad. Acad. Sci. USA, 94:6261-6266
    119. Pardo J M, Reddy M P, Yang S, Maggio A, Huh G, Matsumoto T, Coca M A, Paino-D'Urzo M, Koiwa H, Yun D, Watad A A, Bressan R A, Hasegawa P M. (1998) Stress signaling through Ca2+/calmodulin-dependent protein phosphatase calcineurin mediates salt adaptation in plants. Proc. Natl. Acad. Sci. USA, 95:9681-9686
    120. Perera I Y, Zielinski R E. (1992) Structure and expression of the Arabidopsis CaM-3 calmodulin gene. Plant Mol. Biol., 19: 649-664.
    121. Piffanelli P, Zhou F, Casais C, O rme J, Jarosch B, Schaffrath U, Collins N C, Panstruga R, Schulze-Lefert P. (2002) The barley MLO modulator of defense and cell death is responsive to biotic and abiotic stress stimuli. Plant physiology, 129:1076-1085
    
    
    122. Polito V S. (1983) Calmodulin and calmodulin inhibitors: effect on pollen germination and tube growth. In: Mulvshy D L, Ottaviaro E, eds. Pollen: Biology and Implications for Plant Breeding. New York: Elsevier. 53-60
    123. Poovaiah B W, Xia M, Liu Z, Wang W, Yang T, Sathyanarayanan P V, Franceschi V R. (1999) Developmental regulation of the gene for chimeric calium/calmodulin-dependent protein kinase in anthers. Planta, 209:161-171
    124. Ram A F J., Ende H V, Klis F M. (1998) Green fluorescent protein-cell fusion proteins are covalently incorporated into the cell wall of Saccharomyces cerevisiae. FEMS Microbiology Letter, 162:249-255
    125. Reddy A S N, Day I S, Narasimhulu S B, Safadi F, Reddy V S, Golovkin M, Harnly M J. (2002) Isolation and characterization of a novel calmodulin-binding protein from potato. Journal of Biological Chemistry , 277:4206-4214
    126. Reddy A S N, Lyer S, Malik M K, Takezawa D, Fromm H, Poovaiah B W. (1993) Isolation and characterization of two cDNAs that code for calmodulin-binding proteins from corn root tips. Plant Science, 94:109-117
    127. Reddy A S N, Narasimhulu S B, Safadi F, Golovkin M. (1996 a) A plant kinesin heavy chain-like protein is a calmodulin-binding protein. Plant Journal, 10:9-21
    128. Reddy A S N, Reddy V S, G olovkin M. (2000) A c almodulin b inding p rotein from Arabidopsis is induced by ethylene and contains a DNA-binding motif. Biochemical and Biophysical Research Communications, 279:762-769
    129. Reddy A S N, Safadi E, Narasimhulu S B, Golovkin M, Hu X. (1996 b) A novel plant calmodulin-binding protein with a kinesin heavy chain motor Domain. Journal of Biological Chemistry, 271:7052-7060
    130. Reddy A S N. (2001) Calcium: silver bullet in signaling. Plant Science, 160:381-404
    131. Reddy V S, Ali G S, Reddy A S N. (2002) Genes encoding calmodulin-binding proteins in the Arabidopsis genome. Journal of Biological Chemistry, 277:9840-9852.
    132. Reddy VS, Reddy AS N. (1999 b) Aplant calmodulin-binding motor is part kinesin and part myosin. Bioinformatics, 15:1055-1057
    133. Reddy V S, Reddy A S N. (2002) The calmodulin-binding from a plant kinesin functions as a modular domain in conferring Ca2+/Calmodulin regulation to animal plus-and minus-end kinesins. Journal of Biological Chemistry. 277:48058-48065
    
    
    134. Reddy V S, Safadi F, Zielinski R E, Reddy A S N. (1999 a) Interaction of kinesin-like protein with calmodulin isoforms from Arabidopsis. Journal of Biological Chemisitry, 274:31727-31733
    135. Remgard P, Ekstrom PAR, Wiklund P, Edstron A. (1995) Calmodulin and in vitro regenerating frog sciatic nerves: release and extracellular effects. European Journal of Neuroscience, 7:1386-139
    136. Rentsch D, Gorlach J, Vogt E, Amrhein N, Martinoia E. (1995) The tonoplast-associated citrate binding protein (CBP) of Hevea brasiliensis. Journal of Biological Chemistry, 270:30525-30531
    137. Rhoads A R, Friedberg F. (1997) Sequence motifs for calmodulin recognition. The FASEB Journal ,11:331-340
    138. Rojo E, Sharma V K, Kovaleva V, Raikhel N V, Fletcher J C. (2002) CLV3 is localized to the extracellular space, where it activates the Arabidopsis CLAVATA stem cell signaling pathway. Plant Cell,14:969-977
    139. Rojo E, Sharma V K, Kovaleva V, Raikhel N V, Fletcher J C. (2002) CLV3 is localized to the extracellular space, where it activates the Arabidopsis CLAVTA stem cell signaling pathway. Plant Cell, 14:969-977
    140. Rubinstein I, Patel M, Ikezaki H, Dagar S, Onyuksel H. (1999) Coformation and vasoreactivity of VIP in phospholipids: effect of calmodulin. Peptides, 20:1497-1501
    141. Rudd J J, Franklin-Tong V E. (2001) Unravelling response-specificity in Ca2+ signaling pathways in plant cells. New Phytologist,,151:7-33
    142. Ryan C A, Pearce G, Scheer J, Moura D S. (2002) Polypeptide hormones. Plant Cell, Supplement, S251-S263
    143. Safadi F, Reddy V S, Reddy A S N. (2000) A pollen-specific novel calmodulin-binding protein with teratricopeptide repeats. Journal of Biological Chemistry,275:35457-35470
    144. Sambrook J, Fritsch F F, Maniatis T. Molecular Cloning: A Laboratory Manual.2nd ed. New York: Cold Spring Harbor Laboratory Press, 1989.
    145. Schuurink R S, S hartzer S F, Fath A, Jones R L. (1998) C haractenzation o f a calmodulin-binding transporter from the plasma membrane of bareley aleurone. Proc. Natl. Acad. Sci. USA, 95:1944-1949
    146. Scott A, Wyatt S, Tsou P.-L., Robertson D, Allen N S. (1999) Model system for plant cell biology: GFP imaging in living onion epidermal cells. BioTechniques,
    
    26:1127-1132
    147. Shelp B J, Bown A W, Mclean M D. (1999) Metabolism and gamma-aminobutyric acid. Trends in plant science, 4:446-452
    148. Snedden W A, Arazi T, Fromm H, Shlp B J. (1995) Calcium/calmodulin activation of soybean glutamate decarboxylase. Plant physiology, 108:543-549
    149. Snedden W A, Fromm H. (1998) Calmodulin, calomdulin-related proteins and plant responses to the environment. Trends in plant science, 3(8) :299-204
    150. Snedden W A, Fromm H. (2001) Calmodulin as a versatile calcium signal transducer in plants. New Phytologist, 151 :35-66
    151. Snedden W A, Koutsia N, Baum G, Fromm H. (1996) Activation of a Recombinant petunia glutamate decarboxylase by calcium/calmodulin or by a monoclonal antibody which recognizes the calmodulin binding domain. Journal of Biological Chemistry, 271:4148-4153
    152. Song H, Golovkin M, Reddy A S N, Endow S A. (1997) In vitro motility of AtKCBP, a calmodulin-binding kinesin protein of Arabidopsis. Proc. Natl. Acad. Sci. USA, 94:322-327
    153. Stallwood D. Brugger C H, Baggenstoss B A, Stemmer P H, Shiraga H, Landers D F, Paul S. (1992) Identity of a membrane-bound vasoactive intestinal peptide-binding protein with calmodulin. Journal of Biological Chemistry, 267:19617-19621
    154. Stein M, Somerville S C. (2002) MLO, a novel modulator of plant defenses and cell death, binds calmodulin. Trends in plant science, 7:379-380
    155. Stewart C N Jr. (2001) The utility of green fluorescent protein in transgenic plants. Plant Cell Rep, 20:376-382
    156. Subbaiah C C, Sachs M M. (2000) Maize capl encodes a novel SERCA-type calcium-ATPase with a calmodulin-binding domain. Journal of Biological Chemistry, 275(28) :2 1678-2 1687
    157. Sun D , Bian Y , Zhao B, Zhao L, Yu X M, Duan S. (1995) The effects of extracellular calmodulin on cell wall regeneration of protoplasts and cell division. Plant Cell Physiol., 36:133-138
    158. Sun D, Li H, Cheng G. (1994) Extracellular calomdulin accelerates the proliferation of suspension-cultured cells of Angelica dahurica. Plant Science,99:1-8
    159. Sun X, Li B, Zhou G, Tang W, Bai J, Sun D, Zhou R. (2000) Binding of the maize
    
    cytosolic Hsp70 to calmodulin, and indentification of calmodulin-binding site in Hsp70. Plant Cell Physiol.,41(6) :804-810
    160. Sunkar R, Kaplan B, Bouche N, Arazi T, Dolev D, Talke I N, Maathuis F J M, Sanders D, Bouchez D, Fromm H. (2000) Expression of a truncated tobacco NtCBP4 channel in transgenic plants and disruption of the homologous Arabidopsis CNGC1 gene confer Pb2+tolerance. Plant Cell, 24(4) :533-542
    161. Szymanski D B, Liao B, Zielinski R E. (1996) Calmodulin isoforms differentially enhance the binding of cauliflower nuclear proteins and recombinant TGA3 to a region derived from the Arabidopsis Cam-3 promoter. Plant Cell, 8:1069-1077
    162. Takayama S, Sakagami Y. (2002) Peptide signaling in plants. Current Opinion in Plant Biology, 5:382-387
    163. Takezawa D, Liu Z H, An G, Poovaiah B W. (1995) Calmodulin gene family in potato: developmental and touch-induced expression of mRNA encoding a novel isoform. Plant Molecular Biology, 27:693-703
    164. Tang J, Wu S, Bai J, Sun D. (1996) Extracellular calmodulin-binding proteins in plants: purification of a 21-kDa calmodulin-binding protein. Planta, 198:510-516
    165. Trofimova M S, Andreev I M, Kuznetsov V V. (1999) Calcium is involved in regulation of the synthesis of HSPs in suspension-cultured sugar beet cells under hyperthermia. Physiologia Plantarum, 105:67-73
    166. Turano F J, Fang T K. (1998) Characterization of two glutamate decarboxylase cDNA clones from Arabidopsis. Plant Physiol, 117:1411-1421
    167. Vos J W, Safadi F, Reddy A S N, Hepler P K. (2000) The kinesin-like calmodulin bindong protein is differentially involved in cell division. Plant Cell, 12:979-990
    168. Walbot V. (2000) Arabidopsis thaliana genome. A green chapter in the book of life. Nature, 408:794-795
    169. Wang L, Wang Y, Zhang M, Lu Y. (2001) Pollination-induced apoptosis in tobacco related to expression of calcium/calmodulin-dependent protein kinase T1. Developmental & Reproductive Biology, 10(1) :53-60
    170. Wang W, Takezawa D, Narasimhulu S B, Reddy A S N, Poovaiah B W. (1996) A novel kinesin-like protein with a calmodulin-binding domain. Plant molecular Biology, 31:87-100
    171. WenQiang T, Yi G, Yu S, Jung T, DaYe S. (1997) Extracellular calmodulin-binding proteins in body fluids of animals. Journal of Endocrinology, 155:13-17
    
    
    172. Xi C, Schoeters E, Vanderleyden J, Michiels J. (2000) Symbiosis-specific expression of Rhizobium etli casA encoding a secreted calmodulin-related protein. Proc. Natl. Acad. Sci. USA, 97: 11114-11119
    173. Yamakawa H, Mitsuhara I, Ito N, Seo S, Kamada H, Ohashi Y. (2001) Transcriptionally and post-transcriptionally regulated response of 13 calmodulin genes to tobacco mosaic virus-induced cell death and wounding in tobacco plant. Eur. J. Biochem., 268:3916-3929.
    174. Yang T, Lev-Yadun S, Feldman M, Fromm H. (1998) Developmentally regulated organ-,tissue-,and cell-specific expression of calmodulin genes in common wheat. Plant Molecular Biology,37:109-120
    175. Yang T, Poovaiah B W, (2000 b) An early ethylene up-regulated gene encoding a calmodulin-binding p rotein i nvolved i n p lant s enescence a nd d eath. Journal of Biological Chemistry, 275:38467-38473
    176. Yang T, Poovaiah B W. (2000 a) Molecular and biochemical evidence for the involvement of Calcium/calmodulin in auxin action. Journal of Biological Chemistry, 275:3137-3143
    177. Yang T, Poovaiah B W. (2000 c) Arabidopsis Chloroplast chaperoninlO is a calmodulin-binding protein. Biochemical and Biophysical Research Communications, 275:601-607
    178. Yang T, Poovaish B W. (2002 a) Hydrogen peroxide homeostasis: activation of plant catalase by calcium/calmodulin. Proc. Natl. Acad. Sci. USA, 99:4097-4102
    179. Yang T, Poovaish B W. (2002 b) A calmodulin-binding/CGCG box DNA-binding protein family involved in multiple signaling pathways in plants. Journal of Biological Chemistry, 277:45049-45058
    180. Yang T, Segal G, Abbo S, Feldman M, Fromm H. (1996) Characterization of the calmodulin gene family in wheat: structure, chromosomal location, and evolutionary aspects. Mol Gen Genet, 252:684-694
    181. Yap K L, Kim J, Truong K, Sherman M, Yuan T, Ikura M. (2000) Calmodulin target database. Journal of Structural and Functional Genomics, 1:8-14
    182. Yuan T, Vogel H J. (1998) Calcium-calmodulin-induced dimerization of the carboxyl-terminal domain from petunia glutamate decarboxylase. Journal of Biological Chemistry, 273:30328-30335
    183. Zhang L, Lu Y T. (2003) Calmodulin-binding protein kinases in plants. Trends in Plant Science, 8:123-127
    
    
    184. Zhou J, Ma L, Zhang S, Zhu Y, Sun D. (2001) Extracellular calmodulin stimulates light-independent rbcS-GUS expression in suspension-cultured cells of transgenic tobacco. Plant Cell Physiol, 42:1049-1055
    185. Zielinski R E. (1998) Calmodulin and calmodulin-binding proteins in plants. Annu. Rev. Physiol. Plant Mol. Biol. 49: 697-725
    186. Zielinski R E. (2002) Characterization of three new members of the Arabidopsis thaliana calmodulin gene family: conserved and highly diverged members of the gene family functionally complement a yeast calmodulin null. Planta,214:446-455
    187. Zik M, Arazi T, Snedden W A, Fromm H. (1998) Two isoforms of gulamate decarboxylase in Arabidopsis are regulated by calcium/calmodulin and differ in organ distribution. Plant Molecular Biology, 37:967-975

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700