用户名: 密码: 验证码:
混凝土尺寸效应理论研究与断裂参数分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
如何对混凝土材料的力学行为进行恰当和准确的描述是力学难题之一,其理论和应用研究一直受到人们的重视。本文采用有限元理论、随机理论、统计理论、能量理论和分形理论等方法对混凝土材料的断裂参数及尺寸效应理论的若干问题进行了研究。主要内容如下:
     (1)对Weibull尺寸效应统计理论、Bazant尺寸效应理论与Carpinteri分形尺寸效应理论的研究现状进行了回顾、分析、比较和评论。
     (2)采用随机骨料模型,以有限元为计算手段,从应力、应变和裂纹发展过程等多方面分析了混凝土材料的细观力学性能,得到一些有益的结论。
     (3)采用数值方法对不同尺寸的试件进行了分析,揭示出混凝土强度具有明显的尺寸效应现象。并采用Bazant尺寸效应律和Carpinteri分形尺寸效应律对数值分析结果进行了验证,得到与试验分析相一致的结论。
     (4)在对混凝土断裂能的各种影响因素进行探讨的基础上,建立了混凝土断裂能的单因素和多因素统计模型,并进行了验证分析。
     (5)对混凝土断裂能尺寸效应现象进行了深入的分析。认为断裂过程区大小随试件尺寸的变化而变化是产生断裂能尺寸效应现象的根本原因。
     (6)综合考虑试件尺寸和材料细观结构特征对断裂能的影响,建立了混凝土断裂能尺寸效应的分形模型,并进行了验证分析。
     (7)使用分形理论建立了Ⅰ型分形裂纹尖端处的应力强度因子计算模型;模型使用的计算公式可以退化为经典的Ⅰ型裂纹尖端处的应力强度因子公式。
     (8)在对应力强度因子的计算方法进行评述的基础上,对应力强度因子的计算误差进行了分析,提出了一个使用有限元方法求解应力强度因子的误差指标参数。
The description of mechanical properties about concrete is a difficult problem in mechanics. The studies about it are going on by researchers. Some problems on mechanical parameters and size effects of concrete are studied in this dissertation. The main contents are as follows.(1) Three size effect laws are reviewed, analyzed and commented. They are Weibull statistical size effect law, Bazant size effect law and Carpinteri size effect law.(2) The micro-mechanical properties are studied by Random Aggregate Model.(3) Various size components are analyzed by Random Aggregate Model. It is showed that the concrete components have the characters of size effect. Then the analysis data are compared with Bazant size effect law and Carpinteri size effect law.(4) The affect factors to fracture energy of concrete are discussed. Then some statistical models are developed. The multi-factors statistical model in above models is a feasible and correct model. This conclusion is built on the basis of analysis.(5) The resource of fracture energy is studied. The size effect of fracture energy results in the change of fracture process zone in various size components.(6) A fractal model of fracture energy is built with fractal theory. The size of component and the fractal dimension of crack are involved in this model. The analysis to the model indicates it is a feasible and correct model.(7) A fractal model of SIF is also built with fractal theory. The analysis indicates it is a feasible and correct model.(8) The error of SIF is discussed too. Then an index to estimate error of SIF is advised. The analysis shows it is a feasible and correct parameter.Size effect, Numerical analysis, Statistical theory, Energy theory, Fractal theory
引文
[1] 杨卫.宏微观断裂力学(第一版).北京:国防工业出版社.1995年9月.
    [2] J. Planas, G.V. Guinea, M. Elices. Generalized Size Effect Equation for Quasi-brittle Materials. Materials and Structures. 1997,20(50): 671-687.
    [3] Z.P. Bazant, J. Planas, Fracture and size effect in concrete and other quasibrittle materials. CRC Press LLC, 1998.
    [4] W. Weibull, Phenomenon of Rupture in Solids, Proc Royal Swedish Inst of Engineering Research. 1939(153): 1-55.
    [5] Z.P. Bazant, Er-Ping Chen. Scaling of Structure Failure. American Society of Mechanical Engineers. Vol. 50. 1997(10): 593-627.
    [6] Z.P. Bazant, Li Y-N. Scaling of Cohesive Fracture in Size-Scale Effects in the Failure Mechanisms of Materials and Structures. Proc IUTAM Symp, at politecrico di Torino, 1994, A. Carpinteri, E&FN Spon, London, 1996:274-289.
    [7] J. Ozbolt, Z.P. Bazant. Numerical smeared fracture analysis: Nonlocal microcrack interaction approach. J Number Methods Eng, 1996(39):635-661.
    [8] Z.P. Bazant, M.R. Talbara, M.T. Kazemi, G. Rijaudier-Caobot. Random particle model for fracture of aggregate or fiber composites. Journal of Engineering Mechanics. 1990,116(18):1686-1705.
    [9] M. Jirasek, Z.P. Bazant. Particle model for quasibrittle fracture and application to sea ice. Journal of Engineering Mechanics. 1995,121(9):1016-1025.
    [10] T. Hasegawa, T. Shioga, T. Okada. Size effect on splitting tensile strength of concrete. Proc 7th conf of Japan concrete Institute. 1985:305-312.
    [11] A. Carpinteri. Scaling Laws and Renormalization Groups for Strength and Toughness of Disordered Materials. International Journal of Solids and Structures, 1994(31): 291-302.
    [12] Z.P. Bazant. Scaling of quasi-brittle fracture and the fractal question. Journal of Engineering Materials and Technology. 1995(46): 663-676.
    [13] 钱觉时、罗晖、王智.水泥混凝土高强化与强度尺寸效应.建筑材料学报.Vol.1.1998(2):134-138.
    [14] 胡蓓雷、赵国藩、宋玉普.混凝土损伤与试件尺寸效应.计算力学学报.Vol.14.1997(2):204-216.
    [15] J. Ozbolt, Z.P. Bazant. Numerical smeared fracture analysis: Nonlocal microcrack interaction approach. J Number Methods Eng, 1996(39):635-661.
    
    [16] J. Olanas, M. Elice. Size effect in concrete structure: mathematical approximations and experimental validation. In cracking and damage, strain localization and size effect, J. Mazars, Z.P. Bazant, eds., Elsevier applied science, London, 1989:462-476.
    [17] P. J. Gustafsson, A. Hillerborg. Improvements in concrete design achieved through the application of fracture mechanics, In Application of fracture mechanics to cementitious composites, eds. S.P. Shah, Northwestern University, 1984.
    [18] A. Hillerborg. Dimensionless presentation and sensitivity analysis in fracture mechanics, in Fracture Toughness and Fracture Energy of Concrete, ed. F.H. wttmann, Elsevier Science Publishers, 1986:413-121.
    [19] B.L. Zarihaloo, Q.Z. Xiao. Size effect in the strength of concrete structures. Sadhana. Vol. 27. 2002(4): 449-459.
    [20] 杨成球、吴政.全级配混凝土强度尺寸效应及变形特性研究.大连理工大学学报.Vol.37.1997(1):129-134.
    [21] 高泉、赵国藩、赵顺波.龄期及粗集料对高坝混凝土断裂能G_F和断裂韧度K_(IC)的影响规律.建筑科学.1994(3):19-23.
    [22] 栾曙光、David Darwin.混凝土断裂能G_F随龄期、强度的变化规律.水利学报.1999(12):29-32.
    [23] 姚武、梁正平、陆海荣.直接拉伸下混凝土的断裂能.水利学报.1998(8):28-32.
    [24] 吴科如.轻集料混凝土的断裂能.三峡大学学报.Vol.24.2002(1):9-11.
    [25] 吴智敏、黄承逵、赵国藩.大尺寸砼试件的断裂能.大连理工大学学报.Vol.36.1996(6):782-784.
    [26] 吴智敏、赵国藩.混凝土断裂能G_F的尺寸效应.工业建筑.Vol.25.1995(11):25-28.
    [27] 徐道远、符晓陵.混凝土三点弯曲梁断裂能的测试研究.河海大学学报.Vol.17.1989(2):11-17.
    [28] 徐道远、陈里红、李国英、刘凤羽.早龄期混凝土断裂参数K_(IC)、G_F的试验研究.河海大学学报.Vol.19.1991(3):130-133.
    [29] 姜福田.混凝土力学性能与测定(第一版).北京:中国铁道出版社.1989年.
    [30] P.C. Aitcin, Effects of size and curing on cylinder compressive strength of normal and high-strength concretes, ACI Materials Journal, Vol. 91, July-August, 1994.
    [31] M. Lessard, O. Chaallal, P.C. Aitcin, Testing high strength concrete compressive strength, ACI Materials Journal, Vol. 90, 1993(4):303-308.
    [32] Z.P. Bazant, P.A. Pfeiffer, Determination of fracture energy from size effect and brittleness number. ACI Materials Journal. 1987,84(6):463-480.
    [33] 张彤、孟庆元、杜善义.基于定长裂缝试仆的脆性材料尺寸效应实验方法.工程力学.Vol.18.2001(5):127-144.
    
    [34] A. Carpinteri, G. Ferro. Scaling behavior and dual renormalization of experimental tensile softening responses, Materials and Structures, Yol. 31, 1998:303-309.
    [35] A. Carpinteri. Decrease of apparent tensile and bending strength with specimen size: Two different explanations based on fracture mechanics. International Journal of Solids and Structures, Vol. 25.1989(4):407-429.
    [36] 宣国良.混凝土圆柱体劈拉强度的尺寸效应.河海大学学报.Vol.24。1996(2):92-97.
    [37] 吴智敏、赵国藩、徐世烺.大尺寸混凝土试件的断裂韧度.水利学报.1997(6):67-76.
    [38] 吴智敏、赵国藩.混凝土断裂韧度的尺寸效应研究.工业建筑.Vol.25.1995(4):20-22.
    [39] 吴智敏、赵国藩.混凝土非线性断裂韧度及其尺寸效应.工程力学.Vol.12.1995(4):9-16.
    [40] A. Hillerborg. Theoretical Basis of Method to Determine Fracture Energy GF of Concrete, Materials and Structures. Vol. 18. 1985(106):291-296.
    [41] A. Hillerberg. Results of three comparative test series for determining the fracture test series for determineing the fracture energy G_F of concrete. Materials and Structures. Vol. 18. 1985(107):407-413.
    [42] 徐世娘、赵国藩.混凝土断裂力学研究.大连:大连理工大学出版社.1991年.
    [43] 徐世娘.混凝土断裂机理[学位论文].大连:大连理工大学.1988年.
    [44] 于骁中、譙忻、周群力.岩石和混凝土断裂力学.中南工业大学出版社.1991年.
    [45] 钱觉时、范英儒、袁江.三点弯曲法测定混凝土断裂能的尺寸效应.重庆建筑大学学报.Vol.17.1995(2):1-8.
    [46] 蔡四维、蔡敏.混凝土的损伤断裂.北京:人民交通出版社.1999年.
    [47] Z.P. Bazant. size effect on structural strength: a review. Archive of Applied Mechanics, 1999(69):703-725.
    [48] Z.P. Bazant. Scaling of Quasibrittle Fracture: Asymptotic analysis. International Journal of Fracture , 1997,83(1): 41-65.
    [49] M. Elices, G.V. Guinea, C. Rocco, J. Planas. Influence of aggregate shape on the fracture behavior of concrete, Fracture Mechanics of Concrete Structures, Proceedings of the FRAMCOS-3, AEDIFICATIO Publishers, Freiburg, Germany, 1998:37-44.
    [50] M. Hassanzadeh. The influence of the type of coarse aggregates on the fracture mechanical properties of high-strength concrete, Fracture Mechanics of Concrete Structures, Proceedings of the FRAMCOS-3, AEDIFICATIO Publishers, Freiburg, Germany, 1998:161-170.
    [51] H.K. Hilsdorf, W. Brameshuber. Size effects in the experimental determination of fracture mechanics parameters, in: S.P. Shah(Ed.), Application of Fracture mechanics to Cementations Composites, NATO-ARW, Northwestern University, USA. 1984:361-397.
    [52] R. Hovarth, T. Persson. The influence of the size of the specimen on the fracture energy of concrete, Report TUBM-5005, Division of Building Materials, Lund Institute of Technology, Lund, Sweden, 1984.
    [5
    
    [53] J.L. Malvar, G.E. Warren. Fracture energy for the three-point-bend tests on single-edge-notched beams, proposed evaluation, Materials and Structures. 1987(20): 448-454.
    [54] J.L. Malvar, G.E. Warren. Fracture energy for the three-point-bend tests on single-edge-notched beams. Exp. Mech., 1988,28(3):431-436.
    [55] P.E. Petersson. Crack growth and development of fracture zone in plain concrete and similar materials, Report No. TVBM-IO06, Division of Building Materials Lund Institute of Technology, Lund, Sweden, 1981.
    [56] Y. Uchida, BoI. G. Barr. Tension softening curves of concrete determined from different test specimen geometries, Fracture Mechanics of Concrete Structures, Proceeding of the FRAMCOS-3, AEDIFICATIO Publishers, Freiburg, Germany, i1998:387-398.
    [57] G. Giacco, C. Rocco, R. Zerbino. The fracture energy of high strength concretes. Materials and Structures. 1993(26):381-386.
    [58] P. Nallathabi. Fracture behavior of plain concretes, Doctoral dissertation, University of New Castle, Australia, 1986.
    [59] 严安、吴科如、姚武、张东.混凝土的断裂能随断裂路径的变化规律.水利学报. 2002(1):76-80.
    [60] 严安、吴科如、姚武、张东.混凝土材料的真实断裂能研究.建筑材料学报,Vol.4.2001(4):346-350.
    [61] Z.P. Bazant, D. Novak. Energetic-statistical size effect in quasi-brittle failure at crack initiation, ACI Materials Journal, Vol. 97.2000(3):381-392.
    [62] Z.P. Bazant, Xi-Y. Statistical size effect in quasi-brittle structures: Ⅱ Nonlocal theory. Journal of engineering mechanics, 1991,117(11):2623-2640.
    [63] 张济忠.分形.北京:清华大学出版社.1995年.
    [64] 谢和平.分形-岩石力学导论.北京:科学出版社.1996年.
    [65] F. Borodich. Fracture energy of Fractal Crack, Propagation in Concrete and Rock (in Russian), Doklady Akademii Nauk, 1992,325(6): 1138-1141.
    [66] Z. P. Bazant. Size effect in tensile and compression fracture of concrete structures: computational modeling and design. In: Mihashi H.; Rokugo K. (eds) Fracture Mechanics of Concrete Structures. 3rd Int. Conf., FraMCoS-3(Gifu, Japan) pp1905-1922, Freiburg, AediEcatio Publishers 1998.
    [67] A. Carpinteri, B. Chiaia. Multifractal scaling laws in the breaking behaviors of disordered materials, Chaos, Solitons & Fractals. 1997,8(2):135-150.
    
    [68] A. Hillerborg et al., Analysis of crack formation and crack growth in concrete by means of fracture mechanics finite elements, Cement and Concrete Research, 1976(6):773-782.
    [69] RILEM TC50-FMC, Determination of the fracture energy of mortar and concrete by means of three-point bend of tests on notched beams, Materials and Structure2, 1985,18 (106):285-290.
    [70] 张东、刘娟育、陈兵、吴科如.关于三点弯曲法确定混凝土断裂能的分析.建筑材料学报.Vol.2.1999(3):206-211.
    [71] A. Hillerborg. The theoretical basis of a method to determine the energy GF of concrete. Materials and structures. 1985,18(106): 291-296.
    [72] G.V. Guinea, J. Planas, M. Elices. Measurement of the fracture energy using threepoint bend tests: part 1 - influence of experimental procedures. Materials and structures, 1992,25(148):212-218.
    [73] J. Planas, M. Elices, G.V. Guinea. Measurement of the fracture energy using three-point bend tests: part 2 - influence of bulk energy dissipation. Materials and structures, 1992,25(149):302-312.
    [74] M. Elices, G.V. Guinea, J. Planas. Measurement of the fracture energy using three-point bend tests: part 3 -influence of cutting the P-δ tail. Materials and structures, 1992,25(150):327-334.
    [75] K. Rokugo, M. Iwasa, T. Suzuki, et al. Testing methods to determine tensile strain softening curve and fracture energy of concrete. H. Mihashi, H. Takahashi, F.H. Wittmann. Proceedings of International workshop on fracture toughness and fracture energy test methods for concrete and rock. Rotterdam: Balkema, 1989: 154-163.
    [76] 钱觉时.论测定断裂能的三点弯曲法.混凝土与水泥制品.1996(6):20-23.
    [77] H.K. Hilsdorf, W. Brameshuber. Code type formulation of fracture mechanics concepts for concrete. International Journal of Fracture. 1991(51).
    [78] Canan Tasdemir. Effects of silica fume and aggregate size on the brittleness of concrete. Cement and Concrete Research, 1996,26(1).
    [79] Canan Tasdemir. Comined effects of silica fume, aggregate type, and size on postpeak response of concrete in bending. ACI Materials Journal, 1999,96(1).
    [80] 徐世烺、高泉.试件尺寸对断裂能G_F的影响规律:强度与断裂.第四届岩石、混凝土等工程材料学术会议论文集(长沙).1989年.
    [81] 赵国藩、徐世烺、王风翼.大骨料全级配混凝土断裂韧度和断裂能研究.工程力学(增刊).1996:51-62.
    [82] 徐世烺、赵国藩、刘毅、叶丽达.三点弯曲梁法研究混凝土断裂能及共试件尺寸影响.大连理 工大学学报.Vol.31.991(1):79-86.
    [8
    
    [83] 张立新、陈兵、吕伟民.集料对混凝土断裂性能影响的研究.四川建筑科学研究.Vol.26.2000(3):55-57.
    [84] 吴智敏、赵国藩.骨料粒径对混凝土断裂参数的影响.大连理工大学学报.Vol.34.1994(5):583-588.
    [85] Z.P. Bazant, Xu-K. Size effect in fatigue fracture of concrete. ACI Mateirials Journal, Vol. 88. 1991(4):390-399.
    [86] Z.P. Bazant, W.F. Schell. Fatigue fracture of high-strength concrete and size effect. ACI Materials Journal, Vol. 90. 1993(5):472-478.
    [87] Z.P. Bazant, Xiang-Y. Size effect in compression fracture: Splitting crack band propagation. Journal of Engineering Mechanics and Technology. 1997,123(2): 162-172.
    [88] P. Nallathambi, B.L. Karihaloo, determination of specimen size independent fracture toughness of plain concrete, Magazine of concrete research. Vol. 38. 1986(135).
    [89] 卢喜经.混凝土疲劳断裂及其尺寸效应研究[学位论文].大连:大连理工大学.2000.
    [90] 张东、刘娟、吴科如.高强混凝土断裂特性的试验研究与分析.混凝土与水泥制品.1998(5):5-9.
    [91] 张林、徐进、陈新、谢嘉琼.碾压混凝土断裂试验研究.水利学报.2001(5):45-49.
    [92] P. Rossi, E. Bruhwiler, S. Chhuy, Y-S. Jenq, S.P. Shah, Fracture properties of concrete as determined by means of wedge splitting tests and tapered double cantilever beam tests, in: S.P. Shah, A. Carpinteri (Eds.), Fracture Mechanics Test Methods for Concrete, Chapman & Hall, London, 1991:87-128.
    [93] Comite Euro-International du Beton, CEB-FIP Model Code 1990, Thomas Telford, London, 1991.
    [94] 吴智敏、徐世烺、王金来.混凝土断裂韧度及临界裂缝尖端张开位移—基于虚拟裂缝模型的分析.三峡大学学报(自然科学版).Vol.24.2002(1):29-34.
    [95] 张镜剑、赵中极、涂金良、杨耀红.用相关分析法预测混凝土断裂能G_F.华北水利水电学院学报.Vol.17.1996(1):1-6.
    [96] 吴智敏、徐世烺、王金来、刘毅.三点弯曲梁法研究砼双K断裂参数及其尺寸效应.水力发电学报.2000(4):16-24.
    [97] Jin-Keun Kim, Seong-Tae Yi, Chan-Kyu Park, Seok-Hong Co, Size effect on compressive strength of plain and spirally reinforced concrete cylinders, ACI Structural Journal, Vol. 96. 1999(1):88-94.
    [98] W. Brameshuber, H.K. Hilsdorf, Influence of ligament length and stress state on fracture energy of concrete, Engineering Fracture Mechanics, Vol. 35. 1990(1):95-106.
    [99] S.P. Shah, R. Sanker. Internal cracking and strain-softening response of concrete under uniaxial compression. ACI Materials Journal. Vol.84. 1987(3):200-212.
    [1
    
    [100]谢和平、鞠杨.混凝土微细观损伤断裂的分形行为.煤炭学报.Vol.22.1997(12):586-590.
    [101]庄青峰、冯乃谦.加气混凝土的断裂能测定的尺寸效应.工程力学.Vol.12.1995(1):30-38.
    [102]V.E. Saouma, C.C. Barton. Fractals, Fractures and Size Effects in Concrete. Journal of Engineering Mechanics, 1994(120):835-854.
    [103]严安、吴科如、张东、姚武.用激光三角法重构混凝土断裂面三维轮廓与断裂能分析.实验力学.Vol.16.2001(2):213-219.
    [104]董宇光、李慧剑、郝圣旺.混凝土剪切断裂能与分形维数关系的研究.实验力学.Vol.18.2003(4):466-472.
    [105]L.T. Dougan, P.S. Addision. Fractal Analysis of Fracture: A Comparison of Dimension Estimates. Machanics Research Communications, 2000,27(4):383-392.
    [106]A. Carpinteri, B. Chiaia. Three-Dimension Fractal Analysis of Concrete Fracture at Meson-Level. Theoretical and Applied Fracture Mechanics. 1999(31):163-172.
    [107]B. Chiaia, J.G.M. van, and A. Veruurt. Crack growth mechanisms in four different concrete: microscopic observations and fractal analysis. Cement and Concrete Reasearch. Vol. 28, 1998(1):103-114.
    [108]Jerome Weiss. Self-affinity of surfaces and implications on a possible size effect on fracture energy. International Journal of Fracture. 2001(109):365-381.
    [109]M.A. Issa, A.M. Hammad. Assessment and evaluation of fractal dimension of concrete fracture surface digitized images. Cement and Concrete Research. 1994,24(2):325-334.
    [110] A.M. Issa et al. Fractal dimension - a measure of fracture roughness and toughness of concrete. Engineering Fracture Mechanics. 2003(70):125-137.
    [111]A. Carpinteri, B. Chiaia. Multifractal nature of concrete fracture surfaces and size effects on nominal fracture energy. Materials and Structures. 1985(28).
    [112]H. Mihashi. States of the art and a view of the fracture mechanics of concrete. ACI Journal. 1987,25(2):14-25.
    [113]Kai Duan, Xiaozhi Hu, F.H. Wittmann. Boundary effect on concrete fracture and nonconstant fracture energy distribution. Engineering Fracture Mechanics. 2003(70): 2257-2268.
    [114]K. Otasuka, Size effect in fracture process zone of concrete, in Size Effect in Concrete Structure, eds. H. Mihashi, H. Okamura, Z.P. Bazant, E&FN Spon, 1994:47-56.
    [115]H. Mihashi, N. Nomura, S. Niiseki. Influence of aggregate Size on fracture process zone of concrete detected with 3D acoustic emission technique, Cement and Concrete Research, Vol. 61.1991(21): 737-744.
    [116]H. Mihashi, N. Nomura. Microcracking and tension-softening properties of concrete, Cement & Concrete Composites, Vol. 14. 1992:91-103.
    [1
    
    [117] Koji Otsuka, Hidehumi Date. Fracture process zone in concrete tension specimen. Engineering Fracture Mechanics, Vol. 65. 2000: 111-131.
    [118] P.C. Perdikaris, A.Romeo. Effect of size and compressive strength on the fracture energy of plain concrete. In Proceedings of the first international conference on fracture mechanics of concrete structures, FRAMCOS, edited by Z.P. Bazant, Breckenridge, USA, 1992:550-555.
    [119] R.Gettu, Z.P. Bazant, M.E. Karr. Fracture properties and brittleness of high-strength concrete. ACI Materials Journal. 1990(87):608-618.
    [120] Z.P. Bazant, M.T. Kazemi. Size effect on diagonal shear failure of beams without stirrups. ACI Structural Journal. 1991(88):268-276.
    [121] G.M. Sabnis, S.M. Mirza. Size effect in model concretes? Journal of Structure. 1979 (105):1007-1020.
    [122] T. Hasegawa, T. Shioya, T. Okada. Size effect on splitting tensile strength of concrete. In Proceedings of the Japan Concrete Institute, 7th Conference. 1985:309-312.
    [123] Z.P. Bazant, M.T. Kazemi, T. Hasegawa, J. Mazars. Size effects in Brazilian splitcylinder tests: measurements and fracture analysis. ACI Materials Journal. 1991(88):325-332.
    [124] A.S. Balankin. Physics of fracture and mechanics of self-affine cracks, Engineering Fracture Mechanics. 1997, 57 (2) : 135-203.
    [125] A.B. Mosolov. Cracks with fractal surface. Dokl. Akad. Nauk SSSR. 1991,319(4):840-844.
    [126] 王宝庭、徐道远、王立民.改进的求解应力强度因子的外插方法.河海大学学报.Vol.27.1999(5):39-42.
    [127] W.X. Zhu, D.J. Smith. On the use of displacement extrapolation to obtain crack tip singular stress and stress intensity factors. Engineering Fracture Mechanics. Vol. 51. 1995(3):391-400.
    [128] F.C.M. ienandro, E.T. Moyer, JR, H. Liebowitz. A near optimal crack tip mesh. Engineering Fracture Mechanics. Vol. 50. 1995(5/6):703-711.
    [129] F.C.M. Menandro, E.T. Moyer, JR, H. Liebowitz. A methodology for crack tip mesh design. Engineering Fracture Mechanics. Vol. 50. 1995(5/6):713-726.
    [130] D.K.L. Tsang, S.O. Oyadiji, A.Y.T. Leung. Multiple penny-shaped cracks interaction in a finite body and their effect on stress intensity factor. Engineering Fracture Mechanics. 2003(70):2199-2214.
    [131] B.D. Fehl, K.Z. Truman. An evaluation of fracture mechanics quarter-point displacement techniques used for computing stress intensity factors. Engineering StructUres. 1999(21): 406-415.
    
    [132] F.E. Amparano, Yunping Xi, Young-sook Roh. Experimental study on the effect of aggregate content on fracture behavior of concrete. Engineering Fracture Mechanics. 2000(67):65-84.
    [133] H. Liebowitz, J.S. Sandhu, J.D. Lee, F.C.M. Menandro. Computational fracture mechanics: research and application. Engineering Fracture Mechanics. Vol. 50. 1995(5/6):653-670.
    [134] Koji Otsuka, Hidehumi Date. Fracture process zone in concrete tension specimen. Engineering Fracture Mechanics. 2000(65):111-131.
    [135] G.A. Plizzari, V.E. Saouma, Linear or nonlinear fracture mechanics of concrete? In Proceedings of Second International Conference on Fracture Mechanics of Concrete Structures FraMCoS2, ed. F.H. Wittmann. Zurich, Switzerland, March, Aedificato 1994:1377-1386.
    [135] G. A. Plizzari. On the influence of uplift pressure in concrete gravity dams. Engineering Fracture Mechanics. Vol. 59. 1998(3):253-267.
    [136] G.A. Plizzari. LEFM applications to concrete gravity dams. Journal of engineering mechanics. 1997(8):808-815.
    [137] E. Bruhwiler, V. Saouma. Water fracture interaction in concrete; part Ⅱ - Hydrostatic pressures cracks. ACI Materials Journal. 1995, 93(4): 383-390.
    [138] Volker Slowik, V.E. Saouma. Water pressure in propagating concrete cracks. Journal of engineering mechanics. 2000(2):235-242.
    [139] 徐道远、符晓陵、朱为玄.混凝土系列K判据及其临界曲面.工程力学.1996(增刊):38-43.
    [140] F. Erdogan, G.C. Sih. On the crack extension in plates under plane loading and transverse shear. Journal of Basic Engineering. 1963(85):519-527.
    [141] A. Ghobarah, M. Ghaemian. Experimental study of small scale dam models. Journal of engineering mechanics. 1998(11):1241-1248.
    [142] H. Xie. Effects of fractal crack. Theoretical and applied fracture mechanics. 1995(23): 235-244.
    [143] F.H. Wittmann. Structure of concrete with respect to crack formation. In: Fracture Mechanics of Concrete. Netherlands: Elsevier Science Publishers. 1989:43-74.
    [144] 朱万成、赵启林、唐春安、卓家寿.混凝土断裂过程的力学模型与数值模拟.力学进展.Vol.32.2002(9):579-598.
    [145] 刘光廷、王宗敏.用随机骨料模型数值模拟混凝土材料的断裂.清华大学学报.Vol.36.1996(1):14-19.
    [146] 高政国、刘光廷.二维混凝土随机骨料模型研究.清华大学学报.Vol.43.2003(5):710-714.
    [147] 王宝庭、宋王普、赵国藩.混凝土随机颗粒模型的网格自动剖分方法.大连理工大学学报.Vol.39.1999(3):445-450.
    [148] 杨强、张治、周维垣.基于格构模型的岩石类材料破坏过程的数值模拟.水利学报.2002(4):46-50.
    
    [149]张君、王林、孙明、刘骞.粗细骨料比例和水泥石强度对混凝土断裂参数的影响.工程力学.Vol.21.2004(1):136-142.
    [150]J.G.M. Van Mier, A. Vervuurt, M.R.A. Van Vliet. Materials engineering of cement-based composites using lattice models. In: A. Carpinteri, M. Aliabadi, eds. Computational Fracture Mechanics in Concrete Technology, Southampton: WIT Press. 1999:1-32.
    [151]吴锋.混凝土材料破坏过程的细观数值模拟[学位论文].南京:河海大学.2004年3月.
    [152]朱万成、唐春安、赵文、滕锦光.混凝土试样在静态载荷作用下断裂过程的数值模拟研究.工程力学.Vol.19.2002(6):148-153.
    [153]朱万成、林天革、唐春安等.混凝土拉伸断裂过程及尺寸效应的数值模拟.岩土力学.Vol.23.2002(2):147-151.
    [154]朱万成、唐春安、滕锦光、赵文.混凝土细观力学性质对宏观断裂过程影响的数值试验.三峽大学学报.Vol.26.2004(1):22-26.
    [155]黎保琨、彭一江.碾压混凝土试件细观损伤断裂的强度与尺寸效应分析.华北水利水电学院学报.Vol.22.2001(3):50-53.
    [156]E. Schlangen, J.G.M. Van Mier. Simple lattice model for numerical simulation of fracture of concrete materials and structures. Materials and Structures, 1992(25)::534-542.
    [157]宋玉普.多种混凝土材料的本构关系和破坏准则.北京:中国水利水电出版社.2002年12月.
    [158]唐春安、朱万成.混凝土损伤与断裂—数值试验.北京:科学出版社.2003年1月.
    [159]阂卫东、唐泽圣.二维任意域内点集的Delaunay三角划分的研究.计算机学报.Vol.18.1995(5):357-364.
    [160]方锡武、崔汉国.有限元网格自动生成的Delaunay算法.海军工程学院学报.1998(4):31-35.
    [161]H. Los. A new mesh generation scheme for arbitrary planar domains. International Journal for Numerical Method in Engineering. 1985(21):1403-1426.
    [162]赵武、王旭生.成非结构网络的改进阵面推进法.航空计算技术.Vol.33.2003(1):26-29.
    [163]王平、朱自强.二维非结构网格的生成及其Euler方程解.北京航空航天大学学报.Vol.26.2000(2):190-193.
    [164]G. Giaccio, R. Zerbino. Failure mechanism of concrete. Adv Cem Bas Mat. 1998(7):41-48.
    [165]A.R. Mohamed, W. Hansen. Micromechanical modeling of crack-aggregate interaction in concrete. Cement & Concrete Composites. 1999(21):349-359.
    [166]B.K.Raghuprasad, D.N. Bhat, G. S. Bhattacharya. Simulation of fracture in a quasibrittle material in direct tension - a lattice model. Engineering Fracture Mechanics. 1998(61):445-460.
    [167]M.G.D. Geers, R. de Borst, R.H.J. Peerlingsa. Damage and crack modeling in single-edge and double-edge notched concrete beams. Engineering Fracture Mechanics. 2000(65):247-261.
    [168]J.H. Hanson, A.R.Ingraffea. Using numerical simulations to compare the fracture toughness values for concrete from the size-effect, two-parameter and fictitious crack models. Engineering Fracture Mechanics. 2003(70):1015 -1027.
    [1
    
    [169]Z.P. Bazant. Concrete fracture models: testing and practice. Engineering Fracture Mechanics, 2002(69):165-205.
    [170]陈惠发、A.F.萨里普.土木工程材料的本构方程(第一卷 弹性与建模).武汉:华中科技大学出版社.2001年.
    [171]C.A. Tang. Numerical simulation on progressive failure leading to collapse and associated seismicity. International Journal of Rock Mechanics and Mining Science. Vol. 34. 1997(2):249-261.
    [172]S. Sener, M. Begimgil, C. Belgin. Size effect on failure of concrete beams with and without steel fibers. Journal of Materials in Civil Engineering. 2002(9):436-440.
    [173]A. Carpinteri, G. Ferro, S. Invernizzi. The nominal tensile strength of disordered materials - A statistical fracture mechanics approach. Engineering Fracture Mechanics. Vol. 58. 1997(5/6):421-435.
    [174]高峰、谢和平.脆性材料的分形统计强度理论.固体力学学报.Vol.17.1996(3):239-245.
    [175]F. Barp, S. Valente. Numerical Simulation of Prenotched Gravity Dam Models. Journal of Engineering Mechanics. Vo1.126.2000(6):611-619.
    [176]G.V. Guinea, J. Planas, M. Elices. KI evaluation by the displacement extrapolation technique. Engineering Fracture Mechanics. 2000(66):243-255.
    [177]A. Carpinteri, G.P.Yang. Fractal dimension evolution of microcrack net in disordered materials. Theoretical and Applied Fracture Mechanics. 1996(25):73-81.
    [178]E. Ducourthial, E. Bouchaud, J.-L. Chaboche. Infuence of microcracks on a propagation of macrocracks. Computational Materials Science. 2000(19):229-234.
    [179]M.R.A. van Vliet, J.G.M. van Mier. Experimental investigation of size effect in concrete and sandstone under uniaxial tension. Engineering Fracture Mechanics. 2000(65):165-188.
    [180]A.V. Dyskin, M.R.A. Van Vliet, J.G.M. Van Mier. Size effect in tensile strength caused by stress fluctuations. International Journal of Fracture. 2001(108):43-61.
    [181]J.P. Petti, R.H. Dodds Jr. Coupling if the weibull stress model and macroscale models to predict cleavage fracture. Engineering Fracture Mechanics. 2004(71):2079-2103.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700