用户名: 密码: 验证码:
红松与濒危植物前红松的比较研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文从结构植物学、植物生理生化和分子生物学等学科对红松(Pinus koraiensis Sieb. et Zucc. )及前红松(Pinus prokoraiensis Y. T. Zhao, J. M. Lu et A. G. GU)进行了比较研究。结构植物学采用二维透射的光学显微镜技术和三维立体的扫描电子显微镜技术相结合的研究方法对红松及前红松的根、茎、叶的解剖结构进行了系列的比较观察。在植物生理生化方面对红松及前红松的叶绿素含量、光合速率、蒸腾速率、气孔导度、水势、水分利用效率、过氧化物酶的活性及其同工酶、超氧化物歧化酶活性及其同工酶、酯酶同工酶等内容进行了试验测定。利用分子生物学技术分别对红松及前红松的叶绿体基因rbcL,线粒体基因nad5和核基因4CL的序列进行了研究。
     实验结果表明:前红松叶横切面的背面叶下皮层细胞只有一层,而红松除一层下皮层外,还有间断的第二层下皮层。叶的纵切面,前红松叶脉维管束的管胞分子内壁有螺纹加厚,而红松的管胞分子无螺纹加厚。前红松角质层内表面胞间凸缘深波浪形,很明显,而红松的角质层内表面胞间凸缘浅波浪形,不明显。
     前红松与红松茎的初生结构都有一层表皮,其上尘有毛状附属物,一种为腺毛,一种为针状毛,气孔均具有孔下室。皮层由薄壁细胞和含树脂、丹宁的细胞组成,期间分布2圈树脂道。前红松的皮层内的外圈树脂道平均直径39±0.24μm,内圈树脂道平均直径63±0.41μm;而红松的皮层内的外圈树脂道平均直径34±0.21μm,内圈树脂道平均直径55±0.31μm。髓山薄壁细胞及含树脂、丹宁的细胞构成。对茎次生结构的比较,前红松与红松的皮层内含有许多树脂道及含树脂的细胞,韧皮部中含有蛋白细胞,髓由薄壁细胞及含树脂、丹宁的细胞组成。红松的木质部的年轮比较规则,而前红松的年轮不规则。但二者年轮的早、晚材均为渐变形。
    
    离析了的前红松与红松早材的管胞形态相似,管胞端部钝型或尖
    削,前红松的管胞长2.65士0.12mm,宽37.52士0.22,m,
    壁厚2.47士0.12 pm;红松的管胞端部尖削,平滑型,管胞长2.43
    士0.1 lmm,宽37.12士0.23 pm,壁厚2.24士0.09 pm。比
    较前红松与红松茎晚材的管胞,二者端部尖削,前红松的管胞长2.54
    士0.Ostnfn,宽36.58土0.21协m,壁厚2.51士0.11 pm,胞壁
    有螺纹加厚;红松的管胞长2.41士0.06llun,宽36.32士0.24 pm,
    壁厚2.31士0.13 pm,胞壁光滑。
     对茎交叉场纹孔的比较,红松的交叉场纹孔为窗格状,纹孔缘明
    显,纹孔口主要为圆形,交叉场纹孔1一2个;前红松的交叉场纹孔也
    是窗格状,纹孔缘明显,纹孔口主要是椭圆形,有时可见长条形,交
    叉场纹孔1一4个。
     从前红松与红松幼苗根的横切面可见,前红松根的维管柱初生木
    质部为三原型,初生木质部中不含髓薄壁细胞。在三原初生木质部的
    三个原生木质束脊外侧,相对伴有3个较大树脂道,其直径是远离根
    中心的树脂道直径的3倍多。树脂道泌脂细胞为薄壁型。在前红松根
    的树脂道中拟侵填体少见,根的次生木质部年轮明显。红松根维管柱
    为五原型,在初生木质部的5个原生木质束脊的外侧,也都相对存在
    5个直径较大的树脂道,其直径亦为远离根中心的树脂道直径的3倍
    多。与前红松不同的是红松根中的树脂道内大多含有拟侵填体。在红
    松根的维管柱内存在五角形的髓,髓细胞为薄壁型的基本组织,其中
    有的髓细胞含有蛋白质,为蛋白细胞。根的次生木质部年轮的早材与
    晚材为渐变形,年轮明显。
     对前红松与红松根早材管胞的比较,前红松的管胞钝型端部,长
    2.71士0.Ogmm,宽37.58士0.21 pm,壁厚2.44士0.13p
    m;红松的管胞线形,端部尖削,平滑型,长2.52士0.08二,宽
    37.19士0.19 pm,壁厚2.39土0.15 pm。前红松与红松晚材的管
    胞端部平滑型,前红松的管胞长2.58士0.09mm,宽36.46士0.19
    pm,壁厚2.45士0.11协m;红松的管胞长2.38士0.Osmm,
    宽36.11士0.21 pm,壁厚2.21士0.09 pm。
    
    比较前红松与红松根材,在横切面上,二者早材与晚材都为渐变,
    区别不明显,年轮的宽窄相近。早材中的树脂道较多,前红松树脂道
    8一10个/mfnZ;红松树脂道5一7个/二2,二者的树脂道都含有拟侵
    填体;木射线多为一列细胞。径向切面上,前红松与红松根管胞的径
    向壁上多含一列具缘纹孔,早材管胞径向壁上的纹孔比晚材多。前红
    松的纹孔分布较密,而红松的纹孔分布稀疏。前红松的木射线管胞较
    多,明显,内壁光滑,交叉场纹孔为窗格状,交叉场纹孔1一4个,纹
    孔缘明显可见,纹孔口长椭圆形或近圆形;红松的木射线管胞较少,
    内壁光滑,交叉场纹孔为典型的窗格状,纹孔缘较明显,纹孔口近圆
    形,交叉场纹孔l一4个。切向切面上,前红松的单列木射线由1一13个
    细胞构成,多数4一7个细胞,纺锤木射线O一2个/fI’IIn2;红松的单列
    木射线由1一10个细胞构成,多数2一6个细胞,纺锤木射线O一1个
    /mlnZ。前红松与红松都含横向树脂道,分泌细胞5一6个,为薄壁细
    胞。
     从管胞分子的形态看,前红松的管胞分子的长度、长宽比无论是
    茎材,还是根材都比红松的管胞分子长、宽。但二者的壁腔比数值相
    近或相等。
     植物生理生化方面测定结果,前红松叶无论是叶绿素a,b,还是
    类胡萝卜素含量都
A comparative study on Pinus koraiensis Sieb. et Zucc.and P. prokoraiensis Y. T. Zhao, J. M. Lu et A. G. Gu. from three points of view-structural botany, plant physiological and biological chemistry, and molecular biology was carried out. Observe the structures of the roots, stems and leaves of P. koraiensis and P. prokoraiensis by photomicroscop and electric microscop for structural botany study. Measure chlorophyll contents, photosynthesis, transpirational rate, stomatal conductance, water patential, water use efficiency, peroxidase activities and its isozyme, superoxide dismutase activities and its isozyme, and esterase isozymes of P. koraiensis and P. prokoraiensis for plant physiological and biological chemistry study. Sequence the chloroplast rbcL gene, mitochondrial nad5 gene and nuclear 4CL gene of P. koraiensis and P. prokoraiensis for molecular biology study.The results of the structural botany were followed. The transverse section of hypodermis on the dorsal leaves of the needles only had one-layer cells in P. prokoraiensis, but there were another second discontinuous hypodermis in P. koraiensis. There were spiral thickenings on inner wall of tracheids of P. prokoraiensis, but there weren't in P. koraiensis. The intercellular flange in cuticle superficies interna of Pinus prokoraiensis leaves was superficial undulate and thick but that of Pinus koraiensis leaves was profound undulate and thin.The primary structure of their stems both had one layer epidermis on which there were glandular hairs and needle-shaped hairs. The pith was composed of parenchyma cells contained resin and tannin; cortex was also composed of parenchyma cells contained resin and tannin in which distributing tow circles of resin ducts. Outside resin ducts of P. prokoraiensis' cortex were 39 0.24 um in diameter on average, and inside resin ducts were 63 0.41 u m in diameter on average. Moreover, outside resin ducts of P. koraiensis' cortex were 34 0.21 u m in diameter
    
    on average, and inside resin ducts were 55 0.31 um in diameter on average. Cortex of P. koraiensis and P. prokoraiensis contained many resin ducts and resin cells. Their phloems both contained albuminous cells. The annual ring of P. koraiensis s xylem was comparatively regular, but that of P. prokoraiensis s xylem was irregular.The tracheids configuration of early wood of P. koraiensis and P. prokoraiensis were similar. P. prokoraiensis's tracheids end were blunt or tine,and the tracheids were 2.65 0.12mm long, 37.52 + 0.22 u m wide, 2.47 + 0.12um in wall thickness; P. koraiensis's tracheids end were tine and smooth , tracheids were 2.43 + 0.11mm long, 37.12 + 0.23 w m wide, 2.24 +0.09 wm in wall thickness. The tracheids of later wood of P. koraiensis and P. prokoraiensis were all tine. The tracheids of P. prokoraiensis were 2.54 0.08mm long, 36.58+0.21 urn wide, 2.51 + 0.11 m in wall thickness and hade spiral thickenings.The P. koraiensis's tracheids were 2.41+0.06mm long, 36.32+0.24 u m wide, 2.31+0.13 m in wall thickness. The cross field pits of P. koraiensis was window-like and the number was from one to two, pit border was evidence, and pit aperture was mostly rotundity; P. prokoraiensis's cross field pit was window-like and the number was from one to four, pit border was distinct, and pit aperture was ellipse or strip- typed sometimes.Through the cross section of root, it clearly showed that the primary xylem was triarch and there was no thin-walled cells of pith in the center of primary xylem. At the side of three protoxylem bundles, there were resin ducks and the fat-secreting cells are thin-walled. There was no tylosoid in the resin ducks of P.prokoraiensis. The diameter of the resin duck opposite the triarch protoxylem ridge was big, as three times as of that of the resin duck far from the centure of the root. The annual rings were obvious. Through the cross section of root of P. koraiensis, it's easy to find that the primary xylem was pentarch. The diameter of the resin duck opposite the pentarch protoxylem ridge was big, as three times as that of the re
引文
1 李楠.论松科植物的地理分布、起源和扩散[J].植物分类学报,1995,33(2):105-130.
    2 王荷生.中国松科植物的分布型和区系分析[J].植物研究,2000,20(1):12-19.
    3 李林初.松科的核型和系统发育研究[J].植物分类学报,1995,33(5):417-432.
    4 周云龙主编.植物生物学[M].高等教育出版社,2000,11,404.
    5 中国科学院植物研究所形态细胞研究室比较形态组.松树—形态结构与发育[M].科学出版社,1978,8,第1版.
    6 Shaw G R. The genus Pnus[M]. (Arnold Arboretum Pub. No. 5). Houghton Mifflin Co. Boston. 1914.
    7 Shaw G R. Notes on the genus Pinus[J]. Aronold Arboretum Jour. 1924, 5: 225-227.
    8 Cheng W C. A Study of Chinese pines[J]. Contr. Biol. Lab. Sci. Soc. China. Bot. Ser. 1930, 6(12): 5-12.
    9 吴中伦.中国松属的分类与分布[J].植物分类学报,1956,5(3):131-163.
    10 郑万均,傅立国.中国植物志 (第七卷)[M].科学出版社,1978。
    11 马建路.天然红松混交林的演化史[J].东北林业大学学报,1997,25(5):66-70.
    12 张群,范少辉,沈海龙.红松混交林中红松幼树生长环境的研究进展及展望[J].林业科学研究,2003,16(2):216-234.
    13 周以良主编.黑龙江省树木志[M].哈尔滨:黑龙江科学技术出版社,1986.
    14 马建路.红松的地理分布[J].东北林业大学学报,1992,20(5):40-48。
    15 赵光仪.关于西伯利亚红松在大兴安岭的分布以及我国红松北限的探讨[J].东北林学院学报,1981,2:31-38。
    
    16 王业遽.阔叶红松林[M].哈尔滨:东北林业大学出版社,1995.
    17 王凤有.红松研究(Ⅰ)[M].哈尔滨:东北林业大学出版社,1994.
    18 李景文.红松混交林生态与经营[M].哈尔滨:东北林业大学出版社,1997.
    19 丁尘永.红松人工林培养理论与技术[M]。哈尔滨:黑龙江科学技术出版社,1994.
    20 中国科学院林业土壤研究所.红松林[M].北京:农业出版社,1980.
    21 陶大立.红松天然更新对动物的依赖性[J].生物多样性,1995,3(2):131-133.
    22 李东亮,王本俊,王瑞杰,丁长富.内蒙古大兴安岭栽培红松的研究[J].植物研究,2000,20(3):294-299.
    23 张群,范少辉,沈海龙,红松混交林中红松幼树生长环境的研究进展及展望[J].林业科学研究,2003,16(2):216-234.
    24 赵毓棠,陆静梅,谷安根.中国东北松属一新种[J].植物研究,1990,10(4):69-70.
    25 付沛云.东北植物检索表[M].农业出版社,1995,56-61.
    26 陆静梅,谷安根.前红松木材解剖研究[J].植物研究,1990,10(4):71-76.
    27 胡阿林,陆静梅,景德璋.前红松管胞螺纹加厚的立体观察[J].电子显微学报,1993,12(3):218-222.
    28 陆静梅,韩丽娟,佟德娟等.两种松树针叶的扫描电镜观察[J].长春师院学报自然科学版,1991,1:41-43。
    29 景德璋,陆静梅.电子显微镜扫描制样技术研究[J].通化师院学报自然科学版,1990,4:31-33.
    30 Alvin K L, Boulter M C. A controlled method of comparative study for Taxodiaceous leaf cuticles[J]. Bot. J. Lpnn. Soc. 1974, 69: 277-286.
    31 李正理.植物制片学[M].北京:北京大学出版社,1994,第二版.
    32 王彦涵,林鉴钊.松科4属植物茎初生结构比较研究[J].西北植物学报,2000,20(5):852-855.
    
    33 朱广廉,钟诲文,张爱琴.植物生理学实验指导[M].北京:北京大学出版社,1990,51-54.
    34 李琳,焦新之.应用蛋白质染色剂考马斯亮蓝G-250测定蛋白质的方法[J].植物生理学通讯,1980,16(6):52-55.
    35 Schrauwen P. Nachweis yon enzymen nach electrophoretischer trennung an polyacrylamid saulchen[J]. J. Chromatog. 1966, 23: 178.
    36 罗广华,王爱国.植物SOD的凝胶电泳及活性的显示[J].植物生理学通讯,1983,6:44-45。
    37 吴少伯.植物组织中蛋白质及同工酶聚丙烯酰胺凝胶盘状电泳[J].植物生理学通讯,1979,1:30-33.
    38 Omran R G. Peroxide levels and the activities of catalase, peroxidase and indoleacetic acid oxidase during after chilling cucumber seedlings[J]. Plant Physiol. 1980, 65(2): 407-408.
    39 Giannopolitis C N, Ries S K. Superoxide dismutase. Purification and quantitative ralationship with water-soluble protein in seedlings[J].Plant Physiol. 1977, 59(2): 315-318.
    40 Doyle J J, Doyle J L. A papid DNA isolation procedure for small quantities of fresh leaf tissue[J]. Phytochem Bull. 1987, 19: 11-19
    41 魏岩,谭敦炎,尹林克.中国柽柳科植物叶解剖特征与分类关系的探讨[J].西北植物学报,1999,19(1):113-118.
    42 熊子仙,杜青,王启德.国产杜鹃花叶解剖与分类群[J].广西植物,2000,20(4):335-338.
    43 赵晟,孙同兴,吴鸿,李秉滔.中国囊辦木属和野独活属植物叶形态结构的比较及分类意义[J]。华南农业大学学报,2001,22(4):66-70。
    44 孙同兴,吴鸿,李秉滔,孙瑾,郑兴峰.中国假鹰爪属和皂帽 花属叶的形态结构及其分类意义[J].植物分类学报,2002,40(5):385-395.
    45
    
    45 Gupta A K, Murty Y S. The leaf epidermal structures in tamaricaceae[J]. Society for advancement of botany. 1984, 12(2): 200-204.
    46 Hayata B, Satake Y. Contributions to the knowledge of the systematic anatomy of some Japanese plants[J]. Bot. Mag. Tokyo. 1929, 43; 73-106.
    47 Durrell L W. Notes on North American conifers based on leaf characters[J]. Proc. Iowa Acad. Sci. 1916, 23: 519-532.
    48 HO C C. Leaf anatomy of Chinese species of Podocarpus[J]. Bot. Bull. of Academia Sinica. 1950, 3(4): 146-150.
    49 Liu T S. A monograph of the genus Abies [J]. Dep. Fores. College of Agricultural National Taiwan University.[M] 1971.
    50 Marco H F. The anatomy of spruce needles [J]. J. Agric. Res. 1939, 58: 357-168.
    51 Usu J. Anatomy of the leaves of conifers of North China[J]. Sci. Rep. Nat. Univ. Peking. 1936, 1(1): 39-58.
    52 Esau K. Anatomy of seed plants. (2nd ed.) John Wiley & Sons. [M] 1977.
    53 姚壁君,胡玉熹。松柏类植物叶子的比较解剖观察[J].植物分类学报,1982,20(3):275-294.
    54 桂耀林,李正理.中国松属针叶的比较解剖观察[J].植物学报,1963,11(1):44-66.
    55 吴小琴,朱锦懋,黄儒珠,王钦丽,郑文菊等.白皮松针叶内皮层中具凯氏带的证据[J].植物学报,2001,43(10):1081-1084.
    56 Pfizer E. Beitrage zur kenntniss der Hautgewebe der pflanze, Ⅲ. Uber die mehrschichtige Epidermis und das Hypodermis, mit Tafel Ⅳ[J].Pringsheim Bot. Jahrb. wiss. Bot. 1872, 8: 16-73.
    57
    
    57 Ludwing, F.J. The Cuticles of Plants. In: Martin, J.T. ed. London: Edward Arnold Ltd. Press, [M]1757, 50.
    58 陈萍.两种植物化石表皮角质层的研究[J].中国煤田地质,1998,10(2):14-18。
    59 Stace, C.A. Cuticular Studies as Anaid to Plant Taxonomy[J]. Bull. Brit. Musm. (Natl. His.) Bot. 1965, 4(1): 41-50
    60 孙柏年,闫德飞,石亚军等.植物化石角质层分析在环境地质中的应用[J].地学前缘,2001,8(1):21。
    61 Boulter, M.C. Fine Detail of some Fossil and Recent Conifer Leaf Cuticles. In: Heywood VH ed. Scanning Electron Microscopy: Systematic and Evolutionary Applications. London: Academic Press.[M]1971.
    62 焦瑜,刘照华,宋书银.观音座莲目的角质层特征[J].云南植物研究,1999,21(3):929-332.
    63 王伟,赵南先.天南星科叶表皮研究[J].武汉植物研究,2002,20(5):343-349.
    64 李萍,濮祖茂,蒋鑫等.叶表面角质层在贝母属植物叶鉴定中的意义[J].植物资源与环境,1994,3(3):60-63.
    65 曾明,张汉明 郑永庆等.花冠表面角质层在葛属植物及生药葛花鉴定中的意义[J].中国中药杂志,1998,23(7):387-389.
    66 Florin, R. Untersuchungen zur Stammesgeschichet der Coniferales und Cordaitales. (Ⅰ) Morphologie und Epidermisstruktur der Assimilationsorgane bei der re zenten Koniferen[J]. Kungl Svenska Vetensk Akad Handl, Ser. 1931, 3(10): 1-588.
    67 Florin, R. On the Jurrassic Taxada and Conifers from North-Western Europ and Eastern greenland[J]. Acta Hort Berg, 1958, 17(10): 259-388.
    68 Miranda, V. and Chaphekar, M. SEM study of the inner periclinal surface of leaf cuticles in the family Pinaceae[J]. Bot. J. Linn. Soc. 1980, 81: 61-78.
    69
    
    69 向巧萍,傅立国.冷杉属植物叶角质层内表面的观察及其系统学意义[J].植物分类学报,1998,36(5):441-449.
    70 胡玉熹.松属针叶角质层内表面结构的扫描电镜观察[J].植物分类学报,1986,24(6):464-468。
    71 陆静梅,唐家军,吴伟,杨凤清.红松根和茎木材解剖研究[J].东北师范大学学报,1991,3:73-76.
    72 I. A. W. A. Multiligual Glossary of Terms Used in Wood Anatomy. I. A. W. A. Committee on Nomemclature, Verlagsanstalt Buchdruckerei konkordia Winterthur. [M] 1964.
    73 陈柏林,彭海源,李国范.东北针叶树材交叉场纹孔扫描电镜观察[J].东北林业大学学报,1988,16(3):50-54.
    74 Sun Q, Yoda K, Suzuki M, Suzuki H. Vascular tissue in the stem and roots of woody plants can conduct light [J]. J. Exp. Bot. 2003. 54: 1627-1635.
    75 周釜,姜笑梅.裸子植物木材交叉场纹孔的电镜观察研究[J].植物学报,1988,30(5):494-500.
    76 Phillips E W J. Identification of Softwoods by Their Microscopic Structure. London, [M] 1948.
    77 Greguss P. Identification of living gymnosperms on the basis of xylotomy, Akademiai Kiado, Budapest, [M] 1955.
    78 Barefoot A C. and Hankins F W. Isetification of Modern and Tertiary Woods. Oxford. [M] 1982.
    79 彭海源,安玉贤,乔玉娟等.东北针叶树材超微构造观察[J].东北林业大学学报,1985,13(4):8-12.
    80 陆时万,徐祥尘,沈敏健.植物学(上册)[M].高等教育出版社,1991,第4版.
    81 Fahn A. Plant anatomy, (3rd editin), pergamon press, [M]1982.
    82 赵鹏。木材组成分子的侧壁纹孔式[J].植物学通报,1995,12(3): 28-30.
    83
    
    83 Rieger M, Litvin P. Root system hydraulic conductivity in species with contrasting root anatomy[J]. J. Exp. Bot. 1999, 50: 201-209.
    84 李扬汉.植物学[M].上海科学技术出版社,1984,2,第2版.
    85 Paoli]lo D J, Zobel R W. The formation of adventitious roots on root axes is a widespread occurrence in field-grown dicotyledonous plants[J]. Am. J. Bot. 2002, 89: 1361-1372.
    86 Iawa C. List of microscopic features for hardwood identification[J]. I. A. W. A. 1989, 3: 34-41.
    87 Parham R A, Hilkka K. On the morphology of spiral thickenings[J]. I. A. W. A. 1973, 3: 23-31.
    88 Sherwin C. Comparative wood anatomy. Springer-Verlag. Berlin Heidelberg New York, [M]1988.
    89 Uebel F M. Sawdonia ornate a new name for Psilophyton princeps: the VaT. ornatum[J]. Taxon. 1971, 20: 641-642.
    90 Ohtani J. Vestwres of worts-Proposed terminology[J]. I. A. W. A. [J] 1984, 1: 3-8.
    91 喻诚鸿.裸子植物次生木质部的进化趋势.植物分类学报,1981,19(2):179-183。
    92 喻诚鸿.次生木质部的进化与植物系统发育的关系[J].植物学报,1954,3:183-196。
    93 Alley I W, Tupper W W. Size variation in tracheary cells Ⅰ. A comparison between the secondary xylem of vascular cryptogams, gymnosperms and angiosperms[J]. Proc. Amer. Acad. Arts & Sci. 1918, 54: 149-204.
    94 邱肇荣,刘君良,张士诚.长白落叶松木材管胞长度的变异研究[J]。吉林林学院学报,1996,12(3):156-158.
    95 姜笑梅,骆秀琴,陈益泰,文济伟.杉木材性株内的变异.Ⅱ管胞形态的变异[J].林业科学,1997,33(5):441-446. contral. Springer-Veriag. [M]1989.
    97
    
    97 徐有明,邹明宏,唐万鹏,苏凤泉,胡幸宜等.火炬松种源木材管胞特征的差异分析[J].南京林业大学学报,2002,26(5):15-20.
    98 Ren X Q, Wang Q Y, Li F J. Study on tracheid variation of Picea koraiensis (nakai) in natural stand and plantation[J]. Journalof Forestry Research. 2001, 12(2): 115-118.
    99 成俊卿,杨家驹,刘鹏.中国木材志[M].北京:中国林业出版社,1992.
    100 沈同,王镜岩.生物化学(上册)[M].高等教育出版社,1990.
    101 Mullis K. Specific synthesis of DNAinvitroviaapolymerase catalyzed chain reaction[M]. Methods Enzymol. 1987, 155: 335-350.
    102 龚秦秦.同工酶与基因[J]。遗传与育种,1978,6:22-23.
    103 周光宇.有关同工酶分析中的几个问题[J].植物生理学通讯,1981,1:1-4.
    104 李继耕.植物同工酶在遗传育种研究中的应用[J].作物学报,1980,6(4):245-252.
    105 Markert C L, Moiler F. Multiple form of enzymes: tissue ontogenentic and species specific patterns[J]. Proc. Natl. Acad. Sci. USA. 1959, 45: 753-763.
    106 Gottlieb L D. Electrophoretic evidence and plant systematics[J]. Ann. Missouri. Bot. Gard. 1977, 64: 161-173.
    107 孙中武,祝宁,高瑞馨等.刺五加的同工酶与遗传分化的研究[J].东北林业大学学报,1999,27(2):27-30.
    108 李耘,素怀瑞,石荫坪.苹果二倍体和三倍体的同工酶电泳分析[J].山东农业大学学报,1999,30(1):6-10.
    109 孙中武,祝宁,高瑞馨等.刺五加的同工酶与遗传分化的研究[J]。东北林业大学学报,1999,27(2):27-30.
    110 叶庆生,文李,潘瑞炽.利用同工酶和SDS-PAGE技术对一些兰属品种的分析[J]。热带亚热带植物学报,1999,7(4):337-341.
    
    111 孙中武,祝宁,高瑞馨等.刺五加的同工酶与遗传分化的研究[J].东北林业大学学报,1999,27(2):27-30。
    112 曹宛虹,赵艳茹.西瓜同工酶及可溶性蛋白分析[J].华北农学报,1994,9(2):64-73.
    113 葛超,李秀锦,陈玉民等.4个品种梨果实多酚氧化酶同工酶比较(简报)[J].河北农业技术师范学院学报,1999,13(1):78-80.
    114 胡美华,陈竹君,汪炳良.榨菜胞质雄性不育系及其保持系的ATPase同工酶电泳比较[J].浙江农业学报,1997,9(4):212-214。
    115 刘德立,禹万超,孙义勇等.逆温对水稻幼苗SOD和CAT活性及其同工酶的影响[J].华中师范大学学报,1994,28(4):525-528.
    116 朱治平,唐锡华.高等植物胚胎的发育生物学研究—转录和翻译抑制剂对水稻胚胎发育和萌发过程中过氧化物酶形成的影响[J].中国科学,1981,7:880-885.
    117 李平,余象煌,吕洪飞.杉木雄性不育株小孢子叶球的发育解剖和生理生化的比较研究[J].林业科学,1992,28(2):115-121.
    118 Tarkka M T, Nyman T A, Kalkkinen N, Raudaskosi M. Scots pine expresses short-root-specific peroxidases during development[J]. Eur. J. Biochem. 2001, 268: 86-93.
    119 Sanchez M, Pena M J, Revilla G, Zarra Ⅰ. Changes in dehydrodiferulic acids and peroxidase activity against ferulic acid associated with cell walls during growth of pinus pinaster hypocotyls [J]. Plant physiol. 1996, 111: 941-946.
    120 Barcelo R. Hydrogen peroxide production is a general property of the lignifying xylem from vascular plants [J]. Ann. Bot. 1998, 82: 97-103.
    121 胡志昂.杨属植物的同工过氧化物酶[J]。植物分类学报,1981,19(3):291-297。
    122 李丽。部分国产半夏属植物的微形态特征和同工酶分析及分类学意义[J].云南植物研究,1999,21(4):442-448.
    
    123 吕英民,吕增仁,高锁柱。应用同工酶进行杏属植物演化关系和分类的研究[J].华北农学报,1994,9(4):69-74。
    124 刘芳,孙根楼.赖草属七个种同工酶研究[J].广西植物,1997,17(2):169-173.
    125 鄢本厚,尹祖棠.蓟属二种植物过氧化物同工酶的酶谱式样及其分类学意义[J]。西北植物学报,1995,15(3):184-188.
    126 Premoli A C. Isozyme polymorphisms provide evidence of clinal variation with elevation in Nothofagus pumilio[J]. J. Hered. 2003, 94: 2]8-226.
    127 Amthor J S. Efficiency of ligninbiosynthesis: a quantitative analysis[J]. Ann. Bot. 2003, 91: 673-695.
    128 Scandaios J G. Isozymes in development and differentiation[J]. Ann Rev Plant Physiol, 1974, 25: 225-258.
    129 Ario de Marco, Guzzadi P, Jamet E. Isolation of tobacco isoperoxidases accumulated in cell-suspension culture medium and characterization of activities related to cell walt metabolism[J]. Plant Physiol. 1999, 120: 371-382.
    130 胡志昂,王洪新,阎龙飞.裸子植物的生化系统学[J].植物分类学报,1983,21(4):423-431.
    131 高捍东,沈永生,苑兆和.用过氧化物酶鉴定松属种子的真实性[J].中南林学院学报,1995,15(1):30-32.
    132 陈凤英,曾科文,肖向红等.大兴安岭三类五针松亲缘关系[J].东北林业大学学报,1997,25(6):48-51。
    133 Shea K L, Furnier G R. Genetic variation and population structure in central and isolated populations of balsam fir, Abies balsamea (Pinaceae) [J]. Am. J. Bot. 2002, 89: 783-791.
    134 Kodan A, Kuroda H, Sakai F. A stilbene synthase from Japanese red pine (Pinus densiflora): implications for phytoalexin accumulation and down-regu]ation of flavonoid biosynthesis[J]. PANS. 2002, 99: 3335-3339.
    
    135 晋坤贞,万广辉,秋建邀.磁水对番茄酯酶同工酶的影响[J].西北植物学报,1994,14(2):102-106.
    136 Odrzykosi I J. Inheritance and subcellular localization of triose-phosphate isomerase in dwarf mountain pine (Pinus mugo) [J]. J. Hered. 2001, 92: 271-274.
    137 Chung M Y, Nason J D, Chung M G. Spatial genetic structure in populations of the terrestrial orchid Cephalanthera longibracteata (Orchidaceae) [J]. Am. J. Bot. 2004, 91: 52-57.
    138 Gahan P B. Biochemical Changes during Xylem Element Differentiation. In: Xylem Cell Development(Ed. Barnett J R.). Tubridge Wells: Castle House Publications Ltd. [M] 1981, 168-191.
    139 Tortes A M. Isozyme Analysis of Tree Fruits. In: Isozymes in Plant Biology(Ed. Soltis D E. & Soltis P S.) London: Chapman and Hall Ltd, [M] 1990, 192-205.
    140 Wendel J F, Wenden N F. Vasualization and Interpretation of Plant Isozymes. In: Isozymes in Plant Biology(Ed. Soltis D E. and Soltis P S.)London: Chapman and Hall Ltd, [M] 1990, 5-45.
    141 Volls S, Shulgina I, Ward D, Mendlinger S. Regional subdivision in wild barley allozyme variation: adaptive or neutral? [J]. J. Hered. 2003, 94: 341-351.
    142 Giovannetti M, Sbrana C, Strani P, Agnolucci M, Rinaudo V, Avio L. Genetic diversity of isolates of Glomus mosseae from different geographic areas detected by vegetative compatibility testing and biochemical and molecular analysis[J], Appl. Envir. Microbiol. 2003, 69: 616-624.
    143 陈文炳,张谷曼.中国芋酯酶同工酶类型及品种群分类[J].福建农业大学学报,1997,26(4):421-426。
    144 孙传渭,梁正兰.棉属不同种及品种的酯酶同工酶分析[J].植物学 报,1986,28(3):263-269.
    14
    
    145 叶庆生,文李,潘瑞炽.利用同工酶和SDS-PACE技术对一些兰属品种的分析[J]。热带亚热带植物学报,1999,7(4):337-341.
    146 杜晓明,张娅蛛,杜晓光等。不同产地红皮云杉酯酶同工酶分析[J].林业科技,1995,20(1):6-9.
    147 张淑改,薛俊杰,张芸香.松科四种酯酶同工酶分析[J].山西农业大学学报,1998,18(2):108-109.
    148 Zhelev P, Gomory D, Paule L. Inheritance and linkage of allozymes in a Balkan endemic, pinus peuce Griseb[J]. J. Hered. 2002, 93: 60-63.
    149 Chung M Y, Nason J D, Chung M G. Spatial genetic structure in populations of the terrestrial orchid Cephalanthera longibracteata (Orchidaceae) [J]. Am. J. Bot. 2004, 91: 52-57.
    150 刘芳,孙根楼.赖草属七个种同工酶研究[J].广西植物,1997,17(2):169-173.
    151 Scher R G, Erturk N, Heath L S. Role of superoxide dismutases (SODs) in controlling oxidative stress in plants[J]. J. Exp. Bot. 2002, 53: 1331-1341.
    152 Karpinska B, Karlsson M, Schinkel H, Streller S, Suss K-H, Melzer M, Wingsle G. A novel superoxide dismutase with a high isoelectric point in higher plants. Expression, regulation, and protein ]ocazation[J]. Plant physiol. 2001, 126: 1668-1677.
    153 由继红,杨文杰,李淑云.不同品种紫花苜蓿抗寒性的研究[J].东北师范大学学报,1995,2:102-105.
    154 山继红,陆静梅,杨文杰.钙对苜蓿幼苗抗寒性及相关生理指标影响的研究。草业学报,2003,12(1):30-33.
    155 季成,王崇效,余叔文.凤眼莲超氧化物歧化酶活性与抗寒性的关系[J].植物生理学报,1989,15(2):133-137.
    
    156 Ievinsh G, Ozola D. Spatial distribution of ethylene production by individual needles along a shoot of pinus sylvestris L. : relationship with peroxidase activy[J]. Ann. Bot. 1998, 82: 489-495.
    157 Schinkel H, Streller S, Wingsle G. Multiple forms of extracellular superoxide dismutase in needles, stem tissues and seedlings of scots pine[J]. J. Exp. Bot. 1998, 49: 931-936.
    158 del Rio L A, Sandalio L M. Altomare D A, Zilinskas B A. Mitochondrial and peroxisomal manganese superoxide dismutase: differential expression during leaf senescence[J]. J. Exp. Bot. 2003, 54: 923-933.
    159 Hernandea J A, Fetter M A, Jimenez A, Barcelo A R, Sevilla F. Antioxidant systems and O_2-/H_2O_2 production in the apoplast of pea leaves. Its relation with salt-induced necrotic lesions in minor veins[J]. Plant Physiol. 2001, 127: 817-831.
    160 Osmond C B. Pbotorespiration and photoinhibition. Some implication for the energetics of photosynthesis[J]. Biochim Biophyd Acta. 1981, 639: 77-82.
    161 Powles S B. Photoinhibition of photosynthesis induced by visible light[J]. Ann Rev Plant Physiol. 1984, 35: 15-23.
    162 曾纪晴,刘鸿先,王以柔,陈贻竹.黄瓜子叶在低温下的光抑制及其恢复[J].植物生理学报,1997,23(1):15-20。
    163 Hymus G J, Baker N R, Long S P. Growth in elevated CO_2 can both increase and decrease photochemistry and photoinhibition of photosynthesis in a predictable manner. Dactylis glomerata grown in two levels of nitrogen nutrition[J]. Plant physiol. 2001, 127: 1204-1211.
    164 余叔文,汤章诚.植物生理与分子生物学[M]。北京:科学出版社,第二版,1998,155-170,199-202.
    165 Demming-Adama B, Adamas W W. Photoprotection and other responses of plant to high light stress[J]. Ann Rev Plant Physiol Plant Mol Biol, 1992,43:599-608.
    
    166 Krause G H. Photoinhibition of photosynthesis, A evaluation of damaging and protective mechanisms [J]. Plant Physiol. 1988, 74: 566-572.
    167 Pataki D, Oren R, Phillips N. Responses of sap flux and stomatal conductance of pinus taeda L. trees to stepwise reductions in leaf area[J]. J. Exp. Bot. 1998, 49: 871-878.
    168 Niinemets U, Reichstein M, Staudt M, Seufert G, Tenhunen J D. Stomatal constraints may affect emission of oxygenated monoterpenoids from the foliage of pinus pinea[]]. Plant physiol. 2002, 130: 1371-1385.
    169 Wilkinson S, Clephan A L, Davies W J. Rapid low temperature-induced stomatal closure occurs in cold-tolerant coramelina communis leaves but not in cold-sensitive tobacco leaves, via a mechanism that involves apoplastic calcium but not abscisic acid[J]. Plant phsiol. 2001, 1566-1578.
    170 Kaiser H, Kappen L. Stomatal oscillations at small apertures: indications for an fundamental insufficiency of stomatal feedback-control inherent in the stomatal turgor mechanism[J]. J. Exp. Bot. 2001, 52: 1303-1313.
    171 Guo J, Jermyn W A, Turnbull M H. Diurnal and seasonal photosynthesis in two asparagus cultivars with contrasting yield[J]. Crop Sci. 2002, 42: 399-405.
    172 Yamasaki T, Yamakawa T, Yamane Y, Koike H, Satoh K, Katoh S. Temperature acclimation of photosynthesis and related changes in photosystemll electron transport in winter wheat [J]. Plant Physiol. 2002, 128: 1087-1097.
    173 Cannell M G R, Thornley J H M. Temperature and CO,, responses of leaf canopy photosynthesis: a clarification using the non-rectangular hyperbola model of photosynthesis[J]. Ann. Bot. 1998, 82:883-892.
    17
    
    174 Paul M J, Foyer C H. Sink regulation of photosynthesis[J]. J. Exp. Bot. 2001, 52:1383-1400.
    175 Frak E, Roux X L, Millard P, Adam B, Dreyer E, Escuit C, Sinoquet H, Vandame M, Varlet-Grancher C. Spatial distribution of leaf nitrogen and photosynthetic capacity within the foliage of individual trees:disentangling the effects of local light quality, leaf irradiance, and transpiration[J]. J. Exp. Bot. 2002, 53:2207-2216.
    176 Kellomaki S, Wang K-Y. Modelling and measuring transpiration from scots pine with increased temperature and carbon dioxide enrichmen[J]. Ann. Bot. 2000, 85:263-278.
    177 傅伟,王天铎.净光合速率与气孔导度相互关系的电学类比分析和模拟研究[J].植物学报,1994,36(7):511-517.
    178 蒋高明,林光辉,Bruno D V Marino.美国生物圈二号内生长在高CO_2浓度下的10种植物气孔导度、蒸腾速率及水分利用效率的变化[J].植物学报,1997,39(6):546-553.
    179 陈拓,秦大河,李江风,任贾文,孙维贞.自然生长树木气孔导度对浓度升高的响应[J].兰州大学学报,2000,36(4):112-116.
    180 Wong S C, Cowan I R, Fasehun F E. Stomatal conductance correlates with photosynthetic capacity[J]. Natute. 1979, 182:424-426.
    181 曹仪植,宋占午.植物生理学[M].兰州:兰州大学出版社,1998,8,33-43.
    182 Boyer, J.S. Leaf enlargement and metablic rates in corn, soybean, and sunflower at various leaf water potentials[J]. Plant Physiol, 1970, 46(1):233-235.
    183 Chapin F S, Bloom A J, Field C B et al. Plant responses to multiple environmental factors[J]. BioScience. 1987, 37(1):49-57.
    18
    
    184 魏书銮,于继洲,宣有林,李登科.核桃叶片的叶绿素含量与光合速率关系的研究[J].北京农业科学,1994,12(5):31-33.
    185 Garty J, Tamir O, Hassid I, Eshel A, Cohen Y, karnieli A, Orlovsky L. photosynthesis, chlorophyll integrity, and spectral reflectance in lichens exposed to air pollution[J]. J. Environ. 2001, 30:884-893.
    186 韦立秀,王凌晖,杨振德,周传明,覃进宁.几种相思树种叶绿素含量的比较研究[J].广西林业科学,2002,31(4):206-207.
    187 吕洪飞,余象利,李平,何福基.杉木雄性不育株与可育株叶绿素含量和硝酸还原酶活力的比较[J].林业科学研究,1995,9(4):330-442.
    188 Oliver R L, Whittington J, Lorenz Z, Webster I T. The influence of vertical mixing on the photoinhibition of variable chlorophyll a fluorescence and its inclusion in a model of phytoplankton photosynthesis[J]. J. Plankton Res. 2003, 25;1107-1129.
    189 潘瑞炽主编.植物生理学[M].第四版北京:高等教育出版社,2001,6,16-21.
    190 Stent H J,Calendar A H. Molecular Genties. 2rd ed. Freeman &Company, [M] 1978.
    191 丁士友,顾红雅,瞿礼嘉,陈章良.PCR产物的RFLP分析在豆科黄芪亚族系统学中的应用[J].植物学报,1995,27:97-102.
    192 Hillis D M, Moritz C. Molecular Systematics[M]. Sunderland, Massachusetts, USA. Sinauer Associates, Inc. Pubishers, 1990, 588.
    193 Mullis K. Specific synthesis of DNA in vitro via a polymerase catalyzed chain reaction. Methods Enzymol. [M]1987,155:335-350.
    194 彭建营,束怀瑞,彭士琪.用RAPD技术探讨中国枣的种下划分[J]. 植物分类学报,2002,40(1):89-94.
    19
    
    195 汪小全,韩英,邓峥嵘等.松科系统发育的分子生物学证据[J].植物分类学报,1997,35(2):97-106.
    196 Baldwin B G, Sanderson M J, Mark Porter J, Wojciechowsi M F, et al. The ITS region of nuclear ribosomal DNA:A valuable source of evidence on angiosperm phylogeny[J]. Ann. Missouri Bot. Gard. 1995,82:247-277.
    197 Olmstead R G, Palmer J D. Chloroplast DNA systematics:A review of methods and data analysis[J]. Amer. J. Bot. 1994, 81(9):1205-1224.
    198 Palmer J D. Mitochondrial DNA in plant systematics:applications and limiations. In Moleculat Systematics of Plants. Soltis P S, Soltis D E, Doyle J J. eds. (New York) London:Chapman and Hall. [M]1992,36-49.
    199 Prager E M, et al. Rate of evolution in conifers(Pinaceae) [J].Evolution. 1976, 30:637-649.
    200 Murray B R. Nuclear DNAamounts in gymnosperms[J]. Ann. Bot. 1998, 82 (Supplement A):3-15.
    201 Kvarnbeden A, Tandre K, Engstrom P. A cdc2 homologue and closely related processed retropseudogenes from Norway spruce[J]. Plant Mol Biol. 1995, 27:391-403.
    202 Hipkins V D, Krutovskii K V, Strauss S H. Organelle genmes in conifers:structure, evolution, and diversity[J]. Forest genetics. 1994,1(4):179-189.
    203 Mogesen H L. The hows and ways of cytoplasmic inheritance inseed plants[J]. Ame J Bot. 1996,83:383-404.
    204 Lee S W, Ledig F T, Johnson D R. Genetic varation at allozyme and RAPD markers in pinus longaeva (Pinaceae) of the white mountains, California[J]. Am. J. Bot. 2002, 89:566-577.
    205 Chaw S M, Parkinson C L, Cheng Y. et al. Seed plant phylogeny inferred from all three plant genomes:Monophyly of extant gymnosperms and origin of Gnetales from conifers [J]. Proc Natl Acad Sci USA. 2000,97:4086-4091.
    
    206 Wang X Q, Tank D C, Sang T. Phylogeny and divergence times in the pine family.evidence from three genomes[J]. Mo1 Biol Evol. 2000, 17(5) :773-781.
    207 Bowe L M, Coat G, dePamphilis C W. Phylogeny of seed plants based on all genomic compartments: Extant gymnosperms are monophyletic and Gnetales' closest relatives are conifers[J]. PNAS. 2000, 97: 4092-4097.
    208 Barkman T J, Chenery G, McNeal J R, Lyons-Weiler J, Ellisens W J, Moore G, Wolfe A D, dePamphilis C W. From the Cover: Independent and combined analyses of sequences from all three genomic compartments converge on the root of flowering plant phylogeny[J]. PNAS. 2000, 97:13166-13171.
    209 Palmer J D, Thompson W F. Chloroplast DNA rearrangements are more frequent when a large inverted repeat seqence is lost[J]. Cell, 1982,29:537-550.
    210 Wolfe K H, Li W H, Sharp P M. Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs[j]. Proc. Natl. Acad. Sci. USA. 1989,29:2089-211.
    211 Olmstead R G, Palmer J D. Chloroplast DNA systematics: A review of methods and data analysis [J]. Amer. J. Bot. 1994, 81(9):1205-1224.
    212 Chase M W, Soltis D E, Olmsted R G, Morgan D, Les D H. et al. Phylogenetics of seed plants: An analysis of nucleotide sequences from the plastid gene rbcL[J]. Ann Missouri Bot Gard. 1993,80:528-580.
    213 Huang J L, Price R A. Estimation of the age of extant Ephedra using chloroplast rbcl sequence data[J]. Mol. Biol. Evol. 2003,20: 435-440.
    
    214 Nickrent D L, Blarer A, Qiu Y L, Soltis D E, Soltis P S, Zais M. Molecular data place Hydnoraceae with Aristolochiaceae[J]. Am. J. Bot. 2002, 89:1809-1817.
    215 Sugiura C, Kobayashi Y, Aoki S, Sugita C, Sugita M. Complete chloroplast DNA sequence of the moss Physcomitrella patens: evidence for the loss and relocation of rpoA from the chloroplast to the nucleus[J]. Nucleic Acid Res. 2003, 31: 5324-5331.
    216 HasebeM, ItoM, Iwatsiti K. et al. Phylogenetic relationships in Gnetophyta deduced from rbcL gene sequences [J]. Bot Mag(Tokyo). 1992,3:385-391.
    217 Maul JE, Lilly J W, Cui L Y, dePamphilis C W, Miller W, Harris E H, Stern D B. The Chlamydomonas reinhardtii plast chromosome: Islands of genes in a sea of repeats[J]. Plant Cell. 2002, 14: 2659-2679.
    218 Kugita M, Kaneko A, Yamamoto Y, Tskrys Y, Matsumoto T, Yohidaga k. The complete nucleotide sequence of the hounwort (Anthoceros formosae) chlorplast genome: insight into the earliest land plants[J]. Nucleic Acid Res. 2003,31:716-721.
    219 Shinozaki K, Sugiura M. The nucleotide sequence of the tobacco chloroplast gene of the large subunit of ribulose-1, 5-bisphosphate carboxylase/oxygenase[J]. Gene. 1982,20:91-102.
    220 Hipkins V D, Tsai C H, Strauss S H. Sequence of the gene for the large subunit of ribulase-1, 5-bisphosphate carboxylase from a gymno sperm, Douglas fir [J]. Plant Mol Biol. 1990, 15: 505-507.
    221 Yoshinaga K, Kubota Y, Ishii T. et al. Nucleotide sequence of atp b, rboL, trnR, dedB and psaI chloroplast genes from a fern Angiopteris lygodiifolia:a possible emergence of spermatophyta lineage before the separation of Bryophyta and Pteridophyta[J]. Plant Mol Biol. 1991,18:79-82.
    22
    
    222 Golenberg E M, Giannasi D E, Clegg M T. et al. Chloroplast DNA sequence from a Miocene Magnolia species[J]. Nature. 1990, 344:656-658.
    223 Soltis P S, Soltis D E, Smiley C J. An rbcL sequence from a Miocene Taxodium (bald cypress) [J].Proc Natl Acad Sci USA. 1992, 89:449-451.
    224 Mukai Y, Yamamoto N, Odani K. et al. Structure and expression of a gene for the large subunit of ribulose-1,5-bisphosphate carboxylase from closely/oxygenase from pine[J]. Plant Cell Physiol. 1991,32:273-282.
    225 Hudson G S, Mahon J D, Anderson P A. et al. Comparisons of rbcL genes for the large subunit of ribulose-1, 5-bisphosphate carboxylase from closely related C_3 and C_4 plant species[J]. J Biol Chem. 1990,265:808-814.
    226 林同香,陈振光.龙眼rbcL基因结构分析[J].园艺学报,1999,26(5):291-296.
    227 黄瑶,马诚,李朝銮等.葡萄叶绿体rbcL基因结构分析[J].植物学报,1994,36(6):444-451.
    228 明镇寰,胡华萃,周劲松等.rbcL基因在水稻叶绿体DNA基因库克隆中的定位[J].杭州大学学报自然科学版,1996,23(1):62-65.
    229 陈之端,汪小全,孙海英等.马尾树科的系统位置:来自rbcL基因核苷酸序列的证据[J].植物分类学报,1998,36(1):1-7.
    230 王艇,苏应娟,C.R.Parks.木兰亚纲的分子系统学研究进展(一)叶绿体rbcL基因序列的分支分析[J].植物学通报,1994,11(4):1-7
    231 TaD S, Daniel J C, Tod F S. Chloroplast DNA phylogeny, Reticulate Evolution, and Biologeography of Paeonia(Paeoniaceae) [J]. Amer. J. Bot. 1997, 84(8):1120-1136.
    23
    
    232 汪小全,韩英,邓峥嵘,洪德元.松科系统发育的分子生物学证据[J].植物分类学报,1997,35(2):97-106.
    233 Wang X Q, Han Y, Hong D Y. PCR-RFLP analysis of the chloroplast gene trnK in the Pinaceae, with special reference to the systematic position of Cathaya[J]. Isr J Plant Sci. 1998,46:265-271.
    234 Tsumura Y, Yoshimura K, Tomaru N, et al. Molecular phylogeny of conifers using RFLP analysis of PCR-amplified specific chloroplast genes[J]. Theor Appl Genet. 1995,91:1222-1236.
    235 Karhu A, Dieterich J H, Savolainen O. Rapid expansion of microsatellite sequences in pines[J]. Mol. Biol. Evol. 2000,17:259-265.
    236 Wang X R, Tsurmura Y, Yoshimaru H. et al. Phylogenetic relationships of Eurasianpines (Pinus, Pinaceae) based on chloroplast rbcL, matK rp120-rps18 spacer, and trn V intron sequences[J]. An J Bot. 1999,86(12):1742-1753.
    237 Wang X Q, Han Y, Hong D Y. A molecular systemtic study of Cathaya, a relic genus of the plnaceae in China[J]. P1 Syst Evol. 1998, 213:165-172.
    238 陈月琴,庄丽,屈良鹄等.“活化石”植物银杏形态与分子进化[J].中山大学学报自然科学版,1999,38(1):16-19.
    239 汪小全,李振宇.rDNA片段的序列分析在苦苣苔亚科系统学研究中的应用[J].植物分类学报,1998,36(2):97-105.
    240 汪小全,邓峥嵘,洪德员.铁破锣属的系统位置—ITS(nrDNA)序列证据[J].植物分类学报,1998,36(5):403-410.
    241 向巧萍,向秋云,Aaron L.等.ITS(nrDNA)片段在冷杉属植物中的长度多态性及其在松科的系统与演化研究中的应用[J].植物学 ,2000, 42 (9): 946-951.
    
    242 Liston A, Robinson W A, Pinero D. et al. Phylogenetics of Pinus(Pinaceae) based on nuclear ribosornal DNA internal transcribed spacer region sequences[J], Mol Phylogenet Evol. 1999, 11: 95-109.
    243 Schubert R, Sperisen C, Mulller-Starch G. et al. The cinnamyl alcohol dehydrogenase gene structure in picea abies (L.) Karst. : genomic sequences, southern hybridization, genetic analysis and phylogenetic relationships [J]. Trees. 1998, 12: 453-463.
    244 Perry D J, Furnier G R. Pinus banksiana has at least seven expressed alcohol dehydrogenase genes in two linked groups[J]. Pro Natl Acad Sci USA. 1996,93: 13020-13023.
    245 Bergmann F, Gilet E M. Phylogenetic relationships among Pinus species (Pinaceae) inferred from different numbers of 6PGDH loci[J]. PI Syst Evol. 1997, 208: 25-34.
    246 Zhao Y, Kung S D, Dube S K. Nucleotide sequence of rice 4-coumarate:CoA ligase gene, 4CL. 1. [J] Nucleic Acids Reseach. 1990, 18(20): 6144.
    247 VooKS, WhettenRW, 0' MalleyDM, Sederoff R R. 4-Cournarate: Coenzyme A Ligase from Loblolly Pine Xylem[J]. Plant Physiol. 1995,108:85-97.
    248 Zhang X H, Chiang V L. Moleecular clong of 4-Coumarate: Coenzyme A Ligase in loblolly pine and the roles of this enzyme in the biosynthesis of lignin in compression wood[J]. Plant Physiol. 1997,113:65-74.
    249 Oh S, ParkS, Han K-H. Transcriptional regulation of secondary growth in Arabidopsis thaliana [J]. J. Exp. Bot. 2003, 54: 2709-2722.
    250 Nair R B, Bastress K L, Ruegger M 0, Denault J W, Chappie C. The Arabidopsis thaliana reduced epidermal fluorescencel gene encodes an aldehyde dehydrogenase involved in ferulic acid and sinapic acid biosynthesis[J]. Plant Cell. 2004, 16: 544-554.
    
    251 Li L G, Cheng X M, Leshkevich J, Umezawa T, Harding S A, Chiang V L. The last step of syringyl monolignol biosynthesis in angiosperms is regulated by a novel gene encoding sinapyl alcohol dehydrogenase[J]. Plant Cell. 2001, 13: 1567-1586.
    252 Nishitani C, Demura T, Fukuda H. Primary phloem-specific expression of a Zinnia eiegans Homeobox gene [J]. Plant Cell Physiol. 2001, 42: 1210-1218.
    253 Lindermayr C, Mollers B, Fliegmann J, Uhlmann A, Lottspeich F, Meimberg H, Ebel J. Divergent members of a soybean(Glycine max L.) 4-coumarate: coenzyme A ligase gene family:primary strctures, catalytic properties, and differential expression[J]. Eur. J. Biochem. 2002, 269: 1304-1315.
    254 Brown G R, Bassoni D L, Gill G P, Fontana J R, Wheeler N C, Megtaw R A, Davis M F, Sewell M M, Tuskan G A, Neale D B. Identification of quantitative trait loci influencing wood property traits in loblolly pine (pinus taeda L.) III.QTL verification and candidate gene mapping[J]. Genetics. 2003, 164: 1537-1546.
    255 Anterola A M, Jeon J-H, Davin L B, Lewis N G. Transcriptional control of monolignol biosynthesis in Pinus taeda. Factors affecting monolignol rations and carbon allocation n phenylpropanoid metabolism[J]. J. Biol.Chem. 2002, 277: 18272-18280.
    256 Meng S W, Chen Z D, Li D Z, Liang H X. Phylogeny of saururaceae inferred from matR sequence data [J]. Act Bot Sin. 2001,43(6): 653-656.
    
    257 Castro L R, Austin A D, Dowton M. Contrating rates of mitochondrial molecular evolution in parasitic diptera and hymenoptera[J]. Mol. Biol. Evol. 2002, 19:1100-1113.
    258 Grande C, Templado J, Cervera J L, Zardoya R. Molecular phylogeny of euthyneura(mollusca: gastropoda) [J]. Mol. Biol. Evol. 2004, 21: 303-313.
    259 Vissenberg K, Sandt V V, Fry S C, Verbelen J-P. Xyloglucan endotransglucosylase action is high in the root elongation zone and in the trichoblasts of all vascular plants from Selaginella to Zea mays[J]. J. Exp. Bot. 2003, 54: 335-344.
    260 Adams K L, Monica Rosenblueth M, Qiu Y L, Palmer J D. Multiple Losses and Transfers to the Nucleus of Two Mitochondrial Succinate Dehydrogenase Genes During Angiosperm Evolution[J].Genetics. 2001, 158: 1289 - 1300.
    261 Bullerwell C E, Forget L, Lang B F. Evolution of monoblepharidalean fungi based on complete mitochondrial genome sequences[J].Nucleic Acids Res. 2003, 31(6): 1614 -1623.
    262 Liepelt S, Bislozyt R, Ziegenhagen B. Wind-dispersed pollen mediates postglacial gene flow among refugia [J]. PNAS. 2002, 99: 14590-14594.
    263 Strauss S H, Hong Y P, Hipkins V D. High levels of population differentiation for mitochondrial DNA haplotypes in Pinus radiata, muricata, and attenuata[J]. Theoretical and Applied Genetics. 1993,96:605-611.
    264 Aagaard J E, Vollmer S S, Sorensen F C, Strauss S H. Mitochondrial DNA products among RAPD profiles are frequent and strongly differentiated between races of Douglas-fir [J]. Molecular Ecology. 1995, 4: 441-447.
    265 Karpinska B, Karpinska S H, Llgren J E. The genes encoding subunit 3 of NADH dehydrogenase and ribosomal protein S12 are co-transcribed and edited in Pinus sylvestris (L.) mitochondria[J]. Current Genetics. 1995,28:423-428.
    26
    
    266 卢孟柱,Szmidt A E.松属线粒体基因序列变异研究[J].林业科学1999,35(4):6-13。
    267 Lu M Z, Wang X R, Szmit A E. RNA editing and its effects on the evolution of coxI gene in gymnosperms[J]. Plant Molecular Biology. 1998,37:225-234.
    268 Kelchner S A. Group Ⅱ introns as phylogenetic tools:structure, function, and evolutionary constraints[J]. Am. J. Bot. 2002, 89:1651-1669.
    269 Jaramillo-Correa J P, Bousquet J. New evidence from mitochondrial DNA of a progenitor-derivative species relationship between black spruce and red spruce(Pinaceae) [J]. Am. J. Bot. 2003, 90:1801-1806.
    270 Pereira de Souza, A, Jubier M F et al. The higher plant nsd5 mitochondrial gene:A concerved discontinuous transciption patten[J]. Curr Genet. 1992, 22(1):75-82.
    271 Knoop V, Schuster W, Wissinger B, Brennicke A. Trans splicing integrates an exon of 22 nucleotides into the nsd5 mRNA in higher plant mitochondria[J]. EMBO J. 1991,10:3484-3493.
    272 Pereira de Souza A, Jubier M F, Delcher E, Lancelin D, Lejeune B. A trans-splicing model for the expression of the tripartite nad5 gene in wheat and maize mitochondria[J]. Plant Cell. 1991, 3:1363-1378.
    273 Cai Q, Storey K B. Anoxia-induced gene expression in turtle heart. Upregulation of mitochondrial genes for NADHubiquinone oxidoreductase subunit 5 and cytochrome c oxidase subunitl[J]. Eur. J. Biochem. 1996, 241;83-92.
    274 Laroche J, Bousquet J. Evolution of the mitochondrial rps3 intron in perennial and annual angiosperms and homology to nad5 intronl[J]. Mol. Biol. Evol. 1999, 16:441-445.
    27
    
    275 Malek O, Brennicke A, Knoop V. Evolution of trans-splicing plant mitochondrial introns in pre-permian times[J]. PNAS. 1997,94:553-558.
    276 Grande C, Templado J, Cervera J L, Zardoya R. Molecular phylogeny of euthyneura(mollusca:gastropoda)[J]. Mol. Biol. Evol. 2004, 21:303-313.
    277 Fan J S, Lee R W. Mitochondrial genome of the colorless green alga Polytomella parva:two linear DNA molecules with homologous inverted repeat termini[J]. Mol. Biol. Evol. 2002, 19:999-1007.
    278 游新,杨莉.栎属和青冈属角质层表面结构的扫描电镜观察[J].北京林业大学学报,1994,16(3):61-65.
    279 马清温,孙震晓.杉科化石植物角质层的研究[J].聊城师院学报.2000,13(3):51-53.
    280 胡志昂.杨属植物的同工过氧化物酶[J].植物分类学报,1981,19(3):291-297.
    281 陈慧选,陈承现,陈慧平等.大豆突变体与亲本过氧化物酶同工酶酶谱的比较研究[J].中国油料作物学报,2003,25(2):21-24.
    282 曲柏宏,严花淑,陈艳秋等.同工酶分析在梨品种分类小的应用[J].延边大学农学学报,2003,25(1):86-91.
    283 吕洪飞,陈建华,周春红等.杉木不同无性系过氧化物酶同工酶的研究[J].广西植物,1995,15(4):363-367.
    284 林孝辉,傅桂荣,常缨等.九种蹄盖蕨科植物配子体的酯酶同工酶分析[J].植物研究,1996,16(1):100-107.
    285 李阳春,谢可军.早熟禾属10种植物酯酶同工酶分析[J].草地学报,3003,3,214-218.
    286 朱兆红,杨茂生.榆林地区岩黄芪属木本组植物酯酶同工酶谱的研究[J].西北林学院学报,2003,18(2):13-16.
    
    287 郑凤英,彭少麟.不同尺度上植物叶气孔导度对升高二氧化碳的响应[J].生态学杂志,2003,22(1):26-30.
    288 赵平,曾小平,彭少麟等.海南红豆夏季叶片气体交换、气孔导度和水分利用效率的日变化[J].热带亚热带植物学报,2000,8(1):35-42.
    289 陈拓,秦大河,李江风等.自然生长树木气孔导度对二氧化碳浓度的响应[J].兰州大学学报,2000,36(4):112-116.
    290 赵则海,麻汉林.人工光强下月季气孔导度的变化[J].高师理科学刊,2000,20(1):45-46.
    291 徐惠风,刘兴土,金研铭等.沼泽植物泽泻气孔导度的日变化的研究[J].生态科学,2003,22(3):218-221.
    292 史胜青,高柏成,刘四周等.几种苗木的光合特性的初步研究[J].河北林果研究,2002,17(4):298-302.
    293 肖文法,徐德应,刘世荣等.杉木人工林针叶光合与蒸腾作用的时空特征[J].林业科学,2002,38(5):38-46.
    294 刘建军,王得祥,雷瑞德等.美国黄松、奥地利黑松和油松的光合、蒸腾及生长特性分析[J].西北林学院学报,2002,17(3):1-4.
    295 张岁歧,山仑.植物水分利用效率及其研究进展[J].干旱地区农业研究,2002,20(4):1-5.
    296 李荣生,许煌灿,尹光天等.植物水分利用效率的研究进展[J].林业科学研究,2003,16(3):366-371.
    297 温达志,周国逸,张德强等.四种禾本科牧草植物蒸腾速率与水分利用效率的比较[J].热带亚热带植物学报,2000,增刊:67-76.
    298 李少昆,马富裕,李蒙春等.棉花叶片水分利用效率及其影响因素的研究[J].棉花学报,1997,9(6):314-317.
    299 苏培玺,赵爱芬,张立新等.荒漠植物梭梭和沙拐枣光合作用、蒸腾作用及水分利用效率特征[J].西北植物学报,2003,23(1):11-17.
    300 胡文玉,谢甫绨,李晓苹等译.植物衰老过程和调控[M].沈阳:辽宁科技出版社,1990,15-121.
    
    301 Du X M, Yin W X, Zhao Y X, Zhang H. The production and scavenging of reactive oxygen species in plants[J]. Chin J Biotec, 2001, 17(2):121-125.
    302 马旭俊,朱大海.植物超氧化物歧化酶(SOD)的研究进展[J]。遗传,2003,25(2):225-231.
    303 McCord J M, Fridvich I. Superoxide dismutase:an enzymatic function for erythrocuprein(hemocuprein) [J].J Biol Chem, 1969, 244:6049-6055.
    304 刘稳.植物过氧化物酶超家族的分子结构[J].生命科学,2002,14(4):212-214.
    305 李大辉,施国新,丁小余等.CD~(2+)、、Hg~(2+)对菱幼苗生长及其超氧化物歧化酶、过氧化物酶活性的影响[J].武汉植物学研究,1999,17(3):206-210.
    306 聂磊,刘鸿先,彭少麟.水分胁迫对长期UV-B辐射下柚树苗生理特性的影响[J].植物资源与环境学报,2001,19(3):19-24.
    307 何亚丽,刘友良,陈权等.水杨酸和热锻炼诱导的高羊茅幼苗的耐热性与抗氧化的关系[J].植物生理与分子生物学学报,2002,28(2):89-95.
    308 彭庆华,桂枝,张文淑.苜蓿抗感褐斑病品种内超氧化物歧化酶、过氧化物酶和多酚氧化酶活性的比较[J].草业学报,2002,11(2):100-104.
    309 周党卫,朱文琰,滕中华等.不同海拔珠芽蓼抗氧化系统的研究[J].应用与环境生物学报,2003,9(5):489-492.
    310 彭立新,束怀瑞,李德全.水分胁迫对苹果属植物抗氧化酶活性的影响研究[J].中国生态农业学报,2004,2:44-46.
    311 张平,谢潮添,杨盛昌.红树叶衰老过程小活性氧和保护酶活性的变化[J].海洋科学,2004,28(5):38-40.
    312 刘慧英,朱祝军,吕国华.低温胁迫对嫁接西瓜耐冷性和活性氧清除系统的影响[J].应用生态学报,2004,15(4):659-642.
    313 曹特,倪乐意.金鱼藻抗氧化酶对水体无机氮升高的响应[J].水生 生物学报,2004,28(3):299-303.
    31
    
    314 龙华.植物的水势[J].生物学通报,1998,33(3):18-19.
    315 黄颜梅,张健,吴承德.西藏柏木抗旱生理研究[J].四川林业科技,1998,19(4):31-37.
    316 柳建国,柯建国,陈长青.作物水势时空分布与其耐旱性[J].安徽农业技术师范学院学报,1999,13(1):63-66.
    317 李洪建,王孟本,柴宝峰.土壤极端干旱期树种的水分关系研究[J].山西大学学报,2001,24(4):352-356.
    318 沈维良,柳建国.作物耐旱性与叶片水势简报[J].中国生态农业学报,2001,9(4):100-101.
    319 刘晓宏,赵良菊,王国栋.温度与水分状况对作物叶片水分能态的影响[J].中国生态农业学报,2002,10(3):51-54.
    320 卜崇峰,刘国彬,许明祥.陕北黄土区狼牙刺水势研究[J].西北植物学报,2003,23(8):1393-1397.
    321 张丹,张硕新,黄菊莹等.不同水分梯度下几个树种木质部栓塞的研究[J].西北林学院学报,2004,19(2):18-21.
    322 王清泉,陈云,谢虹等.干旱和氮素交互作用对玉米叶片水势、气孔导度及根部ABA与CTK合成的影响[J].中国农学学报,2004,20(3):20-22.
    323 徐军亮,马履一,王华田.油松人工林SPAC水势梯度的时空变异.北京林业大学学报,2003,25(5):1-5.
    324 严华军,吴乃虎.短梗五加(Acanthopanax brachypus)rbcL基因结构分析[J].应用基础与工程科学学报,1995,3(4):386-394.
    325 秦民坚,黄芸,杨光等.射干及类似药用植物叶绿体rbcL基因序列分析[J].药学学报,2003,38(2):147-152.
    326 Ritlandh K,Clegg M T. Evolutionary analysis of plant DNA sequence[J]. Amer Naturalist, 1987, 30s: 74-100.
    327 李春香,陆树刚,杨群.耳蕨属(鳞毛蕨科)的亚洲起源:来自rbcL序列的证据[J].科学通报,2004,49(9):874-878.
    328 俸宇星,汪小全,潘开玉等.rbcL基因序列分析对连香树科和交让 木科系统位置的重新评价—兼论低等金缕梅类的关系[J].植物分类学报,1998,36(5):411-422.
    32
    
    329 陈之端,路安民.桦木科植物的系统发育和演化[J].中国科学院院刊,2001,3:188-191.
    330 石福臣,陆兆华,李立芹.中国东北落叶松属植物rbcL基因的序列分析及系统演化[J].植物研究,2001,21(3):371-374.
    331 Zhang Z Y, Yang J B, Li D Z. Phylogenetic relationship of Pinus sguamata[J]. Acta botanica sinica. 2003, 45(5):530-535.
    332 Duff R J, Nickrent D L. Phylogenetic relationships of land plants using mitochondrial small-subunit rDNA sequences[J]. Amer J hot, 1999, 86:372-386.
    333 Nalek O, hatiig K, Hiesel R et al. RNA editing in bryophytes and molecular phylogenyofland plants[J]. EMBOJ, 1996, 15:1403-1411.
    334 Meng S W, Chen Z D, Li DZ et al. Phylogeny of Sauraceae based on mitochodrial matR sequence data[J]. J Pl Res (Acceped), 2002.
    335 Meng S W,Chen Z D, Li D Z et al. Phylogeny of Saururaceae inferred from matR sequence data[J]. Acta Bitanica Sinica, 2001, 43 (6):653-656.
    336 山仑.植物水分利用效率和半干旱地区农业用水[J].植物生理学通讯,1994,30(1):61-66.
    337 Farquhar G D, Ehleringer J R, Hubick K T. Carbon isotope disrimination and photosynthesis[J]. Annu Rev Plant Physiol, 1989,40:503-537.
    338 梁春梅,韩兴国,苏波等.云南西双版纳片断化热带雨林植物叶片δ~(13)C值的特点及其对水分利用效率的指示[J].植物学报,2001,43(2):186-192.
    339 Nowak R S, Anderson J E, Toft N L. Gas exchange of Agropyron desertorum:diurnal patterns and response to water vapor gradient and temprature [J]. Oecologia, 1988, 77:289-295.
    34
    
    340 Read J J, Jonhson D A, Asay K H et al. Carbon isotope discrimination, gas exchange, and water use efficiency in crested wheatgrass clones[J].Crop Sci, 1991, 31:1203-1208.
    341 黄占斌,山仑.春小麦水分利用效率日变化及其生理生态基础的研究[J].应用生态学报,1997,8(3):263-269.
    342 郑万钧主编.中国树木志 I[M].中国林业出版社,1983,10.
    343 华北树木志编写组.华北树木志[M].中国林业出版社,1984,10.
    344 王秀华.东北鳞毛蕨科植物叶比较解剖的初步研究[J].植物研究,2001,21(2):202-207.
    345 于卓,Saiga suguru.12种牧草叶表面微细构造的差异[J].中国草地,2001,23(5):1-7.
    346 Adams K L, Palmer J D. Evolution of mitochondrial gene content:gene loss and transfer to the nucleus[J]. Molecular phylogenetics and evolution, 2003, 29:380-395.
    347 郭亚龙,葛颂.线粒体nadl基因内含子在稻族系统学研究中的价值—兼论Porteresia的系统位置[J].植物分类学报,2004,42(4):333-344.
    348 Tang Y J, Liu N, Liao J P. et al. Syatematic implicatinons of pinna venation and pinna anatomy in Zamiaceae[J]. Acta Phytotaxonomica Sinica, 2004,42(4):365-374.
    349 Snyder E B, Hamaker J M. Inheritance of peroxidase isozymes in needles of loblolly and longleaf pines[J]. Silvae Genet. 1978,27:125-178.
    350 Franks P J, Faruhar G D. A relationship between humidity response, growth form and photosynthetic operating point in C3 plants[J]. Plant Cell and Environment. 1999,22:1337-1349.
    351 Hou H W, Mwange R-N K, Wang Y Q et al. Changes of soluble protein, peroxidase activity and distribution during regenrration after girdling in Eucommia ulmoides[J]. Acta Botanica Sinica. 2004, 46(2):216-223.
    35
    
    352 苏燕评,刘玉梅,刘剑秋.福建珍珠茅属叶表皮特征的研究[J].福建师范大学学报,2002,18(2):70-74.
    353 Liu Z H, Ger M J. Changes of enzyme activity. During pollen germination in maize and possible evidence of lignin synthesis[J], Aust. J. Plant physiol. 1997,24:329-335.
    354 Stuessy T F. plant taxonomy, the systematic evolution of comparative date[M]. New York. Columbia University press, 1990,222-223.
    355 Werker E and Fahn A. Resin ducts of Pinus halepensis Mill.:their structure, development and patter of arrangement[J]. J. Linn. Soc. Bot. 1969,62:379-411.
    356 罗勇,田大伦,顶文化等.在CO2浓度加富条件下马尾松针叶的生理生态响应[J].中南林学院学报,2004,24(1):10-13.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700