用户名: 密码: 验证码:
复合材料高精度宏-细观统一本构模型及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
新一代航空发动机将大量采用新型的复合材料结构。为满足航空科技发展的需要,必须对复合材料结构从宏观尺度与细观尺度上深入系统地研究其力学行为。本文开展了复合材料宏-细观统一本构模型-通用单胞模型的深入研究,发展了复合材料高精度宏-细观统一本构模型以及基于该模型的多尺度有限元分析技术。本文的研究结果具有重要的理论意义和工程应用价值。
    本文采用了以应力取代应变作为未知量,对通用单胞模型的算法进行了改进。改进后的模型在保证计算精度不变的前提下,大大提高了计算效率。用改进算法的通用单胞模型对纤维增强复合材料的热膨胀系数进行了计算,结果表明该模型可以考虑纤维复杂截面形状和排列方式对复合材料力学特性的影响。同时,本文把改进算法推广到三维情况,并对颗粒增强复合材料的宏观性能进行了预测,验证了通用单胞模型的合理性。
    把通用单胞模型细观位移模式由线性提高到二阶,发展了高精度通用单胞模型,从而可以考虑细观正应力与剪应力之间的耦合。为了提高计算效率,进一步采用界面的平均量代替细观位移函数中的系数作为未知量,提出了改进的高精度通用单胞模型。利用改进的高阶模型对复合材料的宏观弹塑性性能及细观应力场进行了分析,并与细观力学有限元法的结果和试验值进行了对比,结果吻合较好。
    本文发展了一种对复合材料结构进行宏细观一体化分析的多尺度有限元法,并将通用单胞模型融入到通用有限元程序系统,实现了复合材料结构的宏-细观一体化分析。该方法既能够考虑细观结构特征对宏观性能的影响,又能够在结构分析中获得宏观应力、应变场的同时,获得细观应力、应变场,为复合材料结构损伤分析打下了良好的基础。利用开发的软件系统对复合材料叶片环结构进行了分析。结果表明,本文发展的方法是有效的,对复合材料结构在新一代航空发动机上的应用具有重要意义。
The composite structures will be broadly used in the next generation aeroengine. A high-fidelity unified macro- and micro-mechanics constitutive model and its applications for composites are studied to satisfy needs of analyzing mechanical behaviors of composites and structures on macroscopic and microscopic scales. A multi-scale finite element stress analysis corresponding to the constitutive model is developed. The method can be applied to engineering practice and possesses great importance in theory.
    An efficient implementation of the Generalized Method of Cell(GMC) effectively replaces the subcell strains by the subcell interfacial tractions as the basic unknown micro-variables, which in turn substantially reduces the size of the system of equations for the determination of these micro-variables. This substantial reduction in the size of the system of equations for the unknown micro-variables makes possible the analysis of repeating unit cells containing thousands of subcells, which could not be analyzed previously by the original formulation of GMC. The thermal expansion coefficients of composites have been analyzed in the paper. The results indicate that the influence of fiber shape and packing arrangement can be considered.
    The efficient implementation of GMC can be extended to the three dimensional GMC. It is used to predict mechanical behavior of particulate reinforced metal matrix composites. The results indicate that GMC accurately predicts the engineering properties of the particulate reinforced composites studied. The high-fidelity GMC is presented through introducing the higher-order displacement field. The model overcomes shortcomings of the absence of so-called shear coupling. The efficient reformulation of high-fidelity GMC is presented based on the hypothesis of periodicity in composite microstructure. In this approach, surface-averaged quantities are the primary variables that replace the coefficient of the displacement after the mechanical equations are analyzed and answered in microscopic elements. It reduces the number of equations involved and eliminates the
    concept of generic cells. The transverse and longitudinal variables are dis-coupled. The effective moduli and local stress fields are analyzed. Numerical results based on this model agree well with the available results from experiments and theoretical analysis.
    A unified macro- and micro-mechanics analysis multi-scale finite element method for composite structures is developed. The software for computes have been developed by integrating the model into the general finite element method program. Not only the method can consider micro-structural geometry effects on macro-properties, but also it can obtain both macroscopic and microscopic stress and strain fields, which provide sufficient basis for the damage and fracture analysis of composite structures. The ring is analyzed with the developed software. The validity of the model is verified by the result. It’s significant to applying composite structures in the next generation aeroengine.
引文
1. 方昌德,航空发动机百年回顾,燃气涡轮试验与技术,Vol.16,No.4,2003,P1~5
    2. 刘大响,航空发动机技术的发展和建议,中国工程科学,Vol.1,No.2,1999,P24~29
    3. William C. strack,21 世纪航空推进装置展望,航空发动机参考资料,1990,P1-28
    4. 张胜利、夏国君、洪存莲,国外高推重比军用航空发动机及制造技术发展介绍,红旗技术, 1997 年第 1 期,总 69 期,P3~10
    5. 傅恒志,未来航空发动机材料面临的挑战与发展趋势,航空材料学报,Vol.18,No.4,1999,P52~61
    6. 涂善东著,高温结构完整性原理,科学出版社,2003
    7. 陈光,航空发动机发展综述,航空制造技术,Vol.2,No.6,2000,P24~27
    8. Jeal B. Moving towards the nonmetallic aero engine. The polls-Reyce Magazine,1988(3)
    9. 范赋群,王震鸣,稽醒等,关于复合材料力学几个基本问题的研究,力学与实践, Vol.17,No.1,1995,P4-9
    10. 杨卫,宏微观断裂力学,北京,国防工业出版社,1995
    11. 杜善义,王彪,复合材料细观力学,北京,科学出版社,1998
    12. Eshelby J.D., The determination of the elastic field of an ellipsoidal inclusion and related problems, Proceedings of the Royal Society, London, 1957, Series A, 241, P376-396
    13. Hill R, A self-consistent mechanics of composite materials, J. Mech. Phys. Solids, Vol.13,No.4,1965,P213-222
    14. Hashin Z., Shtrikman S., A variational approach to the theory of the elastic behavior of multiphase materials, J. Mech. Phys. Solids, Vol.11,No.2,1963,P127-140
    15. Dong Sheng Li, Michael R. Wisnom, Finite element micromechanical modelling of unidirectional fiber-reinforced metal-matrix composites, Comp. Sci. Tech., Vol.51,No.4,1994,P545-563
    16. 雷友锋,纤维增强金属基复合材料宏—细观统一本构模型及应用研究,南京航空航天大学博士学位论文,2002
    17. G.J. Dvorak, Y.A. Bahei-El-Din, Plasticity analysis of fibrous composites, Journal of Applied Mechanics, Vol.49,No.2,1982,P327-335
    18. G.J. Dvorak, J.L. Teply, Periodic hexagonal array models for plasticity analysis of composite materials, Plasticity Today: modeling, methods and application, edited by A.Sawczuk, G.Bianchi, Elsevier, Applied Science Publishers,1985, P623-642
    19. Jan L. Teply, George J. Dvorak, Bounds on overall instantaneous properties of elastic-plastic composites, J. Mech. Phys. Solids, Vol.36, No.1,1988,P29-58
    20. J.F. Wu, M.S. Shephard, G.J. Dvorak, Y.A. Bahei-El-Din, A material model for the finite element analysis of metal matrix composites, Composites Science and Technology, Vol.35,No.4, 1989,P347-366
    21. J. Aboudi, Mechanics of composite materials—a unified micromechanical approach, Elsevier, Amsterdam, 1991
    22. Jacob Aboudi, Closed form constitutive equations for metal matrix composites, Int. J. Engng. Sci., Vol.25, No.9,1987,P1229-1240
    23. Y.W. Kwon, Calculation of effective moduli of fibrous composites with micro-mechanical damage, Composite Structures, Vol.25,No.1-4,1993, P187-192
    24. Y.W. Kwon, J.M. Berner, Micromechanics model for damage and failure analysis of laminated fibrous composites, Engineering Fracture Mechanics, Vol.52, No.2, 1995,P231-242
    25. Andrew C. Hansen, Mark R. Garnich, A multicontinuum theory for structural analysis of composite material system, Composites Engineering, Vol.5, No.9,1995,P1091-1103
    26. Mark R. Garnich, Andrew C. Hansen, A multicontinuum theory for thermal-elastic finite element analysis of composite materials, Journal of Composite Materials, Vol.31, No.1, 1997, P71-86
    27. Seung-Jo Kim, Eui-Sup Shin, A thermoviscoplastic theory for composite materials by using a Matrix- Partitioned Unmixing-Mixing scheme, Journal of Composite Materials, Vol.30, No.15, 1996,P1647-1669
    28. Dale A. Hopkins, Christos C. Chamis, A unique set of micromechanics equations for high temperature metal matrix composites, NASA-TM-87154,1985
    29. Pappu L.N. Murthy, Christos C. Chamis, METal Matrix Composite ANalyzer (METCAN): theoretical manual, NASA-TM-106025,1993
    30. J.J. Lackney, P.L.N. Murthy, P.K. Gotsis, High Temperature Composite Analyzer (HITCAN) theoretical manual, Version1.0, NASA-TM-106001, 1993.
    31. 傅志平,曹志远,复合材料构件性能的细观元分析,复合材料学报,Vol.15, No.1,1998, P108-111
    32. Somnath Ghosh, A material based finite element analysis of heterogeneous media involving Dirichlet tessellations, Computer Methods in Mechanics and Engineering, Vol.104,No.2, 1993, P211-247
    33. Somnath Ghosh, Zdzislaw Nowak, Kyunghoon Lee, Quantative characterization and modeling of composite micromechanics by voronoi cells, Acta Mater., Vol.45, No.6, 1997, P2215-2234
    34. Kyunghoon Lee, Suresh Moorthy, Somnath Ghosh, Multiple scale computational model for damage in composite materials, Computer Methods in Mechanics and Engineering, Vol.172,No.1-4, 1999,P175-201
    35. Armand J. Beaudoin, Finite element modeling at different length scales and interconnection of scales, Proceedings of the 19th Riso international symposium on materials science: modeling of structure and mechanics of materials from microscale to product, Riso National Laboratory, Roskilde, Demark, 1998
    36. A.Levy, J.M.Papazian, Tensile properties of short fiber reinforced SiC/Al composites: Part Ⅱ, Finite element analysis, Metallurgical Transactions, Vol.21A, No.2,1990,P411-420
    37. Aboudi, J., Micromechanical Analysis of Composites by Method of Cells, App. Mech. Rev., Vol.42, No.7,1989, P193-221
    38. Marek-Jerzy Pindera Brett A.Bednarcyk, An efficient implementation of the GMC micromechanics model for muli-phased materials with complex microstructures, NASA-CR-202350, 1997
    39. Marek-Jerzy Pindera Brett A.Bednarcyk, An efficient implementation of the generalized method of cells for unidirectional, multi-phased composites with complex microstructures,Composites Part B,Vol.30 No.2,1999,P87-105
    40. J. Aboudi, Micromechanical Analysis of Thermo-Inelastic Multiphase Short-Fiber Composites, NASA-CR-195290, 1994
    41. Aboudi, J., Micromechanical Analysis of Thermo-Inelastic Multiphase Short-Fiber Composites. Composites Engineering, Vol.30 No.2,1995,P839-850
    42. Bednarcyk, Brett Alan. Macro and micromechanics of woven carbon/copper composites,PHD,1997, UNIVERSITY OF VIRGINIA
    43. Bednarcyk, B. A. & Pindera, M.-J., Micromechanical modeling of woven metal matrix composites, NASA-CR-204153,1997
    44. Bednarcyk, Brett A., Experimental Characterization and Micromechanical Modeling of Woven Carbon/Copper Composites, NASA-CR-202318, 1997
    45. Bednarcyk, B. A. & Pindera, M.-J, Inelastic Response of a Woven Carbon/Coper Composite Part Ⅱ: Micromechanics Model,Journal of Composite Materials,Vol.34, No. 4,2000, P299-331
    46. Bednarcyk, B. A、Steven M. Arnold,MICROMECHANICS-BASED MODELING OF WOVEN POLYMER MATRIX COMPOSITES,AIAA-2001-1567
    47. T.O.Williams, Aboudi, J. A generalized micromechanics model with shear-coupling,ACTA Mechanica,Vol.138,No.3-4,1999,P131-154
    48. Brett A.Bednarcyk,S. M. Arnold, Aboudi, J. ,Pindera, M.-J,ACCURATE MICRO/MACRO FIELD SIMULATION FOR COMPOSITES SUBJECT TO FIBER-MATRIX DEBONDING USING HFGMC,15th ASCE Engineering Mechanics Conference June 2-5, 2002, Columbia University, New York
    49. Aboudi, J. , Brett A.Bednarcyk,S. M. Arnold,High-Fidelity Generalization Method of Cells for Inelastic Periodic Multiphase Materials,NASA-TM-2002-211469,2002
    50. Hewen Gan, Carlos E. Orozco, Carl T. Herakovich,A strain-compatible method for micromechanical analysis of multi-phase composites,International Journal of Solids and Structures,Vol.37,No.37,2000,P5097-5122
    51. Carlos E. Orozco, Hewen Gan,Viscoplastic response of multiphase composites using a strain-compatible volume-averaging method,Composites Part B,Vol.33,No.4,2002,P301-313
    52. L.L. Graham, K. Gurleyb, F. Masters, Non-Gaussian simulation of local material properties based on a moving-window technique, Probabilistic Engineering Mechanics,Vol.18, No.3,2003,P 223–234
    53. Siragy, Eman Farouk, Characterization of local response of random heterogeneous materials using moving-window GMC and finite element analysis, PhD, UNIVERSITY OF VIRGINIA, 2002
    54. Baxter, S.C. Graham, L.L. , Characterization of Random Composite Materials Using the Moving-Window Generalized Method of Cells Technique, Journal of Engineering Mechanics, Vol.126, No.4,2001,P389-397
    55. Graham, L.L. Baxter, S.C. , Simulation of Local Material Properties based on Moving-window GMC, Probabilistic Engineering Mechanics, Vol.16, No.4,2001,,P295-306
    56. Brett A. Bednarcyk,An inelastic micro/macro theory for hybrid smart/metal composites,Composites: Part B,Vol.34,No.2,2003,P175-197
    57. Brett A. Bednarcyk , A Fully Coupled Micro/Macro Theory for Thermo-Electro -Magneto-Elasto-Plastic Composite Laminates,Nasa-CR-2002-211468,2002
    58. Aboudi, J. ,Micromechanical Prediction of the Effective Behavior of Fully Coupled Electro-Magneto-Thermo-Elastic Multiphase Composites, NASA–CR–2000-209787, 2000
    59. Aboudi, J., Micromechanical Prediction of the Effective Coefficients of Thermo-Piezoelectric Multiphase Composites, NASA–CR–1998-208521, 1998
    60. M.J.Pindera, C.T.Herakovic, W.Becher, J.Aboudi Nonlinear response of unidirectional Boron/Aluminum, J Copm Mat, Vol.24, No.1,1990,P3-21
    61. M.Paley, J.Aboudi, Micromechanical analysis of composites by the generalized cells method. Mech of Materials, Vol.14,No.2,1992, P127–139
    62. Orozco,C.E., Pindera, M.-J, Plastic Analysis of Complex Microstructure Composites Using the Generalized Method of Cells,AIAA Journal, Vol.37,No.4,1999,P482-488
    63. Yancey, Robert Neil,Analysis of stress distributions in metal-matrix composites with variations in fiber spacing,PHD,1997,THE UNIVERSITY OF DAYTON
    64. Bowman, Cheryl Lynne,Experimentation and analysis of mechanical behavior modification of titanium matrix composites through controlled fiber placement,PHD,1999,CASE WESTERN RESERVE UNIVERSITY
    65. Munger, Gareth Torrey,In situ characterization of metal matrix composites processing, PHD,1999,UNIVERSITY OF VIRGINIA
    66. Cli. J. Lissenden, Steven M. Arnold, Saiganesh K. Iyer,Flow/damage surfaces for fiber-reinforced metals having different periodic microstructures, International Journal of Plasticity,Vol.16,No.9,2000,P1049-1074
    67. Cliff J. Lissenden、Steven M. Arnold、Saiganesh K. Iyer,Flow/Damage Surfaces for Fiber-Reinforced Metals Having Different Periodic Microstructures,NASA-TM-1998-208805
    68. D.H.Pahr,S.M.Arnold,The applicability of the generalized method of cells for analyzing discontinuously reinforced composites,Composites: Part B,Vol.33,No.2,2002,P153-170
    69. D.H.Pahr,S.M.Arnold,The applicability of the generalized method of cells for analyzing discontinuously reinforced composites,NASA-TM-2001-211165,2001
    70. C. T. HERAKOVICH, S. C. BAXTER,Influence of pore geometry on the effective response of porous media,JOURNAL OF MATERIALS SCIENCE,Vol.34,No.7,1999,P1595-1609
    71. Alysha M. Roerden, Carl T. Herakovich,The inelastic response of porous, hybrid-fiber composites,Composites Science and Technology,Vol.60,No.12-13,2000,P2443-2454
    72. Banerjee B.,Micromechanics-based prediction of thermoelastic properties of high energy materials,PHD,2002,THE UNIVERSITY OF UTAH
    73. Banerjee B., Grutta, J., Narra, G. & Adams, D. O., Micromechanical modeling of high energy composites, in `Proc. SEM IX International Congress and Exposition on Experimental Mechanics', Orlando, Florida, 2000,P477-479
    74. Biswajit B. 、 Daniel O. Adams,MICROMECHANICS-BASED PREDICTION OF THERMOELASTIC PROPERTIES OF HIGH ENERGY MATERIALS,15th ASCE Engineering Mechanics Conference June 2-5, 2002, Columbia University, New York
    75. Biswajit B. 、Daniel O. Adams, Micromechanics-based prediction of thermoelastic properties of high energy materials, Constitutive Modeling of Geomaterials , 2003,edited by H.I. Ling et al., CRC Press, New York, P158-164
    76. Craig S. Collier, HITEMP Material and Structural Optimization Technology Transfer, NASA CR-2001-211166, 2001
    77. Brett A. Bednarcyk 、 Steven M. Arnold,A New Local Failure Model With Application to the Longitudinal Tensile Behavior of Continuously Reinforced Titanium Composites,NASA TM-2000-210027,2000
    78. Brett A. Bednarcyk, Steven M. Arnold,A New Local Debonding Model With Application to the Transverse Tensile and Creep Behavior of Continuously Reinforced Titanium Composites,NASA-TM-2000-210029,2000
    79. Deliktas, Babur, A rate dependent anisotropic damage model for metal matrix composites at elevated temperatures,PHD,1999,LOUISIANA STATE UNIVERSITY AND AGRICULTURAL & MECHANICAL COLLEGE
    80. George Z. Voyiadjis, Babur Deliktas, Damage in MMCs using the GMC: theoretical formulation, Composites Part B,Vol.27,No.5-6,1997,P597-611
    81. Brett A. Bednarcyk, Steven M. Arnold, Brad A. Lerch, Fully Coupled Micro/Macro Deformation, Damage, and Failure Prediction for SiC/Ti-15-3 Laminates, NASA TM-2001-211343,2001
    82. David J. Corr、Lori L. Graham, Mechanical Analysis with Moving-Window Generalized Method of Cells, ACI Materials Journal, Vol.100,No.2,2003,P156~164
    83. Baxter,S. C. Pindera, M.-J, Stress and plastic strain fields during unconstrained and constrained fabrication cool down of fiber-reinforced IMCs, Journal of Composite Materials, Vol.33,No.4,1999,P351~376
    84. T.E. Wilt、S.M. Arnold,Micromechanics Analysis Code (MAC) User Guide: Version 1.0,NASA TM-106706,1994
    85. T.E. Wilt, S.M. Arnold,Micromechanics Analysis Code (MAC) User Guide: Version 2.0,NASA TM-107290,1996
    86. S.M. Arnold, B.A. Bednarcyk, T.E. Wilt, and D. Trowbridge,Micromechanics Analysis Code With Generalized Method of Cells (MAC/GMC) User Guide: Version 3.0 , NASA TM-1999-209070,1999
    87. Robert K. Goldberg, Michele D. Comiskey, and Brett A. Bednarcyk,Micromechanics Analysis Code Post-Processing (MACPOST) User Guide Version 1.0,NASA TM-1999-209062,1999
    88. Brett A. Bednarcyk, Steven M. Arnold,MAC/GMC 4.0 User's Manual-Keywords Manual,NASA TM-2002-212077-VOL2,2002
    89. Brett A. Bednarcyk, Steven M. Arnold,MAC/GMC 4.0 User's Manual-Example Problem Manual,NASA TM-2002-212077-VOL3,2002
    90. T.E. Wilt,On the finite element implementation of the generalized method of cells micromechanics constitutive model, NASA-CR-195451,1995
    91. 宋迎东,雷友锋等,通用单胞法模型预测纤维增强钛基复合材料弹性性能。第十届航空发动机结构强度与振动会议征文集,安徽歙县,2000.10,P137~141
    92. 雷友锋、宋迎东、高德平等,纤维增强复合材料结构的宏细观一体化分析方法,机械科学与技术,Vol.21.No.4,2002,P617~620
    93. 雷友锋、宋迎东、高德平,纤维增强金属基复合材料弹塑性行为分析,机械科学与技术,Vol.22.No.6,2003,P982~986
    94. 雷友锋、宋迎东、高德平,纤维增强金属基复合材料细观几何结构对宏观弹性性能的影响,宇航材料工艺,Vol.33.No.1,2003,P43~48
    95. 廉英琦,弱界面粘结的纤维增强金属基复合材料细观力学分析,南京航空大学硕士论文,2004.3
    96. 许震宇、张若京,单向纤维加强复合材料的总体弹粘塑性响应,固体力学学报, Vol.23.No.3,2002,P335~339
    97. 许震宇、张若京,纤维排列方式对复合材料弹塑性性能的影响,同济大学学报,Vol.29,No.7,2001,P784~788
    98. 许震宇、张若京,纤维排列方式对单向纤维加强复合材料弹性常数的影响,力学季刊,Vol.23,No.1,2002,P59~63
    99. 区焕文、冼定国,等效介质理论数值法计算复合材料的热膨胀系数,复合材料学报,Vol.12,No.2,1995,P52~58
    100. Sun C T, Vaidya R S. prediction of composite properties from a representative volume element. Comp Sci Tech, Vol.56,No.2,1996,P171~179
    101. Kenaga D, Doyle J F, Sun C T. The characterization of boron/aluminum composite in the nonlinear range as an orthotropic elastic-plastic material. J Comp Mater, Vol.21,No.6,1987,P 516~531
    102. Hansen A C, Garnic M R. A multicontinuum theory for structural analysis of composite material system. Composites Engineering, Vol.5,No.9,1995,P1091~1103
    103. 何君毅,林祥都. 工程结构非线性问题的数值解法. 国防工业出版社,1994
    104. Erwin V. Zaretsky, MMC Life System Development (Phase I)-A NASA/Pratt & Whitney Life Prediction Cooperative Program,NASA-RP-1361,1996

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700