用户名: 密码: 验证码:
W波段雪崩管微带集成高次倍频器
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
毫米波倍频技术是一种获取优质毫米波信号的重要方式。渡越时间雪崩二极管微带集成高次倍频器就是利用雪崩二极管在雪崩过程中产生的强烈非线性电感特性,将微波信号单级高次倍频到毫米波信号。该微带集成结构的高次倍频器电路简单,并且倍频效率高,输出功率大,附加相位噪声低,同时避免了多级倍频链级间匹配、滤波和放大等一系列问题。该倍频器能够为毫米波电路系统应用提供优质的毫米波信号源。
     本文首先深入的研究了雪崩倍频二极管非线性模型,合理的对雪崩区和渡越区建立模型,并将二者有机的结合起来;其次在上述基础上,详细分析了微带集成高次倍频器的匹配、偏置、隔置、过渡电路以及器件电路的金丝焊接特性,并进行了局部电路的仿真优化和倍频器的整体电路优化,并对所设计的电路进行加工制作和实验研究,首次研制出了具有小型化、集成化、高性能指标的雪崩二极管微带集成高次倍频器。
     雪崩微带集成高次倍频器将6.3GHz输入信号经15次单级倍频后获得了最大输出功率为5.87mW的毫米波信号和倍频器具有约0.5%的倍频效率。实验证明了该倍频器引入的附加相位噪声极低,倍频器输出信号的最佳相位噪声分别为-90.83dBc/Hz@10kHz和-95.67dBc/Hz@100kHz;在其它高次倍频次数下,该倍频器同样获得了有效的倍频输出功率和良好的相位噪声特性;从而实现了本课题对雪崩高次倍频器的集成化、小型化的研究目的。
Millimeter-wave frequency multiplication technology is an important method to obtain high-qualified millimeter-wave signal. Avalanche diode has the high nonlinear inductance characteristic in avalanche process. Based on the fierce nonlinearity, Avalanche diode high-order multiplier can transform the microwave signal into millimeter-wave band in a single stage, which has many advantages such as simple circuit topology, high efficiency, high-level output power and avoids the impedance matching and filtering in multiplier chains. This high order multiplier can provide high-quality millimeter-wave signal source.
     The high-nonlinear model of avalanche diode including the avalanche region and draft region is studied. Based on the analysis of high-nonlinear inductance characteristic of avalanche diode, the input circuit, the bais circuit, gold wire bonding, output circuits and the whole circuit system are simulated and optimized by microwave softwares. Then the circuits are designed and tested carefully. At last, we have complicated the microstrip intergrated high-order frequency multiplier with excellent characteristic such as intergrated structure and miniaturization.
     The W-band microstrip integrated high-order multiplier with the novel circuit structure is accomplished successfully. It has good performance such as the maximum output power 5.87 mW, the multiplying efficiency is about 0.5%, the better phase noise is -90.83dBc/Hz@10kHz, as well as -95.67dBc/Hz@100kHz. Meanwhile, the high-order multiplier has effective output power at other harmonious multiplication order. This work has achieved the desired results and made some progress in the research on the nonlinear characteristic of avalanche diode.
引文
[1]薛良金,毫米波工程基础,哈尔滨:哈尔滨工业大学出版社,2004.3:1-114
    [2]张永鸿,W波段频率源技术研究与应用,[博士学位论文],成都:电子科技大学,2001
    [3] J.Geddes, et al. W-band GaAs MESFET frequency doubler, IEEE Microwave and Millimeter-Wave Monolithic Circuits Symposium, 1987:7-10
    [4] Huei Wang, K W Chang, D.C.W Lo, Monolithic 23.5 to 94 GHz frequency quadrupler using 0.1um pseudomorphic AlGaAs/InGaAs/GaAs HEMT Technology, IEEE Micorowave and Guided Wave Letters, 1994, 3(5):75-79
    [5] C.Nguyen, A 35% bandwidth Q-to-W band frequency doubler, Microwave Journal,1987,30(9): 232-235
    [6]杨涛,刘仁厚,王玲等, W频段三倍频源的研制方案,微波学会第三届全国毫米波亚毫米波学术会议论文集,1998:112-114
    [7] A.Rahal, et al, Planar multi-stack quantum barrier varactor tripler evaluation at W-band, Electronics Letters, 1995, 31(23):2022-2023
    [8] T.J.Tolmunen, et al, An efficiency schottky-varactor frequency multiplier at millimeter waves, Part II:tripler, Internation Journal of Infrared and Millimeter Waves,1987,8(10):1337-1353
    [9]杨军,3mm变容二极管倍频器,微波学会第四届全国毫米波、亚毫米波学术会议论文集, 2000:107-110
    [10] B.M.Kramer, et al, High conversion efficiency frequency multiplier using GaAs avalanche diodes, 6th EMC/Microwave Proceedings Oct 1976:679-684
    [11] E.Constant, E.Allamando, A.Semichon, Transit-Time Operation of an Avalanche Diode Driven by a Subharmonic Signal and Its Application to Frequency Multiplication, Proc.IEEE, Vol.58, Mar 1970:483-484
    [12] P.A.Rolland, J. L.Vaterkowski, E.Constant, Georges Salmer, New Modes of Operation for Avalanche Diodes Frequency Multiplication and Upconversion, IEEE Transactions on Microwave Theory and Techniques, 1976, 24(11):768-775
    [13] P.A.Rolland, E.Constant, A.Derycke, J.Michel, Multiplication de frequence par diode a avalanche en ondes millimetriques, Acts Electronics, 1974, 17(4):213-228
    [14] P.A.Rolland, G.Salmer, A.Derycke, J.Michel, Very-High-Rank Avalanche Diode Frequency Multiplier, Proc IEEE, 1973, 61(12):1757-1758
    [15] P.A.Rolland, G.Salmer, M.Chive, J.Michel. High rank frequency multiplication using avalanche diode, In Proc. Fourth Biennial Cornell Conf., 1973:321-329
    [16] A.Z.Venger, A.N.Ermak, A.M.Yakimenko. Frequency Multiplier Based On An Avalanche And Transit Diode. Instruments and Experimental Techniques, 1980,23(3):691-692
    [17] G.P.Ermak, A.V.Varavin, E.A.Alekseev, Phase locking of 2-mm wave sources upon high-order IMPATT multipliers, International Journal of Infrared and Millimeter Waves, 2003, 24(10): 1609-1615
    [18] Elva-1 Inc, Millimeter Wave Components and Systems Product Catalog 2006, Technical Data sheet
    [19] Jian Huang, Tiguo Gan, Yongquan Zhou, A novel W-band fully coherent solid-state radar transceiver, 2001 CIE International Conference on Radar Proceedings, 2001: 907-911
    [20]赵明华,W波段雪崩高次倍频技术研究,[硕士学位论文],成都:电子科技大学,2006
    [21]邓立科,W波段高次倍频源的研制,[硕士学位论文],成都:电子科技大学,2007
    [22]朱志勇,王积勤,微波倍频器的发展与设计,制导与引信,2003,2(3):46-50
    [23]马丹,微波倍频技术研究,[硕士学位论文],成都:电子科技大学,2006
    [24]顾其诤等编著,微波集成电路设计,人民邮电出版社,1978:492-493
    [25] Stephen A. Maas, Nonlinear Microwave and RF Circuits, Second Edition, Artech House Publishers, 2003. Chap. 3&7
    [26] S. M. Sze, Kwok K. Ng, Physics of semiconductor devices, Third Edition, Wiley Interscience Pubilcation, 2007:466-493
    [27] W. Shockley, Negative Resistance Arising from Transit Time in Semiconductor Diodes, Bell Syst. Tech. J., 1954, 33 :799-826
    [28] W. T. Read, A Proposed High-Frequency Negative Resistance Diode, Bell Syst. Tech. J., 1958,37 :401-446
    [29] Reinhold Ludwing, Pavel Bretchko, RF Circuit Design: Theory and Applications. Prentice Hall Publication, 2002:202-206
    [30] G. Gibbons, S. M. Sze, Avalanche Breakdown in Read and p-i-n Diodes, Solid-state Electron., 1968,11:225
    [31] W. E. Schroeder, G. I Haddad, Avalanche Region Width in Various Structures of IMPATT Diodes, Proceedings of the IEEE, Aug 1971:1245-1248
    [32] S. M. Sze, W. Shockley, Unit-Cube Expression for Space-Charge Resistance, Bell Syst. Tech. J., 1967:46837
    [33] P. Weissglas, Avalanche and Barrier Injection Devices, Microwave Devices-Device Circuit Interactions, Wiley, New York, 1976, Chap.3
    [34] W. T. Read, A Proposed High-Frequency Negative Resistance Diode, Bell Syst. Tech. J., 1958, 7:401-446
    [35] M. Gilden, M. F. Hines, Electronic Tuning Effects in the Read Microwave Avalanche Diode, IEEE Trans. Electron Dev., ED-13, 1966:169-179
    [36] D. L. Scharfetter, Power-Impedance-Frequency Limitation of IMPATT Oscillators Calculated from a Scaling Approximation, IEEE Trans. Electron Dev., ED-18, 1973:420-422
    [37] H. W. Thim, H. W. Poetze, Search for Higher Frequencies in Microwave Semiconductor Devices, 6th Eur. Solid State Device Res. Conf., Inst. Phys. ConSer, 1977:32:73
    [38] D. L. Scharfetter, H. K. Gummel, Large-Signal Analysis of a Silicon Read Diode Oscillator, IEEE Trans. Electron Dev., 1969, ED-16:64-77
    [39] T. E. Seidel, W. C. Niehaus, D. E. Iglesias, Double-Drift Silicon IMPATTs at X Band, IEEE Electronics Letters, 1977,3(13):176-177
    [40] P. A. Blakey, B. Culshaw, and R. A. Giblin, Comprehensive Models for the Analysis of High Efficiency GaAs IMPATTs, IEEE Trans. Electron Dev., ED-25,1978,6:674-682
    [41] K. Nishitani, H. Sawano, O. Ishihara, T. Ishii, S. Mitsui, Optimum Design for High-Power and High Efficiency GaAs Hi-Lo IMPATT Diodes, IEEE Trans. Electron Dev., ED-26,1979,3: 210-214
    [42] W. J. Evans, Avalanche Diode Oscillators, Solid State and Quantum Electronics, Wiley, New York, 1971
    [43] T. Misawa, High Frequency Fall-Off of IMPATT Diode Efficiency, Solid-state Electron., 1972:457-465
    [44] M. F. Hines, Noise Theory for Read Type Avalanche Diode, IEEE Trans. Electron Dev., ED-13, 1966:158-163
    [45] H. K. Gummel, J. L. Blue, A Small-Signal Theory of Avalanche Noise on IMPATT Diodes, IEEE Trans. Electron Dev., ED-14,1967,14:569-580
    [46]甘体袚,吴万春编著,现代微波滤波器的结构与设计,科学出版社,1973
    [47] F. Alimenti, U. Goebel, R. Sorrentino, Quasi-static analysis of microstrip bondwire interconnects, IEEE MTT-S Int. Microwave Symp.Dig., May 1995:679–682
    [48] W. Hilberg, Electrical Characteristics of Transmission Lines, Artech House, 1979
    [49] Federico Alimenti, Paolo Mezzanotte, Luca Roselli, Roberto Sorrentino, Modeling and Characterization of the Bonding-Wire Interconnection, IEEE Transactions on microwave and techniques, Jan.2001,49(1)
    [50] F. Alimenti, P. Mezzanotte, L. Roselli, R. Sorrentino, An Equivalent Circuit for the Double Bonding Wire Interconnection. Microwave Symposium Digest, IEEE MTT-S International, June 1999, 2:633-636
    [51]周义,Ka波段波导内空间功率合成技术研究,[硕士学位论文],成都:电子科技大学,2005
    [52]代文亮,三毫米波微带集成谐波振荡器的研究,[硕士学位论文],成都:电子科技大学,2001
    [53] Minghua Zhao, Yong Fan, Yonghong Zhang, Chengcheng Xie, Jingkun Zhan; A Nonlinear Circuit Model for Avalanche Diode in High Order Frequency Multiplication Mode, International Conference on Microwave and Millimeter Wave Technology, 2007
    [54]邓立科,吴涛,唐小宏,雪崩倍频二极管非线性电路模型的建立,全国微波毫米波会议,深圳,2005:1119-1123
    [55]陈会,黄健,一种基于HP EESOF软件的IMPATT二极管非线性电路模型的提取方法,微波学报,第21卷第2期,2005.4
    [56] Joel W. Gannett, Leon O. Chua; A Nonlinear Circuit Model for IMPATT Diodes, IEEE Transaction on circuits and systems, May 1978,25(5)
    [57] W.P.罗宾斯著,秦士,姜遵富译,相位噪声理论与应用,人民邮电出版社,1988
    [58] H.G.翁格尔, W.哈特著,王蕴仪译.高频半导体电子学.北京:科学出版社,1981:366-398

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700