用户名: 密码: 验证码:
内蒙古东乌珠穆沁旗岩浆活动与金属成矿作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
内蒙古东乌旗北部一带构造位置位于西伯利亚板块南缘的查干敖包—奥尤特—朝不楞早古生代构造岩浆带、大兴安岭成矿带西侧。受华北地台、古蒙古洋壳和西伯利亚板块多期次俯冲、碰撞和对接作用影响,研究区内古生代火山—沉积岩分布较广,深大断裂带(层)纵横交错,各类侵入岩十分发育和金属矿床(点)星罗棋布,具有特殊的地质构造背景和有利的成矿环境。
     研究区内已发现和圈定的各类金属矿床(点)共23处,其中大型矿床1处,中型矿床5处和小型矿床5处,包含的矿种主要有钨、铁、铜、铅、锌、银、金、铋等。矿床类型主要有矽卡岩型金属矿床(点)、与花岗岩类侵入岩有关的金属矿床(点)和中低温热液矿床(点)。为了探讨研究区内岩浆活动与金属矿床的成矿关系、了解金属矿床的成矿规律、指导找矿勘查,论文选取吉林宝力格等5个代表性花岗岩类岩体和吉林宝力格、查干敖包、阿尔哈达3个典型金属矿床,通过野外地质调查、岩石学、地球化学、同位素以及SHRIMP U—Pb年代学研究等工作,对各代表性岩体和典型矿床进行系统研究和解剖。
     研究结果表明研究区内侵入岩普遍富碱,大部分属钾质、碱性—钙碱性花岗岩类,且铝含量较高,部分岩体中成矿元素Pb、Zn、Au和Ag等含量较高。花岗岩类的铅同位素比值都非常接近,在铅同位素构造模式图上显示地幔铅的特征;具有较低的(~(87)Sr/~(86)Sr)_i初始比值、正的εNd(t)值和较低的模式年龄,与兴蒙造山带火成岩具有相似的Sr、Nd同位素特征。SHRIMP U—Pb测年结果表明吉林宝力格岩体、阿钦楚鲁早期岩体、阿钦楚鲁晚期岩体、查干敖包岩体和阿尔哈达岩体的形成年龄分别为314±8.8Ma、299±5Ma、284.3±9.7Ma、234±6Ma和218±5Ma。通过判别分析认为,吉林宝力格、阿钦楚鲁早期和晚期二长花岗岩属岛弧花岗岩,查干敖包石英闪长岩具有埃达克岩特征,而阿尔哈达岩体则属A型花岗岩,后两者形成于碰撞后拉张环境。
     吉林宝力格银—金矿床的成矿物质主要来源深部岩浆,围岩中的矿质组分也参与了成矿。同位素资料显示矿床的硫来自沉积岩与岩浆硫的混合,但以岩浆硫源为主,铅主要来源于二长花岗岩。成矿热液经构造运移、通过充填交代等方式沉淀富集,经过次生富集作用形成工业矿体。查干敖包铁—锌矿床的石英闪长岩和部分矽卡岩的微量元素和稀土的配分曲线形状接近:硫同位素闪锌矿的δ~(34)S值为10.39‰,而石英闪长岩中的黄铁矿则为0.8‰,二者有所差别,推测矿床的硫同位素可能是来自沉积岩与岩浆的混合。锶—钕—铅同位素示踪结果显示查干敖包成矿物质来源岩浆并受到壳源物质的混染。综合认为查干敖包铁—锌矿床是一与石英闪长岩有关的矽卡岩型矿床。矿床形成于板块碰撞后的拉张环境下,含矿的古老残留洋壳部分熔融,受到富钾基性地幔的交代后侵入到浅部,岩浆交代大理岩、自身发生钠长石化析出成矿物质。相比之下,吉林宝力格铅—锌—银矿床的容矿围岩之一的凝灰岩属富钾和铝、拉班玄武岩系列的中性火山岩。矿床硫化物中δ~(34)S值显示矿床硫源具有混合来源特征。共生硫化物对计算矿床形成温度为399℃—407℃和194℃—287℃两组。铅同位素组成显示成矿物质来源于岩浆和围岩,是一与印支期中酸性岩浆活动有关的热液矿床。
     东乌旗北部一带金属矿床形成时代为海西期至燕山期,在时空分布和成因上与花岗岩类侵入岩体关系密切。一般来说,侵入岩岩浆提供主要的成矿物质、提供热源和动力促使流体对流循环,在碳酸盐岩地段交代围岩形成矽卡岩型矿床,在泥质板岩、砂岩等地段活化围岩中的有益组分,与来源于岩浆中的矿质组分一起在合适的构造部位沉淀、充填形成工业矿体。针对上述规律,文章最后提出了有效的找矿标志和有利的找矿方向。
Located in the Chaganobo—Aououte—Chaobuleng along the southern edge of the Siberian plate, the study area of northern Dong Ujimqin Banner of Inner Mongolia lies in western of Greater Xing'an Mountains metallogenic belt. Controlled by the multiple subduction, collision and connection of North China platform, the ancient Mongolia section of oceanic crust and Siberia platform, the region is characterized by widely exposed Paleozoic volcanic-sedimentary rock, complex structures, all kinds of intensive magmatic activities, and widespread ore deposits and occurrences. The study area was of special geological structure and context of a favourable environment mineralization.
     At present, more than 23 deposits and occurrences have been found in northern Dong Ujimqin Banner of Inner Mongolia, including one large deposit, five medium-sized deposits and five small deposit. There were many kinds of ore deposits such as tungsten, iron, copper, lead, zinc, silver, gold, bismuth, and so on. Deposits were the main types of skarn deposits, plutonic intrusions-related deposits and medium-low temperature hydrothermal deposits. In order to study the region of magmatic activity and polymetallic deposits of mineralization, to find out the mineralization and to guide mineral exploration, the paper studied five representative granitoid intrusions and three typical deposits. The research on geological survey, petrology, geochemistry, isotope and SHRIMP U-Pb chronology of the granitoid intrusions and deposits in the study area was the first conducted systematically, and the emplacement setting and age of the major intrusions as well as their relations to deposits were discussed in detail.
     Most intrusions of the study area were alkali-rich, potassic and alkaline-calc- alkaline granitoids. And there were high content of Al_2O_3 as well as Pb, Zn, Au, Ag etc.. Lead isotope ratios of granitoid intrusions were similar. In plumbotectonic model diagram, the lead isotopic compositions of granitoid intrusions were mainly located around mantle. According to Sr-Nd isotopic analytical results, granitoid intrusions had similar Sr, Nd isotopic characteristics to those of Xing'an-Mongolia orogenic belt such as low (~(87)Sr/~(86)Sr)_i initial ratios, positiveεNd(t) and lower model ages. SHRIMP U-Pb isotopic ages of Jilinbaolige intrusion is 314±8.8Ma, early stage Aqinchulu intrusion is 299±5Ma, late stage Aqinchulu intrusion is 284.3±9.7Ma, Chagan Obo intrusion is 237±6Ma and Aerhada intrusion is 218±5Ma, respectively. It has been suggested that Jilinbaolige intrusion and Aqinchulu early and late stage intrusions belong to island-arc granite, Chagan Obo quartz diorite is Adakitic rock, Aerhada intrusion belong to A type granite. The later two intrusions formed in an extensional environment of post collision.
     Metallogenic material of Jilinbaolige silver-gold deposit mainly derived from magma and only a few derived from derived from strata. Isotope analytical results showed that sulfur mainly derived from magma, but a few from sedimentary rock, lead mainly derived from magma. It is considered that hydrothermal ore forming solution mainly moves upward along the fracture and deposits by the process of filling and replacement. Quartz diorite and partial skarn of Chagan Obo iron-zinc deposit showed nearly uniform rare earth element and trace element distribution patterns. Theδ~(34)S value of sphalerite was 10.3‰, and pyrite of quartz diorite compared with 0.8‰. Not only S-Pb but also Sr-Nd isotope analysis results imply that metallogenic material of Chagan Obo deposit derived from magma but was contaminated by crust. Chagan Obo iron-zinc deposit belong to skarn deposit which related to quartz diorite. The article considered that Chagan Obo iron-zinc deposit formed in an extensional environment. During ore-forming process, ore bearing ancient residual oceanic crust melted partly at first, and then intruded shallow depths in the crust after mixed by potassium rich basic mantle, and separated out iron at last most likely to be the result of metasomatism by sodium when magma contacted with marble. By contrast, the Jilinbaolige lead - zinc - silver ore deposit was hydrothermal deposit which related to Indosinian intermediate-acidic magmatism. Tuff which was one of host rock of the deposit was intermediate volcanic rocks belong to potassium and aluminium rich tholeiite series. The values ofδ~(34)S of sulfide from deposit showed sulfur derived from magma and sedimentary rock.. Temperature calculated from sulfide pairs showed two groups values of 399℃—407℃and 194℃—287℃. Lead isotope analysis results imply that metallogenic material of deposit derived from magma and sedimentary rock.
     The regional ore deposits in the study area formed in three periods, i.e. Hercynian, Indosinian and Yanshanian. They were closely related to granite intrusions in the temporal and spatial distribution. Generally speaking, the intrusions not only provided heat source, part ore-forming fluids and elements, but also caused the long convective circulation of heat water which leached ore-forming elements of into the appropriate spaces to form ore-bodies. Finally, this paper concludes effective prospecting criterias and puts forward favorable prospecting directions in the study area.
引文
Arculus R J, Lapierrre H, Jaillard E. 1999. Geochemical window into subduction and accretion processes: Raspas metamorphic complex, Ecuador. Geology, 27: 547-550.
    Atherton M P, Petford N. 1996. Plutonism and the growth of Andean crust at 90°S from 100 to 3 Ma. J. South Am. Earth Sci., 9: 1-9.
    Atherton M P, Petford N.. 1993. Generation of sodium-rich magmas from newly underplated basaltic crust. Nature, 362: 144-146.
    Badarch G, Orolmaa D. 1998. Overview of the geology and tectonic evolution of southern Mongolia. Geoscientist, 10:10-16.
    Beard J S and Lofgren, G E.. 1991. Dehydration melting and water-saturated melting of basaltic and andesitic greenstones and phibolites at 1, 3, and 6.9 kb. J. Petrol., 32: 365-401.
    Bechelor, R.A., et al.. 1985. Petrogenetic interpretation of granitoid rock series using mullticationic parameters. Chem, Geol., 48: 43-45.
    Bin Chen, Bor-ming Jahn, S. Wilde, Bei Xu.2000. Two contrasting paleozoic magmatic belts in northern Inner Mongolia, China: petrogenesis and tectonic implications.Tectonophysics, 328:157-182.
    Bohlke J K, Coveney R M Jr, Rye R O and Barnes I. 1988. Stable isotope investigat-ions of gold quartz veins at the Oriental mine, Alleghany district, California. U.S. Geological Survey Open-File Report, 88-279,1-24.
    Castillo P R. 2002. The origin of some of the adakite-like and Nb-enriched lavas in southern Philippines. Acta Petrologica Sinica, 18(2): 143-151.
    Chappell B W, White A J R. 2001. Tow contrasting granite types: 25 years later. Australian Journal of Earth Sciences, 48:489-499.
    Clarke F. W., Washington H. S.. 1924. The composition of the earth's crust. U. S. Geol. Survey, Profess. 127.
    Collins WJ ,Beams S D ,White A J K, et al. 1982. Nature and origin of A type granites with particular reference to southeastern Australia. Contrb. Mineral. Petrol., 80 :189-200.
    Defant and Drummond. 1990. Derivation of some modern arcmagmas by melting of young subducted litho sphere. N ature, 347: 662-665.
    Defant, Drummond. 1993. Potential example of the partial melting of the subducted lithosphere in a volcanic arc. Geology, 21:547-550.
    
    Defant, et al.. 2002. Adakites: some variations on a theme. Acta Petrologica Sinica, 18(2): 129-142.
    Doe B R, Stacey J S. 1974. The application of lead isotopes to the problems of ore genesis and ore prospect evoluation: A review. Economic Geology, 69: 757-767.
    Doe B. R., Zartman R. E.. 1979. Plumbotectonics, The Phanerozic. In: Geochemistry of Hydrothermal Ore Deposits, 2~(nd) edition. Edited by Hubert Lloyd Barnes, 22-70.
    Drummond M S, Defant M J, Kepezhinskas P K.. 1996. The petrogenesis of slab derived trondhjemite- tonalite-dacite adakite magmas. Trans R Soc Edinburgh: Earth Sci, 87: 205-216
    Faure. 1986. Principles of isotope geology (2~(nd) ed). New York: John Wiley and Sons, 567.
    Feeley T C and Hacker M D. 1995. Intracrustal derivation of Na-rich andesitic and dacitic magmas: an example from Volcan Ollague, Andean Central Volcanic Zone. J. Geol., 103:213-225.
    Goldstein S. L., O'Nions R. K., Hamilton P. J.. 1984. A Sm—Nd study of atmosheric dusts and particulates form major river systems. Earth Planet. Sci. Lett., 70,221-236.
    Harris, N. B. W., Pearce, J. A., Tindle, A. G. 1986. Geochemical characteristics of collision-zone magmatism. In: Coward M. P., Reis A. C. (eds.), Collision tectonics. Spec. Publ. Grol. Soc. Lond., 19: 67-81.
    
    Hart S R. 1984. Large- scale isotope anomaly in the Southern Hemisphere. Nature, 309:753-757.
    Hoefs . 1997. Stable isotope geochemistry (3nd Edition). Springer- Verlag. Berlin. 201.
    Hugh R R. 1993. Using geochemical data: evaluation, presentation, interpretation. London: Longman Scientific Technical Limited.
    Irvine T N., et al.. 1971. A guide to the chemical classification of the common volcanic rocks. Canadian. J. Earth. Sci. 5.
    Jahn,B.M, Brian Windley, Boris Natal'in, Nick Dobretsov. 2004. Phanerozoic continental growth in Central Asia. Journal of Asian Earth Sciences 23: 599-603.
    Jahn,B.M., Wu,F.Y., Chen,B.,2000. Massive granitoid generation in central Asia: Nd isotopic evidence and implication for continental growth in the Phanerozoic. Episodes 23: 82-92.
    Kay R W. 1978. A leutian magnesian andesites: melts from subducted Pacific Ocean crust. J Volcanol Geotherm Res, 4:117-132.
    Lamb M, and Badarch G 1997. Paleozoic sedimentary basins and volcanic-arc systems of southern Mongolia: New stratigraphic and sedimentary constraints. International Geology Review 39: 542-576.
    Le Maitre R W. 1989. A classification of igneous rocks and glossary of terms (IUGS) : recommendations of the IUGS Sub-commission on the Systematics of Igneous Rocks. Balckwell, Oxford, 193.
    Liang Ri-Xuan. 1991. The characteristics of ophiolite sequences and its rock associations in central and eastern Nei Mongol, in Pre-Jurassic Geology of Inner Mongolia, China, edited by Ken-Ichi Ishii,
    
    Xueya Liu, Koichiro Ichikawa and Benhong Huang, Report of China-Japan Cooperative Research Group (1987-1989) : 65-84.
    Liu Xue-Ya. 1991. The Paleozoic island arc type magmatism in the central Inner Mongolia,China, in Pre-Jurassic Geology of Inner Mongolia, China, edited by Ken-Ichi Ishii, Xueya Liu, Koichiro Ichikawa and Benhong Huang, Report of China-Japan Cooperative Research Group (1987-1989) : 39-56.
    Loiselle M C and Wones D S. 1979. Characteristics and origin of anorogenic granites. Geological Society of America, 11 : 468.
    Ludwig K R. 2003. User' s manual for Isop lot 3.0, a geolocronological toolkit for M icrosoft Excel. Berkely: Berkely Geochronological Center Special Publication, 4: 25-32.
    Maniar, P. C, Piccoli, P. M.. 1989. Tectonic discrimination of granitoids. Geol. Soc. Amer. Wull., 101(3): 635-643.
    Martin H. 1999. Adakitic magmas: Modern analogues of Archaean granitoids. Lithos, 46:411-429.
    Miller C F, Bradfish L J. 1980. An inner cordilleran belt of muscovite-bearing plutons. Geol. 8: 412-416.
    Nie Feng-Jun and Ame Bjφrlykke. 1994. Nd isotope and rare earth element geochemical constraints on the origin of the Wenduermiao iron deposit, southcentral Inner Mongolia, People's Republic of China: International Geology Review, 36: 72-91.
    Nozaka T, Liu Y. 2002. Petrology of the Hegenshan ophiolite and its implication for the tectonic evolution of northern China. EPSL, 202: 89-104.
    Ohmoto, H. and Rye, R.O., 1979, Isotopes of sulfur and carbon[A]. In: Geochemistry of hydrothermal ore Deposits (ed. H.L. Barnes), 2~(nd) edition, John Wiley and Sons, New York, pp. 509-567.
    Ohmoto, H., 1972. Systematics of sulfur and carbon isotopes in hydrothermal ore deposits. Econ. Geol. 67: 551-579.
    Paterno R.Castillo. 2006. An overview of adakite petrogenesis. Chinese Science Bulletin, 51 (3) : 257-268.
    Pearce J. A., Harris, N. B. W., Tindle A. G. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J. Petrol. 25: 956-983.
    Roberts M P, Clemene J D. 1993. Origin of high-potassium, calc-alkaline, I-type granitoids. Geology, 21: 825-828.
    Robinson P T, Zhou M F, Hu X F, Reynolds P, Bai W and Yang J. 1999. Geochemical constraints on the origin of the Hegenshan ophiolite, Inner Mongolia, China. J. Asian Earth Sci., 17: 423-442.
    Ruzhentsev S V and Pospelov II. 1992. The South Mongolia Variscan fold system. Geotectonics, 26: 383-395.
    Sajona F C, Maury R C, Pubellier M, Leterrier J, et al.. 2000. Magmatic source enrichment by slab-derived melts in a postcollision setting, central Mindanao (Philippines). Lithos, 54:173-206.
    Sajona F G, Maury R C, Bellon H, et al.. 1993. Initiation of subduction and the generation of slab melts in western and eastern Mindanao, Philippines, Geology, 21:1007-1010.
    
    Sajona F G., Bellon H, Maury R C, et al.. 1994. Magmatic response to abrupt changes in geodynamic settings: Pliocene-Quaternary calc-alkaline lavas and Nb enriched basalts of Leyte and Mindanao (Philippines). Tectonophys., 237:47-72.
    Sengor A M C, Natalin B A, Burtaman V S. 1993. Evolution of the Altaid tectonic collage and Paleozoic crustal growth in Eurasis.Nature,364: 299-307.
    Sun S. S., McDonough W. F.. 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geol. Soc. Spec. Publ., 42: 313-345.
    Taylor B E.1987. Stable isotope geochemistry of ore-forming fluid. Mineralogical Association of Canada Short Course Handbook,13:337-445.
    
    Vavra G, Gebauer D.Schmid R, et al,.1996.Mutiple zircon growth and recrystallization during polyphase late Carboniferous to Triassic metamorphism in granulites of the Ivrea zone (southern Alps): an ionprobe (SHRIMP) study. Contrib Mineral Petro.,122: 337-358.
    Vavra G,Schmid R,Gebauer D.1999.Internal morphology,habit and U-Th-Pb microanalysis of amphibolite-to-granulite facies zircons:geochronology of the Ivrea zone(south Alps).Contrib Mineral Petro.,134:380-404.
    Wedepohl K.H..1974.Handbook of Geochemistry.Springer,Berlin Heidelberg New York.Vol.v/1.
    White A J R,Chappell B W.1983.Granitoid types and their distribution in the Lacklan foldbelt,southeast Australia.In:Roddick ed.Circum..Pacific Plutonic Terranes,Mem,Geol.Soc.Am.159.21-34.
    Williams I S,Claesson S.1987.Isotopic evidence for the Precambrian provenance and Caledonian metamorphism of high-grade paragenesis from the Steve N appes,Scandinavian Caledonides,Ⅱ.Ion microprobe zircon U-Th-Pb.Contrib.Mineral Petrol.,97:205-217.
    Wright J B.1969.A simple alkalinity ratio and its application to questions of non-orogenic granite genesis.Geol.Mag.,106:370-384.
    Wu Fu Yuan,Sun De You,Li Hui Ming,et al..2002.A-type granites in northeastern China:age and geochemical constraints on their petrogenesis.Chemical Geology,187:143-173.
    Wu Fu Yuan,Jahn B.M.,Wilde S.,Sun De You.2000.Phanerozoic continental crustal growth:Sr-Nd isotopic evidence from the granites in northeastern China.Tectonophysics,328:87-113.
    Xiao Wenjiao,Windley B F,Hao Jie,et al.2003.Accretion leading to collision and the Permian Solonker suture,Inner Mongolia,China:Termination of the central Asian orogenic belt.Tectonics,22(6):8-1-8-20.
    Yumul G P Jr,Dimalanta C B,Faustino D V,et al.1999.Silicic arc volcanism and lower crust melting:an example from the central Luzon,Philippines.J Geo.,154:13-14.
    Zartman R E,Haines S M.1988.The plumbotectonic model for Pb-isotope systematics among major terrestrial reservoir-A case for bi-directional transport.Gochim.Cosmochim.Acta,52:1327-1339.
    Zartman R E,Doe B R.1981.Plumbotectonics-the model.Tectonophysics,75:135-162.
    Zhang Yun Ping and Tang Ke Dong.1989.Pre-Jurassic tectonic evolution of intercontinental region and the suture zone between the North China and Siberian platforms.Journal of Southeast Asian Earth Sciences,3:47-55.
    Zindler A,Hart S R.1986.Chemical geodynamics.Ann.Rev.Earth Planet.Sci.,14:493-571.
    白登海,张丽,孔祥儒,等.1993a.内蒙古东部古生代块体碰撞区的大地电磁测深研究—Ⅰ观测与资料分析.地球物理学报,36(3):326-336.
    白登海,张丽,孔祥儒.1993b.内蒙古东部古生代块体碰撞区的大地电磁测深研究—Ⅱ.二维解释.地球物理学报,,36(6):773-783.
    鲍庆中,张长捷,吴之理,等.2007.内蒙古白音高勒地区石炭纪石英闪长岩SHRIMP锆石U-Pb年代学及其意义.吉林大学学报(地球科学版),37(1):15-23.
    曹从周,杨芳林,田烈昌,袁朝.1986.内蒙古贺根山地区蛇绿岩及中朝板块和西伯利亚板块之间的缝合带位置.中国北方板块构造论文集(2),北京:地质出版社,64-85.
    陈斌,徐备.1996.内蒙古苏尼特左旗地区古生代两类花岗岩类的基本特征和构造意义.岩石学报,12(4):546-561.
    陈斌,赵国春,Simon WILDE.2001.内蒙古苏尼特左旗南两类花岗岩同位素年龄学及其构造意义.地质论评,47(4):361-367.
    陈好寿,冉崇英.1992.康滇地轴铜矿床同位素地球化学.北京:地质出版社,1-135.
    陈江峰,江博明.1999.钕、锶、铅同位素示踪和中国东南大陆地壳演化.见:郑永飞主编.化学地球动力学.北京:科学出版社,262-287.
    陈军峰 刘本浩 高云桥等.2006.内蒙古东乌旗阿尔哈达银铅锌多金属矿勘查进展.“十五”重要地质科技成果暨重大找矿成果交流会材料二,63.
    陈琦,仇甘霖,杜玉申等.1992.内蒙白乃庙区域古板块构造及白乃庙矿床专辑.长春地质学院学报,22:1-130.
    陈森煌,刘道荣,包志伟等.1991.华北地台北缘几个超基性岩带的侵位年代及其演化.地球化学,(2):128-133.
    高群学,钱明.2005.内蒙古东乌旗阿尔哈达银铅锌矿区地质、物化探特征及其找矿意义.地质找矿论丛,20(sup):95-99.
    葛小月,李献华,陈志刚,李伍平.2002.中国东部燕山期高Sr低Y型中酸性火成岩的地球化学特征及成因:对中国东部地壳厚度的制约.科学通报,47(6):474-480.
    洪大卫,黄怀曾,肖宜君,等.1994.内蒙古中部二叠纪碱性花岗岩及其地球动力学意义.地质学报,68(3):219-230.
    洪大卫,王式洗,谢锡林,等.2000.兴蒙造山带正ε_(Nd)(t)值花岗岩的成因和大陆地壳生长.地学前缘,7(2):441-456.
    洪大卫,王式洗,谢锡林,等.2003.试析地幔来源物质成矿域-以中亚造山带为例.矿床地质,22(1):41-55.
    洪大卫,谢锡林,张季生.2002.花岗岩研究的同位素地球化学方法-以华南花岗岩为例.见:肖庆辉等主编.花岗岩研究思维与方法.北京:地质出版社,71-101.
    洪大卫等.1987.福建沿海晶洞花岗岩带的岩石学和成因演化.北京:科学技术出版社,77-91.
    胡朋,聂凤军,赫英,刘妍.2006.内蒙古沙麦岩体:正ε_(Nd)(t)值的过铝质花岗岩.岩石学报,22(11):2781-2790.
    胡晓,许传诗,牛树银等.1991.华北地台北缘早古生代大陆边缘演化.中国北方板块构造丛书,北京:北京大学出版社,1-216.
    黄崇轲,朱裕生等.2002.中国银矿床及其时空分布.北京:地震出版社.1-29.
    江和中,刘国范、刘伟芳.2007.内蒙古吉林宝力格银矿床地质特征及找矿标志.华南地质与矿产,4:9-13.
    金岩,刘玉堂,谢玉玲.2005.内蒙古东乌旗地区岩浆活动与多金属成矿的关系.华南地质与矿产,(1):8-12.
    雷新勇.1994.粤东锡多金属矿床稳定同位素地球化学研究.矿床地质,13(4):322-330.
    李光鼐,等.2003.中国东部中、新生代火成岩及其深部过程.北京:地质出版社,1-357.
    李继宏,张万昌.2005.内蒙古东乌旗草原覆盖区遥感构造信息提取.地质找矿论丛,20(2):137-141.
    李锦轶.1986.内蒙古东部中朝板块与西伯利亚板块之间古缝合带的初步研究.科学通报,14:1093-1096.
    李述靖,张维杰,耿明山,等.1998.蒙古弧形地质构造特征及形成演化概论.北京:地质出版社,104,111-112.
    李双林,欧阳自远.1998.兴蒙造山带及邻区的构造格局与构造演化.海洋地质与第四纪地质:18(3),45-54.
    李文国,李虹.1999.锡林格勒盟地层古生物综述.内蒙古文物考古,2:1-17.
    林强,葛文春,吴福元,孙德有,曹林.2004.大兴安岭中生代花岗岩类的地球化学.岩石学报,20(03):403-412.
    刘敦一,简平,张旗,等.2003.内蒙古图林凯蛇绿岩中埃达克岩SHRIMP测年:早古生代洋壳消减的证据[J].地质学报,77(3):317-327
    内蒙古自治区地质局.1973.1:200000中华人民共和国区域地质调查报告(东乌珠穆沁旗幅)(地质部分)。1-88.
    内蒙古自治区地质局.1976a.1:200000中华人民共和国区域地质调查报告(宝力格幅)(地质部分).1-111.
    内蒙古自治区地质局.1976b.1:200000中华人民共和国区域地质调查报告(宝力格幅)(矿产部分).1-56.
    内蒙古自治区地质局.1977.1:200000中华人民共和国区域地质调查报告(乌拉盖幅)(地质部分)。1-54.
    内蒙古自治区地质局.1978a.1:200000中华人民共和国区域地质调查报告(巴彦毛都幅、塔日根敖包幅).1-106.
    内蒙古自治区地质局.1978b.1:200000中华人民共和国区域地质调查报告(额仁高比、沙尔沟特幅)(地质部分).1-86.
    内蒙古自治区地质局.1978c.1:200000中华人民共和国区域地质调查报告(额仁高比、沙尔沟特幅)(矿产部分).1-55.
    内蒙古自治区地质局.1979.1:200000中华人民共和国区域地质调查报告(贺格斯乌拉幅).1-160.
    内蒙古自治区地质矿产局.1991.内蒙古自治区区域地质志.北京:地质出版社,1-725.
    内蒙古自治区地质矿产局.1996.内蒙古自治区岩石地层.北京:地质出版社,1-344.
    聂凤军,江思宏,白大明,等.2007a.中蒙边境中东段金属矿床成矿规律和找矿方向.北京:地质出版社,1-574.
    聂凤军,江思宏,张义,等.2004.中蒙边境及邻区斑岩型铜矿床地质特征及成因.矿床地质,23(2):176-189.
    聂凤军,裴荣富,吴良士,等.1993.内蒙古白乃地区岩浆活动与金属成矿作用.北京:北京科学技术出版社.1-239.
    聂凤军,张万益,杜安道,等.2007b.内蒙古朝不楞矽卡岩型铁多金属矿床辉钼矿铼-锇同位素年龄及地质意义.地球学报,28(4):315-323.
    钱明,高群学.2006.内蒙古东乌旗阿尔哈达铅锌矿区矿床成因探讨.地质找矿论丛,21(sup):70-73.
    Robinson,P.T.,白文吉,杨经缓.胡旭峰,周美付.1995.内蒙古贺根山蛇绿岩成因和地壳增生的地球化学制约.岩石学报,11(sup):112-124.
    任纪舜,姜春发,张正坤等.1980.中国大地构造及其演化.北京:科学出版社,1-124.
    任纪舜,王作勋,陈炳蔚,等.1999.从全球看中国大地构造-中国及邻区大地构造图及简要说明.北京:地质出版社,1-32.
    任纪舜.1991.论中国大陆岩石圈构造的基本特征.中国区域地质,(4):289-293.
    任收麦,黄宝春.2002.晚古生代以来古亚洲洋构造域主要块体运动学特征初探.地球物理学进展,17(1):113-120.
    邵济安,洪大卫,张履桥.2002.内蒙古火成岩Sr-Nd同位素特征及成因.地质通报.21(12):817-822.
    邵济安,张履桥,牟保磊,韩庆军.2007.大兴安岭的隆起与地球动力学背景.北京:地质出版社,127-152.
    邵济安.1991.中朝板块北缘中段地壳演化.北京:北京大学出版社.
    沈渭洲.1997.稳定同位素地质学教程.北京:原子能出版社,287.
    盛继福,傅先政,等.1999.大兴安岭中段成矿环境与铜多金属矿床地质特征.北京:地震出版社,1-216.
    施光海,苗来成,张福勤,等.2004.内蒙古锡林浩特A型花岗岩的时代及区域构造意义.科学通报,49(4):384-389.
    石玉若,刘敦一,张旗,等.2007.内蒙古中部苏尼特左旗地区三叠纪A型花岗岩锆石SHRIMP U-Pb 年龄及其区域构造意义.地质通报,26(2):183-189.
    石玉若,刘敦一,张旗等.2005.内蒙古苏尼特左旗白音宝力道Adakite质岩类成因探讨及其SHRIMP 年代学研究.岩石学报,21(1):143-150.
    宋彪,张拴宏,王彦斌,等.2006.锆石SHRIMP年龄测定数据处理是系统偏差的避免-标准锆石分段校正的必要性.岩矿测试,25(1):9-14.
    宋彪,张玉海,万渝生,等.2002.锆石SHRIMP样品靶制作、年龄测定及有关现象讨论.地质论评,48(增刊):26-30.
    孙德有,吴福元,高山.2004.小兴安岭东部清水岩体的锆石激光探针U-Pb年龄测定.地球学报,25(2):213-218.
    孙德有,吴福元,李惠民,林强.2000.小兴安岭西北部造山后A型花岗岩的时代及与索伦山-贺根山-扎赉特碰撞拼合带东延的关系.科学通报,45(20):2217-2222.
    孙泽轩,李国新,姚毅锋,黄大友.2003.内蒙古东乌珠穆沁旗沙麦地区中-新生代伸展构造特征研究.四川地质学报,23(4):198-201.
    唐克东.1992.中朝板块北侧褶皱带构造演化及其成矿规律.北京:北京大学出版社,1-277.
    田继勋.2005.内蒙古东乌旗达赛脱铅锌矿的控矿构造.地质找矿论丛,20(sup):102-105.
    涂光炽.1989.关于富碱侵入岩.矿产与地质,3(13):1-4.
    王辑,李双庆.1987.狼山-白云鄂博裂谷系及成矿特征.见:中国北方板块构造文集编委会.中国北方板块构造文集,第二集.北京:地质出版社,59-72.
    王建平.2003.内蒙古东乌旗铜、银多金属成矿带成矿类型分析.矿产与地质,17(2):132-135.
    王强,许继锋,赵振华.2001.一种新的火成岩-埃达克岩的研究综述.地球科学进展,16(2):201-208.
    王荃,刘雪亚,李锦轶.1991.中国华夏与安加拉古陆间的板块构造.北京:北京大学出版社,74-101.
    王荃.1986.内蒙古中部中朝与西伯利亚古板块间缝合线的确定.地质学报,1:31-43.
    王守光,黄占起,苏新旭,等.2004.一条值得重视的跨国境成矿带-南戈壁-东乌旗多金属成矿带.地学前缘,11(1):249-255.
    魏菊英,王关玉.1996.同位素地球化学.北京:地质出版社,1-166.
    吴锁平,王梅英,戚开静.2007.A型花岗岩研究现状及其述评.岩石矿物学杂志,26(1):57-66.
    夏广清.2005.内蒙古东乌旗地区土壤地球化学测量及找矿效果[J].矿产与地质,19(6):634-639.
    谢同伦.1963.东乌珠穆沁旗地区古生代地层研究报告.未刊.
    徐备,陈斌,张臣,白志强,王宏伟,张强.1994.中朝板块北缘乌华敖包地块钐-钕同位素等时线年龄及其意义.地质科学,29(2):168-172.
    徐备,陈斌.1997.内蒙古北部华北板块与西伯利亚板块之间中古生代造山带的结构和演化.中国科学(D辑),27(3):227-232.
    徐志刚.1997.大兴安岭及其邻区构造演化及控矿作用.见:赵一鸣等主编.大兴安岭及其邻区铜多金属矿床成矿规律与远景评价.北京:地震出版社,1-21.
    许继峰,王强.2003.Adakitic火成岩对大陆地壳增厚过程的指示:以青藏北部火山岩为例.地学前缘,10(4),401-406.
    阎国翰,牟保磊,曾贻善.1989.中国北方碱性和偏碱性侵入岩的时空分布及大地构造意义.中国地质科学院沈阳地质矿产研究所所刊,19:93-100
    张臣,吴泰然.1998.内蒙古温都尔庙群变质基性火山岩Sm-Nd、Rb-Sr同位素年代研究.地质科学,33(1):25-30.
    张旗,钱青,王二七等.2001b.燕山中晚期的“中国东部高原”:埃达克岩的启示.地质科学.36(2):248-255.
    张旗,王焰,刘红涛,王元龙,等.2003.中国埃达克岩的时空分布及其形成背景.地学前缘,10(4):385-400.
    张旗,王焰,钱青,杨进辉,等.2001a.中国东部燕山期埃达克岩的特征及其构造-成矿意义.岩石学报,17(2):236-244.
    张乾,潘家永,邵树勋.2000.中国某些金属矿床矿石铅来源的铅同位素诠释[J].地球化学,29(3): 231-238.
    张万益,聂风军,江思宏,刘妍,许东青,郭灵俊.2008.内蒙古查干敖包石英闪长岩锆石SHRIMP U-Pb年龄及其地质意义.岩石矿物学杂志,27(3):177-184.
    张万益,聂凤军,刘妍,等.2007(a).内蒙古东乌旗阿尔哈达铅-锌-银矿床硫和铅同位素研究[J].吉林大学学报(地球科学版),37(5):868-883.
    张万益,聂凤军,刘妍,温银维,江思宏,许东青.2007(b).内蒙古东乌旗吉林宝力格银(金)矿床地质特征及成因探讨.矿物学报,27(增刊):178-180.
    张招崇,王永强.1997.冀北印支期碱性岩浆活动及其地球动力学意义.矿物岩石地球化学通报,16(4):214-217.
    赵国龙,杨桂林,王忠,等.1989.大兴安岭中南段中生代火山岩.北京:北京科学技术出版社,1-205.
    赵一鸣,毕承思,李大新.1983.中国主要矽卡岩铁矿的挥发组份和碱质交代特征及其在成矿中的作用.地质论评,29(1):66-74.
    赵一鸣,王大畏,张德全,等.1994.内蒙古东南部铜多金属成矿地质条件及找矿模式.北京:地震出版社,1-234.
    赵振华,周玲棣.1994.我国某些富碱侵入岩的稀土元素地球化学.中国科学(B辑),24(10):1109-1120.
    周和平,聂凤军,薛林福,杜玉申,景德武.1992.白音都西群、白乃庙群和白音都西-白乃庙地体.长春地质学院学报(内蒙白乃庙区域古板块构造及白乃庙矿床专辑),17-28.
    朱炳泉,陈毓蔚.1985.中国太古代地盾边缘成矿作用的铅同位素组成特征.国际早前寒武纪成矿作用讨论会论文摘要.吉林:长春,103-104.
    朱炳泉.1993.矿石Pb同位素三维空间拓扑图解用于地球化学省与矿种区划.地球化学,(3):209-216.
    朱炳泉.1998.地球科学中同位素体系理论与应用-兼论中国大陆壳幔演化.北京:科学出版社.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700