用户名: 密码: 验证码:
一粒系小麦Pina基因与小麦生防细菌荧光假单胞菌研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小麦适应性强,分布广,用途多,是世界上最重要的粮食作物,其总面积、总产量及总贸易额均居粮食作物第一位,是全世界1/3以上人口的主要食粮。在我国,小麦的地位仅次于水稻。小麦的品质和抗病性是小麦研究的重点领域。本实验主要研究了影响一粒系小麦籽粒硬度的Pina基因和拮抗小麦真菌病害的生防细菌荧光假单胞菌,主要研究结果如下:
     1.以一粒系小麦为载体,采用PCR方法分离克隆一粒系小麦籽粒硬度蛋白Puroindoline a基因。得到了56份一粒系小麦影响籽粒硬度的Pina基因序列,并进行了单核苷酸多态性(SNP)分析和单倍型分析。在获得的1595 bp核苷酸序列中,有1270个保守位点,21个SNP位点和16个插入缺失(Indels)。分析得到14种单倍型,其发生频率由1到18不等。在野生一粒、栽培一粒和乌拉尔图小麦中,分别有9、8和2种单倍型。系统发育分析发现来自不同染色体组来源(Am and Au)的Pina能通过开放阅读框分析清楚地区分开来,这些研究为进一步研究一粒系小麦Pina基因功能和利用打好了基础。
     2.针对小麦真菌病害(全蚀病、立枯病、赤霉病)的生物防治细菌筛选鉴定试验,以分离自加拿大渥太华地区5个试验点土样的约300株荧光假单胞菌为研究对象,运用分子生物学技术,系统的研究荧光假单胞菌的遗传多样性。
     3.针对其中一土样分离得到的143株假单胞菌株中可分为两种表型群体FormⅠ和Ⅱ。运用电子显微镜和BOX-PCR、ERIC-PCR和新的Miniprimer-PCR技术以及16S rRNA和gacA基因序列测序,系统研究分离菌株不同表型和基因型的特性。基因组指纹图谱BOX-和ERIC-PCR的结果相近而不完全相同。与预期结果一致,新的图谱分析方法Miniprimer-PCR与BOX-和ERIC-PCR的相似性则较低,因其是基于16S rRNA序列设计的引物。16S rRNA基因测序及系统进化分析将菌株聚为3个主要类群,包括荧光假单胞菌(P. fluorescens)、韩国丛毛假单胞菌(P.koreensis)和恶臭假单胞菌(P.putida)。gacA基因序列聚类分析图与16S rRNA序列聚类分析图具有拓扑一致性,结果相互支持。Tajima's D统计分析发现FormⅠ菌群间有低频率的多态性,说明发生了群落膨胀或正向选择,这与16S rRNABLAST结果发现FormⅠ菌株遗传差异大相吻合。不同研究方法的结果均显示可能存在一种新的假单胞菌基因型。聚类分析也发现在加拿大农业土壤中可能存在新近确定的,只在韩国土壤环境中发现的韩国假单胞菌(Pseudomonas koreensis),这证明该种群具有更广泛的地理分布性。
     4.通过对143株分离菌进行平板拮抗反应,筛选得到12株对三种小麦真菌病害的病原菌具有抑制作用的潜在生防菌株。实验对筛选获得的生防菌株设计了充足的鉴定试验,将分离所得拮抗菌株与已知并深入研究的生防细菌Pf-5,从生化与分子生物学各方面进行比较。通过Biolog phenotype microarrays和API 20NE试剂盒,并送公司检测磷酸脂肪酸图谱(FAME),以及运用gacA基因和16S rRNA基因全长序列,通过系统进化树分析,对生防菌株的分子生物学和生物化学多样性进行了详尽的描述。拮抗细菌的生物化学试验结果相似,除了一些小分歧以外,显示其与Pf-5菌株具有接近的表型关系,这与gacA基因序列分析结果一致。实验结果证明,BIOLOG PM板、API 20NE试剂盒和脂肪酸甲酯分析(FAME)更适用于研究菌株生化特性,而16S rRNA基因全长序列系统进化在鉴定新分离菌株种属方面更具有优势。
Wheat is one of the most important grain crops in the world with its strong adaptability, wide spreading and multi-purpose. Its total growth area, yield and trade took the first place among all the grain crops respectively. There is 1/3 of world population fed on wheat product. In China, wheat is the dominating crops just on the neck of rice. Nowadays, more and more researchers focused on the study of wheat seed quality and disease resistant. Our study is mainly about the molecular characterization of Pina gene of einkorn wheat and the potential biocontrol agent of wheat pathogens-Pseudomonas fluorescens. The following are key results:
     1. Fifty-six sequences encoding the pina protein were characterized from three species or subspecies of einkorn wheat. These sequences contained 1,595 nucleotides, including 1,270 conserved sites,21 single nucleotide polymorphisms (SNPs), and 16 indels. The average frequency of SNPs and indels was one out of 76.1 and 99.9 bases, respectively. Five SNPs and no indels were found in the translated sequences. Fourteen haplotypes were defined, and the accessions in each haplotype ranged froml to 18. There were nine haplotypes in Triticum monococcum ssp. aegilopoides, eight in T. monococcum ssp. monococcum, and two in T. urartu. Phylogenetic analysis showed that Pina genes from different species or subspecies could be clearly differentiated based on the open reading frame. Genes from T. urartu grouped together, whereas genes from T. monococcum ssp. aegilopoides and T. monococcum ssp. monococcum were shared by three and two clusters, respectively. Both the haplotype and phylogenetic analyses indicated that T. monococcum ssp. aegilopoides was more diverse. These results would contribute to the understanding of functional aspects and efficient utilization of Pina genes.
     2. In our study, a polyphasic molecular approach was used to study the biodiversity of close to 300 fluorescent Pseudomonas strains isolated from long-term (>30 years) mineral fertilization experimental agricultural plots.
     3. One hundred and forty-three pseudomonads were isolated from one of the field plot were chosen for more intensive studies. The strains were grouped into two distinct phenotypes (Form I and II) based on colony morphology and growth patterns on King's B medium. Further characterization was performed by electron microscopy, BOX, ERIC, Miniprimer PCR and 16S rRNA and gacA sequencing. The genomic fingerprints from ERIC and BOX were similar but not identical. As expected, fingerprints derived from miniprimer PCR exhibited comparatively lower correlations to ERIC and BOX. Sequencing and phylogenetic analyses of the 16S rRNA gene identified three major groups, consisting of P. fluorescens, P. koreensis and P. putida. Tajima's D statistics applied to the 16S rRNA sequences of the two subpopulations indicated an excess of low frequency polymorphisms within strains of form I, suggesting a population size expansion and or positive selection. This is corroborated by the 16S rRNA BLAST search in that the form I strains are more diverse. The methods employed allowed for the characterization of the bacterial strains leading to a tentative identification of potentially a new species within the genus Pseudomonas. The characterization also revealed the potential presence in Canadian soils of Pseudomonas koreensis, a recently described new species, leading to the conclusion that this new species could have a wider distribution.
     4. The characterized bacterial strains were evaluated in vitro for their ability to suppress major soilborne fungal pathogens of wheat, leading to the identification of 12 effective bacterial biocontrol agents. The potential biocontrol strains phenotypically and genotypically characterized relative to a well-known biological control strain pf-5. Phenotypic methods used included Biolog, API 20NE assays and FAMEs. Genotypic methods used included REP-PCR and gacA gene sequencing, the phylogenetic tree inferred from all the 52 type strains of P. fluorescens subgroup from flurescent Pseudomonas genus and the isolated strains. By using phenotypic tests, the cluster results were similar with each other except some small differences by dividing these strains into two groups with a close relation with Pf-5 together, which was supported by gacA sequence analysis. API 20NE, Biolog PM and FAME proved to be the best for characterization of isolates, whereas 16S rRNA sequence analysis were found to be the best resolution for preliminarily identification of these newly isolated strains.
引文
1. Achouak W, Conrod S, Cohen V, et al. Phenotypic variation of Pseudomonas brassicacearum as a plant root-colonization strategy. Mol Plant Microbe Interact,2004, 17:872-879
    2. Altschul S, Madden T, Schaffer A, et al. Gapped BLAST and PSI-BLAST:a new generation of protein database search programs. Nucleic Acids Res,1997, 25:3389-3402
    3. Amer GA, Utkhede RS. Development of formulations of biological agents for management of root rot of lettuce and cucumber. Can. J Microbiol.2000,46:809-816
    4. Anonymous, API 20NE analytical profile index,5th ed. Analytab Products, Marcy-1'Etoile, France,1992
    5. Anzai Y, Kim H, Park JY, et al. Phylogenetic affiliation of the pseudomonads based on 16S rRNA sequence. Int J Syst Evol Micro,2000,50:1563-1589
    6. Bangera MG, Thomashow LS. Identification and characterization of a gene cluster for synthesis of the polyketide antibiotic 2,4-diacetylphloorglucinol from Pseudomonas fluorescens Q2-87. Bacteriol,1999,181:3155-3163
    7. Beecher B, Smidansky ED, See D, et al. Mapping and sequence analysis of barley hordoindolines. Theor Appl Genet,2001,102:833-840
    8. Behrendt U, Ulrich A, Schumann P, et al. A taxonomic study of bacteria isolated from grasses:a proposed new species Pseudomonas graminis sp. nov. Int J Syst Evol Micro, 1999,49:297-308
    9. Berg SO. Is the degree of grittiness of wheat flour mainlya varietal character? Cereal Chem,1947,24:274-283
    10. Bettge AD, Morris CF, Greenblatt GA. Assessing genotypic softness in single wheat kernels using starch granule-associated friabilin as a biochemical marker. Euphytica, 1995,86:65-72
    11. Biffen RH. On the inheritance of strength in wheat. J Agric Sci,1908,3:86-101
    12. Blochet JE, Chevalier C, Forest E, et al. Complete amino-acid sequence of puroindoline, a new basic and cystine-rich protein with a unique tryptophan-rich domain, isolated from wheat endosperm by Triton X-114 phase partitioning. FEBS Lett,1993,329:336-340
    13. Bochner BR. New technologies to assess genotype-phenotype relationships. Nat Rev Genet,2003,4:309-314
    14. Bottger EC. Rapid determination of bacterial ribosomal RNA sequences by direct sequencing of enzymatically amplified DNA. FEMS Microbiol Lett,1989,65:171-176
    15. Bull CT. Characterization of spontaneous gacS and gacA regulatory mutants of Pseudommonas fluorescens biocontrol strain CHAO. Antonnie Leeuwenhoek,2001, 79:327-336
    16. Busse HJ, El-Banna T, Auling G. Evaluation of different approaches for identification of xenobiotic-degrading pseudomonads. Appl Environ Microbiol,1989,55:1578-1583
    17. Chabeaud P, de Groot A, Bitter W, et al. Phase-variable expression of an operon encoding extracellular alkaline protease, a serine protease homolog, and lipase in Pseudomonas brassicacearum. J Bacteriol,2001,183:2117-2120
    18. Chantret N, Cenci A, Sabot F, et al. Sequencing of the Triticum monococcum Hardness locus reveals good microlinearity with rice. Mol Genet Genomics,2004,271:377-386
    19. Chen F, He ZH, Xia XC, et al. Molecular and biochemical characterization of puroindoline a and b alleles in Chinese landraces and historical cultivars. Theor Appl Genet,2006,112:400-409
    20. Chen M, Wilkinson M, Tosi P, et al. Novel puroindoline and grain softness protein alleles in Aegilops species with the C, D, S, M and U genomes. Theor Appl Genet, 2005,111:1159-1166
    21. Clarridge III JE. Impact of 16S rRNA gene sequence analysis for identification of bacteria on Clinical Microbiology and Infectious Diseases. Clin Microbial Reviews, 2004,17:840-862
    22. Cobb NA. The hardness of the grain in the principal varieties of wheat. Agric Gazete NSW,1896,7:279-289
    23. Cook RJ, RoVira AD. The role of bacteria in the biological control of Gaeumannomyces graminis by suppressive soils. Soil Biol Biochem,1976,8:267-273
    24. Cook RJ. Making greater use of introduced microorganisms for Biological control of plantpathogens. Annu Rev Phytopathol,1993,31:53-80
    25. Costa R, Gomes NCM, Ellen K, et al. Pseudomonas community structure and antagonistic potential in the rhizosphere:insights gained by combining phylogenetic and functional gene-based analyses. Environ Microbiol,2007,9:2260-2273
    26. Dailidiene D, Bertoli MT, Miciuleviciene J, et al. Emergence of tetracycline resistance in Helicobacter pylori:multiple mutational changes in 16S ribosomal DNA and other genetic loci. Antimicrob. Agents Chemother,2002,46:3940-3946
    27. Darlington HF, Rouster J, Hoffimann L, et al. Identification and molecular characterisation of hordoindolines from barley grain. Plant Mol Biol,2001, 47:785-794
    28. Dawson SL, Fry JC, Dancer B. A comparative evaluation of five typing techniques for determining the diversity of fluorescent pseudomonads. J Microbiol Methods, 2002,50:9-22
    29. Defago G, Haas D. Pseudomonads as antagonist of soilborne plant pathogens:modes of action and genetic analysis. Soil Biochem,1990,6:249-291
    30. Devos KM, Dubcovsky J, Dvorak J, et al. Structural evolution of wheat chromosomes 4A,5A, and 7B and its impact on recombination. Theor Appl Genet,1995,91:282-288
    31. Deziel E, Comeau Y, Villemur R. Initiation of biofilm formation by Pseudomonas aeruginosa 57RP correlates with emergence of hyperpiliated and highly adherent phenotypic variants deficient in swimming, swarming, and twitching motilities. J Bacteriol,2001,183:1195-1204
    32. Drenkard E, Ausubel FM. Pseudomonas biofilm formation and antibiotic resistance are linked to phenotypic variation. Nature,2002,416:740-743
    33. Ellis R, Timms-Wilson T, Bailey M. Identification of conserved traits in fluorescent pseudomonads with antifungal activity. Environ Microbiol,2000,2:274-284
    34. Filatenko A, Hammer K. New descriptions of hulled wheats on the infraspecific level. Genet Resour Crop Evol,1997,44:285-288
    35. Gaines CS. Associations among soft wheat flour particle size, protein content, chlorine response, kernel hardness, milling quality, white layer cake volume, and sugar-snap cookie spread. Cereal Chem.1985,62:290-292
    36. Gardener BBM, Schroeder KL, Kalloger SE, et al. Genotypic and phenotypic diversity of phlD-containing Pseudomonas strains isolated from the rhizosphere of wheat. Appl Environ Microbiol,2000,66:1939-1946
    37. Garland JL, Mills AL. Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level sole-carbon-source-utilization. Appl Enviorn Micorbiol,1991,57:2351-2359
    38. Gaur R, Shani N, Kawaljeet JBN, et al. Diacetyl phloroglucinol-producing Pseudomonas do not influence AM fungi in wheat rhizosphere. Curr Sci,2004, 86:453-457
    39. Gautier MF, Aleman ME, Guirao A, et al. Triticum aestivum puroindolines, two basic cystine-rich seed proteins:cDNA sequence analysis and developmental gene expression. Plant Mol Biol,1994,25:43-57
    40. Gautier MF, Cosson P, Guirao A, et al. Puroindoline genes are highly conserved in diploid ancestor wheats and related species but absent in tetraploid Triticum species. Plant Sci,2000,153:81-91
    41. Gedye KR, Morris CF, Bettge AD. Determination and evaluation of the sequence and textural effects of the puroindoline a and puroindoline b genes in a population of synthetic hexaploid wheat. Theor Appl Genet,2004,109:1597-1603
    42. Giroux MJ, Morris CF. A glycine to serine change in puroindoline b is associated with wheat grain hardness and low levels of starch-surface friabilin. Theor Appl Genet, 1997,95:857-864
    43. Gonzalez M, Rodriguez R, Zavala ME, et al. Characterization of Mexican isolates of Colletotrichum lindemuthianum by using differential cultivars and molecular markers. Phytopathology,1998,88:292-299
    44. Goud M, Muralikrishnan M. Biological control of three phytopathogenic fungi by Pseudomonas fluorescens isolated from rhizosphere. Int J Microbiol,2009,7
    45. Greenwell P, Schofield JD. A starch granule protein associated with endosperm softness in wheat. Cereal Chem,1986,63:379-380
    46. Greenwell P, Schofield JD. Wheat starch granule proteins and their technological significance, in:Cereals in a European context. I. D. Morton, ed. Ellis Horwood Ltd.: Chichester, England.1987, pp 407-416
    47. Handelsman J, Stabb EV. Biocontrol of Soilborne Plant Pathogens. Plant cell,1996, 8:1855-1869
    48. Harman GE, Hayes CK. The Genetic nature and biocontrol ability of progeny from protoplast fusion in Trichoderma. Blotechnology in plant disease control,1992, 237-255
    49. Hilario E, Buckley TR, Young JM. Improved resolution on the phylogenetic relationships among Pseudomonas by the combined analysis of atpD, car A, recA and 16S rRNA. Antonie van Leeuwenhoek,2004,86:51-64
    50. Howell CR, Stipanovic RD. Control of Rhizoctonia solani on cotton seedlings with Pseudomonas fluorescens and with an antibiotic produced by the bacterium. Phytopathology,1979,69:480-482
    51. Hunter-Cevera JC. The value of microbial diversity. Curr Opin Microbiol,1998, 1:278-285
    52. Isenbarger TA, Finney M, Rios-Velazquez C, et al. Miniprimer PCR, a new lens for viewing the microbial world. Appl Environ Microbiol,2008,74:840-849
    53. Janse JD, Derks JHJ, Spit BE, et al. Classification of fluorescent soft rot Pseudomonas bacteria, including P. marginalis strains, using whole cell fatty acid analysis. Syst Appl Microbiol,1992,15:538-553
    54. Jensen MA, Webster JA, Straus N. Rapid identification of bacteria on the basis of polymerase chain reaction-amplified ribosomal DNA spacer polymorphism. Appl Environ Microbiol,1993,59:945-952
    55. Johnsen K, Andersen S, Jacobsen CS. Phenotypic and genotypic characterization of phenanthrene-degrading fluorescent Pseudomonas biovars. Appl Environ Microbiol, 1996,62:3818-3825
    56. Jolly CJ, Rahman S, Kortt AA, et al. Characterisation of grain-softness protein, a marker of endosperm texture in wheat. In:T Westcott and Y Williams (Eds) Proceedings of the 40th Australian Cereal Chemistry Conference (Albury, NSW, Australia.10-14 September 1990). Cereal Chemistry Division, Royal Australinan Chemical Institute. Parkville. Vic.1990, Pp.92-95
    57. Keel C, Schnider U, Maurhofer M, et al. Suppression of root disease by Pseudomonas fluorescens CHAO:importance of the bacterial secondary metabolite 2,4-diacetylphloroglucinol Mol Plant-Microbe Interact,1992,5:4-13.
    58. Khan MWA, Ahmad M. Detoxification and Bioremediation Potential of a Pseudomonas fluorescens Isolate against the Major Indian Water Pollutants. J Environ Sci Health,2006,41:659-674
    59. King EO, Ward MK, Raney DE. Two simple media for the demonstration of pyocyanin and fluorescin. The Journal of laboratory and clinical medicine,1954, 44:301-307
    60. Kolbert CP, Persing DH. Ribosomal DNA sequencing as a tool for identification of bacterial pathogens. Curr Opin Microbiol,1999,2:299-305
    61. Kumar S, Tamura K, Nei M. Mega3:integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform,2004,5:150-163
    62. Lalucat J, Bennasar A, Bosch R, et al. Biology of Pseudomonas stutzeri. Microbiol Mol Biol Rev,2006,70:510-547
    63. Laue BE, Jiang Y, Chhabra SR, et al. The biocontrol strain Pseudomonas fluorescens F113 produces the Rhizobium small bacteriocin, N-(3-hydroxy-7-cistetradecenoyl) homoserine lactone, via HdtS, a putative novel N-acylhomoserine lactone synthase. Microbiol,2000,146:2469-2480
    64. Laville J, Voisard C, Keel C, et al. Global control in Pseudomonas fluorescens mediating antibiotic synthesis and suppression of black root rot of tobacco, PNAS, USA,1992,89:1562-1566
    65. Law CN, Young CF, Brown JWS, et al. The study of grain protein control in wheat using whole chromosome substitution lines. In:Seed protein improvement by nuclear techniques. International Atomic Energy Agency, Vienna, Austria,1978, pp 483-502
    66. Levy E, Gough FJ, Berlin DK, et al. Inhibition of Septoria tritici and other phytopatogenic fungi and bacteria by Pseudomonas fluorescens and its antibiotics. Plant Pathol,1992,41:335-341
    67. Lillemo M, Morris CF. A leucine to proline mutation in puroindoline b is frequently present in hard wheats from Northern Europe. Theor Appl Genet,2000, 100:1100-1107
    68. Lillemo M, Simeone MC, Morris CF. Analysis of puroindoline a and b sequences from Triticum aestivum cv'Penawara'and related diploid taxa. Euphytica,2002, 126:321-331
    69. Manly BFJ. Distance matrices and spatial data, Randomization, Bootstrap and Monte Carlo Methods in Biology, Chapman and Hall, London,1997, pp.172-204
    70. Martin CR, Rousser R, Barbec DL. Development of a single-kernel wheat characterizastion system. Trans ASAE,1993,36:1399-1404
    71. Martinez-Granero F, Capdevila S, Sanchez-Contreras M, et al. Two site-specific recombinases are implicated in phenotypic variation and competitive rhizosphere colonization in Pseudomonas fluorescens. Microbiol,2005,151:975-983
    72. Massa AN, Morris CF, Gill BS. Sequence diversity of Puroindoline-a, Puroindoline-b and the grain softness protein genes in Aegilops tauschii Coss. Crop Sci,2004, 44:1808-1816
    73. Massa AN, Morris CF. Relationship between sequence polymorphism of GSP-1 and puroindoline in Triticum aestivum and Aegilops tauschii. In:Lafiandra D, Masci S, D'Ovidio R (eds) The gluten proteins. RSC, Cambridge,2004, pp 461-464
    74. Mattern PJ, Morris R, Schmidt LW, et al. Location of genes for kernel properties in the wheat cultivar'Cheyenne'using chromosome substitution lines. In:E.R. Sears and L.M.S.Sears (Eds.) Proceedings of the 4th International Wheat Genetics Symposium (Columbia MO.1-6 August 1973), Agriculture Experiment Station. University of Missouri. Columbia MO.1973, pp.703-707
    75. Mazzola M, Cook RJ, Thomashow LS, et al. Contribution of phenazine antibiotic biosynthesis to the ecological competence of fluorescent pseudomonads in soil habitats. Appl Environmental Microbiol,1992,58:2616-2624
    76. Morris CF, Greenblatt GA, Bettge AD, et al. Isolation and characterization of multiple forms of friabilin. Cereal Sci,1994,21:167-174
    77. Morris CF, Rose SP. Wheat, In:Henry RJ, Kettlewell PS (Eds) Cereal grain quality. Chapman and Hall, New York,1996, pp 3-54
    78. Morris CF. Puroindolines:the molecular genetic basis of wheat grain hardness. Plant Mol Biol,2002,48:633-647
    79. Multani DS, Dhaliwal HS, Sharma SK, et al. Inheritance of isoproturon tolerance in durum wheat transferred from Triticum monococcum. Plant Breed,1989,102:166-168
    80. Nesbitt M, Samuel D. From staple crop to extinction? The archaeology and history of the hulled wheats. In:Padulosi S., Hammer K., Heller J. (Eds) Hulled wheats. Proceedings of the first international workshop on hulled wheats. Castelvecchio Pascoli, Tuscany, Italy,1996, pp 41-100
    81. Newton CM, Gomes A, Irina IA, et al. Effects of the inoculant strain Pseudomonas putida KT2442 (pNF142) and of naphthalene contamination on the soil bacterial community. FEMS Microbiology Ecology,2005,54:21-33
    82. Oda S, Schofield JD. Characterization of friabilin polypeptides. Cereal Sci,1997, 26:29-36
    83. O'Sullivan DJ, O'Gara F. Traits of fluorescent Pseudomonas spp. involved in suppression of plant root pathogens, Microbiol Rev,1992,56:662-676
    84. Palleroni NJ, Genus I. Pseudomonas., in:D.J. Brenner, N.R. Krieg, J.T. Staley (Eds.), Bergey's Manual of Systematic Bacteriology, springer, new york,2005, pp.323-379
    85. Palleroni NJ. Human and animal-pathogenic pseudomonads. In The Prokariotes, A Handbook On The Biology Of Bacteria, Ecophysiology, Isolation, Identification and Applications., Springer, New York,1992
    86. Pandey BV, Upadhyay RS. Pseudomonas fluorescens can be used for bioremediation of textile effluent Direct Orange-102. Tropical Ecology,2010,51:397-403
    87. Paulsen IT, Press CM, Ravel J, et al. Complete genome sequence of the plant commensal Pseudomonas fluorescens Pf-5. Nature biotechnology,2005,23:873-878
    88. Peix A, Rivas R, Mateos PF, et al. Pseudomonas rhizosphaerae sp. nov., a novel species that actively solubilizes phosphate in vitro. Intl J Syst Evol Microbiol,2003, 53:2067-2072
    89. Pogna NE, Gazza L, Korona V, et al. Puroindolines and kernel hardness in wheat species. In:NgPKW and Wrigley CW, eds. Wheat Quality Elucidation. AACC, St. Paul, Minnesota, USA,2002, pp.155-169
    90. Posada D. ModelTest Server:a web-based tool for the statistical selection of models of nucleotide substitution online. Nucleic Acids Res,2006.34:700-703
    91. Raaij makers JM, Weller DM, Thomashow LS. Frequency of Antibiotic-Producing Pseudomonas spp. in Natural Environments, Appl Environ Microbiol,1997, 63:881-887
    92. Raaijmakers JM, Weller DM. Exploiting genotypic diversity of 2,4-diacetylphloroglucinol-producing Pseudomonas spp.:characterization of superior root-colonizing P. fluorescens strain Q8r1-96. Appl Environ Microbiol,2001, 67:2545-2554
    93. Rademaker JL, Hoste B, Louws FJ, et al. Comparison of AFLP and rep-PCR genomic fingerprinting with DNA-DNA homology studies:Xanthomonas as a model system. Int J Syst Evol Microbiol,2000,50:665-677
    94. Rademaker JLW, de Bruijn FJ. Characterization and classification of microbes by rep-PCR genomic fingerprinting and computer assisted pattern analysis, In G. Caeteno-Anolles and P. M. Gresshoff (Eds), DNA markers:protocols, applications, and overviews. John Wiley and Sons, New York, N.Y.1997. pp.151-171
    95. Rainey PB, Travisano M. Adaptive radiation in heterogeneous environment. Nature, 1998,394:69-72
    96. Reimmann C, Beyeler M, Latifi A, et al. The global activator gacA of Pseudomonas aeruginosa PAO positively controls the production of the auto inducer N-butyryl-homoserine lactone and the formation of the virulence factors pyocyanin, and so on. Mol Microbiol,1997,24:309-319
    97. Rezzonico F, Moenne-Loccoz Y, Defago G. Effect of Stress on the Ability of aphlA-Based Quantitative Competitive PCR Assay To Monitor Biocontrol Strain Pseudomonas fluorescens CHAO. Appl Environ Microbiol,2003,69:686-690
    98. Ribeiro ML, Gerrits MM, Benvengo YH, et al. Detection of high-level tetracycline resistance in clinical isolates of Helicobacter pylori using PCR-RFLP. FEMS Immunol Med Microbiol,2004,40:57-61
    99. Saitou N, Nei M. The neighbor-joining method:a new method for reconstructing phylogenetic trees. Mol Biol Evol,1987,4:406-425
    100.Sanchez-Contreras M, Martin M, Villacieros M, et al. Phenotypic selection and phase variation occur during alfalfa root colonization by Pseudomonas fluorescens F113. J Bacteriol,2002,184:1587-1596
    101.Sepulveda-Torres et al.; N. Rajendran, M.J. Dybas, C.S. Criddle. Generation and initial characterization of Pseudomonas stutzeri KC mutants with impaired ability to degrade carbon tetrachloride. Arch Microbiol,1999,171:424-429
    102.Sharifi-Tehrani A, Zala M, Natsc A, et al. Biocontrol of soil-borne fungal plant disease by 2,4-diacetylphloroglucinol-producing fluorescent Pseudomonas with different restriction profile of amplified 16S rRNA. Eur J Plant Pathol,1998,104:631-643
    103.Sharma HC, Waines JG, Foster KW. Variability in primitive and wild wheats for useful genetic characters. Crop Sci,1981,21:555-559
    104.Sharp PJ, Chao S, Desai S, et al. The isolation, characterization and application in the Triticeae of a set of wheat RFLP probes identifying each homeologous chromosome arm. Theor Appl Genet,1989,78:342-348
    105.Sokal RR, Rolf FJ. Randomization tests, Biometry:The Principles and Practice of Statistics in Biological Research, W.H. Freeman and Company, New York,1995, pp. 803-819
    106.S(?)rensen J, Skouv J, J(?)rgensen A, et al. Rapid identification of environmental isolates of Pseudomonas aeruginosa, P. fluorescens and P. putida by SDS-PAGE analysis of whole-cell protein patterns. FEMS Microbiol Ecol,1992,101:41-50
    107.Spiers AJ, Buckling A, Rainey P.B. The causes of Pseudomonas diversity. Microbiol, 2000,146:2345-2350
    108.Stock AM, Robinson VL, Goudreau PN, et al. Two-component signal transduction. Annu Rev Biol,2000,69:183-215
    109.Symes KJ. The inheritance of grain hardness in wheat as measured by the particle size index. Austrl Agric Res,1965,16:113-123
    110.Tajima F. Statistical Method for Testing the Neutral Mutation Hypothesis by DNA Polymorphism. Genetics,1989,123:585-595
    111.Tambong JT, de Cock AW, Tinker NA, et al. Oligonucleotide array for identification and detection of Pythium species. Appl Environ Microbiol,2006,72:2691-2706
    112.Tambong JT, Hofte M. Phenazines are involved in biocontrol of Pythium myriotylum on cocoyam by Pseudomonas aeruginosa PNA1, European Journal of Plant Pathology, 2001,107:511-521
    113.Tambong JT, Mwange KN, Bergeron M, et al. Rapid detection and identification of the bacterium Pantoea stewartii in maize by TaqMan real-time PCR assay targeting the cpsD gene. J Appl Microbiol,2008,104:1525-1537
    114.Tamura K, Dudley J, Nei M, et al. MEGA4:Molecular Evolutionary Genetics Analysis (Mega) software version 4.0. Mol Biol Evol,2007,24:1596-1599
    115.Tamura K, Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol,1993, 10:512-526
    116.Tanchak MA, Schernthaner JP, Giband M, Altosaar I. Tryptophanins:isolation and molecular characterization of oat cDNA clones encoding proteins structurally related to puroindoline and wheat grain softness proteins. Plant Sci,1998,137:173-184
    117.Thomashow L, Weller D, Current concepts in the use of introduced bacteria for biological disease control:mechanisms and antifungal metabolites, in:G. Stacey, N. Keen (Eds.), Plant-Microbe Interactions, Chapman &Hall, New York, (1996), pp. 187-236
    118.Thomashow LS, Weller DM. Role of a Phenazine Antibiotic from Pseudomonas fluorescens in biological control of Gaeumannomyces graminis var. tritici. J Bacteriol, 1988,170:3499-3508
    119.Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W:improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Res,1994, 22:4673-4680
    120.Tortoli E. Impact of genotypic studies on mycobacterial taxonomy:the new mycobacteria of the 1990s. Clin Microbiol Rev,2003,16:319-354
    121.Tranquili G, Lijavetzky D, Muzzi G, et al. Genetic and physical characterisation of grain texture-related loci in diploid wheat. Mol Gen Genet,1999,262:846-850
    122.Trieber CA, Taylor DE. Mutations in the 16S rRNA genes of Helicobacter pylori mediate resistance to tetracycline. J Bacteriol,2002,184:2131-2140
    123.Turnbull KM, Gaborit T, Marion D, Rahman S. Variation in puroindoline polypeptides in Australian wheat cultivars in relation to grain hardness. Plant Physiol,2000, 27:153-158
    124.Validov S, Kamilova F, Qi S, et al. Selection of bacteria able to control Fusarium oxysporumf. sp. radicis-lycopersici in stonewool substrate. J Appl Microbiol,2007, 102:461-471
    125.van den Broek D, Bloemberg GV, Lugtenberg B. The role of phenotypic variation in rhizosphere Pseudomonas bacteria. Environ Microbiol,2005,7:1686-1697
    126. van den Broek D, Chin AW, Eijkemans K, et al. Biocontrol traits of Pseudomonas spp. are regulated by phase variation. Mol Plant Microbe Interact,2003,16:1003-1012
    127.van den Broek D, Chin-A-Woeng TFC, Bloemberg GV, et al. Molecular nature of spontaneous modifications in gacS which cause colony phase variation in Pseudomonas sp. PCL1171. J Bacteriol,2005a,187:593-600
    128.Versalovic J, de Bruijn FJ, Lupski JR. Repetitive sequences based PCR (Rep-PCR) DNA fingerprinting of bacterial genome, In F. J. de Bruijn, J. R Lupski, and G. M. Weinstock (Eds), Bacterial genomes:physical structure and analysis. Chapman and Hall, New York, N.Y.1998. pp.437-454
    129.Versalovic J, Koeuth T, Lupski JR. Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. Nucleic Acids Res, 1991,19:6823-6831
    130.Ward PG, Goff M, Donner M, et al. A two step chemo biotechnological conversion of polystyrene to a biodegradable thermoplastic. Environ Sci Technol,2006, 40:2433-2437
    131.Widmer F, Seidler RS, Gillivet PM, et al. A highly selective PCR protocol for detecting 16S rRNA genes of the genus Pseudomonas (Sensu Stricto) in environmental samples. Appl Environ Microbiol,1998,64:2545-2553
    132.Wieland G, Neumann R, Backhaus H. Variation of microbial communities in soil, rhizosphere, and rhizoplane in response to crop species, soil type, and crop development. Appl Environ Microbiol,2001,67:5949-5854
    133.Worzella WW. Inheritance and interrelationship of components of quality, cold resistance, and morphological characters in wheat hybrids. Agric Res,1942, 65:501-522
    134.Xu R, Chen Q, Robleh Djama Z, Tambong JT. Miniprimer PCR assay targeting multiple genes:a new rapid and reliable tool for genotyping Pantoea stewartii subsp. Stewartii Lett Appl Microbiol,2010,50:216-222
    135.Yamazaki WT, Donelson DH. The relationship between flour particle size and cake-volume potential among Eastern soft wheats. Cereal Chem,1972,49:649
    136.东秀珠,蔡妙英.常见细菌系统鉴定手册.北京:科学出版社,2002,162-166
    137.范璐,何健,周展明,汤坚.小麦角质率与抗粉碎硬度指数关系的研究.郑州工程学院学报,2002a,2328-30
    138.范璐,展海军,周展明,汤坚.图象分析测定白麦的角质率和硬度方法的研究.粮食与饲料工业,2002b,4:44-45
    139.高克祥,刘晓光,郭润芳,高宝嘉,朱天博.木霉菌对五种植物病原真菌的重寄生 作用.山东农业大学学报(自然科学版),2002,33:37-42
    140.葛红莲,纪秀娥,乔传英.根围细菌防治土传病害的研究进展.河南农业科学.2005,8:21-24
    141.顾尧臣.小麦粒度、硬度、水分调节和制粉性能.粮食与饲料工业,2002:1-5
    142.管瑁,胡永红,杨文革,倪巧萍,马海军.蜡样芽胞杆菌防治植物病虫害的研究进展.现代农药,2007,6:6-10
    143.何中虎,Pena RK, Rajaram S我国小麦磨粉特性和面包烘烤品质的研究.全国作物育种学术讨论会论文集,1998
    144.胡新中,魏益民.陕西关中小麦品种籽粒硬度及测定方法研究.麦类作物学报,2001,21:22-25
    145.黄大防,林敏.农业微生物基因工程.北京:科学出版社.2001,316-39
    146.金颖,胡洪波,张雪洪.假单胞菌产生的抗生素研究.上海农业学报,2005,21:106-109
    147.李春杰,许艳丽.大豆根腐病菌拮抗细菌筛选及抗生作用.大豆科学,2004,23:174-177
    148.李振岐.麦类病害.中国农业出版社.1994
    149.李志念,王力钟,张弘.4种Strobilurin类杀菌剂防治小麦白粉病的活性研究.农药,2004,10:357-363
    150.李宗智,孙馥亭,张彩英,金亚晨.不同小麦品种品质特性及相关性的初步研究.中国农业科学,1990b,23:35-41
    151.李宗智.冬小麦若干品质性状遗传及相关研究.作物学报,1990a,1:8-9
    152.齐鸿雁,薛凯,张洪勋.磷脂脂肪酸谱图分析方法及其在微生物生态学领域的应用.生态学报.2003,23:1576-1582
    153.史建荣,王裕中,杨新宁.小麦纹枯病产量损失研究.江苏农业学报,1989,5:44-45
    154.史建荣,王裕中,杨新宁.小麦纹枯病发生流行动态.江苏农业科学,1989,1:23-24
    155.孙永艳,申泉,李艳琴.肠杆菌基因间重复共有序列及ERIC-PCR生命的化学,2004,24:288-290
    156.谭周进,肖罗,谢丙炎等.假单胞菌的微生态调节作用.核农学报,2004,18:72-76
    157.王刚,杨之为.荧光假单胞杆菌P2-5菌株对小麦全蚀病的抑制作用.植物保护,2004,30:32-34
    158.王平,胡正嘉,李阜棣.荧光假单胞菌群根部定殖的研究进展.应用与环境生物 学报.1996,2:408-414
    159.魏海雷,周洪友,张力群等,抗生素2,4-二乙酞基苯三酚作为荧光假单胞菌2P24菌株生防功能因子的实证分析.微生物学报,2004,44:663-666
    160.夏兰琴,何中虎,陈新民,张庆祝,周阳.小麦硬度主效基因Pina和Pinb的克隆和序列分析.作物学报,2003,29:25-30
    161.颜慧,蔡祖聪,钟文辉.磷脂脂肪酸分析方法及其在土壤微生物多样性研究中的应用.土壤学报,2006,143:851-858
    162.杨凤环,李正楠,姬惜珠,冉隆贤BOX-PCR技术在微生物多样性研究中的应用.微生物学报,2008,35:1282-1286
    163.杨海君,谭周进,肖启明等.假单胞菌的生物防治作用研究.中国生态农业学报,2004,12:158-161
    164.杨合同,任欣正.植物病原荧光假单胞杆菌数值分类研究.植物病理学报,1994,24:139-145
    165.杨仕栋.大麦HinA基因SNP变异及其与籽粒硬度的关联性分析,四川农业大学,2008
    166.喻璋,马奇祥,王成俊.小麦病虫害及其防治.四川大学出版社,2002
    167.张克诚.植物根际荧光假单胞菌和链霉菌防治土传病害作用机理研究.中国农业大学.2002
    168.张玉勋,王道本,彭于发.生防细菌D93菌株在小麦根部定殖的研究.华中农业大学学报,1996,15:18-23
    169.张中鸽,彭于发,陈善铭.小麦全蚀病发生现状及防治措施的探讨.植物保护,1991,17:19-20
    170.郑华,欧阳志云,方治国,赵同谦BIOLOG在土壤微生物群落功能多样性研究中的应用.土壤学报,2004,41:456-461
    171.周洪友,魏海雷,刘西莉.通过染色体整合抗生素2,4-二乙酰基间苯三酚合成基因提高荧光假单胞菌生防功能.科学通报,2005,50:766-771
    172.周艳华,何中虎,阎俊等.中国小麦硬度分布及遗传分析.中国农业科学,2002,35:1177-1185

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700