用户名: 密码: 验证码:
小鼠骨髓DC 2-DE技术体系建立及其蛋白质表达分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
树突状细胞是机体中功能最强的专职抗原递呈细胞,既能直接激活初始型T淋巴细胞,启动早期特异性免疫应答;又能诱导免疫耐受,具有强大的激活CTL及CD4+ Th细胞的能力,控制着体内免疫反应的过程,在免疫应答中处于中心位置,已成为免疫学及相关学科的研究热点。
     髓系树突状细胞分化发育的各阶段具有不同的功能特点。未成熟期树突状细胞可由粘附分子选择素介导进入炎症组织,并具有极强的抗原内吞加工处理能力,但其激活初始T细胞的能力较弱。利用DC来增强机体特异性抗肿瘤免疫能力的研究,已成为肿瘤生物治疗的重要课题。同时,国内外都已将其作为肿瘤疫苗应用于基因治疗,取得了很好的临床效果。如果将抗原引入未成熟树突状细胞,使之发育为成熟细胞,则在临床应用上更为理想。
     仙台病毒载体是细胞质型RNA载体,对各种动物细胞有较高的感染效率;在理论上不存在改变细胞核内染色体的危险性,与以往的载体相比具有更高的安全性。仙台病毒载体作为基因治疗、基因疫苗、基因(蛋白质)功能分析及蛋白质生产研究的载体,受到许多学者的青睐。
     本课题对小鼠骨髓来源的未成熟树突状细胞的蛋白质表达进行了分析,通过双向电泳MALDI-TOF MS分析,运用MS-Fit工具进行鉴定;对仙台病毒载体处理的成熟DC进行比较蛋白质组分析,寻找
Being the most potent professional antigen presenting cells, the Dendritic cells (DC) is endowed with the unique ability to stimulate naive T cells to initiate primary immune responses. In addition, the DC plays a critical role in the maintenance of self-tolerance by curtailing T cell responses directly or indirectly through the generation of CTL and CD4+Th regulatory cells. Many researchers have made emphasis on it in immunology and other related course.
     The myeloid DC has different function during their different differentiation and development stage. Mediated by adhesion molecule, the DC enters inflammation tissue with the potent ability of antigen endocytosis and treatment, but it is endowed with the weak ability to stimulate naive T cells. It is an important topic for tumor biology therapy to enhance the body special immune ability to anti cancer by researched on DC. And it has afforded good clinical results that the DC is made as tumor vaccines for gene therapy at home and abroad. If we make the immature DC into mature DC by introducing antigens, the vaccines will be better at clinical application.
     The negative-strand RNA viral vector system based on the Sendai virus (SeV) is able to efficiently infect many animal cells and more safer than other vectors because it can not change the chromosomes in the nucleus in theory. People like it as the vector for gene therapy, gene vaccine, analysis of gene function and protein production.
引文
[1] Flores L. A, Meza P. S, Calderon A. J, et al. Network of dendritic cells within the muscular layer of the mouse intestine [J]. Proc Natl Acad Sci U S A. 2005, 102 (52): 19039-44.
    [2] Tarbell KV, Yamazaki S, Steinman RM. The interactions of dendritic cells with antigen-specific, regulatory T cells that suppress autoimmunity [J]. Semin Immunol. 2006, 18(2):93-102.
    [3] Del P. A, Locati M, Otero K, et al. Migration of dendritic cells across blood and lymphatic endothelial barriers [J].Thromb Haemost. 2006, 95(1):22-8.
    [4] Andrews DM, Andoniou CE, Scalzo AA, et al. Cross-talk between dendritic cells and natural killer cells in viral infection [J].Mol Immunol. 2005, 42(4):547-55.
    [5] Steinman RM. Some interfaces of dendritic cell biology [J].APMIS. 2003, 111(7-8):675-97
    [6] Zenke M, Hieronymus T. Towards an understanding of the transcription factor network of dendritic cell development [J].Trends Immunol. 2006, 27(3):140-5
    [7] Wu L, Dakic A. Development of dendritic cell system [J].Cell Mol Immunol. 2004, 1 (2):112-8.
    [8] Serafini B, Rosicarelli B, Magliozzi R, et al. Dendritic cells in multiple sclerosis lesions: maturation stage, myelin uptake, and interaction with proliferating T cells [J].J Neuropathol Exp Neurol. 2006, 65(2):124-41.
    [9] Quah BJ, O'Neill HC. Maturation of function in dendritic cells for tolerance and immunity [J].J Cell Mol Med. 2005, 9(3):643-54.
    [10] Babensee JE, Paranjpe A. Differential levels of dendritic cell maturation on different biomaterials used in combination products [J].J Biomed Mater Res A. 2005, 74(4):503-10.
    [11] Leverkus M, McLellan AD, Heldmann M, et al. MHC class II-mediated apoptosis in dendritic cells: a role for membrane-associated and mitochondrial signaling pathways [J]. Int Immunol. 2003, 15(8):993-1006.
    [12] Lehner M, Stockl J, Majdic O, et al. MHC class II antigen signaling induces homotypic and heterotypic cluster formation of human mature monocyte derived dendritic cells in the absence of cell death [J].Hum Immunol. 2003, 64(8):762-70.
    [13] Senechal B, Boruchov AM, Reagan JL, et al. Infection of mature monocyte-deriveddendritic cells with human cytomegalovirus inhibits stimulation of T-cell proliferation via the release of soluble CD83 [J]. Blood. 2004, 103(11):4207-15.
    [14] Frasca L, Scotta C, Lombardi G, et al. Both maturation and survival of human dendritic cells are impaired in the presence of anergic/suppressor T cells [J].Clin Dev Immunol. 2003,10(1):61-5.
    [15] Wan H, Dupasquier M. Dendritic cells in vivo and in vitro [J].Cell Mol Immunol. 2005, 2(1):28-35.
    [16] Burgdorf SK, Claesson MH, Rosenberg J. Dendritic cell-based cancer vaccine [J]. Ugeskr Laeger. 2006, 168(14):1420-3.
    [17] Svane IM, Berntsen A, Trepiakas R, et al. Dendrite cell-based cancer vaccines--clinical application [J]. Ugeskr Laeger. 2006, 168(14):1415-20.
    [18] Allan CP, Turtle CJ, Mainwaring PN, et al. The immune response to breast cancer, and the case for DC immunotherapy [J]. Cytotherapy. 2004, 6(2):154-63.
    [19] Salcedo M, Bercovici N, Taylor R., et al. Vaccination of melanoma patients using dendritic cells loaded with an allogeneic tumor cell lysate [J].Cancer Immunol Immunother. 2006, 55(7):819-829.
    [20] Iinuma H, Okinaga K, Fukushima R, et al. Superior protective and therapeutic effects of IL-12 and IL-18 gene-transduced dendritic neuroblastoma fusion cells on liver metastasis of murine neuroblastoma [J].J Immunol. 2006, 176(6):3461-9.
    [21] Houtenbos I, Westers TM, Ossenkoppele GJ, et al. Leukemia-derived dendritic cells: towards clinical vaccination protocols in acute myeloid leukemia [J].Haematologica. 2006, 91(3):348-55.
    [22] Deeb D, Gao X, Jiang H, et al. Vaccination with leukemia-loaded dendritic cells eradicates residual disease and prevent relapse [J].J Exp Ther Oncol. 2006, 5(3): 183-93.
    [23] Hirschowitz EA, Foody T, Kryscio R, et al. Autologous dendritic cell vaccines for non-small-cell lung cancer [J].J Clin Oncol. 2004, 22(14):2808-15.
    [24] Avigan D. Dendritic cell-tumor fusion vaccines for renal cell carcinoma [J].Clin Cancer Res. 2004, 10(18 Pt 2):6347S-52S.
    [25] Hernando JJ, Park TW, Kuhn WC. Dendritic cell-based vaccines in breast and gynaecologic cancer [J].Anticancer Res. 2003, 23(5b):4293-303.
    [26] Svane IM, Berntsen A, Trepiakas R, et al. Dendrite cell-based cancer vaccines-- clinical application [J].Ugeskr Laeger. 2006, 168(14):1415-20.
    [27] Munz C, Steinman RM, Fujii S. dendritic cell maturation by innate lymphocytes: coordinated stimulation of innate and adaptive immunity [J].J Exp Med. 2005, 202(2):203-7.
    [28] Van Keulen VP, Ciric B, Radhakrishnan S, et al. Immunomodulation using the recombinant monoclonal human B7-DC cross-linking antibody rHIgM12 [J].Clin Exp Immunol. 2006, 143(2):314-21.
    [29] Conwell CC, Huang L. Recent Advances in Non-viral Gene Delivery [J].Adv Genet. 2005, 53 PA :1-18.
    [30] Tomanin R, Scarpa M. Why do we need new gene therapy viral vectors? Characteristics, limitations and future perspectives of viral vector transduction [J]. Curr Gene Ther. 2004, 4(4): 357-72.
    [31] Kawashita Y, Fujioka H, Ohtsuru A, et al. The efficacy and safety of gene transfer into the porcine liver in vivo by HVJ (Sendai virus) liposome [J].Transplantation. 2005, 80(11):1623-9.
    [32] Song Y, Morikawa S, Morita M, et al. Magnetic resonance imaging using hemagglutinating virus of Japan-envelope vector successfully detects localization of intra-cardially administered microglia in normal mouse brain [J]. Neurosci Lett. 2006, 395(1):42-5.
    [33] Kaneda Y, Yamamoto S, Nakajima T. Development of HVJ Envelope Vector and Its Application to Gene Therapy [J].Adv Genet. 2005, 53PA: 307-332.
    [34] Gorg A, Weiss W, Dunn MJ. Current two-dimensional electrophoresis technology for proteomics [J]. Proteomics. 2004, 4(12):3665-85.
    [35] Kolker E, Higdon R, Hogan JM. Protein identification and expression analysis using mass spectrometry [J]. Trends Microbiol. 2006 Apr 5[Epub ahead of print].
    [36] Malmstrom L, Marko V.G, Westergren T.G, et al. 2DDB - a bioinformatics solution for analysis of quantitative proteomics data [J].BMC Bioinformatics.2006,7(1):158.
    [37] Chalkley RJ, Hansen KC, Baldwin MA. Bioinformatic methods to exploit mass spectrometric data for proteomic applications [J]. Methods Enzymol. 2005, 402: 289-312.
    [38] Lee SR, Pharr GT, Cooksey AM, et al. Differential detergent fractionation for non-electrophoretic bovine peripheral blood monocyte proteomics reveals proteins involved in professional antigen presentation [J]. Dev Comp Immunol. 2006 Mar 13; [Epub ahead of print].
    [39] Enose Y, Destache CJ, Mack AL, et al. Proteomic fingerprints distinguish microglia, bone marrow, and spleen macrophage populations [J].Glia. 2005, 51(3):161-72.
    [40] Richards J, Le Naour F, Hanash S, et al. Integrated genomic and proteomic analysis of signaling pathways in dendritic cell differentiation and maturation [J].Ann N Y Acad Sci. 2002, 975:91-100.
    [41] Celluzzi CM, Welbon C. Dendritic cell culture: a simple closed culture system using ficoll, monocytes, and a table-top centrifuge [J].J Hematother Stem Cell Res. 2003, 12(5):575-85.
    [42] Gorg A, Weiss W, Dunn MJ. Current two-dimensional electrophoresis technology for proteomics [J]. Proteomics. 2004, 4(12):3665-85.
    [43] Mortz E, Krogh TN, Vorum H, et al. Improved silver staining protocols for high sensitivity protein identification using matrix-assisted laser desorption/ionization- time of flight analysis [J].Proteomics. 2001, 1(11):1359-63.
    [44] Havlis J, Thomas H, Sebela M, et al. Fast-response proteomics by accelerated in-gel digestion of proteins [J].Anal Chem. 2003, 75(6):1300-6.
    [45] Shevchenko A, Sunyaev S, Loboda A, et al. Charting the proteomes of organisms with unsequenced genomes by MALDI-quadrupole time-of-flight mass spec- trometry and BLAST homology searching [J].Anal Chem. 2001, 73(9):1917-26.
    [46] Chevallet M, Diemer H, Luche S, et al. Improved mass spectrometry compatibility is afforded by ammoniacal silver staining [J].Proteomics. 2006, 6(8):2350-2354.
    [47] Nagradova NK. Protein folding in the cell: on the mechanisms of its acceleration [J].Biochemistry (Mosc). 2004, 69(8):830-43.
    [48] Cheng Y, Hartemink CA, Hartwig JH, et al.Three-dimensional reconstruction of the actin cytoskeleton from stereo images [J].J Biomech. 2000, 33(1):105-13.
    [49] Sympson CJ, Singleton D, Geoghegan TE. Cytochalasin D-induced actin gene expression in murine erythroleukemia cells [J].Exp Cell Res. 1993, 205(2):225-31.
    [50] Ibarra N, Pollitt A, Insall RH. Regulation of actin assembly by SCAR/WAVE proteins [J].Biochem Soc Trans. 2005, 33(Pt 6):1243-6.
    [51] Chehimi J, Starr SE, Kawashima H, et al. Use of colloidal silica (Sepracell-MN) for enrichment of dendritic cells from human peripheral blood: comparison with other methods [J]. J Leukoc Biol. 1990, 48(1):74-80.
    [52] Sato A, Iwasaki A. Induction of antiviral immunity requires Toll-like receptor signaling in both stromal and dendritic cell compartments [J].Proc Natl Acad Sci US A. 2004,101(46):16274-9.
    [53] Hashimoto SI, Suzuki T, Nagai S, et al. Identification of genes specifically expressed in human activated and mature dendritic cells through serial analysis of gene expression [J].Blood. 2000, 96(6):2206-14.
    [54] Tuteja R, Tuteja N. Serial Analysis of Gene Expression: Applications in Human Studies [J]. J Biomed Biotechnol. 2004, (2):113-120.
    [55] Tian L, Greenberg SA, Kong SW, et al. Discovering statistically significant pathways in expression profiling studies [J].Proc Natl Acad Sci U S A. 2005, 102 (38):13544-9.
    [56] McIlroy D, Tanguy R.S, Le M.N, et al. Profiling dendritic cell maturation with dedicated microarrays [J].J Leukoc Biol. 2005, 78(3):794-803.
    [57] Sommandas V, Rutledge EA, Van Yserloo B, et al. Aberrancies in the differentiation and maturation of dendritic cells from bone-marrow precursors are linked to various genes on chromosome 4 and other chromosomes of the BB-DP rat [J].J Autoimmun. 2005, 25(1):1-12.
    [58] Liu S, An H, Li N, et al. Cloning and identification of a novel human ubiquitin-like protein, DC-UbP, from dendritic cells [J].Biochem Biophys Res Commun. 2003, 300(3):800-5.
    [59] Li M, Qian H, Ichim TE, et al. Induction of RNA interference in dendritic cells [J]. Immunol Res. 2004, 30(2):215-30.
    [60] Sandra R.P, Vitor M.F, Glauce G.G, et al. Changes in the proteomic profile during differentiation and maturation of human monocyte-derived dendritic cells stimulated with granulocyte macrophage colony stimulating factor/interleukin-4 and lipopolysaccharide [J]. Proteomics, 2005, (5): 1186–1198.
    [61] Babensee JE, Paranjpe A. Differential levels of dendritic cell maturation on different biomaterials used in combination products [J].J Biomed Mater Res A. 2005, 74(4):503-10.
    [62] Wang Q, Peng YZ. In vitro amplification and identification of immature dendritic cells from murine bone marrow[J].Zhonghua Shao Shang Za Zhi. 2003,19(6):332-5
    [63] Gu CY, Wang Q, Zheng L, et al. In vitro culture and identification of tolerogenic dendritic cells from mouse bone marrow [J]. Di Yi Jun Yi Da Xue Xue Bao. 2005, 25(8):959-62.
    [64] Chernokalskaya E, Gutierrez S, Pitt AM, et al. Ultrafiltration for proteomic samplepreparation [J].Electrophoresis. 2004, 25(15):2461-8.
    [65] McDonough J, Marban E. Optimization of IPG strip equilibration for the basic membrane protein mABC1 [J]. Proteomics. 2005, 5(11):2892-5.
    [66] Pattingre S, Levine B. Bcl-2 inhibition of autophagy: a new route to cancer? [J]. Cancer Res. 2006, 66(6):2885-8.
    [67] Wu X, Biswal SS, Kehrer JP. Roles of 5-lipoxygenase activating protein in cell proliferation and apoptosis [J].Cell Biol Toxicol. 2003, 19(3):135-43.
    [68] Onuki R, Nagasaki A, Kawasaki H, et al. Confirmation by FRET in individual living cells of the absence of significant amyloid beta -mediated caspase 8 activation [J].Proc Natl Acad Sci U S A. 2002, 99(23):14716-21.
    [69] Adrain C, Brumatti G, Martin SJ. Apoptosomes: protease activation platforms to die from [J]. Trends Biochem Sci. 2006 Apr 1; [Epub ahead of print]
    [70] Watson RW, Fitzpatrick JM. Targeting apoptosis in prostate cancer: focus on caspases and inhibitors of apoptosis proteins [J].BJU Int. 2005, 96 Suppl 2:30-4.
    [71] Natoni A, Kass GE, Carter MJ, et al. The mitochondrial pathway of apoptosis is triggered during feline calicivirus infection [J].J Gen Virol. 2006, 87(Pt 2):357-61.
    [72] Malmegrim F., Saelens X, Pruijn GJ, et al. Caspase-mediated cleavage of the U snRNP-associated Sm-F protein during apoptosis [J].Cell Death Differ. 2003, 10 (5):570-9.
    [73] Velier JJ, Ellison JA, Kikly KK, et al. Caspase-8 and caspase-3 are expressed by different populations of cortical neurons undergoing delayed cell death after focal stroke in the rat [J].J Neurosci. 1999, 19(14):5932-41.
    [74] Kim KB, Choi YH, Kim IK, et al. Potentiation of Fas- and TRAIL-mediated apoptosis by IFN-gamma in A549 lung epithelial cells: enhancement of caspase-8 expression through IFN-response element [J].Cytokine. 2002, 20(6):283-8.
    [75] Aouad SM, Cohen LY, Sharif A.E, et al. Caspase-3 is a component of Fas death-inducing signaling complex in lipid rafts and its activity is required for complete caspase-8 activation during Fas-mediated cell death [J].J Immunol. 2004, 172(4):2316-23.
    [76] Tormanen N.U, Soini Y, Kahlos K, et al. Expression of caspases-3, -6 and -8 and their relation to apoptosis in non-small cell lung carcinoma [J].Int J Cancer. 2001, 93(2):192-8.
    [77] Massa C, Melani C, Colombo MP. Chaperon and adjuvant activity of hsp70:different natural killer requirement for cross-priming of chaperoned and bystander antigens [J].Cancer Res. 2005, 65(17):7942-9.
    [78] Didelot C, Schmitt E, Brunet M, et al. Heat shock proteins: endogenous modulators of apoptotic cell death [J].Handb Exp Pharmacol. 2006, (172):171-98.
    [79] Stankiewicz AR, Lachapelle G, Foo CP, et al. Hsp70 inhibits heat-induced apoptosis up-stream of mitochondria by preventing Bax translocation [J].J Biol Chem. 2005, 80(46):38729-39.
    [80] Yeh CH, Wang YC, Wu YC,et al.Ischemic preconditioning or heat shock pretreatment ameliorates neuronal apoptosis following hypothermic circulatory arrest [J].J Thorac Cardiovasc Surg. 2004, 128(2):203-10.
    [81] Tonomura H, Takahashi KA, Mazda O, et al. Glutamine protects articular chondrocytes from heat stress and NO-induced apoptosis with HSP70 expression [J].Osteoarthritis Cartilage. 2006 Feb 7; [Epub ahead of print]
    [82] Triantis V, Trancikova DE, Looman MW, et al. Identification and characterization of DC-SCRIPT, a novel dendritic cell-expressed member of the zinc finger family of transcriptional regulators [J].J Immunol. 2006, 176(2):1081-9.
    [83] Titz B, Thomas S, Rajagopala SV, et al. Transcriptional activators in yeast [J].Nucleic Acids Res. 2006, 34(3):955-67.
    [84] Debrus S, Rahbani L, Marttila M, et al. The zinc finger-only protein Zfp260 is a novel cardiac regulator and a nuclear effector of alpha1-adrenergic signaling [J].Mol Cell Biol. 2005, 25(19): 8669-82.
    [85] Bauer I, Hohl M, Al S.A, et al. Transcriptional activation of the Egr-1 gene mediated by tetradecanoylphorbol acetate and extracellular signal-regulated protein kinase [J].Arch Biochem Biophys. 2005, 438(1):36-52.
    [86] Al SA, Day RM, Thiel G. Specificity of transcriptional regulation by the zinc finger transcription factors Sp1, Sp3, and Egr-1 [J].J Cell Biochem. 2005, 94(1):153-67.
    [87] Armeanu S, Bitzer M, Smirnow I, et al. Severe impairment of dendritic cell allostimulatory activity by Sendai virus vectors is overcome by matrix protein gene deletion [J].J Immunol. 2005, 175(8):4971-80.
    [88] Wolf SC, Sauter G, Rodemann HP, et al. Influence of growth factors on the proliferation of vascular smooth muscle cells isolated from subtotally nephrectomized rats after endothelin or angiotensin II antagonism [J].Nephrol Dial Transplant. 2005, 20(2):312-8.
    [89] Hawker JR. Chemiluminescence-based BrdU ELISA to measure DNA synthesis [J].J Immunol Methods. 2003, 274(1-2):77-82.
    [90] Jones A, Morton I, Hobson L, et al. Differentiation and immune function of human dendritic cells following infection by respiratory syncytial virus [J].Clin Exp Immunol. 2006,143(3): 513- 22.
    [91] Litjens NH, Rademaker M, Ravensbergen B, et al. Effects of monomethylfumarate on dendritic cell differentiation [J].Br J Dermatol. 2006, 154(2):211-7.
    [92] Ogino T, Kobayashi M, Iwama M, et al. Sendai virus RNA-dependent RNA polymerase L protein catalyzes cap methylation of virus-specific mRNA [J].J Biol Chem. 2005, 280(6):4429-35.
    [93] Ogino T, Iwama M, Ohsawa Y, et al. Interaction of cellular tubulin with Sendai virus M protein regulates transcription of viral genome [J].Biochem Biophys Res Commun. 2003, 311(2):283-93.
    [94] Smallwood S, Hovel T, Neubert WJ, et al. Different substitutions at conserved amino acids in domains II and III in the Sendai L RNA polymerase protein inactivate viral RNA synthesis [J].Virology. 2002, 304(1):135-45.
    [95] Holmes DE, Moyer SA. The phosphoprotein (P) binding site resides in the N terminus of the L polymerase subunit of sendai virus [J].J Virol.2002,76(6):3078-83
    [96] Cevik B, Holmes DE, Vrotsos E, et al. The phosphoprotein (P) and L binding sites reside in the N-terminus of the L subunit of the measles virus RNA polymerase [J]. Virology. 2004,327 (2): 297-306.
    [97] Cortese CK, Feller JA, Moyer SA. Mutations in domain V of the Sendai virus L polymerase protein uncouple transcription and replication and differentially affect replication in vitro and in vivo [J]. Virology. 2000, 277(2):387-96.
    [98] Cevik B, Kaesberg J, Smallwood S, et al. Mapping the phosphoprotein binding site on Sendai virus NP protein assembled into nucleocapsids [J].Virology. 2004, 325(2):216-24.
    [99] Zhang M, Tang H, Guo Z, et al. Splenic stroma drives mature dendritic cells to differentiate into regulatory dendritic cells [J].Nat Immunol. 2004, 5(11):1124-33.
    [100] Dai S, Wan T, Wang B, et al. More efficient induction of HLA-A*0201- restricted and carcinoembryonic antigen (CEA)-specific CTL response by immunization with exosomes prepared from heat-stressed CEA-positive tumor cells [J].Clin Cancer Res. 2005, 11(20):7554-63.
    [101]Li L, Sun S, Cao X, et al. Experimental study on induction of tolerance to experimental autoimmune myasthenia gravis by immature dendritic cells [J].J Huazhong Univ Sci Technolog Med Sci. 2005, 25(2):215-8.
    [102]Chan CW, Crafton E, Fan HN,et al. Interferon-producing killer dendritic cells provide a link between innate and adaptive immunity [J].Nat Med. 2006, 12(2):207-13.
    [103]Taieb J, Chaput N, Menard C, et al. A novel dendritic cell subset involved in tumor immunosurveillance [J].Nat Med. 2006, 12(2):214-9.
    [104]Trombetta ES, Ebersold M, Garrett W, et al. Activation of lysosomal function during dendritic cell maturation [J].Science. 2003, 299(5611):1400-3.
    [105]Delamarre L, Pack M, Chang H, et al. Differential lysosomal proteolysis in antigen- presenting cells determines antigen fate [J].Science. 2005, 307(5715):1630-4.
    [106]Chow AY, Mellman I. Old lysosomes, new tricks: MHC II dynamics in DCs [J].Trends Immunol. 2005, 26(2):72-8.
    [107]Garg S, Oran A, Wajchman J, et al. Genetic tagging shows increased frequency and longevity of antigen-presenting, skin-derived dendritic cells in vivo [J].Nat Immunol. 2003, 4(9):907-12.
    [108]Garg S, Oran A, Maris C, et al. Irreversible marking of dendritic cells in vivo: for contributed volumes [J].Adv Exp Med Biol. 2002,512:177-81.
    [109]Gourlay CW, Ayscough KR. The actin cytoskeleton in ageing and apoptosis.FEMS Yeast [J] Res. 2005, 5(12):1193-8.
    [110]Kovar DR, Pollard TD. Insertional assembly of actin filament barbed ends in association with formins produces piconewton forces [J].Proc Natl Acad Sci U S A. 2004,101(41): 14725-30.
    [111]Ksiazek D, Brandstetter H, Israel L, et al. Structure of the N-terminal domain of the adenylyl cyclase-associated protein (CAP) from Dictyostelium discoideum [J].. Structure. 2003,11(9):1171-8.
    [112]Robak T, Korycka A, Kasznicki M, et al. Purine nucleoside analogues for the treatment of hematological malignancies: pharmacology and clinical applications [J]. Curr Cancer Drug Targets. 2005, 5(6):421-44.
    [113]Gourlay CW, Ayscough KR. The actin cytoskeleton: a key regulator of apoptosis and ageing? [J] Nat Rev Mol Cell Biol. 2005, 6(7):583-9.
    [114]Brown MT, McBride KM, Baniecki ML,et al.Actin can act as a cofactor for a viral proteinase in the cleavage of the cytoskeleton [J].J Biol Chem. 2002, 277(48):46298-303.
    [115]Brown MT, Mangel WF. Interaction of actin and its 11-amino acid C-terminal peptide as cofactors with the adenovirus [J] proteinase.FEBS Lett. 2004, 563(1-3):213-8.
    [116]Schwartz GK, Shah MA. Targeting the cell cycle: a new approach to cancer therapy [J].JClin Oncol. 2005, 23(36):9408-21.
    [117]Schlenker O, Hendricks A, Sinning I, et al. The Structure of the Mammalian Signal Recognition Particle (SRP) Receptor as Prototype for the Interaction of Small GTPases with Longin Domains [J].J Biol Chem. 2006, 281(13):8898-906.
    [118]Hartl FU, Hayer-Hartl M. Molecular chaperones in the cytosol: from nascent chain to folded protein [J].Science. 2002, 295(5561):1852-8.
    [119]Kern G, Kern D, Schmid FX, et al. Reassessment of the putative chaperone function of prolyl-cis/trans-isomerases [J].FEBS Lett. 1994, 348(2):145-8.
    [120]Vabulas RM, Hartl FU. Protein synthesis upon acute nutrient restriction relies on proteasome function [J]. Science. 2005, 310(5756):1960-3.
    [121]Lee D, Ezhkova E, Li B, et al. The proteasome regulatory particle alters the SAGA coactivator to enhance its interactions with transcriptional activators [J]. Cell. 2005,123(3):423-36.
    [122]Kaufman JL, Lonial S. Proteasome inhibition: novel therapy for multiple myeloma [J].Onkologie. 2006, 29(4):162-8
    [123]Shinoda S, Schindler CK, Quan-Lan J, et al. Interaction of 14-3-3 with Bid during seizure-induced neuronal death [J]. J Neurochem. 2003, 86(2):460-9.
    [124]Wang X, Matta R, Shen G, et al. Mechanism of triptolide-induced apoptosis: effect on caspase activation and Bid cleavage and essentiality of the hydroxyl group of triptolide [J].J Mol Med. 2005, 1-11.
    [125]Kato T, Ito T, Imatani T, et al. Cystatin SA, a cysteine proteinase inhibitor, induces interferon-gamma expression in CD4-positive T cells [J].Biol Chem. 2004, 385(5):419-22.
    [126]Schuettelkopf AW, Hamilton G, Watts C, et al. Structural basis of reduction-dependent activation of human cystatin F [J].J Biol Chem. 2006 Apr 6 [Epub ahead of print]
    [127]Bao X, Faris AE, Jang EK, et al. Molecular cloning, bacterial expression and properties of Rab31 and Rab32 [J]. Eur J Biochem. 2002, 269(1):259-71.
    [128]Alto NM, Soderling J, Scott JD. Rab32 is an A-kinase anchoring protein and participates in mitochondrial dynamics [J]. J Cell Biol. 2002, 158(4):659-68.
    [129]Witt CS, Whiteway JM, Warren HS, et al. Alleles of the KIR2DL4 receptor and their lack of association with pre-eclampsia [J]. Eur J Immunol. 2002, 32(1):18-29.
    [130]Sutherland CL, Chalupny NJ, Schooley K, et al. UL16-binding proteins, novel MHC class I-related proteins, bind to NKG2D and activate multiple signaling pathways in primary NK cells [J]. J Immunol. 2002, 168(2):671-9.
    [1] Flores L. A, Meza P. S, Calderon A. J, et al. Network of dendritic cells within the muscular layer of the mouse intestine [J]. Proc Natl Acad Sci U S A. 2005, 102(52): 19039-44.
    [2] Wu L, Dakic A. Development of dendritic cell system [J].Cell Mol Immunol. 2004, 1 (2):112-8.
    [3] Serafini B, Rosicarelli B, Magliozzi R, et al. Dendritic cells in multiple sclerosis lesions: maturation stage, myelin uptake, and interaction with proliferating T cells [J].J Neuropathol Exp Neurol. 2006, 65(2):124-41.
    [4] Andrews DM, Andoniou CE, Scalzo AA, et al. Cross-talk between dendritic cellsand natural killer cells in viral infection [J].Mol Immunol. 2005, 42(4):547-55.
    [5] Frasca L, Scotta C, Lombardi G, et al. Both maturation and survival of human dendritic cells are impaired in the presence of anergic/suppressor T cells [J].Clin Dev Immunol. 2003,10(1):61-5.
    [6] Senechal B, Boruchov AM, Reagan JL, et al. Infection of mature monocyte-derived dendritic cells with human cytomegalovirus inhibits stimulation of T-cell proliferation via the release of soluble CD83 [J]. Blood. 2004, 103(11):4207-15.
    [7] Quah BJ, O'Neill HC. Maturation of function in dendritic cells for tolerance and immunity [J].J Cell Mol Med. 2005, 9(3):643-54.
    [8] Wan H, Dupasquier M. Dendritic cells in vivo and in vitro [J].Cell Mol Immunol. 2005, 2(1):28-35.
    [9] Delamarre L, Pack M, Chang H, et al. Differential lysosomal proteolysis in antigen-presenting cells determines antigen fate [J].Science. 2005, 307(5715):1630-4.
    [10] Garg S, Oran A, Wajchman J, et al. Genetic tagging shows increased frequency and longevity of antigen-presenting, skin-derived dendritic cells in vivo [J].Nat Immunol. 2003, 4(9):907-12.
    [11] Zhang M, Tang H, Guo Z, et al. Splenic stroma drives mature dendritic cells to differentiate into regulatory dendritic cells [J].Nat Immunol. 2004, 5(11):1124-33.
    [12] Dai S, Wan T, Wang B, et al. More efficient induction of HLA-A*0201-restricted and carcinoembryonic antigen (CEA)-specific CTL response by immunization with exosomes prepared from heat-stressed CEA-positive tumor cells [J].Clin Cancer Res. 2005, 11(20):7554-63.
    [13] Li L, Sun S, Cao X, et al. Experimental study on induction of tolerance to experimental autoimmune myasthenia gravis by immature dendritic cells [J].J Huazhong Univ Sci Technolog Med Sci. 2005, 25(2):215-8.
    [14] Taieb J, Chaput N, Menard C, et al. A novel dendritic cell subset involved in tumor immunosurveillance [J].Nat Med. 2006, 12(2):214-9.
    [15] Satthaporn S, Robins A, Vassanasiri W, et al. Dendritic cells are dysfunctional in patients with operable breast cancer [J].Cancer Immunol Immunother. 2004, 53(6): 510-8.
    [16] Avigan D..Fusions of breast cancer and dendritic cells as a novel cancer vaccine [J]. Clin Breast Cancer. 2003, Suppl 4:S158-63.
    [17] Avigan D, Vasir B, Gong J, et al. Fusion cell vaccination of patients with metastatic breast and renal cancer induces immunological and clinical responses [J].Clin Cancer Res. 2004, 10(14):4699-708.
    [18] Svane IM, Pedersen AE, Johnsen HE, et al. Vaccination with p53-peptide-pulsed dendritic cells, of patients with advanced breast cancer: report from a phase I study [J]. Cancer Immunol Immunother. 2004 , 53(7):633-41.
    [19] Kontani K, Taguchi O, Ozaki Y, et al. Dendritic cell vaccine immunotherapy of cancer targeting MUC1 mucin [J].Int J Mol Med. 2003, 12(4):493-502.
    [20] Nagayama H, Sato K, Morishita M, et al,. Results of a phase I clinical study using autologous tumour lysate-pulsed monocyte-derived mature dendritic cell vaccinations for stage IV malignant melanoma patients combined with low dose interleukin-2 [J]. Melanoma Res. 2003,13(5):521-30.
    [21] Trefzer U, Herberth G, Wohlan K, et al. Vaccination with hybrids of tumor and dendritic cells induces tumor-specific T-cell and clinical responses in melanoma stage III and IV patients [J].Int J Cancer. 2004, 110(5):730-40.
    [22] Nestle FO, Conrad C. Dendritic cell therapy for skin cancer [J].Vox Sang. 2004, 87 Suppl 2:112-4.
    [23] Lee WC, Wang HC, Hung CF, et al. Vaccination of advanced hepatocellular carcinoma patients with tumor lysate-pulsed dendritic cells: a clinical trial [J].J Immunother. 2005, 28(5):496-504.
    [24] Galea-Lauri J, Darling D, Mufti G, et al. Eliciting cytotoxic T lymphocytes against acute myeloid leukemia-derived antigens: evaluation of dendritic cell-leukemia cell hybrids and other antigen-loading strategies for dendritic cell-based vaccination [J]. Cancer Immunol Immunother. 2002, 51(6):299-310.
    [25] Westers TM, Houtenbos I, Snoijs NC, et al. Leukemia-derived dendritic cells in acute myeloid leukemia exhibit potent migratory capacity [J].Leukemia. 2005, 19(7): 1270-2.
    [26] Klammer M, Waterfall M, Samuel K, et al. Fusion hybrids of dendritic cells and autologous myeloid blasts as a potential cellular vaccine for acute myeloid leukaemia [J].Br J Haematol. 2005, 129(3):340-9.
    [27] Hirschowitz EA, Foody T, Kryscio R, et al. Autologous dendritic cell vaccines for non-small-cell lung cancer [J].J Clin Oncol. 2004, 22(14):2808-15.
    [28] Antonia SJ, Mirza N, Fricke I, et al. Combination of p53 cancer vaccine withchemotherapy in patients with extensive stage small cell lung cancer [J]. Clin Cancer Res. 2006, 12(3 Pt 1):878-87.
    [29] Wierecky J, Mueller M, Brossart P. Dendritic cell-based cancer immunotherapy targeting MUC-1 [J]. Cancer Immunol Immunother. 2006, 55(1):63-7.
    [30] Xia D, Moyana T, Xiang J. Combinational adenovirus-mediated gene therapy and dendritic cell vaccine in combating well-established tumors [J].Cell Res. 2006, 16(3): 241-59.
    [31] Di Nicola M, Carlo-Stella C, Anichini A, et al. Clinical protocol. Immunization of patients with malignant melanoma with autologous CD34(+) cell-derived dendritic cells transduced ex vivo with a recombinant replication-deficient vaccinia vector encoding the human tyrosinase gene: a phase I trial [J]. Hum Gene Ther. 2003, 14(14): 1347-60.
    [32] Kikuchi T, Hackett NR, Crystal RG. Cross-strain protection against clinical and laboratory strains of Pseudomonas aeruginosa mediated by dendritic cells genetically modified to express CD40 ligand and pulsed with specific strains of Pseudomonas aeruginosa [J]. Hum Gene Ther. 2001, 12(10):1251-63.
    [33] Chiriva-Internati M, Liu Y, Weidanz JA, et al.Testing recombinant adeno-associated virus-gene loading of dendritic cells for generating potent cytotoxic T lymphocytes against a prototype self-antigen, multiple myeloma HM1.24 [J].Blood. 2003, 102(9):3100-7.
    [34] Liu Y, Chiriva-Internati M, You C, et al. Use and specificity of breast cancer antigen/milk protein BA46 for generating anti-self-cytotoxic T lymphocytes by recombinant adeno-associated virus-based gene loading of dendritic cells [J].Cancer Gene Ther. 2005, 12(3):304-12.
    [35] Tatsumi T, Kierstead LS, Ranieri E, et al. MAGE-6 encodes HLA-DRbeta1* 040- presented epitopes recognized by CD4+ T cells from patients with melanoma or renal cell carcinoma [J]. Clin Cancer Res. 2003, 9(3):947-54.
    [36] Lopez CB, Moltedo B, Alexopoulou L, et al. TLR-independent induction of dendritic cell maturation and adaptive immunity by negative-strand RNA viruses [J].J Immunol. 2004, 173(11):6882-9.
    [37] Satoh E, Hara Y, Fuji N, et al. Comparison of the vector systems for gene transduction into rat dendritic cells and peritoneal exudate cells [J].Transplant Proc. 2005, 37(4):1953-6.
    [38] Kaneda Y, Yamamoto S, Nakajima T. Development of HVJ envelope vector and its application to gene therapy [J]. Adv Genet. 2005, 53:307-32.
    [39] Armeanu S, Bitzer M, Smirnow I, et al. Severe impairment of dendritic cell allostimulatory activity by Sendai virus vectors is overcome by matrix protein gene deletion [J].J Immunol. 2005, 175(8):4971-80.
    [40] Lopez CB, Yount JS, Hermesh T, et al. Sendai virus infection induces efficient adaptive immunity independently of type I interferons [J].J Virol. 2006, 80(9):4538-45.
    [41] Richards J, Le Naour F, Hanash S, et al. Integrated genomic and proteomic analysis of signaling pathways in dendritic cell differentiation and maturation [J].Ann N Y Acad Sci. 2002, 975:91-100.
    [42] Bernhard OK, Lai J, Wilkinson J, Sheil MM, et al. Proteomic analysis of DC-SIGN on dendritic cells detects tetramers required for ligand binding but no association with CD4 [J].J Biol Chem. 2004, 279(50):51828-35.
    [43] Tang Z, Saltzman A.Understanding human dendritic cell biology through gene profiling [J].Inflamm Res. 2004, 53(9):424-41.
    [44] He Q, Moore TT, Eko FO, et al. Molecular basis for the potency of IL-10-deficient dendritic cells as a highly efficient APC system for activating Th1 response [J].J Immunol. 2005, 174(8):4860-9.
    [45] Watarai H, Hinohara A, Nagafune J, et al. Plasma membrane-focused proteomics: dramatic changes in surface expression during the maturation of human dendritic cells [J]. Proteomics. 2005, 5(15):4001-11.
    [46] Lee SR, Pharr GT, Cooksey AM, et al. Differential detergent fractionation for non-electrophoretic bovine peripheral blood monocyte proteomics reveals proteins involved in professional antigen presentation [J].Dev Comp Immunol. 2006 Mar 13; [Epub ahead of print]

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700