用户名: 密码: 验证码:
天然高分子基有机及碳气凝胶的制备、结构和性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文主要探讨利用溶胶-凝胶方法制备具有纳米多孔结构的天然高分子基有机气凝胶及碳气凝胶,并对其微观结构和性质进行了研究。内容包括气凝胶的制备过程、微观结构的表征和制备条件的选择,研究了天然高分子基有机气凝胶及碳气凝胶的对一些常见的水污染物,例如表面活性剂、阴离子染料和阳离子染料的吸附性质。探讨了天然高分子基有机气凝胶及碳气凝胶的形成机理,丰富和发展了的有机气凝胶和碳气凝胶制备的理论和方法。
     1.壳聚糖基气凝胶的制备和吸附性质研究
     以天然高分子甲壳素的脱乙酰基产物壳聚糖为原料,分别以甲醛、乙二醛、戊二醛为交联剂制备了水凝胶,进一步通过溶剂交换和超临界CO_2干燥,首次成功合成了交联的高比表面积的壳聚糖基气凝胶。本研究选用自然界储量丰富,具有良好生物相容性,价格低廉的壳聚糖为前驱体,首先将不同质量的壳聚糖溶解在1%(v/v)的醋酸溶液中,磁力搅拌10 h以上,使其最大限度完全溶解,过滤除去少量不溶物。然后配制不同浓度的甲醛,乙二醛,戊二醛水溶液,在剧烈搅拌下将交联剂溶液倒入壳聚糖溶液中,一直剧烈搅拌至胶体粘度变大,磁子搅拌不动,取出磁子。密封条件下凝胶老化24 h,然后用无水乙醇交换溶剂得到醇凝胶。将醇凝胶用超临界CO_2进行干燥,得到块状的气凝胶。壳聚糖/甲醛气凝胶的最大比表面积为845 m~2/g,相应的最可几孔径为9.28 nm;壳聚糖/乙二醛气凝胶的最大比表面积为707 m~2/g,相应的最可几孔径为5.38 nm;壳聚糖/戊二醛气凝胶的最大比表面积为569 m~2/g,相应的最可几孔径为4.59 nm。壳聚糖的浓度和交联剂的浓度和种类都对气凝胶的质构产生明显的影响。三种气凝胶的表面在pH<10条件下都带有正电荷。通过研究三种气凝胶对阴离子表面活性剂十二烷基苯磺酸钠(SDBS)的吸附表明,在pH=3条件下,壳聚糖基气凝胶对十二烷基苯磺酸钠有较大的吸附量,得益于此酸度条件下三种气凝胶均带有高的正电荷。同时,在0.1 M的NaOH溶液中,约97%的吸附的SDBS发生脱附。经过十次重复使用后,吸附量仍能达到最大吸附量的90%。对于去除废水中SDBS的污染提供了新的思路和解决方案。
     2.高比表面积淀粉基有机及碳气凝胶的制备和吸附性质研究
     以天然高分子淀粉制备的可溶性淀粉为原料,通过常压干燥,制备了淀粉气凝胶,然后在N_2保护下,高温裂解制备了淀粉基碳气凝胶。将一定量的可溶性淀粉加入到去离子水中,在磁力搅拌条件下将悬浮液加热至90℃以上,直至形成半透明溶胶。冷却至室温,得到白色水凝胶。用无水丙酮交换溶剂,得到白色酮凝胶。在50℃条件下常压干燥得到白色淀粉气凝胶。将淀粉气凝胶放入管式炉中,在N_2流中,温度以5℃/min分别升至800℃、810℃、830℃、850℃、870℃和900℃,使淀粉气凝胶发生分解碳化得到碳气凝胶。在通N_2情况下冷却至室温,然后通入CO_2,温度升至800℃,保温不同时间,降至室温,得到活化碳气凝胶。实验结果发现,碳化温度和活化时间对碳气凝胶的质构性质有重要影响。当碳化温度为850℃,CO_2活化时间为7 h时,得到的活化后的碳气凝胶的具有最大的比表面积,达到了1571 m~2/g。当活化时间低于7 h时,随着活化时间的延长,比表面积逐渐增大。而活化时间高于7 h,比表面积开始减小。Zeta电势测定表明,活化碳气凝胶在水溶液中的等电点时pH=5.2,当pH>5.2时,随着pH的升高,活化碳气凝胶的表面负电荷逐渐增加。而当pH<5.2时,随着pH值的降低,活化碳气凝胶的表面正电荷逐渐增加。实验测定了活化碳气凝胶对三种阳离子染料结晶紫,甲基紫和亚甲基蓝的的吸附性质,pH=10时,对三种染料的吸附量最大,分别达到了1515,1423和1181 mg/g。实验发现,吸附的染料在无水乙醇中,99%以上发生脱附。经过9次循环吸附/脱附过程,仍能保持90%以上的吸附量。
     3.天然产物京尼平为交联剂的壳聚糖/明胶基气凝胶的制备和吸附性质
     以天然产物京尼平为交联剂,以天然高分子甲壳素的脱乙酰基产物壳聚糖和来源于胶原蛋白的明胶为原料,通过溶胶—凝胶过程和超临界CO_2干燥,成功制备了壳聚糖/京尼平气凝胶,壳聚糖/明胶/京尼平气凝胶。首先将2 g壳聚糖溶解在100 mL 1%(v/v)醋酸水溶液中,磁力搅拌10 h以上使其完全溶解,过滤除去少量不溶物。分别加入0.5%,1.0%,1.5%,2%,2.5%(wt%)的京尼平,60℃条件下磁力搅拌1 h,溶液由透明的珍珠白色逐渐变为墨绿色,停止搅拌,密封,静置,胶凝时间约为5-7 h。湿凝胶在密封条件下老化24-72 h,直至形成弹性凝胶,然后用无水乙醇交换溶剂,最后通过超临界CO_2干燥得到壳聚糖/京尼平气凝胶。类似的过程制备壳聚糖/明胶/京尼平气凝胶。壳聚糖和明胶的质量比设定为1:2,1:1,2:1,京尼平的质量百分比设定为0.5%,3%。对于壳聚糖/京尼平气凝胶,壳聚糖的浓度和京尼平的浓度都对气凝胶的质构产生影响。其中1%的京尼平和2%的壳聚糖得到的气凝胶具有最大的比表面积567 m~2/g,最可几孔径为10.2 nm。对于壳聚糖/明胶/京尼平气凝胶,随着京尼平含量增加,交联度增大,孔径变小,比表面积增大,最大比表面积为563 m~2/g,相应的最可几孔径为19 nm。SEM表明气凝胶由纤维状网络结构组成。测定了气凝胶对阴离子染料日落黄和柠檬黄的吸附性质。pH=3时,对日落黄和柠檬黄的最大吸附量分别为1149 mg/g和975 mg/g,均优于文献报道值。同时,在0.05 M的NaOH溶液中,吸附的染料首次脱附率达到了98%,5次循环吸附—脱附后,仍能达到最大吸附量的95%以上。
     4.卡拉胶基有机及碳气凝胶的制备和吸附性质研究
     以天然高分子卡拉胶为原料,通过冷冻干燥和超临界CO_2干燥,以及高温碳化,制备了相应的碳气凝胶。分别将1.5 g、2.5 g、3.5 g和4.5 g卡拉胶溶液在100 mL去离子水中,在磁力搅拌下升温至沸腾,得到半透明银白色溶胶。停止搅拌,冷却至室温,得到半透明银白色水凝胶。将水凝胶直接进行冷冻干燥,得到相应的冷冻气凝胶(cryogels)。用无水乙醇交换水凝胶中的溶剂,得到醇凝胶(alcogels),然后将醇凝胶进行CO_2超临界干燥得到超临界干燥气凝胶(aerogels)。然后将两种方法制备的气凝胶在管式炉中,在N_2保护下进行高温碳化,制备了相应的碳气凝胶。结果发现两种方法制备的碳气凝胶具有接近的比表面积和孔径分布,最可几孔径均为3.9 nm,1000℃条件下碳化的比表面积达到了1185 m~2/g。实验发现,卡拉胶基碳气凝胶对阳离子染料甲基紫和结晶紫有优异的吸附性能,温度从25℃升高到45℃,吸附量逐步增大,最大吸附量分别达到了1725 mg/g和2207 mg/g。并且被吸附的染料在无水乙醇中95%以上会发生脱附,碳气凝胶被重复利用5次,吸附量仍能达到最大吸附量的90%。
The nanostructured natural polymers based organic and carbon aerogels were synthesized by a sol-gel technique.The preparation process and the microstructures of aerogels were studied,and the effects of preparation parameters,as well as the adsorption properties of the prepared aerogels were investigated.Based on the experiments,the formation mechanisms of the natural polymers based aerogels and their carbon aerogels were proposed. This study enriched the basic theory and applications of organic aerogels and carbon aerogels prepared on the basis of the sol-gel process.
     1.Chitosan-based aerogels with high adsorption performance
     New natural polymer-based aerogels,cross-linked chitosan-based aerogels, were prepared by the sol-gel route with glutaradehyde,glyoxal,and formaldehyde as cross-linkers.The alcogels were dried by supercritical carbon dioxide(CO_2) fluid extraction.The resulting materials were characterized using scanning electron microscopy(SEM),nitrogen adsorption/desorption analysis,and Fourier transform infrared(FT-IR) spectroscopy.The Brunauer-Emmett-Teller(BET) analyses indicate that the largest surface areas for the chitosan-glutaraldehyde/-glyoxal and -formaldehyde aerogels are 569,707,and 845 m~2/g,respectively.We believe that the N_2 adsorption-desorption hysteresis is a permanent type.Every aerogel sample was tested for 3 times repeatedly for the N_2 adsorption-desorption experiment;the adsorption-desorption hysteresis curves and the PSD curves are same.This indicates the mesopores are stable.IR spectra of chitosan and cross-linked chitosan-based aerogels indicate that the primary amine peak at 1653 cm~(-1) decreased as the chitosan was crosslinked, while a new peak for C=N amine appeared at 1653-1656 cm~(-1).The peak at 1602 cm~(-1) disappeared in the aerogels due to the loss of free amines, indicating a Schiff-base amine functionality.The key factor to obtaining stable aerogels with a high specific surface area is the full replacement of the solvent with absolute ethanol.If the solvent is not fully replaced by absolute ethanol,only a broken wet-gel will be produced.The decomposition of the chitosan-based aerogel is observed from ca.220 to 450℃,and the profiles of the TG curves for both non-cross-linked and cross-linked materials are similar. It was also found that carbon aerogels could not be produced after calcining the chitosanbased aerogels under a flow of nitrogen because the thermal degradation of the main chains in chitosan and chitosan-based aerogels during heating destroyed the network structure.Furthermore,the adsorption of the anionic surfactant sodium dodecylbenzene-sulfonate(SDBS) from aqueous solution by the materials was investigated.The aerogels exhibit high adsorption capability,can remove SDBS from acidic aqueous solutions,and have potential applications in controlling SDBS pollution.
     2.Starch derived carbon aerogels with high-performance for sorption of cationic dyes
     A synthetic strategy to prepare CAs by the carbonization of starch aerogels from its corresponding wet-gels through the ambient pressure drying process. The textural characteristics of CAs could be tailored by adjusting the carbonization temperature and activation time.Thus the technique of CA synthesis is relatively simple and with low cost for the short gelation time and ambient pressure drying.To prepare CAs,the esculent and soluble starch was dissolved into water to form the wet-gels,after the water in the gels was exchanged by acetone,the acetone gels were dried at ambient pressure to obtain the white starch aerogels,which were carbonized in N_2 flow.SEM images show that the starch aerogels exhibit a fibrillar solid network with a diameter of 30-40 nm and CAs consist of flakes with a side-length of 60-120μm as the starch aerogels were carbonized at 850℃for 2.0 h.When the magnification is 200,the carbon aerogels keep the same shape after activating with CO_2.SEM image of ACAs show high mesoporosity,obviously. However,SEM image of CAs don't show mesoporous structure.The N_2 adsorption measurements indicate that the specific surface area of CAs is 137 m~2/g and the average pore size is 1.54 nm,only few mesopores are observed according to the BET pore size distribution(PSD).However,the specific surface areas of starch aerogel(calculated using BET model) was 103 m~2/g and PSD ranged from 3 nm to 80 nm,typical of mesoporous and macroporous solids.Further experiments show that the suitable activation conditions could increase the specific surface areas and pore volume of CAs,which increased with the activate time prolonging.After activations the CAs contained both micropores and mesopores,its average micropore size is 0.89 nm,and all the mesopore size are in the range of 2-10 nm whatever the activation time is, which reveals that the activation process creates new micropore and mesopore structures.For example,the largest specific surface areas of CAs increased to 1571 m~2/g after being activated at 800℃for 7.0 h under CO_2 flow.The pH value of solution considerably affected the adsorption amounts of basic dyes on the CAs.For example,as the pH value of dye solution is 10 and dye's solution is 500 ppm,the absorption amount is the largest,those for CV,MV and MB are respectively 1515,1423 and 1181 mg/g.
     3.Synthesis,characterization and application of chitosan/gelatin/genipin aerogels
     New natural polymer-based aerogels,cross-linked chitosan aerogels and chitosan-gelatin aerogels,were prepared by the sol-gel route with genipin as cross-linkers.The alcogels were dried by supercritical carbon dioxide(CO_2) fluid extraction.The resulting materials were characterized using scanning electron microscopy(SEM),nitrogen adsorption/desorption analysis.The Brunauer-Emmett-Teller(BET) analyses indicate that the largest surface areas for the natural polymers based aerogels are 567 m~2/g.The key factor to obtaining stable aerogels with a high specific surface areas is the full replacement of the solvent with absolute ethanol.If the solvent is not fully replaced by absolute ethanol,only a broken wet-gel will be produced.It was also found that carbon aerogels could not be produced after calcining the chitosan based aerogels under a flow of nitrogen because the thermal degradation of the main chains in chitosan and chitosan-based aerogels during heating destroyed the network structure.Furthermore,the adsorption of the anionic dyes sunset yellow and tartrazine from aqueous solution by the materials was investigated.The aerogels exhibit high adsorption capability, can remove sunset yellow and tartrazine from acidic aqueous solutions,and have potential applications in controlling anionic dyes pollution.
     4.Synthesis,characterization and application of carrageenan based organic and carbon aerogels
     Carrageenan based organic cyrogels and aerogels were prepared by the sol-gel route and freeze drying and supercritical carbon dioxide(CO_2) drying from its corresponding wet-gels,and carrageenan based carbon aerogels and cyrogels were prepared by the carbonization of carrageenan aerogels and cyrogels,respectively.The textural characteristics of carrageenan based carbon aerogels and cyrogels could be tailored by change dry method.Thus the technique of CA synthesis is relatively simple and with low cost for the short gelation time and freeze drying.To prepare CAs,the esculent and soluble carrageenan was dissolved into water to form the wet-gels,after the water in the gels was exchanged by alcohol,the alcogels were dried at supercritical carbon dioxide(CO_2) or freeeze to obtain the white carrageenan aerogels and cyrogels,which were carbonized in N_2 flow at 1000℃.SEM images show that the carrageenan aerogeis exhibit a fibrillar solid network with a diameter of 20 nm and carbon aerogels and cyrogels consist of carbon particles.SEM image of aerogels and cyrogels show high mesoporosity, obviously.However,SEM image of carbon aerogels don't show microporous structure.The N_2 adsorption measurements indicate that the largest specific surface area of organic aerogels is 346 m~2/g and the average pore size is 2.98 nm.However,the specific surface area of carbon cyrogels(calculated using BET model) was 1185 m~2/g and the average pore size are 0.85 and 3.9,typical of mesoporous and microporous solids.The pH value of solution considerably affected the adsorption amounts of basic dyes on the CAs.For example,as the pH value of dye solution is 10 and dye's solution is 500 ppm,the absorption amount is the largest,those for CV,MV are respectively 2207,1725 mg/g at pH 10.
引文
1.Kistler,S.S.Coherent expanded aerogels and jellies Nature 1931,127,741-742.
    2.Kistler,S.S.Coherent expanded-aerogels J.Phys.Chem.1932,36,52-64.
    3.Smirnova,I.;Mamic,J.;Arlt,W.Adsorption of drugs on silica aerogels Langmuir 2003,19,8521-8525.
    4.Kabbour,H.;Baumann,T.F.;Satcher,J.H.;Saulnier,A.;Ahn,C.C.Toward new candidates for hydrogen storage:high-surface-area carbon aerogels Chem.Mater.2006,18,6085-6087.
    5.H(u|¨)sing,N.;Schubert,U.Aerogels-airy materials:chemistry,structure,and properties Angew.Chem.Int.Ed.1998,37,22-45.
    6.Dai,S.;Ju,Y.H.;Gap,H.J.;Lin,J.S.;Pennycook,S.J.;Barnes,C.E.Preparation of silica aerogel using ionic liquids as solvents Chem.Commun.2000,3,243-244.
    7.Mrowiec-Bialon,J.;Jarzebski,A.B.;Lachowski,A.I.;Malinowski,J.J.Two-component aerogel adsorbents of water vapour J.Non-Cryst.Solids 1998,225,184-187.
    8.Yang,H.;Choi,S.;Hyun,S.;Park,C.Ambient-dried SiO_2 aerogel thin films and their dielectric application Thin Solid Films 1999,348,69-73.
    9.Horiuchi,T.;Osaki,T.;Sugiyama,T.;Masuda,H.;Horio,M.;Suzuki,K.;Mori,T.;Sago,T.High surface area alumina aerogel at elevated temperatures J.Chem.Soc.,Faraday Trans.1994,90,2573-2578.
    10.Pierre,A.;Begag,R.;Pajonk,G.Structure and texture of alumina aerogel monoliths made by complexation with ethyl acetoacetate J.Mater.Sci.1999,34,4937-4944.
    11.Suh,D.J.;Park,T.;Kim,J.;Kim,K.Fast sol-gel synthetic route to high-surface-area alumina aerogels Chem.Mater 1997,9,1903-1905.
    12.Ward,D.A.;Ko,E.I.Synthesis and structural transformation of zirconia aerogels Chem.Mater.1993,5,956-969.
    13.Hair,L.M.;Coronado,P.R.;Reynolds,J.G.Mixed-metal oxide aerogels for oxidation of volatile organic compounds J.Non-Cryst.Solids 2000,270,115-122.
    14.Zhu,Z.;Tsung,Y.;Tomkiewicz,M.Morphology of TiO_2 aerogels.1.electron microscopy J.Phys.Chem.1995,99,15945-15949.
    15.Meng,F.;Schlup,J.R.;Fan,L.T.Fractal analysis of polymeric and particulate titania aerogeis by adsorption Chem.Mater.1997,9,2459-2463.
    16.Muller,C.A.;Schneider,M.;Mallat,T.;Baiker,A.Titania-silica epoxidation catalysts modified by polar organic functional groups J.Catal.2000,189,221-232.
    17.Ayers,M.R.;Song,X.Y.;Hunt,A.J.Preparation of nanocomposite materials containing WS_2,d-WN,Fe_3O_4,or Fe_9S_(10) in a silica aerogel host J.Mater.Sci.1996,31,6251-6257.
    18.Pekala,R.W.;Alviso,C.T.;Kong,F.M.;Hulsey,S.S.Aerogels derived from multifunctional organic monomers J. Non-Cryst. Solids 1992, 145,90-98.
    
    19. Pekala, R. W. Organic aerogels from the sol-gel polymerization of phenolic-furfural mixtures. US Patent 5476878, 1995.
    
    20. Biesmans, G.; Mertens, A.; Duffours, L.; Woignier, T.; Phalippou, J.Polyurethane based organic aerogels and their transformation into carbon aerogels J. Non-Cryst. Solids 1998, 225, 64-68.
    
    21. Barral, K. Low-density organic aerogels by double-catalysed synthesis J.Non-Cryst. Solids 1998, 225, 46-50.
    
    22. Gouerec, P.; Miousse, D.; Tran-Van, F.; Dao, L. H. Characterization of pyrolized poly acrylonitrile aerogel thin films used in double layer supercapacitors J. New Mater. Electrochem. Syst. 1999, 2, 221-226.
    
    23. Li, W. C.; Lu, A. H.; Guo, S. C. Control of mesoporous structure of aerogels derived from cresol-formaldehyde J. Colloid Interface Sci. 2002,254, 153-157.
    
    24. Yamashita, J.; Ojima, T.; Shioya, M.; Hatori, H.; Yamada, Y. Organic and carbon aerogels derived from poly(vinyl chloride) Carbon 2003, 41,285-294.
    
    25. Wu, D.; Fu, R. Fabrication and physical properties of organic and carbon aerogel derived from phenol and furfural J. Porous Mater. 2005, 12,311-316.
    
    26. Lee, J.; Gould, G. L. Polydicyclopentadiene based aerogel: a new insulation material J. Sol-Gel Sci. Technol. 2007, 44, 29-40.
    
    27. Perez-Caballero, F.; Peikolainen, A. L.; Uibu, M.; Kuusik, R.; Volobujeva,O.; Koel, M. Preparation of carbon aerogels from 5-methylresorcinol-formaldehyde gels Micropor. Mesopor. Mater. 2008,108, 230-236.
    
    28. Placin, F.; Desvergnea , J.-P.; Cansell, F. Organic low molecular weight aerogel formed in supercritical fluids J. Mater. Chem. 2000, 10,2147-2149.
    29. Daniel, C.; Alfano, D.; Venditto, V.; Cardea, S.; Reverchon, E.; Larobina,D.; Mensitieri, G.; Guerra, G. Aerogels with a microporous crystalline host phase Adv. Mater. 2005, 17, 1515-1518.
    
    30. Tan, C. B.; Fung, B. M.; Newman, J. K.; Vu, C. Organic aerogels with very high impact strength Adv. Mater. 2001, 13, 644-646.
    
    31. Valentin, R.; Horga, R.; Bonelli, B.; Garrone, E.; Di Renzo, F.; Quignard,F. FTIR spectroscopy of NH3 on acidic and ionotropic alginate aerogels Biomacromolecules 2006, 7, 877-882.
    
    32. Pekala, R. W.; Kong, F. M. Resorcional-formaldehyde aerogels and their carboniaed derivatives Polym. Prepr. 1989, 30, 221-223.
    
    33. Li, W. C.; Reichenauer, G.; Fricke, J. Carbon aerogels derived from cresol-resorcinol-formaldehyde for supercapacitors Carbon 2002, 40,2955-2959.
    
    34. Jirglov(?), H.; P(?)rez-Cadenas, A. F.; Maldonado-H(?)dar, F. J. Synthesis and properties of phloroglucinol-phenol-formaldehyde carbon aerogels and xerogels Langmuir 2009, 25, 2461-2466.
    
    35. Zeng, X. H.; Wu, D. C.; Fu, R. W.; Lai, H. J.; Fu, J. J. Preparation and electrochemical properties of pitch-based activated carbon aerogels Electrochim. Acta 2008, 53, 5711-5715.
    
    36. Guilminot, E.; Fischer, F.; Chatenet, M.; Rigacci, A.; Berthon-Fabry, S.;Achard, P.; Chainet, E. Use of cellulose-based carbon aerogels as catalyst support for PEM fuel cell electrodes: electrochemical characterization J.Power Sources 2007, 166, 104-111.
    
    37. Alaoui, A. H.; Woignier, T.; Pernot, F.; Phalippou, J.; Hihi, A. Stress intensity factor in silica alcogels and aerogels J. Non-Cryst. Solids 2000,265, 29-35.
    
    38. Donatti, D. A.; Ruiz, A. I.; Vollet, D. R. From sol to aerogel: a study of the nanostructural characteristics of TEOS derived sonogels J. Non-Cryst.Solids 2001, 292, 44-49.
    
    39. Estella, J.; Echeverria, J. C.; M., L.; J., G. J. Effects of aging and drying conditions on the structural and textural properties of silica gels Micropor.Mesopor. Mater. 2007, 102, 274-282.
    
    40. Fricke, J.; Tilltson, T. Aerogels: production, characterization, and applications Thin Solid Films 1997, 297, 212-223.
    
    41. Pierre, A. C.; Pajonk, G. M. Chemistry of aerogels and their applications Chem. Rev. 2002, 102, 4243-4265.
    
    42. Novak, Z.; Knez, Z. Diffusion of methanol-liquid CO_2 and methanol-supercritical CO_2 in silica aerogels J. Non-Cryst. Solids 1997, 221,163-169.
    
    43. Rogacki, G.; Wawrzyniak, P. Diffusion of ethanol-liquid CO2 in silica aerogel J. Non-Cryst. Solids 1995, 186, 73-77.
    
    44. Bray, C. L.; Tan, B.; Wood, C. D.; Cooper, A. I. High-throughput solubility measurements of polymer libraries in supercritical carbon dioxide J. Mater. Chem. 2005, 15, 456-459.
    
    45. Dagan, G.; Tomkiewicz, M. TiO_2 aerogels for photocatalytic decontamination of aquatic environments J. Phys. Chem. 1993, 97,12651-12655.
    
    46. Finlay, K.; Gawryla, M. D.; Schiraldi, D. A. Biologically based fiber-reinforced/clay aerogel composites Ind. Eng. Chem. Res. 2008, 47,615-619.
    
    47. Frabetti, E.; Deluga, G. A.; Smyrl, W. H. X-ray absorption spectroscopy study of Cu_(0.25)V_2O_5 and Zn_(0.25)V_2O_5 aerogel-like cathodes for lithium batteries J. Phys. Chem. B 2004, 108, 3765-3771.
    
    48. Yu, K. M. K.; Yeung, C. M. Y.; Thompsett, D.; Tsang, S. C.Aerogel-coated metal nanoparticle colloids as novel entities for the synthesis of defined supported metal catalysts J. Phys. Chem. B 2003, 107,4515-4526.
    
    49. Fidalgo, A.; Farinha, J. P. S.; Martinho, J. M. G.; Rosa, M. E.; Ilharco, L.M. Hybrid silica/polymer aerogels dried at ambient pressure Chem. Mater.2007, 19, 2603-2609.
    50. Prakash, S. S.; Brinker, C. J.; J., H. A. Silica aerogel films at ambient pressure J. Non-Cryst. Solids 1995, 190, 264-275.
    
    51. Li, W.-C.; Lu, A.-H.; Schuth, F. Preparation of monolithic carbon aerogels and investigation of their pore interconnectivity by a nanocasting pathway Chem. Mater. 2005, 17, 3620-3626.
    
    52. Carr, S. W.; Courtney, L.; Sullivan, A. C. Effects of molecular organic additives on formation and properties of organosilicate and silica xerogels correlated to structural properties of the additive Chem. Mater. 1997, 9,1751-1756.
    
    53. Bryning, M. B.; Milkie, D. E.; Islam, M. F.; Hough, L. A.; Kikkawa, J. M.;Yodh, A. G. Carbon nanotube aerogels Adv. Mater. 2007, 19, 661-664.
    
    54. Pekala, R. W. Organic aerogels from the polycondensation of resorcinol with formaldehyde J. Mater. Sci. 1989, 24, 3221-3227.
    
    55. Moreno-Castilla, C.; Maldonado-Hodar, F. J. Carbon aerogels for catalysis applications: an overview Carbon 2005, 43, 455-465.
    
    56. Ward, R. L.; Pekala, R. W. Carbon-13 NMR investigation of crosslinking in organic aerogels Polym. Prepr. 1990, 31, 167-169.
    
    57. Pekala, R. W.; Stone, R. E. Low density resorcinol-formaldehyde foams Polym. Prepr. 1988, 29, 204-206.
    
    58. Tamon, H.; Ishizaka, E. SAXS study on gelation process in preparation of resorcinol-formaldehyde aerogel J. Colloid Interface Sci. 1998, 206,577-582.
    
    59. Pekala, R. W.; Schaefer, D. W. Structure of organic aerogels. 1.morphology and scaling Macromolecules 1993, 26, 5487-5493.
    
    60. Ruben, G. C.; Pekela, R. W.; Tillotson, T. M. Imaging aerogels at the molecular level J. Mater. Sci. 1992, 27, 4341-4349.
    
    61. Hench, L. L.; West, J. K. The sol-gel process Chem. Rev. 1990, 90, 33-72.
    
    62. Yamamoto, T.; Nishimura, T.; Suzuki, T.; Tamon, H. Control of mesoporosity of carbon gels prepared by sol-gel polycondensation and freeze drying J. Non-Cryst. Solids 2001, 288, 46-55.
    63. Qin, G. T.; Guo, S. C. Drying of RF gels with supercritical acetone Carbon 1999,37, 1168-1169.
    
    64. Dresselhaus, M. S. Future directions in carbon science Annu. Rev. Mater.Sci. 1997,27, 1-34.
    
    65. Kuhn, J.; Brandt, R.; Mehling, H.; Petricevic, R.; Fricke, J. In situ infrared observation of the pyrolysis process of carbon aerogels J.Non-Cryst. Solids 1998, 225, 58-63.
    
    66. Maldonado-Hodar, F. J.; Ferro-Garcia, M. A.; Rivera-Utrilla, J.;Moreno-Castilla, C. Synthesis and textural characteristics of organic aerogels, transition-metal-containing organic aerogels and their carbonized derivatives Carbon 1999, 37, 1199-1205.
    
    67. Tamon, H.; Ishizaka, H.; Araki, T.; Okazaki, M. Control of mesoporous structure of organic and carbon aerogels Carbon 1998, 36, 1257-1262.
    
    68. Reichenauer, G.; Emmerling, A.; Fricke, J.; Pekala, R. W. Microporosity in carbon aerogels J. Non-Cryst. Solids 1998, 225, 210-214.
    
    69. Zhang, S. Q.; Wang, J.; Shen, J.; Deng, Z. S.; Lai, Z. Q.; Zhou, B.; Attia,S. M.; Chen, L. Y. The investigation of the adsorption character of carbon aerogels Nanostruct. Mater. 1999, 11, 375-381.
    
    70. Lin, C.; Ritter, J. A.; Popov, B. N. Correlation of double-layer capacitance with the pore structure of sol-gel derived carbon xerogels J. Electrochem.Soc. 1999, 146, 3639-3643.
    
    71. Zanto, E. J.; Al-Muhtaseb, S. A.; Ritter, J. A. Sol-gel-derived carbon aerogels and xerogels: design of experiments approach to materials synthesis Ind. Eng. Chem. Res. 2002, 41, 3151-3162.
    
    72. Pekala, R. W.; Farmer, J. C.; Alviso, C. T.; Tran, T. D.; Mayer, S. T.;Miller, J. M.; Dunn, B. Carbon aerogels for electrochemical applications J.Non-Cryst. Solids 1998, 225, 74-80.
    
    73. Lin, C.; Ritter, J. A. Effect of synthesis pH on the structure of carbon xerogels Carbon 1997, 35, 1271-1278.
    
    74. Tamon, H.; Ishizaka, H.; Mikami, M.; Okazaki, M. Porous structure of organic and carbon aerogels synthesized by sol-gel polycondensation of resorcinol with formaldehyde Carbon 1997, 35, 791-796.
    
    75. Probstle, H.; Schmitt, C.; Fricke, J. Button cell supercapacitors with monolithic carbon aerogels J. Power Sources 2002, 105, 189-194.
    
    76. Yamamoto, T.; Sugimoto, T.; Suzuki, T.; Mukai, S. R.; Tamon, H.Preparation and characterization of carbon cryogel microspheres Carbon 2002,40, 1345-1351.
    
    77. Lu, X.; Caps, R.; Fricke, J.; Alviso, C. T.; Pekala, R. W. Correlation between structure and thermal-conductivity of organic aerogels J.Non-Cryst. Solids 1995, 188, 226-234.
    
    78. Shen, J.; Wang, J.; Zhai, J. W.; Guo, Y. Z.; Wu, G. M.; Zhou, B.; Ni, X. Y.Carbon aerogel films synthesized at ambient conditions J. Sol-Gel Sci.Technol. 2004, 37,209-213.
    
    79. Han, S. J.; Sohn, K..; Hyeon, T. Fabrication of new nanoporous carbons through silica templates and their application to the adsorption of bulky dyes Chem. Mater. 2000, 12, 3337-3341.
    
    80. Han, S.; Hyeon, T. Novel silica-sol mediated synthesis of high surface area porous carbons Carbon 1999, 37, 1645-1647.
    
    81. Han, S.; Hyeon, T. Simple silica-particle template synthesis of. mesoporous carbons Chem. Commun. 1999, 19, 1955-1956.
    
    82. Tao, Y. S.; Endo, M.; Kaneko, K. Hydrophilicity-controlled carbon aerogels with high mesoporosity J. Am. Chem. Soc. 2009, 131, 904-905.
    
    83. Bordjiba, T.; Mohamedi, M.; Dao, L. H. New class of carbon-nanotube aerogel electrodes for electrochemical power sources Adv. Mater. 2008, 20,815-819.
    
    84. Lin, C.; Ritter, J. A. Carbonization and activation of sol-gel derived carbon xerogels Carbon 2000, 38, 849-861.
    
    85. Hanzawa, Y.; Kaneko, K.; Pekala, R. W.; Dresselhaus, M. S. Activated carbon aerogels Langmuir 1996, 12, 6167-6169.
    
    86. Saliger, R.; Fischer, U.; Herta, C.; Fricke, J. High surface area carbon aerogels for supercapacitors J. Non-Cryst. Solids 1998, 225, 81-85.
    
    87. King, J. S.; Wittstock, A.; Biener, J.; Kucheyev, S. O.; Wang, Y. M.;Baumann, T. F.; Giri, S. K.; Hamza, A. V.; Baeumer, M.; Bent, S. F.Ultralow loading Pt nanocatalysts prepared by atomic layer deposition on carbon aerogels Nano Lett. 2008, 8, 2405-2409.
    
    88. Steiner, S. A.; Baumann, T. F.; Kong, J.; Satcher, J. H.; Dresselhaus, M. S.Iron-doped carbon aerogels: novel porous substrates for direct growth of carbon nanotubes Langmuir 2007, 23, 5161-5166.
    
    89. Daniel, C.; Sannino, D.; Guerra, G. Syndiotactic polystyrene aerogels:adsorption in amorphous pores and absorption in crystalline nanocavities Chem. Mater. 2008, 20, 577-582.
    
    90. Sanchez-Polo, M.; Rivera-Utrilla, J.; Mendez-Diaz, J.; Lopez-Penalver, J.Metal-doped carbon aerogels. new materials for water treatments Ind. Eng.Chem. Res. 2008, 47, 6001-6005.
    
    91. Fairen-Jimenez, D.; Carrasco-Marin, F.; Moreno-Castilla, C. Adsorption of benzene, toluene, and xylenes on monolithic carbon aerogels from dry air flows Langmuir 2007, 23, 10095-10101.
    
    92. Wu, D. C; Liu, X. F.; Fu, R. W. The adsorption of organic vapours on carbon aerogels and their precursor organic aerogels New Carbon Mater.2005,20,305-311.
    
    93. Rana-Madaria, P.; Nagarajan, M.; Rajagopal, C.; Garg, B. S. Removal of chromium from aqueous solutions by treatment with carbon aerogel electrodes using response surface methodology Ind. Eng. Chem. Res. 2005,44, 6549-6559.
    
    94. Goel, J.; Kadirvelu, K.; Rajagopal, C.; Garg, V. K. Removal of mercury(II) from aqueous solution by adsorption on carbon aerogel: Response surface methodological approach Carbon 2005, 43, 197-200.
    
    95. Goel, J.; Kadirvelu, K.; Rajagopal, C.; Garg, V. K. Investigation of adsorption of lead, mercury and nickel from aqueous solutions onto carbon aerogel J. Chem. Technol. Biotechnol. 2005, 80, 469-476.
    96.Goel,J.;Kadirvelu,K.;Rajagopal,C.;Garg,V.K.Removal of lead(Ⅱ)from aqueous solution by adsorption on carbon aerogel using a response surface methodological approach Ind.Eng.Chem.Res.2005,44,1987-1994.
    97.张拴勤;王珏;沈军;周斌;朱基千;赖珍荃;陈玲燕 新型惯性约束聚变靶材料碳气凝胶研制 原子能科学技术 1999,33 305-307.
    98.Hair,L.M.;Pekala,R.W.;Stone,R.E.;Chen,C.;Buckley,S.R.Low-density resorcinol formaldehyde aerogels for direct-drive laser inertial confinement fusion-targets J.Vac.Sci.Technol.,A 1988,6,2559-2563.
    99.Lu,X.;Arduini-Schuster,M.C.;Kuhn,J.;Nilsson,O.;Fricke,J.;Pekala,R.W.Thermal conductivity of monolithic organic aerogels Science 1992,255,971-972.
    100.Book,V.;Nilsson,O.;Blumm,J.;Fricke,J.Thermal properties of carbon aerogels J.Non-Cryst.solids 1995,185,233-239.
    101.陈龙武;甘礼华 气凝胶 化学通报 1997,8,21-27.
    102.Gross,J.;Fricke,J.Ultrasonic velocity measurements in silica,carbon and organic aerogels J.Non-Cryst.Solids 1992,145,217-222.
    103.Gross,J.;Fricke,J.;Pekala,R.W.;Hrubesh,L.W.Elastic nonlinearity of aerogels Phys.Rev.B 1992,45,12774-12777.
    104.Kim,H.J.;Kim,J.H.;Kim,W.I.;Suh,D.J.Nanoporous phloroglucinol-formaldehyde carbon aerogels for electrochemical use Korean J.Chem.Eng.2005,22,740-744.
    105.Bordjiba,T.;Mohamedi,M.;Dao,L.H.Charge storage mechanism of binderless nanocomposite electrodes formed by dispersion of CNTs and carbon aerogels J.Electrochem.Soc.2008,155,A115-A124.
    106.Zhu,Y.D.;Hu,H.Q.;Li,W.C.;Zhang,X.Y.Resorcinol-formaldehyde based porous carbon as an electrode material for supercapacitors Carbon 2007,45,160-165.
    107.Tsujimura,S.;Kamitaka,Y.;Kano,K.Diffusion-controlled oxygen reduction on multi-copper oxiclase-adsorbed carbon aerogel electrodes without mediator Fuel Cells 2007, 7, 463-469.
    
    108. Marie, J.; Berthon-Fabry, S.; Chatenet, M.; Chainet, E.; Pirard, R.; Cornet,N.; Achard, P. Platinum supported on resorcinol-formaldehyde based carbon aerogels for PEMFC electrodes: influence of the carbon support on electrocatalytic properties J. Appl. Electrochem. 2007, 37, 147-153.
    
    109. Mulik, S.; Sotiriou-Leventis, C; Leventis, N. Macroporous electrically conducting carbon networks by pyrolysis of isocyanate-cross-linked resorcinol-formaldehyde aerogels Chem. Mater. 2008, 20, 6985-6997.
    
    110. Tao, Y.; Hattori, Y.; Matumoto, A.; Kanoh, H.; Kaneko, K. Comparative study on pore structures of mesoporous ZSM-5 from resorcinol-formaldehyde aerogel and carbon aerogel templating J. Phys.Chem. B 2005, 109, 194-199.
    
    111. Tao, Y. S.; Kanoh, H.; Kaneko, K. Synthesis of mesoporous zeolite a by resorcinol-formaldehyde aerogel templating Langmuir 2005, 21, 504-507.
    
    112. Tao, Y. S.; Kanoh, H.; Kaneko, K. Uniform mesopore-donated zeolite Y using carbon aerogel templating J. Phys. Chem. B 2003, 107,10974-10976.
    
    113. Li, W. C.; Lu, A. H.; Weidenthaler, C.; Schuth, F. Hard-templating pathway to create mesoporous magnesium oxide Chem. Mater. 2004, 16,5676-5681.
    
    114. Tappan, B. C.; Brill, T. B. Thermal decomposition of energetic materials 85: cryogels of nanoscale hydrazinium diperchlorate in resorcinol-formaldehyde Propell. Explos. Pyrot. 2003, 28, 72-76.
    
    115. Leventis, N.; Chandrasekaran, N.; Sadekar, A. G.; Sotiriou-Leventis, C.;Lu, H. One-pot synthesis of interpenetrating inorganic/organic networks of CuO/resorcinol-formaldehyde aerogels: nanostructured energetic materials J. Am. Chem. Soc. 2009, 131, 4576-4577
    
    116. Li, Y.; Chen, A.; Wu, M.-q.; Lu, H.-p. Computer simulation of growth of RF aerogel fractals Electr. Compo. Mater. 2004, 23, 52-56.
    117. Berthon, S.; Barbieri, O.; Ehrburger-Dolle, F.; Geissler, E.; Achard, P.;Bley, F.; Hecht, A. M.; Livet, F.; Pajonk, G. M.; Pinto, N.; Rigaci, A.;Rochas, C. DLS and SAXS investigations of organic gels and aerogels J.Non-Cryst. Solids 2001, 285, 154-161.
    1.Hrubesh,L.W.Aerogel applications J..Non-Cryst.Solids 1998,225,335-342.
    2.H(u|¨)sing,N.;Schubert,U.Aerogels-airy materials:chemistry,structure,and properties Angew.Chem.Int.Ed.1998,37,22-45.
    3.Baumann,T.F.;Kucheyev,S.O.;Gash,A.E.;Satcher,J.H.Facile synthesis of a crystalline,high-surface-area SnO_2 aerogel Adv.Mater.2005,17,1546-1548.
    4.Celerier,S.;Robert,C.;Long,J.;Pettigrew,K.;Stroud,R.;Rolison,D.;Ansart,F.;Stevens,P.Synthesis of La_(9.33)Si_6O_(26) pore-solid nanoarchitectures via epoxide-driven sol-gel chemistry Adv.Mater.2006,18,615-618.
    5.Mohanan,J.L.Porous semiconductor ehalcogenide aerogels Science 2005,307,397-400.
    6.Arachchige,I.U.;Brock,S.L.Highly luminescent quantum-dot monoliths J.Am.Chem.Soc.2007,129,1840-1841.
    7.Bag,S.;Trikalitis,P.N.;Chupas,P.J.;Armatas,G.S.;Kanatzidis,M.G.Porous semiconducting gels and aerogels from chalcogenide clusters Science 2007, 317, 490-493.
    
    8. Pekala, R. W.; Alviso, C. T.; Kong, F. M.; Hulsey, S. S. Aerogels derived from multifunctional organic monomers J. Non-Cryst. Solids 1992, 145,90-98.
    
    9. Bryning, M. B.; Milkie, D. E.; Islam, M. F.; Hough, L. A.; Kikkawa, J. M.;Yodh, A. G. Carbon nanotube aerogels Adv. Mater. 2007, 19, 661-664.
    
    10. Pekala, R. W. Organic aerogels from the polycondensation of resorcinol with formaldehyde J. Mater. Sci. 1989, 24, 3221-3227.
    
    11. Nguyen, M. H.; Dao, L. H. Effects of processing variable on melamine-formaldehyde aerogel formation J. Non-Cryst. Solids 1998, 225,51-57.
    
    12. Daniel, C.; Alfano, D.; Venditto, V.; Cardea, S.; Reverchon, E.; Larobina,D.; Mensitieri, G.; Guerra, G. Aerogels with microporous crystalline host phase Adv. Mater. 2005, 17, 1515-1518.
    
    13. Valentin, R.; Horga, R.; Bonelli, B.; Garrone, E.; Renzo, F. D.; Quignard,F. FTIR spectroscopy of NH3 on acidic and ionotropic alginate aerogels Biomacromolecules 2006, 7, 877-882.
    
    14. Tan, C.; Fung, B.; Newman, J. K.; Vu, C. Organic aerogels with very high impact strength Adv. Mater. 2001, 13, 644-646.
    
    15. Fischer, F.; Rigacci, A.; Pirard, R.; Berthon-Fabry, S.; Achard, P.Cellulose-based aerogels Polymer 2006, 47, 7636-7645.
    
    16. Skjak-Brack, G.; Anthonsen, T.; Sandford, P. E., Chitin and chitosan:sources chemistry, biochemistry, physical properties, and applications.Elsevier Applied Science: London, 1989, Chapter 1.
    
    17. Jameela, S. R.; Jayakrishnan, A. Glutaraldehyde cross-linked chitosan microspheres as a long acting biodegradable drug delivery vehicle: studies on the in vitro release of mitoxantrone and in vivo degradation of microspheres in rat muscle Biomaterials 1995, 16, 769-775.
    
    18. Valentin, R.; Molvingur, K.; Quignard, F.; Brunei, D. Supercritical CO_2 dried chitosan: an efficient intrinsic heterogeneous catalyst in fine chemistry New J. Chem. 2003,27, 1690-1692.
    
    19. Valentin, R.; Bonelli, B.; Garrone, E.; Renzo, F. D.; Quignard, F.Accessibility of the functional groups of chitosan aerogel probed by FT-IR-monitored deuteration Biomacromolecules 2007, 5, 3646-3650.
    
    20. Wang, Y.; Szeto, Y. S.; Cheung, W. Adsorption of acid dyes on chitosan-equilibrium isotherm analyses Process Biochem. 2004, 39,695-704.
    
    21. Ayers, M. R.; Hunt, A. J. Synthesis and properties of chitosan-silica hybrid aerogels J. Non-Cryst. Solids 2001, 285, 123-127.
    
    22. Rivera-Utrilla, J.; M(?)ndez-Diaz, J.; Sanchez-Polo, M.; Ferro-Garc(?)a, M. A.Removal of the surfactant sodium dodecylbenzenesulphonate from water by simultaneous use of ozone and powdered activated carbon: Comparison with systems based on O_3 and O_3/H_2O_2 Water Res. 2006, 40, 1717-1725.
    
    23. Xiao, J.; Zhang, Y.; Wang, C.; Zhang, J.; Wang, C.; Bao, Y.; Zhao, Z.Adsorption of cationic-anionic surfactant mixtures on activated carbon Carbon 2005, 43, 1032-1038.
    
    24. Juang, R.; Lee, W.; Chen, C. Removal of sodium dodecyl benzene sulfonate and phenol from water by a combined PAC adsorption and cross-flow microfiltration process J. Chem. Technol. Biotechnol. 2004, 79,240-246.
    
    25. Leyva-Ramos, R. Effect of temperature and pH on the adsorption of an anionic detergent on activated carbon J. Chem. Technol. Biotechnol. 1989,45,231-240.
    
    26. Nagashima, K..; Blum, F. D. Adsorption and dynamics of sodium alkylbenzenesulfonates on alumina Colloids Surf. A 2001, 176, 17-24.
    
    27. Dos Reis, M. J.; Silv(?)rio, F.; Tronto, J.; Valim, J. B. Effects of pH,temperature, and ionic strength on adsorption of sodium dodecylbenzenesulfonate into Mg-Al-CO_3 layered double hydroxides J.Phys. Chem. Solids 2004, 65, 487-492.
    
    28. Siracusa, P. A.; Somasundaran, P. Mechanism of hysteresis in sulfonate/kaolinite adsorption/desorption systems: Chromatographic separation of isomers J. Colloid Interf. Sci. 1987, 120, 100-109.
    
    29. Siracusa, P. A.; Somasundaran, P. The role of mineral dissolution in the adsorption of dodecylbenzenesulfonate on kaolinite and alumina Colloids Surf. A 1987, 26, 55-77.
    
    30. Ozdemir, O.; Cinar, M.; Sabah, E.; Arslan, F.; (?)elik, M. S. Adsorption of anionic surfactants onto sepiolite J. Hazard. Mater. 2007, 147, 625-632.
    
    31. Yang, K.; Zhu, L.; Xing, B. Sorption of sodium dodecylbenzene sulfonate by montmorillonite Environ. Pollution 2007, 145, 571-576.
    
    32. Hanna, H. S.; Somasundaran, P. Equilibration of kaolinite in aqueous inorganic and surfactant solutions J. Colloid Interf. Sci. 1979, 70,181-191.
    
    33. Torn, L. H.; De Keizer, A.; Koopal, L. K.; Lyklema, J. Mixed adsorption of poly(vinylpyrrolidone) and sodium dodecylbenzenesulfonate on kaolinite J. Colloid Interf. Sci. 2003, 260, 1-8.
    
    34. Fachini, A.; Joekes, I Interaction of sodium dodecylbenzenesulfonate with chrysotile fibers. Adsorption or catalysis? Colloids Surf. A 2002, 201,151-160.
    
    35. Vale, H. M.; McKenna, T. F. Adsorption of sodium dodecyl sulfate and sodium dodecyl benzenesulfonate on poly(vinyl chloride) latexes Colloids Surf. A 2005, 268, 68-72.
    
    36. Lukaszczyk, J.; L(?)kawska, E.; Lunkwitz, K.; Petzold, G. Sorbents for removal surfactants from aqueous solutions: surface modification of natural solids to enhance sorption ability J. Appl. Polym. Sci. 2004, 92,1510-1515.
    
    37. Yang, W.; A, L.; Cai, J.; Meng, G.; Zhang, Q. Adsorption of surfactants onto acrylic ester resins with different pore size distribution Sci. China Ser. B 2006, 49, 445-453.
    
    38. Zhai, L.; Zhao, M.; Sun, D.; Hao, J.; Zhang, L. Salt-induced vesicle formation from single anionic surfactant SDBS and its mixture with LSB in aqueous solution J Phys. Chem. B 2005, 109, 5627-5630.
    
    39. Ravikovitch, P. I.; Neimark, A. V. Diffusion-controlled hysteresis Adsorption 2005, 11, 265-270.
    
    40. Oetjen, G.-W.; Haseley, P., Freez-drying. 2nd ed.; Wiley-VCH, Weinheim,Germany: 2003, p76-105.
    
    41. Schiffman, J. D.; Schauer, C. L. Cross-linking chitosan nanofibers Biomacromolecules 2007, 8, 594-601.
    
    42. Singh, A.; Narvi, S. S.; Dutta, P. K.; Pandey, N. D. External stimuli response on a novel chitosan hydrogel crosslinked with formaldehyde Bull.Mater. Sci. 2006, 29, 233-238.
    
    43. Wan Ngah, W. S.; Fatinathan, S. Chitosan flakes and chitosan-GLA beads for adsorption of p-nitrophenol in aqueous solution Colloids Surf. A:Physicochem. Eng. Aspects 2006, 277, 214-222.
    
    44. Knaul, J. Z.; Hudson, S. M.; Creber, K. A. M. Crosslinking of chitosan fibers with dialdehydes: proposal of a new reaction mechanism J. Polym.Sci.: Pol Phys. 1999,57, 1079-1094.
    
    45. Choi, H.-M.; Kim, J. H.; Shin, S. Characterization of cotton fabrics treated with glyoxal and glutaraldehyde J. Appl. Polym. Sci. 1999, 73,2691-2699.
    
    46. Hong, P. Z.; Li, S. D.; Ou, C. Y.; Li, C. P.; Yang, L.; Zhang, C. H.Thermogravimetric analysis of chitosan J. Appl. Polym. Sci. 2007, 105,547-551.
    
    47. Neto, C. G. T.; Giacometti, J. A.; Job, A. E.; Ferreira, F. C.; Fonseca, J. L.C.; Pereira, M. R. Thermal analysis of chitosan based networks Carbohydr.Polym. 2005,62,97-103.
    
    48. Santos, J. E.; Dockal, E. R.; Cavalheiro, (?). T. G. Thermal behavior of Schiff bases from chitosan J. Therm. Anal. Calorim. 2005, 79, 243-248.
    
    49. Martinez , L.; Agnely, F.; Leclerc , B.; Siepmann , J.; Cotte , M.; Geiger ,S.; Couarraze, G. Cross-linking of chitosan and chitosan/poly(ethylene oxide) beads: a theoretical treatment Eur. J. Pharm. Biopharm. 2007, 67, 339-348.
    
    50. Singh, A.; Narvi, S. S ; Dutta, P. K.; Pandey, N. D. External stimuli response on a novel chitosan hydrogel crosslinked with formaldehyde Bull.Mater. Sci. 2006, 29, 233-238.
    
    51. John, C., Introduction to nonionic surfactants. In surfactant science series:nonionic surfactants chemical analysis. Marcel Dekker Inc.: New York USA, 1987;p1-23.
    1.Du,H.;Gan,L.;Li,B.;Wu,P.;Qiu,Y.;Kang,F.;Fu,R.;Zeng,Y.Influences of mesopore size on oxygen reduction reaction catalysis of Pt/carbon aerogels J.Phys.Chem.C 2007,111,2040-2043.
    2.Lee,J.;Lee,D.;Oh,E.;Kim,J.;Kim,Y.;Jin,S.;Kim,H.;Hwang,Y.;Kwak,J.H.;Park,J.;Shin,C.;Kim,J.;Hyeon,T.Preparation of a magnetically switchable bio-electrocatalytic system employing cross-linked enzyme aggregates in magnetic mesoceilular carbon foam Angew.Chem.Int.Ed.2005,44,7427-7432.
    3.Bekyarova,E.;Kaneko,K.Structure and physical properties of tailor-made Ce,Zr-doped carbon aerogels,Adv.Mater.2000,12,1625-1628.
    4.Fairen-Jimenez,D.;Carrasco-Marin,F.;Moreno-Castilla,C.Adsorption of benzene,toluene,and xylenes on monolithic carbon aerogels from dry air flows Langmuir 2007,23,10095-10101.
    5.Hu,Q.;Lu,Y.;Meisner,G.P.Preparation of nanoporous carbon particles and their cryogenic hydrogen storage capacities J.Phys.Chem.C 2008,112,1516-1523.
    6.Pekala,R.W.Organic aerogels from the polycondensation of resorcinol with formaldehyde J.Mater Sci.1989,24,3221-3227.
    7.Lee,J.;Kim,J.;Hyeon,T.Recent progress in the synthesis of porous carbon materials Adv.Mater 2006,18,2073-2094.
    8.Lu,X.;Nilsson,O.;Fricke,J.;Pekala,R.W.Thermal and electrical conductivity of monolithic carbon aerogels J.Appl.Phys.1993,73,581-584.
    9.Dresselhaus,M.S.Future directions in carbon science Annu.Rev.Mater Sci.1997,27,1-34.
    10.Lin,C.;Ritter,J.A.;Popov,B.N.Development of carbon-metal oxide supercapacitors from sol-gel derived carbon-ruthenium xerogels J.Electrochem.Soc.1999,146,3155-3160.
    11.Maldonado-Hodar,F.J.;Moreno-Castilla,C.;Carrasco-Marin,F.;Pe rez-Cadenas,A.F.Reversible toluene adsorption on monolithic carbon aerogels J.Hazard.Mater 2007,148,548-552.
    12.Pekala,R.W.;Alviso,C.T.;Lu,X.;Gross,J.;Fricke,J.New organic aerogels based upon a phenolic-furfural reaction J.Non-Cryst.Solids 1995,188,34-40.
    13.Wu,D.;Fu,R.Synthesis of organic and carbon aerogels from phenol-furfural by two-step polymerization Micropor Mesopor Mater.2006,96,115-120.
    14.Li,W.;Lu,A.;Guo,S.Characterization of the microstructures of organic and carbon aerogels based upon mixed cresol formaldehyde Carbon 2001,39,1989-1994.
    15. Li, W.; Reichenauer, G.; Fricke, J. Carbon aerogels derived from cresol-resorcinol-formaldehyde for supercapacitors Carbon 2002, 40,2955-2959.
    
    16. Yamashita, J.; Ojima, T.; Shioya, M.; Hatori, H.; Yamada, Y. Organic and carbon aerogels derived from poly(vinyl chloride) Carbon 2003, 41,285-294.
    
    17. Zhang, R.; Li, W.; Liang, X.; Wu, G.; L(?), Y.; Zhan, L.; Lu, C.; Ling, L.Effect of hydrophobic group in polymer matrix on porosity of organic and carbon aerogels from sol - gel polymerization of phenolic resole and methylolated melamine Micropor. Mesopor. Mater. 2003, 62, 17-27.
    
    18. Zhang, R.; Lu, Y.; Zhan, L.; Liang, X.; Wu, G.; Ling, L. Monolithic carbon aerogels from sol - gel polymerization of phenolic resoles and methylolated melamine Carbon 2003, 41, 1660-1663.
    
    19. Biesmans, G.; Mertens, A.; Duffours, L.; Woignier, T.; Phalippou, J.Polyurethane based organic aerogels and their transformation into carbon aerogels J. Non-Cryst. Solids 1998, 225, 64-68.
    
    20. Biesmans, G.; Randall, D.; Francais, E.; Perrut, M. Polyurethane-based organic aerogels' thermal performance J. Non-Cryst. Solids 1998, 225,36-40.
    
    21. Rigacci, A.; Marechal, J. C.; Repoux, M.; Moreno, M.; Achard, P.Preparation of polyurethane-based aerogels and xerogels for thermal superinsulation J. Non-Cryst. Solids 2004, 350, 372-378.
    
    22. P(?)rez-Caballero, F.; Peikolainen, A. L.; Uibu, M.; Kuusik, R.; Volobujeva,O.; Koel, M. Preparation of carbon aerogels from 5-methylresorcinol-formaldehyde gels Micropor. Mesopor. Mater. 2008,108, 230-236.
    
    23. Miao, Z.; Ding, K.; Wu, T.; Liu, Z.; Han, B.; An, G.; Miao, S.; Yang, G.Fabrication of 3D-networks of native starch and their application to produce porous inorganic oxide networks through a supercritical route Micropor. Mesopor. Mater. 2008, 111, 104-109.
    24. Valentin, R.; Horga, R.; Bonelli, B.; Garrone, E.; Di Renzo, F.; Quignard,F. FTIR spectroscopy of NH3 on acidic and ionotropic alginate aerogels Biomacromolecules 2006, 7, 877-882.
    
    25. Tan, C.; Fung, B. M.; Newman, J. K.; Vu, C. Organic aerogels with very high impact strength Adv. Mater. 2001, 13, 644-646.
    
    26. Chang, X.; Chen, D.; Jiao, X. Chitosan-based aerogels with high adsorption performance J. Phys. Chem. B 2008, 112, 7721-7725.
    
    27. Guilminot, E.; Fischer, F.; Chatenet, M.; Rigacci, A.; Berthon-Fabry, S.;Achard, P.; Chainet, E. Use of cellulose-based carbon aerogels as catalyst support for PEM fuel cell electrodes: electrochemical characterization J.Power Sources 2007, 166, 104-111.
    
    28. Kruk, M.; Jaroniec, M. Gas adsorption characterization of ordered organic-inorganic nanocomposite materials Chem. Mater. 2001, 13,3169-3183.
    
    29. Qin, G.; Guo, S. Synthesis and textural characteristics of organic aerogels,transition-metal-containing organic aerogels and their carbonized derivatives Carbon 1999, 37, 1199-1205.
    
    30. Mulik, S.; Sotiriou-Leventis, C; Leventis, N. Time-efficient acid-catalyzed synthesis of resorcinol-formaldehyde aerogels Chem.Mater. 2007,19,6138-6144.
    
    31. Lee, J.; Gould, G. L. Polydicyclopentadiene based aerogel: a new insulation material J. Sol-Gel Sci. Technol. 2007, 44, 29-40.
    
    32. Tamon, H.; Ishizaka, H.; Yamamoto, T.; Suzuki, T. Preparation of mesoporous carbon by freeze drying Carbon 1999, 37, 2049-2055.
    
    33. Tamon, H.; Ishizaka, H.; Yamamoto, T.; Suzuki, T. Influence of freeze-drying conditions on the mesoporosity of organic gels as carbonprecursors Carbon 2000, 38, 1099-1105.
    
    34. Tamon, H.; Ishizaka, H.; Yamamoto, T.; Suzuki, T. Freeze drying for preparation of aerogel-like carbon Drying Technol. 2001, 19, 313-324.
    
    35. Yamamoto, T.; Nishimura, T.; Suzuki, T.; Tamon, H. Control of mesoporosity of carbon gels prepared by sol - gel polycondensation and freeze drying J Non-Cryst. Solids 2001, 288, 46-55.
    
    36. Yamamoto, T.; Nishimura, T.; Suzuki, T.; Tamon, H. Effect of drying method on mesoporosity of resorcinol-formaldehyde drygel and carbon gel Drying Technol. 2001, 19, 1319-1333.
    
    37. Leonard, A.; Job, N.; Blacher, S.; Pirard, J. P.; Crine, M.; Jomaa, W.Suitability of convective air drying for the production of porous resorcinol-formaldehyde and carbon xerogels Carbon 2005, 43,1808-1811.
    
    38. Job, N.; Panariello, F.; Marien, J.; Crine, M.; Pirard, J. P.; Leonard, A.Synthesis optimization of organic xerogels produced from convective air-drying of resorcinol-formaldehyde gels J. Non-Cryst. Solids 2006, 352,24-34.
    
    39. Tonanon, N.; Wareenin , Y.; Siyasukh , A.; Tanthapanichakoon , W.;Nishihara , H.; Mukai , S. R.; Tamon, H. Preparation of resorcinol formaldehyde (RF) carbon gels: use of ultrasonic irradiation followed by microwave drying J. Non-Cryst. Solids 2006, 352, 5683-5686.
    
    40. Mukai, S. R.; Tamitsuji, C.; Nishihara, H.; Tamon, H. Elongation of arrays of amorphous carbon tubes Carbon 2005, 43, 2618-2621.
    
    41. Bordjiba, T.; Mohamedi, M.; Dao, L. H. New class of carbon-nanotube aerogel electrodes for electrochemical power sources Adv. Mater. 2008, 20,815-819.
    
    42. Bryning, M. B.; Milkie, D. E.; Islam, M. F.; Hough, L. A.; Kikkawa, J. M.;Yodh, A. G. Carbon nanotube aerogels Adv. Mater. 2007, 19, 661-664.
    
    43. Bravo-Osuna, I.; Ferrero, C.; Jim(?)nez- Castellanos, M. R. Drug release behaviour from methyl methacrylate-starch matrix tablets: effect of polymer moisture content Europ. J. Pharma. Biopharma. 2008, 69,285-293.
    
    44. Chielhi, E.; Solaro, R. Biodegradable polymeric materials Adv. Mater.1996,8, 305-313.
    45. Ellis, R. P.; Cochrane, M. P.; Dale, M. F. B.; Dubus, C. M.; Lynn, A.;Morrison, I. M.; Prentice, R. D. M.; Swanston, J. S.; Tiller, S. A. Starch production and industrial use J. Sci. Food Agric. 1998, 77, 289-311.
    
    46. Xu, S.; Wang, J.; Wu, R.; Wang, J.; Li, H. Adsorption behaviors of acid and basic dyes on crosslinked amphoteric starch Chem. Engineering J.2006,117, 161-167.
    
    47. Duki(?)-Ott, A.; Remon, J. P.; Foreman, P.; Vervaet, C. Immediate release of poorly soluble drugs from starch-based pellets prepared via extrusion/spheronisation Europ. J. Pharma. Biopharma. 2007, 67,715-724.
    
    48. Liebert, T.; Kulicke, W. M.; Heinze, T. Novel approach towards hydrolytically stable starch acetates for physiological applications Reactive Fund. Polym. 2008, 68, 1-11.
    
    49. Zhang, L. A review of starches and their derivatives for oilfield applications in China Starch 2001, 53, 401-407.
    
    50. Simkovic, I.; Laszlo, J. A.; Thompson, A. R. Preparation of a weakly basic ion exchanger by crosslinking starch with epichlorohydrin in the presence of NH_4OH Carbohydr. Polym. 1996, 30, 25-30.
    
    51. Buckley, C. A. Membrane technology for the treatment of dyehouse effluents Water Sci. Technol. 1992, 25, 203-209.
    
    52. Cooper, P. Removing colour from dyehouse wastewaters-a critical review of technology available J. Soc. Dyers Colourists 1993, 109, 97-100.
    
    53. Jiraratananon, R.; Sungpet, A.; Luangsowan, P. Performance evaluation of nanofiltration membranes for treatment of effluents containing reactive dye and salt Desalination 2000, 130, 177-183.
    
    54. Karcher, S.; Kornmuller, A.; Jekel, M. Screening of commercial sorbents for the removal of reactive dyes Dyes Pigments 2001, 51, 111-125.
    
    55. Koyuncu, I. Effects of feed concentration and cross flow velocity Desalination 2002, 143, 243-253.
    
    56. Netpradit, S.; Thiravetyan, P.; Towprayoon, S. Application of "waste" metal hydroxide sludge for adsorption of azo reactive dyes Water Res.2003,37,763-772.
    
    57. Allegre, C.; Moulin, P.; Maisseu, M.; Charbit, F. Treatment and reuse of reactive dyeing effluents J. Membr. Sci. 2006, 269, 15-34.
    
    58. Liu, H.; Chiou, Y. Optimal decolorization efficiency of reactive red 239 by UV/ZnO photocatalytic process J. Chin. Inst. Chem. Engrs. 2006, 37,289-298.
    
    59. Wu, J.; Liu, C.; Chu, K.; Suen, S. Removal of cationic dye methyl violet 2B from water by cation exchange membranes J. Membr. Sci. 2008, 309,239 -245.
    
    60. Zhang, L. N., Modified materials from natural polymers and their applications (in Chinese) Chemistry Industry Press, Beijing, 2006, p216-223.
    
    61. Fredriksson, H.; Silverio, J.; Andersson, R.; Eliasson, A.-C.; (?)man, P. The influence of amylose and amylopectin characteristics on gelatinization and retrogradation properties of different starches Carbohydr. Polym.1998,55, 119-134.
    
    62. Ghanem, B. S.; McKeown, N. B.; Budd, P. M.; Selbie, J. D.; Fritsch, D.High-performance membranes from polyimides with intrinsic microporosity Adv. Mater. 2008, 9999, 1-6.
    
    63. Franz, M.; Arafat, H. A.; Pinto, N. G. Effect of chemical surface heterogeneity on the adsorption mechanism of dissolved aromatics on activated carbon Carbon 2000, 38, 1807-1819.
    1.Pekala,R.W.;Alviso,C.T.;Kong,F.M.;Hulsey,S.S.Aerogels derived from multifunctional organic monomers J.Non-Cryst.Solids 1992,145,90-98.
    2.Nguyen,M.H.;Dao,L.H.Effects of processing variable on melamine-formaldehyde aerogel formation J.Non-Cryst.Solids 1998,225,51-57.
    3.Daniel,C.;Alfano,D.;Venditto,V.;Cardea,S.;Reverchon,E.;Larobina,D.;Mensitieri,G.;Guerra,G.Aerogels with a microporous crystalline host phase Adv.Mater.2005,17,1515-1518.
    4.Abbasi,A.;Eslamian,M.;Rousseau,D.Modeling of caffeine release from crosslinked water-swellable gelatin and gelatin-maltodextrin hydrogels Drug Deliv.2008,15,455-463.
    5. Valentin, R.; Horga, R.; Bonelli, B.; Garrone, E.; Renzo, F. D.; Quignard,F. FTIR spectroscopy of NH_3 on acidic and ionotropic alginate aerogels Biomacromolecules 2006, 7, 877-882.
    
    6. Tan, C.; Fung, B.; Newman, J. K.; Vu, C. Organic aerogels with very high impact strength Adv. Mater. 2001, 13, 644-646.
    
    7. Fischer, F.; Rigacci, A.; Pirard, R.; Berthon-Fabry, S.; Achard, P.Cellulose-based aerogels Polymer 2006, 47, 7636-7645.
    
    8. Guibal, E. Heterogeneous catalysis on chitosan-based materials: a review Prog. Polym. Sci. 2005, 30, 71-109.
    
    9. Doi, S.; Clark, J. H.; Macquarrie, D. J.; Milkowski, K. New materials based on renewable resources: chemically modified expanded corn starches as catalysts for liquid phase organic reactions. Chem. Commun.2002, 2632-2633.
    
    10. Budarin, V. L.; Clark, J. H.; Luque, R.; Macquarrie, D. J.; White, R. J.Palladium nanoparticles on polysaccharide-derived mesoporous materials and their catalytic performance in C-C coupling reactions Green Chem.2008, 10, 382-387.
    
    11. White, R. J.; Budarin, V. L.; Clark, J. H. Tuneable mesoporous materials from -D-polysaccharides ChemSusChem 2008, 1, 408-411.
    
    12. Zhang, B. Q.; Zhou, M.; Liu, X. F. Monolayer assembly of oriented zeolite crystals on alpha-Al_2O_3 supported polymer thin films Adv. Mater.2008,20,2183-2189.
    
    13. Abarrategi, A.; Civantos, A.; Ramos, V.; Casado, J. V. S.;Lopez-Lacomba, J. L. Chitosan film as rhBMP2 carrier: delivery properties for bone tissue application Biomacromolecules 2008, 9,711-718.
    
    14. Xie, J. Z.; Hein, S.; Wang, K.; Liao, K.; Goh, K. L. Influence of hydroxyapatite crystallization temperature and concentration on stress transfer in wet-spun nanohydroxyapatite-chitosan composite fibres Biomed. Mater. 2008, 3, 12-18.
    15. Lian, Q.; Li, D. C.; He, J. K.; Wang, Z. Mechanical properties and in-vivo performance of calcium phosphate cement-chitosan fibre composite Proc.IME H. J. Eng. Med. 2008, 222, 347-353.
    
    16. Boucard, N.; Viton, C.; Domard, A. New aspects of the formation of physical hydrogels of chitosan in a hydroalcoholic medium Biomacromolecules 2005, 6, 3227-3237.
    
    17. Mao, J. S.; McShane, M. J. Transduction of volume change in pH-sensitive hydrogels with resonance energy transfer Adv. Mater. 2006,18, 2289-2293.
    
    18. Peppas, N. A.; Hilt, J. Z.; Khademhosseini, A.; Langer, R. Hydrogels in biology and medicine: from molecular principles to bionanotechnology Adv. Mater. 2006, 18, 1345-1360.
    
    19. Wei, W.; Yuan, L.; Hu, G.; Wang, L. Y.; Wu, H.; Hu, X.; Su, Z. G.; Ma, G.H. Monodisperse chitosan microspheres with interesting structures for protein drug delivery Adv. Mater. 2008, 20, 2292-2296.
    
    20. Viswanathan, N.; Sundaram, C. S.; Meenakshi, S. Sorption behaviour of fluoride on carboxylated cross-linked chitosan beads Colloids Surf. B 2009, 68, 48-54.
    
    21. Viswanathan, N.; Sundaram, C. S.; Meenakshi, S. Removal of fluoride from aqueous solution using protonated chitosan beads J. Hazard. Mater.2009, 161, 423-430.
    
    22. Bodnar, M.; Hartmann, J. F.; Borbely, J. Preparation and characterization of chitosan-based nanoparticles Biomacromolecules 2005, 6, 2521-2527.
    
    23. Gong, J.; Hu, X. L.; Wong, K. W.; Zheng, Z.; Yang, L.; Lau, W. M.; Du,R. X. Chitosan nanostructures with controllable morphology produced by a nonaqueous electrochemical approach Adv. Mater. 2008, 20, 2111-2115.
    
    24. Tan, W. B.; Zhang, Y. Multifunctional quantum-dot-based magnetic chitosan nanobeads Adv. Mater. 2005, 17, 2375-2380.
    
    25. Thacharodi, D.; Rao, K. P. Development and in vitro evaluation of chitosan-based transdermal drug delivery systems for the controlled delivery of propranolol hydrochloride Biomaterials 1995, 16, 145-148.
    
    26. Chanda, J.; Kuribayashi, R.; Abe, T. Use of the glutaraldehyde-chitosantreated porcine pericardium as a pericardial substitute Biomaterials 1996, 17, 1087-1091.
    
    27. Bhaskara Rao, S.; Sharma, C. P. Use of chitosan as a biomaterial: studies on its safety and hemostatic potential J. Biomed. Mater. Res. A 1997, 34,21-28.
    
    28. Hassan, E. E.; Parish, R. C.; Gallo, J. M. Optimized formulation of magnetic chitosan microspheres containing the anticancer agent,oxantrazole Pharm. Res. 1992, 9, 390-397.
    
    29. Ohya, Y.; Shiratami, M.; Ouchi, T. Synthesis and characterization of a novel chitosan-based network prepared using naturally occurring crosslinker J.Macromol. Sci. Chem. 1994, ,437, 629-642.
    
    30. Ohya, Y.; Takei, T.; Ouchi, T. Thermo-sensitive release behavior of 5-fluorouracil from chitosan-gel microspheres coated with lipid multilayers J. Bioact. Compat. Polym. 1992, 7, 242-256.
    
    31. Speer, D. P.; Chvapil, M.; Eskelson, C. D.; Ulreich, J. Biological effects of residual glutaraldehyde in glutaraldehyde-tanned collagen biomaterials J. Biomed. Mater. Res. A 1980, 14, 753-764.
    
    32. Nishi, C.; Nakajima, N.; Ikada, Y. In vitro evaluation of cytotoxicity of diepoxy compounds used for biomaterial modification J. Biomed. Mater.Res. A 1995, 29, 829-834.
    
    33. Kawai, K.; Suzuki, S.; Tabata, Y.; Ikada, Y.; Nishimura, Y. Accelerated tissue regeneration through incorporation of basic fibroblast growth factor-impregnated gelatin microspheres into artificial dermis Biomaterials 2000, 21, 489-499
    
    34. Chiono, V.; Pulieri, E.; Vozzi, G.; Ciardelli, G.; Ahluwalia, A.; Giusti, P.Genipin-crosslinked chitosan/gelatin blends for biomedical applications J.Mater. Sci. Mater. Med. 2008, 19, 889-898.
    
    35. Abbasi, A.; Eslamian, M.; Heyd, D.; Rousseau, D. Controlled release of DSBP from genipin-crosslinked gelatin thin films Pharm.Develop.Technol.2008,13,549-557.
    36.Akao,T.;Kobashi,K.;Aburada,M.Enzymic studies on the animal and intestinal bacterial metabolism of geniposide.Biol.Pharm.Bull.1994,17,1573-1576.
    37.Butler,M.F.;Ng,Y.-F.;Pudney,P.D.A.Mechanism and kinetics of the crosslinking reaction between biopolymers containing primary amine groups and genipin J.Polym.Sci.,Part A:Polym.Chem.2003,41,3941-3953.
    38.Fujikawa,S.;Fukui,y.;Koga,K.;Iwashita,T.;Komura,H.;Nomoto,K.Structure of genipocyanin G1,a spontaneous reaction product between genipin and glycine Tetrahedron.Lett.1987,28,4699-4700
    39.Sung,H.W.;Huang,L.L.H.;Tsai,C.C.In vitro evaluation of cytotoxicity of a naturally occurring cross-linking reagent for biological tissue fixation J.Biomater.Sci.Polym.Edn.1999,10,63-78.
    40.Sung,H.W.;Huang,R.N.;Huang,L.L.H.;Tsai,C.C.;Chiu,C.T.Feasibility study of a natural crosslinking reagent for biological tissue fixation J.Biomed.Mater.Res.A 1998,42,560-567.
    41.Mi,F.;Sung,H.;Shyu,S.S.Synthesis and characterization of a novel chitosan-based network prepared using naturally occurring crosslinker J.Polym.Sci.,Part,A:Polym.Chem.2000,38,2804-2814.
    42.Ayers,M.R.;Hunt,A.J.Synthesis and properties of chitosan-silica hybrid aerogels J.Non-Cryst.Solids 2001,285,123-127.
    43.姚芳莲;李学强;于潇;周玉涛;张宏 京尼平对壳聚糖及明胶的交联反应 天津大学学报 2007,40,1485-1489.
    44.Oetjen,G.-W.;Haseley,P.,Freez-drying.2nd ed.;Wiley-VCH,Weinheim,Germany:2003,p76-105.
    45.Gong,R.;Sun,Y.;Chen,J.;Liu,H.;Yang,C.Effect of chemical modification on dye adsorption capacity of peanut hull Dyes Pigments 2005,67,175-181.
    46. Mittal, A.; Kurup, L.; Mittal, J. Freundlich and Langmuir adsorption isotherms and kinetics for the removal of tartrazine from aqueous solutions using hen feathers J. Hazard. Mater. 2007, 146, 243-248.
    
    47. Mittal, A.; Mittal, J.; Kurup, L. Adsorption isotherms, kinetics and column operations for the removal of hazardous dye, tartrazine from aqueous solutions using waste materials-bottom ash and de-oiled soya, as adsorbents J. Hazard. Mater. 2006, B136, 567-578.
    
    48. Yamamoto. H. Chiral interaction of chitosan with azo dyes Makromol.Chem. 1984,185, 1613-1621.
    
    49. Maghami, G. G.; Roberts, G. A. Studies on the interaction of anionic dyes on chitosan Makromol. Chem. 1988, 189, 2239-2243.
    
    50. Seo, T.; Hagura, S.; Kanbara, T.; Iijima, T. Interaction of dyes with chitosan derivatives J. Appl. Polym. Sci. 1989, 37, 3011-3027.
    
    51. Smith, B.; Koonce, T.; Hudson, S. Decolorizing dye wastewater using chitosan Am. Dyest. Rep. 1993, 82, 18-36.
    
    52. Stefancich, S.; Delben, F.; Muzzarelli, R. A. A. Interactions of soluble chitosans with dyes in water. I. Optical evidence Carbohydr. Polym. 1994,24, 17-23.
    
    53. Delben, F.; Gabrielli, P.; Muzzarelli, R. A. A.; Stefancich, S. Interactions of soluble chitosans with dyes in water. II.Thermodynamic data Carbohydr. Polym. 1994, 24, 25-30.
    
    54. Shimizu, Y.; Kono, K.; Kim, I. S. Takagishi T. Effects of added metal ions on the interaction of chitin and partially deacetylated chitin with an azo dye carrying hydroxyl groups J. Appl. Polym. Sci. 1995, 55, 255-261.
    
    55. Park, R. D.; Cho, Y. Y.; Kim, K. Y.; Bom, H. S.; Oh, C. S.; Lee, H. C.Adsorption of toluidine Blue O onto chitosan Agric. Chem. Biotechnol.1995, 38, 447-452.
    1.Pekala,R.W.Organic aerogels from the polycondensation of resorcinol with formaldehyde J.Mater.Sci.1989,24,3221-3227.
    2.Pekala,R.W.;Kong,F.M.Resorcional-formaldehyde aerogels and their carboniaed derivatives Polym.Prepr 1989,30,221-223.
    3.Al-Muhtaseb,S.A.;Ritter,J.A.Preparation and properties of resorcinol-formaldehyde organic and carbon gels Adv.Mater.2003,15,101-114.
    4.Daniel,C.;Alfano,D.;Venditto,V.;Cardea,S.;Reverchon,E.;Larobina,D.;Mensitieri,G.;Guerra,G.Aerogels with a microporous crystalline host phase Adv.Mater.2005,17,1515-1518.
    5.Lee,J.;Kim,J.;Hyeon,T.Recent progress in the synthesis of porous carbon materials Adv. Mater. 2006, 18, 2073-2094.
    
    6. Bryning, M. B.; Milkie, D. E.; Islam, M. F.; Hough, L. A.; Kikkawa, J. M.;Yodh, A. G. Carbon nanotube aerogels Adv. Mater. 2007, 19, 661-664.
    
    7. Bordjiba, T.; Mohamedi, M.; Dao, L. H. New class of carbon-nanotube aerogel electrodes for electrochemical power sources Adv. Mater. 2008, 20,815-819.
    
    8. Worsley, M. A.; Satcher, J. H.; Baumann, T. F. Synthesis and characterization of monolithic carbon aerogel nanocomposites containing double-walled carbon nanotubes Langmuir 2008, 24, 9763-9766.
    
    9. Placin, F.; Desvergne, J. P.; Cansell, F. Organic low molecular weight aerogel formed in supercritical fluids J. Mater. Chem. 2000, 10,2147-2149.
    
    10. Valentin, R.; Horga, R.; Bonelli, B.; Garrone, E.; Di Renzo, F.; Quignard,F. FTIR spectroscopy of NH_3 on acidic and ionotropic alginate aerogels Biomacromolecules 2006, 7, 877-882.
    
    11. Tan, C. B.; Fung, B. M.; Newman, J. K.; Vu, C. Organic aerogels with very high impact strength Adv. Mater. 2001, 13, 644-646.
    
    12. Aaltonen, O.; Jauhiainen, O. The preparation of lignocellulosic aerogels from ionic liquid solutions Carbohydr. Polym. 2009, 75, 125-129.
    
    13. Quignard, F.; Valentin, R.; Di Renzo, F. Aerogel materials from marine polysaccharides New J. Chem. 2008,52, 1300-1310.
    
    14. Chang, X. H.; Chen, D. R.; Jiao, X. L. Chitosan-based aerogels with high adsorption performance J. Phys. Chem. B 2008, 112, 7721-7725.
    
    15. Guilminot, E.; Fischer, F.; Chatenet, M.; Rigacci, A.; Berthon-Fabry, S.;Achard, P.; Chainet, E. Use of cellulose-based carbon aerogels as catalyst support for PEM fuel cell electrodes: electrochemical characterization J.Power Sources 2007, 166, 104-111.
    
    16. DeVelde, F. V.; Knutsen, S. H.; Usov, A. I. ~1H and ~(13)C high resolution NMR spectroscopy of carrageenans: application in research and industry Trends Food Sci. Technol. 2002, 13, 73-92.
    17. Zhu, J. H.; Yang, X. Q.; Ahmad, I.; Li, L.; Wang, X. Y.; Liu, C.Rheological properties of kappa-carrageenan and soybean glycinin mixed Food Res. Int. 2008, 41, 219-228.
    
    18. Tsen, J. H.; Lin, Y. P.; Huang, H. Y.; King, V. A. E. Studies on the fermentation of tomato juice by using kappa-carrageenan immobilized lactobacillus acidophilus J. Food Process. Preserv. 2008, 32, 178-189.
    
    19. Spichtig, V.; Austin, S. Determination of the low molecular weight fraction of food-grade carrageenans J. Chrom. B 2008, 861, 81-87.
    
    20. Harrington, J. C.; Foegeding, E. A.; Mulvihill, D. M.; Morris, E. R.Segregative interactions and competitive binding of Ca~(2+) in gelling mixtures of whey protein isolate with Na~+ kappa-carrageenan Food Hydrocolloid. 2009, 23, 468-489.
    
    21. Amici, E.; Clark, A. H.; Normand, V.; Johnson, N. B. Interpenetrating network formation in agarose - kappa-carrageenan gel composites Biomacromolecules 2002, 3, 466-474.
    
    22. Ikeda, S.; Nishinari, K. "Weak gel"-type rheological properties of aqueous dispersions of nonaggregated kappa-carrageenan helices J. Agric. Food.Chem. 2001, 49,4436-4441.
    
    23. Ikeda, S.; Kumagai, H. Dielectric analysis of sol-gel transition of kappa-carrageenan with scaling concept J. Agric. Food. Chem. 1998, 46,3687-3693.
    
    24. Oetjen, G.-W.; Haseley, P., Freez-drying. 2nd ed.; Wiley-VCH, Weinheim,Germany: 2003, p76-105.
    
    25. Kruk, M.; Jaroniec, M. Gas adsorption characterization of ordered organic inorganic nanocomposite materials Chem. Mater. 2001, 13, 3169 -3183.
    
    26. Ghanem, B. S.; McKeown, N. B.; Budd, P. M.; Selbie, J. D.; Fritsch, D.High-performance membranes from polyimides with intrinsic microporosity Adv. Mater. 2008, 9999, 1-6
    
    27. Mulik, S.; Sotiriou-Leventis, C.; Leventis, N. Macroporous electrically conducting carbon networks by pyrolysis of isocyanate-cross-linked resorcinol-formaldehyde aerogels Chem. Mater. 2008, 20, 6985-6997.
    28. Chandra, T. C.; Mirna, M. M.; Sudaryanto, Y.; Ismadji, S. Adsorption of basic dye onto activated carbon prepared from durian shell: Studies of adsorption equilibrium and kinetics Chem. Engineer. J. 2007, 127,121-129.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700