用户名: 密码: 验证码:
泡沫病毒转录激活因子调控宿主细胞周期并受宿主细胞microRNA的调控
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
病毒是一种病原体,由于自身包装能力的限制,所以必须依赖于宿主细胞进行增殖与复制,并且对宿主细胞造成破坏。与此相反,宿主细胞在病毒进入到自身后,马上会启动其防御机制,抵抗、削弱、甚至清除病毒感染。本论文主要以泡沫病毒为研究工具,研究该类病毒对宿主细胞,特别是宿主细胞周期的抑制作用。以及宿主microRNA对病毒相关基因的调控及对病毒复制的影响。本研究还初步揭示了RNA沉默抑制因子,即番茄丛矮病毒的P19蛋白,对宿主细胞周期相关基因有显著的调控作用。
     Borf1蛋白是牛泡沫病毒编码的转录激活因子,可影响其自身及病毒结构基因的表达。但目前对Borf1在宿主细胞周期上是否发挥作用还不清楚。在本研究中,我们通过构建人胚肾293稳定表达Borf1的细胞系来研究其对宿主细胞的影响。研究发现,在细胞内稳定表达Borf1可显著引发细胞在G1/G0的阻滞,并且降低S期细胞的比例。用半定量RT-PCR分析发现,Borf1可在mRNA水平下调cyclin A2,cyclin B1,cyclin E1和CDC2,及上调CDK2和E2F-1的表达。蛋白水平的分析进一步核实上述结果,并且发现Borf1还可抑制P15蛋白表达。因此,Borf1通过影响周期相关蛋白表达,在G2-M及G1-S限制位点上发挥作用,进而引发细胞G1期阻抑。
     番茄丛矮病毒的P19蛋白不仅是一个重要的病毒致病因子,而且还可作为RNA干扰(RNAi)的抑制因子。这种作用是通过限制细胞内的小RNA,比如小干扰RNA(siRNAs)和microRNA(miRNAs)来实现。但是目前人们对P19蛋白是否可能对哺乳动物细胞产生不利影响还不知。在本研究中,我们构建了一株p19稳定表达的293细胞系,即293-p19。流式细胞仪分析发现在293细胞中过量表达P19蛋白可显著引发细胞周期的G2/M阻滞。细胞增殖实验显示293-p19细胞的DNA复制及细胞生长均受到显著的抑制。此外,研究还发现p19可使人胚肾293细胞内的细胞周期调控蛋白的表达谱发生改变。其中包括上调cyclin A1,CDK2,CDK4,CDK6,p27,cyclin D2,cyclin D3 and E2F1,及下调p15,cyclin A,cyclin B1和cyclin E1的表达。因此,我们的研究结果提示,p19有可能靶向多个周期相关调控蛋白从而引发细胞的G2/M阻滞。
     microRNA(miRNA)是一类大小为21-25nt的非编码RNA,在转录后水平发挥基因的抑制作用。通常microRNA可通过抑制靶序列的翻译,或引发靶序列的降解来达到其负调控目的。虽然目前microRNA分子已知的很多,但真正明确其功能的却很少。另外,有关microRNA对泡沫病毒作用的研究报道也极其有限。为此,我们利用生物信息学预测软件对人泡沫病毒(HFV)基因组进行分析,发现HFV的转录激活子Bel 1(Tas)的编码区上有一个has-miR-491-5p的靶位点。将靶序列置于EGFP基因的3'非编码区(UTR),用化学合成的及载体表达的has-miR-491-5p均可显著抑制EGFP的基因表达。用化学修饰的特异性miRNA抑制剂及过量表达p19,均可有效解救has-miR-491-5p引发的基因抑制。研究还发现,has-miR-491-5p介导的基因抑制发生于转录后mRNA水平,而非蛋白质表达水平。不仅如此,has-miR-491-5p还可有效抑制Bel 1在质粒及病毒中的表达。该系统为进一步检测has-miR-491-5p抑制HFV病毒的复制奠定了基础。
     总之,病毒早期感染产生的某些重要的调控蛋白如Borf1和P19,不仅可作用于病毒基因组复制本身,而且还可作用于宿主细胞周期,通过改变周期蛋白的表达来引发细胞周期的阻抑。此外,宿主细胞对病毒的侵入性感染也呈现多种防御性作用机制,其中之一就是在细胞内引发针对病毒的miRNA介导的转录后水平的基因抑制。如miR-491对HFV Bel1蛋白的抑制作用,就有可能是宿主miRNA通过限制转录激活因子的表达抑制HFV病毒的复制。miR-491介导的这种抑制作用有可能会为病毒建立潜伏感染提供有利条件。
Virus is a kind of pathogen that has to utilize cellular machinery to complete its proliferation and replication. Due to the limited package capacity, the virus could not encode all the proteins required for this process. In contrast, after viral infection, the host cell immediately initiates its defense mechanisms to counteract, reduce and even eliminate the viral invasion. In this thesis, foamy virus was used as a model system to study the interaction between this virus and the host cell, especially the impact of viral infection on host cell cycle progression. In addition, current study revealed that the RNA silencing repressor, the Tombusvirus p19 protein, regulated the expressions of cell cycle related genes in mammal cells.
     Borf1 is a transcription activator encoded by bovine foamy virus genome, and can activate the transcriptions of its own gene as well as viral structural genes. However, the effect of Borf1 on the expressions of cell cycle related genes has not been exploited. In current study, a human embryonic kidney 293 cell stably expressing Borf1 gene was established and used for the detection of the effect of Borf1 on the endogenous gene expressions in host cells. The results revealed that stably expressing Borf1 significantly caused G1/G0 arrest, and in the same time reduced S phase population. Semi-quantitative RT-PCR demonstrated that Borf1 down-regulated the mRNA levels of cyclin A2, cyclin B1, cyclin E1 and CDC2, and upregulated the mRNA levels of CDK2 and E2F-1. Western blot analysis on these cell cycle related genes further confirmed the above results. Additionally, Borf1 could reduce the endogenous p15 protein expression. Thus. Borf1 may cause G1 arrest by influencing the expressions of a number of cell cycle related genes which may play critical roles at the restriction points during G2-M and G1-S transition.
     Besides its function as a pathogenicity determinant, the Tombusvirus P19 also serves as a suppressor of RNA interference (RNAi) by sequestering intracellular small RNAs such as the small interfering RNAs (siRNAs) and microRNAs (miRNAs). However, the effect of P19 on mammalian cells has not been evaluated before. In this study, a human embryonic kidney 293 cell line that stably expressed p19 (HEK293-p19) was generated. Flow cytometric analysis revealed that over-expression of P19 caused a significant accumulation of G2/M phase cells. Cell proliferation assays demonstrated a reduced DNA replication and cell growth in HEK293-p19 cells. Moreover, p19 altered the expression profiles of a number of cell cycle regulators in HEK293 cells, such as upregulation of cyclin A1, CDK2, CDK4, CDK6, p27, cyclin D2, cyclin D3 and E2F1, and downregulation of p15, cyclin A2, cyclin B1 and cyclin E1. Thus, the data strongly indicate that p19 might influence multiple G2/M regulators to cause G2/M arrest.
     MicroRNA is a class of noncoding RNAs with 21-25nt in length that functions posttranscriptionally to repress targeted gene expression by either inhibiting protein translation or promoting mRNA degradation. Although a large number of microRNAs have been isolated, only a few of them have the known functions. Moreover, there are only limited reports on the roles of microRNA in HFV infection. To this end, we used bioinformatic approach to screen the potential microRNA targeting site(s) in the RNA genome of human foamy virus (HFV). We found one has-miR-491-5p targeting site in the coding region of Bell gene. The targeted sequence was isolated from HFV and inserted into the 3'UTR of pEGFP-C1. The EGFP expressions were significantly repressed by either the chemically synthesized or the vector expressed has-miR-491-5p. Further, the repression could be rescued with either the chemically modified miRNA inhibitor or the overexpression of p19. Study indicated that has-miR-491-5p mediated posttranscriptionally gene repression occurred at mRNA rather than protein level. Finally, has-miR-491-5p could effectively blocked Bell expressions from both expression vector and HFV viral genome. Thus, the established system might be useful for the study of HFV replication and gene regulation.
     In conclusion, some key regulatory proteins such as Borf1 and P19 produced from early viral infection have major influences on not only viral genome replication but also host cell cycle progression such as cell cycle arrest, which can be induced by the alterations of cell cycle related genes. In additoion, the host may exert its many defense mechanisms against viral invasion. One of the choices that the virus uses for self-defense might be to induce posttranscriptional gene silencing mediated by target site-specific microRNA. For example, the host miR-491 might inhibit HFV viral replication by miRNA-mediated posttranscriptional gene repression to down-regulate the expression of transcriptional activator Bell. This type of gene repression mediated by miR-491 may offer a good advantage for HFV to establish viral latency.
引文
[1] Mergia A, Leung N J, Blackwell J. Cell tropism of the simian foamy virus type 1 (SFV-1). J Med Primatol, 1996, 25: 2-7.
    
    [2] Rustigian R, Johnston P, Reihart H. Infection of monkey kidney tissue cultures with virus-like agents. Proc Soc Exp Biol Med, 1955, 88: 8-16.
    
    [3] Achong B G, Mansell P W, Epstein M A, et al. An unusual virus in cultures from a human nasopharyngeal carcinoma. J Natl Cancer Inst, 1971, 46: 299-307.
    
    [4] Meiering C D, Linial M L. Historical perspective of foamy virus epidemiology and infection.Clin Microbiol Rev, 2001, 14: 165-176.
    
    [5] Herchenroder O, Renne R, Loncar D, et al. Isolation, cloning, and sequencing of simian foamy viruses from chimpanzees (SFVcpz): high homology to human foamy virus (HFV).Virology, 1994,201: 187-199.
    
    [6] Brown P, Nemo G, Gajdusek D C. Human foamy virus: further characterization,seroepidemiology, and relationship to chimpanzee foamy viruses. J Infect Dis, 1978, 137:421-427.
    
    [7] Epstein M A, Achong B G, Ball G. Further observations on a human syncytial virus from a nasopharyngeal carcinoma. J Natl Cancer Inst, 1974, 53: 681-688.
    
    [8] Bastone P, Truyen U, Lochelt M. Potential of zoonotic transmission of non-primate foamy viruses to humans. J Vet Med B Infect Dis Vet Public Health, 2003, 50: 417-423.
    
    [9] Linial M L. Foamy virus replication: implications for interaction with other retroviruses and host cellular sequences. Dev Biol (Basel), 2001, 106: 231-236; discussion 253-263.
    
    [10] Falcone V, Schweizer M, Neumann-Haefelin D. Replication of primate foamy viruses in natural and experimental hosts. Curr Top Microbiol Immunol, 2003, 277: 161-180.
    
    [11] Saib A. Non-primate foamy viruses. Curr Top Microbiol Immunol, 2003, 277: 197-211.
    [12] Delelis O, Lehmann-Che J, Saib A. Foamy viruses—a world apart. Curr Opin Microbiol,2004, 7: 400-406.
    
    [13] Lochelt M, Muranyi W, Flugel R M. Human foamy virus genome possesses an internal,Bel-1-dependent and functional promoter. Proc Natl Acad Sci U S A, 1993, 90: 7317-7321.
    
    [14] Lochelt M, Flugel R M, Aboud M. The human foamy virus internal promoter directs the expression of the functional Bel 1 transactivator and Bet protein early after infection. J Virol,1994,68:638-645.
    
    [15] Omoto S, Brisibe E A, Okuyama H, et al. Feline foamy virus Tas protein is a DNA-binding transactivator. J Gen Virol, 2004, 85: 2931-2935.
    
    [16] He F, Blair W S, Fukushima J, et al. The human foamy virus Bel-1 transcription factor is a sequence-specific DNA binding protein. J Virol, 1996, 70: 3902-3908.
    
    [17] Venkatesh L K, Theodorakis P A, Chinnadurai G. Distinct cis-acting regions in U3 regulate trans-activation of the human spumaretrovirus long terminal repeat by the viral bell gene product. Nucleic Acids Res, 1991, 19: 3661-3666.
    
    [18] Yu S F, Linial M L. Analysis of the role of the bel and bet open reading frames of human foamy virus by using a new quantitative assay. J Virol, 1993, 67: 6618-6624.
    
    [19] Alke A, Schwantes A, Kido K, et al. The bet gene of feline foamy virus is required for virus replication. Virology, 2001, 287: 310-320.
    
    [20] Flugel R M, Pfrepper K I. Proteolytic processing of foamy virus Gag and Pol proteins. Curr Top Microbiol Immunol, 2003, 277: 63-88.
    
    [21] Enssle J, Fischer N, Moebes A, et al. Carboxy-terminal cleavage of the human foamy virus Gag precursor molecule is an essential step in the viral life cycle. J Virol, 1997, 71: 7312-7317.
    
    [22] Pfrepper K I, Lochelt M, Rackwitz H R, et al. Molecular characterization of proteolytic processing of the Gag proteins of human spumavirus. J Virol, 1999, 73: 7907-7911.
    
    [23] Lehmann-Che J, Giron M L, Delelis O, et al. Protease-dependent uncoating of a complex retrovirus. J Virol, 2005, 79: 9244-9253.
    
    [24] Fischer N, Heinkelein M, Lindemann D, et al. Foamy virus particle formation. J Virol, 1998,72: 1610-1615.
    
    [25] Enssle J, Jordan I, Mauer B, et al. Foamy virus reverse transcriptase is expressed independently from the Gag protein. Proc Natl Acad Sci U S A, 1996, 93: 4137-4141.
    
    [26] Lochelt M, Flugel R M. The human foamy virus pol gene is expressed as a Pro-Pol polyprotein and not as a Gag-Pol fusion protein. J Virol, 1996, 70: 1033-1040.
    
    [27] Yu S F, Baldwin D N, Gwynn S R, et al. Human foamy virus replication: a pathway distinct from that of retroviruses and hepadnaviruses. Science, 1996, 271: 1579-1582.
    
    [28] Netzer K O, Rethwilm A, Maurer B, et al. Identification of the major immunogenic structural proteins of human foamy virus. J Gen Virol, 1990, 71 ( Pt 5): 1237-1241.
    
    [29] Pfrepper K I, Rackwitz H R, Schnolzer M, et al. Molecular characterization of proteolytic processing of the Pol proteins of human foamy virus reveals novel features of the viral protease.J Virol. 1998,72:7648-7652.
    
    [30] Roy J. Linial M L. Role of the foamy virus Pol cleavage site in viral replication. J Virol.2007.81:4956-4962.
    
    [31] Giron M L, Rozain F. Debons-Guillemin M C, et al. Human foamy virus polypeptides:identification of env and bel gene products. J Virol, 1993, 67: 3596-3600.
    
    [32] Baldwin D N, Linial M L. The roles of Pol and Env in the assembly pathway of human foamy virus. J Virol. 1998. 72: 3658-3665.
    
    [33] Pietschmann T, Heinkelein M, Heldmann M, et al. Foamy virus capsids require the cognate envelope protein for particle export. J Virol. 1999, 73: 2613-2621.
    
    [34] Keller A, Partin K M, Lochelt M, et al. Characterization of the transcriptional trans activator of human foamy retrovirus. J Virol, 1991, 65: 2589-2594.
    
    [35] Campbell M. Renshaw-Gegg L, Renne R, et al. Characterization of the internal promoter of simian foamy viruses. J Virol, 1994, 68: 4811-4820.
    [36] Lecellier C H, Vermeulen W, Bachelerie F, et al. Intra- and intercellular trafficking of the foamy virus auxiliary bet protein. J Virol, 2002, 76: 3388-3394.
    
    [37] Giron M L, De the H, Saib A. An evolutionarily conserved splice generates a secreted env-Bet fusion protein during human foamy virus infection. J Virol, 1998, 72: 4906-4910.
    
    [38] Klimas N, Koneru a O, Fletcher M A. Overview of HIV. Psychosom Med, 2008, 70:523-530.
    
    [39] Picard-Maureau M, Jarmy G, Berg A, et al. Foamy virus envelope glycoprotein-mediated entry involves a pH-dependent fusion process. J Virol, 2003, 77: 4722-4730.
    
    [40] Petit C, Giron M L, Tobaly-Tapiero J, et al. Targeting of incoming retroviral Gag to the centrosome involves a direct interaction with the dynein light chain 8. J Cell Sci, 2003, 116:3433-3442.
    
    [41] Saib A, Puvion-Dutilleul F, Schmid M, et al. Nuclear targeting of incoming human foamy virus Gag proteins involves a centriolar step. J Virol, 1997, 71: 1155-1161.
    
    [42] Lehmann-Che J, Renault N, Giron M L, et al. Centrosomal latency of incoming foamy viruses in resting cells. PLoS Pathog, 2007, 3: e74.
    
    [43] Moebes A, Enssle J, Bieniasz P D, et al. Human foamy virus reverse transcription that occurs late in the viral replication cycle. J Virol, 1997, 71: 7305-7311.
    
    [44] Yu S F, Sullivan M D, Linial M L. Evidence that the human foamy virus genome is DNA. J Virol, 1999,73: 1565-1572.
    
    [45] Delelis O, Saib A, Sonigo P. Biphasic DNA synthesis in spumaviruses. J Virol, 2003, 77:8141-8146.
    
    [46] Heinkelein M, Leurs C, Rammling M, et al. Pregenomic RNA is required for efficient incorporation of pol polyprotein into foamy virus capsids. J Virol, 2002, 76: 10069-10073.
    
    [47] Heinkelein M, Thurow J, Dressier M, et al. Complex effects of deletions in the 5' untranslated region of primate foamy virus on viral gene expression and RNA packaging. J Virol,2000,74:3141-3148.
    
    [48] Goepfert P A, Wang G, Mulligan M J. Identification of an ER retrieval signal in a retroviral glycoprotein. Cell, 1995, 82: 543-544.
    
    [49] Goepfert P A, Shaw K L, Ritter G D, Jr., et al. A sorting motif localizes the foamy virus glycoprotein to the endoplasmic reticulum. J Virol, 1997, 71: 778-784.
    
    [50] Goepfert P A, Shaw K, Wang G, et al. An endoplasmic reticulum retrieval signal partitions human foamy virus maturation to intracytoplasmic membranes. J Virol, 1999, 73: 7210-7217.
    
    [51] Yu S F, Eastman S W, Linial M L. Foamy virus capsid assembly occurs at a pericentriolar region through a cytoplasmic targeting/retention signal in Gag. Traffic, 2006, 7: 966-977.
    
    [52] Shin J, Bautista E M, Kang Y B, et al. Quantitation of porcine reproductive and respiratory syndrome virus RNA in semen by single-tube reverse transcription-nested polymerase chain reaction. J Virol Methods, 1998, 72: 67-79.
    
    [53] Meiering C D, Linial M L. Reactivation of a complex retrovirus is controlled by a molecular switch and is inhibited by a viral protein. Proc Natl Acad Sci U S A, 2002, 99: 15130-15135.
    [54]Meiering C D,Rubio C,May C,et al.Cell-type-specific regulation of the two foamy virus promoters.J Virol,2001,75:6547-6557.
    [55]Hochegger H,Takeda S,Hunt T.Cyclin-dependent kinases and cell-cycle transitions:does one fit all? Nat Rev Mol Cell Biol,2008,9:910-916.
    [56]Serrano M,Hannon G J,Beach D.A new regulatory motif in cell-cycle control causing specific inhibition of cyclin D/CDK4.Nature,1993,366:704-707.
    [57]Hannon G J,Beach D.p15INK4B is a potential effector of TGF-beta-induced cell cycle arrest.Nature,1994,371:257-261.
    [58]Guan K L,Jenkins C W,Li Y,et al.Growth suppression by p18,a p16INK4/MTS1- and p14INK4B/MTS2-related CDK6 inhibitor,correlates with wild-type pRb function.Genes Dev,1994,8:2939-2952.
    [59]Hirai H,Roussel M F,Kato J Y,et al.Novel INK4 proteins,p19 and p18,are specific inhibitors of the cyclin D-dependent kinases CDK4 and CDK6.Mol Cell Biol,1995,15:2672-2681.
    [60]Chan F K,Zhang J,Cheng L,et al.Identification of human and mouse p19,a novel CDK4and CDK6 inhibitor with homology to p16ink4.Mol Cell Biol,1995,15:2682-2688.
    [61]Gu Y,Turck C W,Morgan D O.Inhibition of CDK2 activity in vivo by an associated 20K regulatory subunit.Nature,1993,366:707-710.
    [62]Harper J W,Adami G R,Wei N,et al.The p21 Cdk-interacting protein Cipl is a potent inhibitor of G1 cyclin-dependent kinases.Cell,1993,75:805-816.
    [63]Xiong Y,Hannon G J,Zhang H,et al.p21 is a universal inhibitor of cyclin kinases.Nature,1993,366:701-704.
    [64]Polyak K,Kato J Y,Solomon M J,et al.p27Kipl,a cyclin-Cdk inhibitor,links transforming growth factor-beta and contact inhibition to cell cycle arrest.Genes Dev,1994,8:9-22.
    [65]Polyak K,Lee M H,Erdjument-Bromage H,et al.Cloning of p27Kipl,a cyclin-dependent kinase inhibitor and a potential mediator of extracellular antimitogenic signals.Cell,1994,78:59-66.
    [66]Lee M H,Reynisdottir I.Massague J.Cloning of p57KIP2,a cyclin-dependent kinase inhibitor with unique domain structure and tissue distribution.Genes Dev,1995,9:639-649.
    [67]Matsuoka S,Edwards M C,Bai C,et al.p57KIP2,a structurally distinct member of the p21CIP1 Cdk inhibitor family.is a candidate tumor suppressor gene.Genes Dev,1995,9:650-662.
    [68]Wasserman W,I,Masui Y.Effects of cyclohexamide on a cytoplasmic factor initiating meiotic naturation in Xenopus oocytes.Exp Cell Res,1975,91:381-388.
    [69]Lohka M J,Hayes M K,Mailer J L.Purification of maturation-promoting factor,an intracellular regulator of early mitotic events.Proc Natl Acad Sci U S A,1988,85:3009-3013.
    [70]Gautier J.Norbury C,Lohka M,et al.Purified maturation-promoting factor contains the product ofa Xenopus homolog of the fission yeast cell cycle control gene cdc2+.Cell,1988,54:433-439.
    [71] Labbe J C, Capony J P, Caput D, et al. MPF from starfish oocytes at first meiotic metaphase is a heterodimer containing one molecule of cdc2 and one molecule of cyclin B. EMBO J, 1989,8: 3053-3058.
    
    [72] Labbe J C, Picard A, Peaucellier G, et al. Purification of MPF from starfish: identification as the H1 histone kinase p34cdc2 and a possible mechanism for its periodic activation. Cell, 1989,57: 253-263.
    
    [73] Salvant B S, Fortunato E A, Spector D H. Cell cycle dysregulation by human cytomegalovirus: influence of the cell cycle phase at the time of infection and effects on cyclin transcription. J Virol, 1998, 72: 3729-3741.
    
    [74] Castillo J P, Yurochko a D, Kowalik T F. Role of human cytomegalovirus immediate-early proteins in cell growth control. J Virol, 2000, 74: 8028-8037.
    
    [75] Wiebusch L, Hagemeier C. Human cytomegalovirus 86-kilodalton IE2 protein blocks cell cycle progression in G(l). J Virol, 1999, 73: 9274-9283.
    
    [76] Castillo J P, Frame F M, Rogoff H A, et al. Human cytomegalovirus IE1-72 activates ataxia telangiectasia mutated kinase and a p53/p21-mediated growth arrest response. J Virol, 2005, 79:11467-11475.
    
    [77] Noris E, Zannetti C, Demurtas A, et al. Cell cycle arrest by human cytomegalovirus 86-kDa IE2 protein resembles premature senescence. J Virol, 2002, 76: 12135-12148.
    
    [78] Kundu M, Sharma S, De Luca A, et al. HIV-1 Tat elongates the G1 phase and indirectly promotes HIV-1 gene expression in cells of glial origin. J Biol Chem, 1998, 273: 8130-8136.
    
    [79] Liu M, Yang L, Zhang L, et al. Human T-cell leukemia virus type 1 infection leads to arrest in the G1 phase of the cell cycle. J Virol, 2008, 82: 8442-8455.
    
    [80] Yarmishyn A, Child E S, Elphick L M, et al. Differential regulation of the cyclin-dependent kinase inhibitors p21(Cip1) and p27(Kip1) by phosphorylation directed by the cyclin encoded by Murine Herpesvirus 68. Exp Cell Res, 2008, 314: 204-212.
    
    [81] Davy C, Doorbar J. G2/M cell cycle arrest in the life cycle of viruses. Virology, 2007, 368:219-226.
    
    [82] Andersen J L, Le Rouzic E, Planelles V. HIV-1 Vpr: mechanisms of G2 arrest and apoptosis.Exp Mol Pathol, 2008, 85: 2-10.
    
    [83] Groschel B, Bushman F. Cell cycle arrest in G2/M promotes early steps of infection by human immunodeficiency virus. J Virol, 2005, 79: 5695-5704.
    
    [84] He J, Choe S, Walker R, et al. Human immunodeficiency virus type 1 viral protein R (Vpr) arrests cells in the G2 phase of the cell cycle by inhibiting p34cdc2 activity. J Virol, 1995, 69:6705-6711.
    
    [85] Elder R T, Yu M, Chen M, et al. Cell cycle G2 arrest induced by HIV-1 Vpr in fission yeast (Schizosaccharomyces pombe) is independent of cell death and early genes in the DNA damage checkpoint. Virus Res, 2000, 68: 161-173.
    
    [86] Elder R T, Yu M, Chen M, et al. HIV-1 Vpr induces cell cycle G2 arrest in fission yeast (Schizosaccharomyces pombe) through a pathway involving regulatory and catalytic subunits of PP2A and acting on both Weel and Cdc25.Virology,2001,287:359-370.
    [87]Bartz S R,Rogel M E,Emerman M.Human immunodeficiency virus type 1 cell cycle control:Vpr is cytostatic and mediates G2 accumulation by a mechanism which differs from DNA damage checkpoint control.J Virol,1996,70:2324-2331.
    [88]Yuan H,Kamata M,Xie Y M,et al.Increased levels of Wee-1 kinase in G(2) are necessary for Vpr- and gamma irradiation-induced G(2) arrest.J Virol,2004,78:8183-8190.
    [89]Harrison J C,Haber J E.Surviving the breakup:the DNA damage checkpoint.Annu Rev Genet,2006,40:209-235.
    [90]Roshal M,Kim B,Zhu Y,et al.Activation of the ATR-mediated DNA damage response by the HIV-1 viral protein R.J Biol Chem,2003,278:25879-25886.
    [91]Terada Y,Yasuda Y.Human immunodeficiency virus type 1 Vpr induces G2 checkpoint activation by interacting with the splicing factor SAP 145.Mol Cell Biol,2006,26:8149-8158.
    [92]Lai M,Zimmerman E S,Planelles V,et al.Activation of the ATR pathway by human immunodeficiency virus type 1 Vpr involves its direct binding to chromatin in vivo.J Virol,2005,79:15443-15451.
    [93]Wightman B,Ha I,Ruvkun G.Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C.elegans.Cell,1993,75:855-862.
    [94]Lee R C,Feinbaum R L,Ambros V.The C.elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14.Cell,1993,75:843-854.
    [95]Reinhart B J,Slack F J,Basson M,et al.The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans.Nature,2000,403:901-906.
    [96]Pasquinelli a E,Reinhart B J,Slack F,et al.Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA.Nature,2000,408:86-89.
    [97]Lagos-Quintana M,Rauhut R,Lendeckel W,et al.Identification of novel genes coding for small expressed RNAs.Science,2001,294:853-858.
    [98]Lau N C,Lim L P,Weinstein E G,et al.An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans.Science,2001,294:858-862.
    [99]Lee R C,Ambros V.An extensive class of small RNAs in Caenorhabditis elegans.Science,2001.294:862-864.
    [100]Pfeffer S,Zavolan M,Grasser F A,et al.Identification of virus-encoded microRNAs,Science,2004,304:734-736.
    [101]Cullen 13 R.Viruses and microRNAs.Nat Genet,2006,38 Suppl:S25-30.
    [102]Schafer A,Cai X,Bilello J P,et al.Cloning and analysis of microRNAs encoded by the primate gamma-herpesvirus rhesus monkey rhadinovirus.Virology,2007,364:21-27.
    [103]Samols M A,Hu J,Skalsky R L,et al.Cloning and identification of a microRNA cluster within the latency-associated region of Kaposi's sarcoma-associated herpesvirus.J Virol,2005.79:9301-9305.
    [104]Samols M A,Skalsky R L,Maldonado a M,et al.Identification of cellular genes targeted by KSHV-encoded microRNAs.PLoS Pathog,2007,3:e65.
    [105]Sarnow P,Jopling C L,Norman K L,et al.MicroRNAs:expression,avoidance and subversion by vertebrate viruses.Nat Rev Microbiol,2006,4:651-659.
    [106]Lytle J R,Yario T A,Steitz J A.Target mRNAs are repressed as efficiently by microRNA-binding sites in the 5' UTR as in the 3' UTR.Proc Natl Acad Sci U S A,2007,I04:9667-9672.
    [107]Saetrom P,Heale B S,Shove O,Jr.,et al.Distance constraints between microRNA target sites dictate efficacy and cooperativity.Nucleic Acids Res,2007,35:2333-2342.
    [108]Lewis B P,Burge C B,Bartel D P.Conserved seed pairing,often flanked by adenosines,indicates that thousands of human genes are microRNA targets.Cell,2005,120:15-20.
    [109]Hariharan M,Scaria V,Pillai B,et al.Targets for human encoded microRNAs in HIV genes.Biochem Biophys Res Commun,2005,337:1214-1218.
    [110]Dunn W,Trang P,Zhong Q,et al.Human cytomegalovirus expresses novel microRNAs during productive viral infection.Cell Microbiol,2005,7:1684-1695.
    [111]Gupta A,Gartner J J,Sethupathy P,et al.Anti-apoptotic function of a microRNA encoded by the HSV-1 latency-associated transcript.Nature,2006,442:82-85.
    [112]Sullivan C S,Grundhoff a T,Tevethia S,et al.SV40-encoded microRNAs regulate viral gene expression and reduce susceptibility to cytotoxic T cells.Nature,2005,435:682-686.
    [113]Lecellier C H,Dunoyer P,Arar K,et al.A cellular microRNA mediates antiviral defense in human cells.Science,2005,308:557-560.
    [114]Silhavy D,Molnar A,Lucioli A,et al.A viral protein suppresses RNA silencing and binds silencing-generated,21- to 25-nucleotide double-stranded RNAs.Embo J,2002,21:3070-3080.
    [115]Triboulet R,Mari B,Lin Y L,et al.Suppression of microRNA-silencing pathway by HIV-1during virus replication.Science,2007,315:1579-1582.
    [116]Jopling C L,Yi M,Lancaster a M,et al.Modulation of hepatitis C virus RNA abundance by a liver-specific MicroRNA.Science,2005,309:1577-1581.
    [117]Renshaw R W,Casey J W.Transcriptional mapping of the 3' end of the bovine syncytial virus genome.J Virol,1994,68:1021-1028.
    [118]Holzschu D L,Delaney M A,Renshaw R W,et al.The nucleotide sequence and spliced pol mRNA levels of the nonprimate spumavirus bovine foamy virus.J Virol,1998,72:2177-2182.
    [119]耿运琪,秦贞奎.从我国进口奶牛及其后代中发现牛免疫缺陷病毒(BIV)的自发感染.病毒学报,1994,10:322-326.
    [120]刘淑红,陈荷新,陈家童,et al.牛泡沫病毒(BSV)3026毒株的分离及分子生物学鉴定.病毒学报,1997,13:140-145.
    [121]张莉,乔文涛,刘淑红,et al.牛泡沫病毒反式激活因子在内部启动子上应答元件的研究.病毒学报,2000,16:232-237.
    [122]王世珍,张 莉,刘佳建,et al.牛泡洙病毒两类启动子活性的比较和机制探讨.中国病毒学,2000,15:93-96.
    [123]刘佳建,刘淑红,陈启民,et al.Borf-1蛋白是牛泡沫病毒的反式激活因子.科学通报,1999.44:844-847.
    [124]Qiao W,Guo C,Wang S,et al.Cis-acting element located in the bovine foamy virus internal promoter possesses the properties of a transcriptional enhancer.Chinese Science Bulletin,2002.47:1108-1112.
    [125]郭春光,乔文涛,胡文治,et al.牛泡沫病毒长末端重复序列在大肠杆菌中的启动子功能.病毒学报,2002,18:181-184.
    [126]乔文涛,郭春光,王书晖,et al.牛泡末病毒内部启动子上顺式作用元件具有增强子特性.病毒学报,2002,47:535-539.
    [127]Tan J,Qiao W,Xu F,et al.Dimerization of BTas is required for the transactivational activity of bovine foamy virus.Virology,2008,376:236-241.
    [128]Tan J,Qiao W,Wang J,et al.IFP35 is involved in the antiviral function of interferon by association with the viral tas transactivator of bovine foamy virus.J Virol,2008,82:4275-4283.
    [129]Kong X H,Yu H,Xuan C H,et al.The requirements and mechanism for capsid assembly and budding of bovine foamy virus.Arch Virol,2005,150:1677-1684.
    [130]Lin J,Cullen B R.Analysis of the interaction of primate retroviruses with the human RNA interference machinery.J Virol,2007,81:12218-12226.
    [131]Zhang J,Du Y Y,Lin Y F,et al.The cell growth suppressor,mir-126,targets IRS-I.Biochem Biophys Res Commun,2008,377:136-140.
    [132]Liu L,Li J,Xu Y-R et al.RNA silencing suppressor p19 regulates the expressions of cell cycle related genes.Progress in Biochemistry and Biophysics,2009,36:
    [133]Schmitt M J,Reiter J.Viral induced yeast apoptosis.Biochim Biophys Acta,2008,1783:1413-1417.
    [134]Chen Y L,Chen Y J,Tsai W H,et al.The Epstein-Barr virus replication and transcription activator,Rta/BRLF1,induces cellular senescence in epithelial cells.Cell Cycle,2009,8:58-65.
    [135]Van Den Heuvel S.Cell-cycle regulation.WormBook,2005,1-16.
    [136]Liu F,Stanton J J,Wu Z,et al.The human Mytl kinase preferentially phosphorylates Cdc2on threonine 14 and localizes to the endoplasmic reticulum and Golgi complex.Mol Cell Biol,1997,17:571-583.
    [137]Mcgowan C H,Russell P.Human Weel kinase inhibits cell division by phosphorylating p34cdc2 exclusively on Tyr15.EMBO J,1993,12:75-85.
    [138]Glotzer M,Murray a W,Kirschner M W.Cyclin is degraded by the ubiquitin pathway.Nature,1991,349:132-138.
    [139]Kotani S,Tanaka H,Yasuda H.et al.Regulation of APC activity by phosphorylation and regulatory factors.J Cell Biol,1999,146:791-800.
    [140]D'angiolella V,Palazzo L,Santarpia C,et al.Role for non-proteolytic control of M-phase promoting factor activity at M-phase exit.PLoS ONE,2007,2:e247.
    [141]Boxem M.Cyclin-dependent kinases in C.elegans.Cell Div,2006,1:6.
    [142]Yang R.Morosetti R,Koeffler H P.Characterization of a second hulnan cyclin A that is highly expressed in testis and in several leukemic cell lines.Cancer Res,1997.57:913-920.
    [143]Yang R,Nakamaki T,Lubbert M.et al.Cyclin A1 expression in leukemia and normal hematopoietic cells. Blood, 1999, 93: 2067-2074.
    
    [144] Rivera A, Mavila A, Bayless K J, et al. Cyclin A1 is a p53-induced gene that mediates apoptosis, G2/M arrest, and mitotic catastrophe in renal, ovarian, and lung carcinoma cells. Cell Mol Life Sci, 2006, 63: 1425-1439.
    
    [145] Katsuno Y, Suzuki A, Sugimura K, et al. Cyclin A-Cdkl regulates the origin firing program in mammalian cells. Proc Natl Acad Sci U S A, 2009, 106: 3184-3189.
    
    [146] Voinnet O. Induction and suppression of RNA silencing: insights from viral infections. Nat Rev Genet, 2005, 6: 206-220.
    
    [147] Cullen B R. Viral and cellular messenger RNA targets of viral microRNAs. Nature, 2009,457:421-425.
    
    [148] Whitby D. Searching for targets of viral microRNAs. Nat Genet, 2009, 41: 7-8.
    
    [149] Ouellet D L, Plante I, Landry P, et al. Identification of functional microRNAs released through asymmetrical processing of HIV-1 TAR element. Nucleic Acids Res, 2008, 36:2353-2365.
    
    [150] Klase Z, Kale P, Winograd R, et al. HIV-1 TAR element is processed by Dicer to yield a viral micro-RNA involved in chromatin remodeling of the viral LTR. BMC Mol Biol, 2007, 8:63.
    
    [151] Huang J, Wang F, Argyris E, et al. Cellular microRNAs contribute to HIV-1 latency in resting primary CD4+ T lymphocytes. Nat Med, 2007, 13: 1241-1247.
    
    [152] Landgraf P, Rusu M, Sheridan R, et al. A mammalian microRNA expression atlas based on small RNA library sequencing. Cell, 2007, 129: 1401-1414.
    
    [153] Majoros W H, Ohler U. Spatial preferences of microRNA targets in 3' untranslated regions.BMC Genomics, 2007, 8: 152.
    
    [154] Shapiro G I. Cyclin-dependent kinase pathways as targets for cancer treatment. J Clin Oncol, 2006, 24: 1770-1783.
    
    [155] Cai D, Byth K F, Shapiro G 1. AZ703, an imidazo[1,2-a]pyridine inhibitor of cyclin-dependent kinases 1 and 2, induces E2F-1 -dependent apoptosis enhanced by depletion of cyclin-dependent kinase 9. Cancer Res, 2006, 66: 435-444.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700