用户名: 密码: 验证码:
无线传感器网络数据聚集调度技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着传感器技术、嵌入式计算技术以及无线通信技术的迅速发展,无线传感器网络以其低成本、自组织网络的优点被广泛地应用在环境监测、医疗卫生、国防军事等众多领域。无线传感器网络作为一种全新的信息获取和处理技术,对网络中传感器节点收集到的感知数据进行操作是必不可少的,其中数据聚集就是无线传感器网络上一项最基本的操作,近年来受到学术界的广泛关注。在很多无线传感器网络应用中,管理员或用户通常需要通过基站提出一些关于感知区域中某些物理属性的聚集查询,此时基站需要将网络中所有或部分传感器节点获取的感知数据进行聚集,并将聚集值返回给查询者。为了消除聚集过程中无线通信带来的干扰,需要为网络生成一个无冲突的聚集调度,并最小化聚集时间,该问题称为聚集调度问题。因此,聚集调度方法满足了查询者希望迅速获得聚集结果的需求。无线传感器网络由一组低成本、低功耗的无线传感器节点通过自组织方式形成网络,具有节点能量有限、节点通信能力有限、网络动态变化等特点。这些给无线传感器网络上聚集调度问题的研究带来了很多挑战,包括如何设计能量有效的聚集调度算法、如何设计适用于动态网络拓扑的调度算法、如何提高算法的数据传输率等。针对上述挑战,本文从多方面考虑了无线传感器网络上的聚集调度问题,并提出相应的策略和算法。本文的研究工作及成果包括以下几个方面。
     首先,本文提出了无线传感器网络的分布式聚集调度算法。现有的聚集调度算法均为集中式算法,不适用于动态变化的网络拓扑,且聚集时间延迟较高。针对上述问题,本文提出了一种两阶段的分布式聚集调度算法。第一阶段利用极大独立集的方法,分布式地构造一棵具有良好性质的聚集树,并将网络中的节点分为不同的角色。在第二阶段网络中的传感器节点首先通过相互通信得到局部的拓扑信息,然后根据获取的信息分布式地完成调度生成。由于无线传感器网络的聚集调度问题已被证明为NP-难问题,本文给出的分布式聚集调度算法为一个近似算法,通过理论分析得出该算法的近似比接近于常数,改进了原有算法的聚集时间上界。本文针对动态变化的网络拓扑进一步提出了一种自适应的分布式聚集调度算法,包括自适应的聚集树结构维护和自适应的聚集调度更新。
     第二,本文针对多基站无线传感器网络提出了两种聚集调度算法。单基站无线传感器网络中存在节点负载不平衡与能量消耗不平衡的问题,而在网络中布置多个计算和通信能力强大的基站可以有效地缓解该问题,因此多基站无线传感器网络也被广泛关注与应用。本文提出了适用于该类型网络的两种聚集调度算法,两算法均分为三个阶段,第一阶段为网络构造出一个聚集森林作为通信骨干网,第二阶段和第三阶段对聚集森林中的所有节点以自底向上的方式逐层生成聚集调度。第一个调度算法采用维诺图划分的方法构造聚集森林,而第二个调度算法采用网络支配集的思想构造出一个具有良好性质的聚集森林,从而改进了第一个算法。本文通过理论分析给出了两算法聚集时间的上界,并证明第二个算法性能优于第一个算法。模拟实验验证了两算法的有效性。
     第三,本文提出了适用于周期轮转模式无线传感器网络上的聚集调度算法。针对无线传感器网络节点能量有限的特点,周期轮转的节点工作模式逐渐被采用,即节点在每个工作周期中工作一段时间,在其余的时间进行睡眠。周期轮转模式可以很大程度上节省传感器节点的能量,从而延长网络的生命周期,具有广泛的应用前景。本文考虑了该类型的无线传感器网络上的聚集调度问题,并提出一种聚集调度算法来解决该问题。该算法首先构造出网络的一个分层结构,然后根据该结构进行工作周期调度。理论分析得出该算法的近似比接近于常数,模拟实验也验证了该算法的有效性。
     第四,本文为无线传感器网络的聚集调度提出了一种新的机会聚集调度机制。已有聚集调度算法未考虑聚集过程中可能发生的传输失败,因此很难适用于链路质量不理想的无线传感器网络。针对此问题,本文利用机会路由的思想提出了一种两阶段的机会聚集调度机制,以提高已有调度算法的数据传输率。该机制可以应用在任一聚集调度算法之上,是对已有聚集调度算法工作的一个有力补充。机会聚集调度机制在第一阶段为已有调度进行机会链路扩展,即为网络添加一些质量较好的机会链路,并提出了两种链路选择策略。该机制在第二阶段依照扩展后的调度执行聚集操作,并设计了适应于机会链路传输的新聚集执行算法。模拟实验验证了该机会聚集调度机制极大提高了数据聚集时的数据传输率,并验证了该机制的能量有效性。
With rapid development of sensing techniques, embedded computing techniques andwireless communication techniques, wireless sensor networks with the advantage of lowcost and self-organization are widely applied in many fields, such as environmental mon-itoring, medical care and military defense. Wireless sensor network is a novel technologyfor acquiring and processing information. Thus, operations on the sensed data obtainedby wireless sensors are indispensable, and aggregation is one of the most fundamentaloperations, which is widely concerned by academia. In many wireless sensor network ap-plications, administrators or users usually submit an aggregate query on some of the phys-ical attributes of the sensed area. Then, the base station needs to aggregate the sensed datafrom all or a part of the nodes, and provide the aggregate result to the query user. In orderto eliminate the wireless interference during aggregation, aggregation scheduling problemaims in producing a collision-free schedule for the network, minimizing the aggregationtime at the same time. Thus, aggregation scheduling methods satisfy the query users withquick response by eliminating the interference and reducing the aggregation time. A wire-less sensor network is composed of a set of low-cost, low-power sensor nodes and theyorganize themselves to form an ad-hoc wireless network. Wireless sensor networks havethe following characteristics of limited node energy, limited communication capability,dynamic topology, etc. This brings some challenges for solving the aggregation schedul-ing problem in wireless sensor networks, e.g., how to design energy-efcient schedulingalgorithms, how to design scheduling algorithms for dynamic topology, how to increasethe data delivery rate. Facing the challenges, this thesis considers aggregation schedul-ing problem in wireless sensor networks from diferent aspects, and proposes diferentstrategies and algorithms. The research issues and results include the following.
     First, this thesis proposes a distributed aggregation scheduling algorithm for wirelesssensor networks. The previous aggregation scheduling algorithms are centralized withhigh aggregation time latency, which are not suitable for dynamic topologies. To solvethe problems above, this thesis proposes a two-phase distributed scheduling algorithm.The first phase of the algorithm distributively constructs an aggregation tree with a goodproperty, making use of maximal independent set, and divides the nodes into diferenttypes. In the second phase of the algorithm, sensor nodes first communicate with each other to obtain the local information and then generates the schedule with the obtainedinformation. The proposed algorithm is an approximation algorithm since the aggregationscheduling problem is proved NP-hard. Theoretical analysis show that the approximationratio of the algorithm is close to a constant number, which improves the aggregation timelatency. This thesis also proposes an adaptive strategy for our algorithm to handle thedynamic topologies, including adaptive tree maintenance and aggregation update.
     Second, this thesis proposes two aggregation scheduling algorithms for multi-sinksensor networks. There exist the problems of imbalanced load and energy cost in single-sink sensor networks. Deploying multiple sinks (base stations) with powerful computa-tion and communication capabilities helps alleviate the problems, thus multi-sink sensornetworks are widely concerned and applied. This thesis proposes two scheduling algo-rithms with two phases, which construct aggregation forests in the first phase and generateschedules in a bottom-up fashion. The diference between the two algorithms lies in theforest construction phase. The first algorithm takes advantages of Voronoi partitions andthe second algorithm constructs an aggregation forest with good properties using dominat-ing sets. This thesis shows the aggregation time of both algorithms and proves the secondalgorithm performs better. Simulation results show the efectiveness of the algorithms.
     Third, this thesis proposes an aggregation scheduling algorithm for duty-cycledwireless sensor networks. Considering the limited node energy in wireless sensor net-works, duty-cycled working style is adopted, i.e., a node works for a duration of timeduring a cycle and sleeps for the rest time of the cycle. The duty-cycled mechanism helpssave large amounts of energy, thus prolong the network lifetime, which has a wide ap-plication perspective. The proposed algorithm first constructs a layered structure of thenetwork and then schedules the working period. Theoretical analysis shows the approxi-mation ratio of the algorithm is close to a constant number, and simulation results showthe efectiveness of the algorithm.
     Finally, this thesis proposes a novel opportunistic aggregation scheduling mechanis-m for aggregation scheduling in wireless sensor networks. Existing scheduling algorithm-s do not consider the transmission failure during aggregation, thus are not applicable insensor networks with non-ideal link qualities. This thesis proposes a two-phase mech-anism based on the idea of opportunistic routing in order to increase the delivery rate.The proposed mechanism can be applied in any of the existing scheduling algorithms,which is a complementary for existing work on aggregation scheduling. The mechanismaugments the original schedule by adding opportunistic links with good link qualities in the first phase. Two strategies of opportunistic link selection are proposed in this thesis.The mechanism executes aggregation according to the augmented schedule in the secondphase. A new aggregation execution algorithm is proposed to handle the transmissionby the augmented schedule. Simulation results show that the opportunistic aggregationscheduling mechanism significantly increases the delivery rate, and verify the energy ef-ficiency of the mechanism.
引文
[1] R. Rajagopalan, P. K. Varshney. Data-aggregation Techniques in Sensor Networks:A Survey[J]. Communications Surveys&Tutorials, IEEE,2006,8(4):48–63.
    [2]孙利民,李建中,陈渝,等.无线传感器网络[M].北京:清华大学出版社,2005:3–15.
    [3]李建中,高宏.无线传感器网络的研究进展[J].计算机研究与发展,2008,45(1):1–15.
    [4]崔莉,鞠海玲,苗勇,等.无线传感器网络研究进展[J].计算机研究与发展,2005,42(01):163–174.
    [5]李建中,李金宝,石胜飞.传感器网络及其数据管理的概念、问题与进展[J].软件学报,2003,14(10):1717–1727.
    [6]任丰原,黄海宁,林闯.无线传感器网络[J].软件学报,2003,14(7):1282–1291.
    [7] Smart Dust Project [OL]. http://robotics.eecs.berkeley.edu/pister/SmartDust/,2001.
    [8] MicaZ [OL]. http://www.xbow.com/Products/Product-pdf-files/Wireless-pdf/MICAz-Datasheet.pdf.
    [9] Telos (rev B) Datasheet [OL]. http://www.moteiv.com.
    [10] Crossbow, Inc. Wireless Sensor Network Products.[OL]. http://www.xbow.com,2007.
    [11] U. C. Berkeley. Tinyos: An Open-source Operating System Designed for WirelessEmbedded Sensor Networks [OL]. http://www.tinyos.net.
    [12] P. Favre, N. Joehl, A. Vouilloz, et al. A2-V600-μA1-GHz BiCMOS Super-regenerative Receiver for Ism Applications[J]. IEEE Journal of Solid-State Cir-cuits,1998,33(12):2186–2196.
    [13] T. Melly, A.-S. S. Porret, C. C. Enz, et al. A1.2V,430MHz,4dBm Pow-er Amplifier and a25μW Front-end, Using a Standard Digital CMOS Pro-cess[C]//Proceedings of the International Symposium on Low Power Electronicsand Design. New York, NY, USA: ACM,1999:233–237.
    [14] E. Shih, S.-H. Cho, N. Ickes, et al. Physical Layer Driven Protocol and AlgorithmDesign for Energy-efcient Wireless Sensor Networks[C]//Proceedings of the7thannual international conference on Mobile computing and networking. New York,NY, USA: ACM,2001:272–287.
    [15] E. Shih, B. H. Calhoun, S. Cho, et al. Energy-efcient Link Layer for WirelessMicrosensor Networks[C]//Proceedings of the IEEE Computer Society Workshopon VLSI2001. Washington, DC, USA: IEEE Computer Society,2001:16–21.
    [16] C. Chien, I. Elgorriaga, C. McConaghy. Low-power Direct-sequence Spread-spectrum Modem Architecture for Distributed Wireless Sensor Network-s[C]//Proceedings of the2001international symposium on Low power electronicsand design. New York, NY, USA: ACM,2001:251–254.
    [17] W. Ye, J. Heidemann, D. Estrin. An Energy-efcient MAC Protocol for WirelessSensor Networks[C]//Proceedings of the Twenty-First Annual Joint Conferenceof the IEEE Computer and Communications Societies. IEEE INFOCOM.2002,3:1567–1576.
    [18] T. van Dam, K. Langendoen. An Adaptive Energy-efcient Mac Protocol for Wire-less Sensor Networks[C]//Proceedings of the1st international conference on Em-bedded networked sensor systems. New York, NY, USA: ACM,2003:171–180.
    [19] K. Jamieson, H. Balakrishnan, Y. C. Tay. Sift: A Mac Protocol for Event-drivenWireless Sensor Networks[R]. Tech. Rep. MIT-LCS-TR-894, MIT,2003.
    [20] J. Polastre, J. Hill, D. Culler. Versatile Low Power Media Access for Wireless Sen-sor Networks[C]//Proceedings of the2nd international conference on Embeddednetworked sensor systems. New York, NY, USA: ACM,2004:95–107.
    [21] M. Buettner, G. V. Yee, E. Anderson, et al. X-MAC: A Short Preamble Mac Proto-col for Duty-cycled Wireless Sensor Networks[C]//Proceedings of the4th interna-tional conference on Embedded networked sensor systems. New York, NY, USA:ACM,2006:307–320.
    [22] K. A. Arisha, M. A. Youssef, M. F. Younis. Energy-aware TDMA-based Macfor Sensor Networks[C]//IEEE Workshop on Integrated Management of PowerAware Communications, Computing and Networking. Washington, DC, USA:IEEE,2002:1–11.
    [23] V. Rajendran, K. Obraczka, J. J. Garcia-Luna-Aceves. Energy-efcient Collision-free Medium Access Control for Wireless Sensor Networks[C]//Proceedings of the1st international conference on Embedded networked sensor systems. New York,NY, USA: ACM,2003:181–192.
    [24] G. Lu, B. Krishnamachari, C. Raghavendra. An Adaptive Energy-efcientand Low-latency Mac for Data Gathering in Wireless Sensor Network-s[C]//Proceedings of the18th International Parallel and Distributed ProcessingSymposium.2004:224–231.
    [25] L. Bao, J. J. Garcia-Luna-Aceves. A New Approach to Channel Access Schedulingfor Ad Hoc Networks[C]//Proceedings of the7th annual international conferenceon Mobile computing and networking. New York, NY, USA: ACM,2001:210–221.
    [26] T. W. Carley, M. A. Ba, R. Barua, et al. Contention-free Periodic MessageScheduler Medium Access Control in Wireless Sensor/Actuator Network-s[C]//Proceedings of the24th IEEE International Real-Time Systems Symposium.Washington, DC, USA: IEEE Computer Society,2003:298–307.
    [27] J. Degesys, I. Rose, A. Patel, et al. DESYNC: Self-organizing Desynchronizationand Tdma on Wireless Sensor Networks[C]//Proceedings of the6th Internation-al Symposium on Information Processing in Sensor Networks,2007. IPSN2007.New York, NY, USA: ACM,2007:11–20.
    [28] C. Guo, L. C. Zhong, J. Rabaey. Low Power Distributed Mac for Ad Hoc SensorRadio Networks[C]//Global Telecommunications Conference,2001. GLOBECOM’01. IEEE. Washington, DC, USA: IEEE Computer Society,2001,5:2944–2948.
    [29] K. Sohrabi, J. Gao, V. Ailawadhi, et al. Protocols for Self-organization of a WirelessSensor Network[J]. Personal Communications, IEEE,2000,7(5):16–27.
    [30] L. Tang, Y. Sun, O. Gurewitz, et al. EM-MAC: A Dynamic MultichannelEnergy-efcient Mac Protocol for Wireless Sensor Networks[C]//Proceedings ofthe Twelfth ACM International Symposium on Mobile Ad Hoc Networking andComputing. New York, NY, USA: ACM,2011:23–33.
    [31] O. D. Incel, L. van Hoesel, P. Jansen, et al. MC-LMAC: A Multi-channel MacProtocol for Wireless Sensor Networks[J]. Ad Hoc Networks,2011,9(1):73–94.
    [32] W. R. Heinzelman, A. Chandrakasan, H. Balakrishnan. Energy-efcient Commu-nication Protocol for Wireless Microsensor Networks[C]//Proceedings of the33rdHawaii International Conference on System Sciences-Volume8. Washington, DC,USA: IEEE Computer Society,2000:8020–8029.
    [33] S. Lindsey, C. Raghavendra. PEGASIS: Power-efcient Gathering in Sensor In-formation Systems[C]//Proceedings of the IEEE Aerospace Conference.2002,3:1125–1130.
    [34] A. Manjeshwar, D. Agrawal. Teen: A Routing Protocol for Enhanced Efciency inWireless Sensor Networks[C]//Proceedings of the15th International Parallel andDistributed Processing Symposium. IEEE IPDPS. Washington, DC, USA: IEEEComputer Society,2001:2009–2015.
    [35] D. Karaboga, S. Okdem, C. Ozturk. Cluster Based Wireless Sensor NetworkRouting Using Artificial Bee Colony Algorithm[J]. Wireless Networks,2012,18(7):847–860.
    [36] B. Karp, H. T. Kung. GPSR: Greedy Perimeter Stateless Routing for WirelessNetworks[C]//Proceedings of the6th annual international conference on Mobilecomputing and networking. New York, NY, USA: ACM,2000:243–254.
    [37] J. Newsome, D. Song. GEM: Graph Embedding for Routing and Data-centric S-torage in Sensor Networks without Geographic Information[C]//Proceedings of the1st international conference on Embedded networked sensor systems. New York,NY, USA: ACM,2003:76–88.
    [38] A. Caruso, S. Chessa, S. De, et al. GPS Free Coordinate Assignment and Routingin Wireless Sensor Networks[C]//Proceedings of the24th Annual Joint Conferenceof the IEEE Computer and Communications Societies (IEEE INFOCOM).2005,1:150–160.
    [39] J. Bruck, J. Gao, A. A. Jiang. MAP: Medial Axis Based Geometric Routing inSensor Networks[C]//Proceedings of the11th annual international conference onMobile computing and networking. New York, NY, USA: ACM,2005:88–102.
    [40] Y.-J. K. R. Govindan, B. Karp, S. Shenker. Lazy Cross-link Removal for Geo-graphic Routing[C]//Proceedings of the4th international conference on Embeddednetworked sensor systems. New York, NY, USA: ACM,2006:112–124.
    [41] M. Z. n. Zamalloa, K. Seada, B. Krishnamachari, et al. Efcient Geographic Rout-ing Over Lossy Links in Wireless Sensor Networks[J]. ACM Transactions on Sen-sor Networks (TOSN),2008,4(3):12:1–12:33.
    [42] D. Koutsonikolas, S. M. Das, Y. C. Hu, et al. Hierarchical Geographic MulticastRouting for Wireless Sensor Networks[J]. Wireless Networks,2010,16(2):449–466.
    [43] C. Intanagonwiwat, R. Govindan, D. Estrin. Directed Difusion: A Scalable andRobust Communication Paradigm for Sensor Networks[C]//Proceedings of the6thannual international conference on Mobile computing and networking. New York,NY, USA: ACM,2000:56–67.
    [44] D. Braginsky, D. Estrin. Rumor Routing Algorthim for Sensor Network-s[C]//Proceedings of the1st ACM international workshop on Wireless sensor net-works and applications. New York, NY, USA: ACM,2002:22–31.
    [45] F. Ye, H. Luo, J. Cheng, et al. A Two-tier Data Dissemination Model for Large-scale Wireless Sensor Networks[C]//Proceedings of the8th annual internationalconference on Mobile computing and networking. New York, NY, USA: ACM,2002:148–159.
    [46] C. Buragohain, D. Agrawal, S. Suri. Power Aware Routing for Sensor Databas-es[C]//Proceedings of the24th Annual Joint Conference of the IEEE Computerand Communications Societies. IEEE INFOCOM.2005,3:1747–1757.
    [47] Y. Xu, J. Heidemann, D. Estrin. Geography-informed Energy Conservation for AdHoc Routing[C]//Proceedings of the7th annual international conference on Mobilecomputing and networking. New York, NY, USA: ACM,2001:70–84.
    [48] F. Ren, J. Zhang, T. He, et al. EBRP: Energy-balanced Routing Protocol for DataGathering in Wireless Sensor Networks[J]. IEEE Transactions on Parallel andDistributed Systems,2011,22(12):2108–2125.
    [49] J. Ben-Othman, B. Yahya. Energy Efcient and Qos Based Routing Protocol forWireless Sensor Networks[J]. Journal of Parallel and Distributed Computing,2010,70(8):849–857.
    [50] L. Mottola, G. P. Picco. MUSTER: Adaptive Energy-aware Multisink Routing inWireless Sensor Networks[J]. IEEE Transactions on Mobile Computing,2011,10(12):1694–1709.
    [51] TinyDB [OL]. http://telegraph.cs.berkeley.edu/tinydb/.
    [52] S. Madden, M. J. Franklin, J. M. Hellerstein, et al. The Design of an Acquisi-tional Query Processor for Sensor Networks[C]//Proceedings of the2003ACMSIGMOD international conference on Management of data. New York, NY, USA:ACM,2003:491–502.
    [53] P. Bonnet, J. Gehrke, P. Seshadri. Towards Sensor Database System-s[C]//Proceedings of the Second International Conference on Mobile Data Man-agement. London, UK, UK: Springer-Verlag,2001:3–14.
    [54] Y. Yao, J. Gehrke. The Cougar Approach to In-network Query Processing in SensorNetworks[J]. SIGMOD Rec.,2002,31(3):9–18.
    [55] S. Ratnasamy, B. Karp, L. Yin, et al. GHT: A Geographic Hash Table for Data-centric Storage[C]//Proceedings of the1st ACM international workshop on Wire-less sensor networks and applications. New York, NY, USA: ACM,2002:78–87.
    [56] S. Shenker, S. Ratnasamy, B. Karp, et al. Data-centric Storage in Sensornets[J].ACM SIGCOMM Computer Communication Review,2003,33(1):137–142.
    [57] D. Ganesan, D. Estrin, J. Heidemann. DIMENSIONS: Why Do We Need a NewData Handling Architecture for Sensor Networks?[J]. ACM SIGCOMM ComputerCommunication Review,2003,33(1):143–148.
    [58] X. Li, Y. J. Kim, R. Govindan, et al. Multi-dimensional Range Queries in SensorNetworks[C]//Proceedings of the1st international conference on Embedded net-worked sensor systems (Sensys). New York, NY, USA,2003:63–75.
    [59] P. Desnoyers, D. Ganesan, P. Shenoy. TSAR: A Two Tier Sensor Storage Archi-tecture Using Interval Skip Graphs[C]//Proceedings of the3rd international confer-ence on Embedded networked sensor systems. New York, NY, USA,2005:39–50.
    [60] G. Mathur, P. Desnoyers, D. Ganesan, et al. Capsule: An Energy-optimized ObjectStorage System for Memory-constrained Sensor Devices[C]//Proceedings of the4th international conference on Embedded networked sensor systems. New York,NY, USA,2006:195–208.
    [61] A. Bhattacharya, A. Meka, A. K. Singh. MIST: Distributed Indexing and Queryingin Sensor Networks Using Statistical Models[C]//Proceedings of the33rd interna-tional conference on Very Large Data Bases.2007:854–865.
    [62] M. Wu, J. Jianliang Xu, X. Xueyan Tang, et al. Top-k Monitoring in Wireless Sen-sor Networks[J]. IEEE Transactions on Knowledge and Data Engineering,2007,19(7):962–976.
    [63] A. S. Silberstein, R. Braynard, C. Ellis, et al. A Sampling-based Approach toOptimizing Top-k Queries in Sensor Networks[C]//Proceedings of the22nd Inter-national Conference on Data Engineering,2006. ICDE’06. Washington, DC, USA:IEEE Computer Society,2006:68–68.
    [64] A. Coman, M. A. Nascimento. A Distributed Algorithm for Joins in SensorNetworks[C]//19th International Conference on Scientific and Statistical DatabaseManagement,2007. SSBDM’07. Washington, DC, USA,2007:27–36.
    [65] H. Yu, E.-P. Lim, J. Zhang. On In-network Synopsis Join Processing for SensorNetworks[C]//7th International Conference on Mobile Data Management,2006.MDM2006. Washington, DC, USA,2006:32–39.
    [66] H. Chen, S. Zhou, J. Guan. Towards Energy-efcient Skyline Monitoring in Wire-less Sensor Networks[M]//Wireless Sensor Networks. Springer,2007:101–116.
    [67] W. Liang, B. Chen, J. X. Yu. Energy-efcient Skyline Query Processing and Main-tenance in Sensor Networks[C]//Proceedings of the17th ACM conference on In-formation and knowledge management. New York, NY, USA,2008:1471–1472.
    [68] G. Wang, J. Xin, L. Chen, et al. Energy-efcient Reverse Skyline Query ProcessingOver Wireless Sensor Networks[J]. IEEE Transactions on Knowledge and DataEngineering,2012,24(7):1259–1275.
    [69] X. Yang, H. B. Lim, T. M.O¨zsu, et al. In-network Execution of Monitoring Queriesin Sensor Networks[C]//Proceedings of the2007ACM SIGMOD internationalconference on Management of data. New York, NY, USA: ACM,2007:521–532.
    [70] J. Considine, F. Li, G. Kollios, et al. Approximate Aggregation Techniques forSensor Databases[C]//Proceedings of the20th International Conference on DataEngineering. ICDE2004. Washington, DC, USA,2004:449–460.
    [71] S. Cheng, J. Li, Q. Ren, et al. Bernoulli Sampling Based (ε, δ)-approximate Ag-gregation in Large-scale Sensor Networks[C]//Proceedings of the29th conferenceon Information communications. Piscataway, NJ, USA,2010:1181–1189.
    [72] D. Chu, A. Deshpande, J. Hellerstein, et al. Approximate Data Collection in SensorNetworks Using Probabilistic Models[C]//Proceedings of the22nd InternationalConference on Data Engineering. ICDE2006. Washington, DC, USA,2006:48–48.
    [73] S. Kumar, T. H. Lai, J. Balogh. On K-coverage in a Mostly Sleeping Sensor Net-work[C]//Proceedings of the10th annual international conference on Mobile com-puting and networking. New York, NY, USA: ACM,2004:144–158.
    [74] G. Xing, X. Wang, Y. Zhang, et al. Integrated Coverage and Connectivity Config-uration for Energy Conservation in Sensor Networks[J]. ACM Trans. Sen. Netw.,2005,1(1):36–72.
    [75] W. W. V. Srinivasan, K.-C. Chua. Trade-ofs between Mobility and Density forCoverage in Wireless Sensor Networks[C]//Proceedings of the13th annual ACMinternational conference on Mobile computing and networking. New York, NY,USA: ACM,2007:39–50.
    [76] N. Xu, A. Huang, T.-W. Hou, et al. Coverage and Connectivity Guaranteed Topol-ogy Control Algorithm for Cluster-based Wireless Sensor Networks[J]. WirelessCommunications and Mobile Computing,2012,12(1):23–32.
    [77] F. Ye, G. Zhong, J. Cheng, et al. PEAS: A Robust Energy Conserving Protocolfor Long-lived Sensor Networks[C]//Proceedings of the23rd International Confer-ence on Distributed Computing Systems. Washington, DC, USA: IEEE ComputerSociety,2003:28–37.
    [78] T. M. Chiwewe, G. P. Hancke. A Distributed Topology Control Technique forLow Interference and Energy Efciency in Wireless Sensor Networks[J]. IEEETransactions on Industrial Informatics,2012,8(1):11–19.
    [79] V. Kawadia, P. Kumar. Power Control and Clustering in Ad HocNetworks[C]//Twenty-Second Annual Joint Conference of the IEEE Computer andCommunications. INFOCOM2003. Washington, DC, USA,2003,1:459–469.
    [80] L. Li, J. Y. Halpern, P. Bahl, et al. A Cone-based Distributed Topology-controlAlgorithm for Wireless Multi-hop Networks[J]. IEEE/ACM Trans. Netw.,2005,13(1):147–159.
    [81] J. Elson, L. Girod, D. Estrin. Fine-grained Network Time Synchronization UsingReference Broadcasts[J]. SIGOPS Oper. Syst. Rev.,2002,36(SI):147–163.
    [82] J. Elson, K. Ro¨mer. Wireless Sensor Networks: A New Regime for Time Synchro-nization[J]. SIGCOMM Comput. Commun. Rev.,2003,33(1):149–154.
    [83] P. Sommer, R. Wattenhofer. Gradient Clock Synchronization in Wireless SensorNetworks[C]//Proceedings of the2009International Conference on InformationProcessing in Sensor Networks. Washington, DC, USA: IEEE Computer Society,2009:37–48.
    [84] P. Bahl, V. Padmanabhan. RADAR: An In-building RF-based User Location andTracking System[C]//Proceedings of Nineteenth Annual Joint Conference of theIEEE Computer and Communications Societies. IEEE INFOCOM2000. Washing-ton, DC, USA,2000,2:775–784.
    [85] A. Savvides, C.-C. Han, M. B. Strivastava. Dynamic Fine-grained Localizationin Ad-hoc Networks of Sensors[C]//Proceedings of the7th annual internationalconference on Mobile computing and networking. New York, NY, USA: ACM,2001:166–179.
    [86] T. He, C. Huang, B. M. Blum, et al. Range-free Localization Schemes for LargeScale Sensor Networks[C]//Proceedings of the9th annual international conferenceon Mobile computing and networking. New York, NY, USA: ACM,2003:81–95.
    [87] M. Li, Y. Liu. Rendered Path: Range-free Localization in Anisotropic Sensor Net-works with Holes[C]//Proceedings of the13th annual ACM international confer-ence on Mobile computing and networking. New York, NY, USA: ACM,2007:51–62.
    [88] L. Eschenauer, V. D. Gligor. A Key-management Scheme for Distributed SensorNetworks[C]//Proceedings of the9th ACM conference on Computer and commu-nications security. New York, NY, USA,2002:41–47.
    [89] W. Du, J. Deng, Y. S. Han, et al. A Key Management Scheme for Wireless Sen-sor Networks Using Deployment Knowledge[C]//Twenty-third Annual Joint Con-ference of the IEEE Computer and Communications Societies. INFOCOM2004.Washington, DC, USA,2004,1:586–597.
    [90] F. Liu, X. Cheng, D. Chen. Insider Attacker Detection in Wireless Sensor Network-s[C]//26th IEEE International Conference on Computer Communications. IEEEINFOCOM2007. Washington, DC, USA,2007:1937–1945.
    [91] Y. Wang, X. Wang, B. Xie, et al. Intrusion Detection in Homogeneous and Hetero-geneous Wireless Sensor Networks[J]. IEEE Transactions on Mobile Computing,2008,7(6):698–711.
    [92] C. Karlof, D. Wagner. Secure Routing in Wireless Sensor Networks: Attacks andCountermeasures[C]//Proceedings of the First IEEE International Workshop onSensor Network Protocols and Applications,2003. Washington, DC, USA: IEEE,2003:113–127.
    [93] M. A. Sharaf, J. Beaver, A. Labrinidis, et al. TiNA: A Scheme for TemporalCoherency-aware In-network Aggregation[C]//Proceedings of the3rd ACM inter-national workshop on Data engineering for wireless and mobile access. New York,NY, USA: ACM,2003:69–76.
    [94] S. Madden, M. J. Franklin, J. M. Hellerstein, et al. Tag: A Tiny Aggregation Servicefor Ad-hoc Sensor Networks[J]. ACM SIGOPS Operating Systems Review,2002,36(SI):131–146.
    [95] N. Shrivastava, C. Buragohain, D. Agrawal, et al. Medians and Beyond: NewAggregation Techniques for Sensor Networks[C]//Proceedings of the2nd interna-tional conference on Embedded networked sensor systems. New York, NY, USA,2004:239–249.
    [96] V. Annamalai, S. K. S. Gupta, L. Schwiebert. On Tree-based Convergecasting inWireless Sensor Networks[C]//IEEE Wireless Communications and Networking–WCNC. Washington, DC, USA,2003,3:1942–1947.
    [97] A. Deshpande, C. Guestrin, S. R. Madden, et al. Model-driven Data Acquisitionin Sensor Networks[C]//Proceedings of the Thirtieth international conference onVery large data bases-Volume30. VLDB Endowment,2004:588–599.
    [98] O. D. Incel, B. Krishnamachari. Enhancing the Data Collection Rate of Tree-basedAggregation in Wireless Sensor Networks[C]//5th Annual IEEE CommunicationsSociety Conference on Sensor, Mesh and Ad Hoc Communications and Networks,SECON’08. Washington, DC, USA,2008:569–577.
    [99] T.-W. Kuo, M.-J. Tsai. On the Construction of Data Aggregation Tree with Min-imum Energy Cost in Wireless Sensor Networks: Np-completeness and Approxi-mation Algorithms[C]//INFOCOM,2012Proceedings IEEE.2012:2591–2595.
    [100] H. Chen, H. Mineno, T. Mizuno. Adaptive Data Aggregation Scheme in ClusteredWireless Sensor Networks[J]. Computer Communications,2008,31(15):3579–3585.
    [101] M. Liu, J. Cao, Y. Zheng, et al. An Energy-efcient Protocol for Data Gatheringand Aggregation in Wireless Sensor Networks[J]. The Journal of Supercomputing,2008,43(2):107–125.
    [102] D. Mandala, X. Du, F. Dai, et al. Load Balance and Energy Efcient Data Gatheringin Wireless Sensor Networks[J]. Wireless Communications and Mobile Comput-ing,2008,8(5):645–659.
    [103] A. Manjhi, S. Nath, P. B. Gibbons. Tributaries and Deltas: Efcient and Ro-bust Aggregation in Sensor Network Streams[C]//Proceedings of the2005ACMSIGMOD international conference on Management of data. New York, NY, USA:ACM,2005:287–298.
    [104] K.-W. Kai-Wei Fan, S. Liu, P. Sinha. Structure-free Data Aggregation in SensorNetworks[J]. IEEE Transactions on Mobile Computing,2007,6(8):929–942.
    [105] C. Intanagonwiwat, D. Estrin, R. Govindan, et al. Impact of Network Density onData Aggregation in Wireless Sensor Networks[C]//Proceedings of the22nd Inter-national Conference on Distributed Computing Systems. Washington, DC, USA,2002:457–458.
    [106] B. Krishnamachari, D. Estrin, S. B. Wicker. The Impact of Data Aggrega-tion in Wireless Sensor Networks[C]//ICDCS Workshops. Washington, DC, USA,2002:575–578.
    [107] X.-Y. Li, Y. Wang, Y. Wang. Complexity of Data Collection, Aggregation, and Se-lection for Wireless Sensor Networks[J]. IEEE Transactions on Computers,2011,60(3):386–399.
    [108] Y. Yu, B. Krishnamachari, V. Prasanna. Energy-latency Tradeofs for Data Gather-ing in Wireless Sensor Networks[C]//Twenty-third Annual Joint Conference of theIEEE Computer and Communications Societies. INFOCOM2004. Washington,DC, USA,2004,1:244–255.
    [109] S. Upadhyayula, V. Annamalai, S. K. S. Gupta. A Low-latency and Energy-efcient Algorithm for Convergecast in Wireless Sensor Networks[C]//IEEE Glob-al Telecommunications Conference–GLOBECOM. Washington, DC, USA,2003,6:3525–3530.
    [110] J. Beaver, M. A. Sharaf, A. Labrinidis, et al. Location-aware Routing for DataAggregation in Sensor Networks[J]. Geosensor Networks,2004:189–209.
    [111] J. Gao, L. Guibas, N. Milosavljevic, et al. Sparse Data Aggregation in SensorNetworks[C]//Proceedings of the6th international conference on Information pro-cessing in sensor networks. New York, NY, USA: ACM,2007:430–439.
    [112] S. Nath, P. B. Gibbons, S. Seshan, et al. Synopsis Difusion for Robust Aggre-gation in Sensor Networks[C]//Proceedings of the2nd international conference onEmbedded networked sensor systems. New York, NY, USA,2004:250–262.
    [113] K. Kalpakis, K. Dasgupta, P. Namjoshi. Maximum Lifetime Data Gathering andAggregation in Wireless Sensor Networks[J]. Proceedings of IEEE Networks,2002,2:685–696.
    [114] C. Hua, T.-S. Yum. Optimal Routing and Data Aggregation for Maximizing Life-time of Wireless Sensor Networks[J]. IEEE/ACM Transactions on Networking,2008,16(4):892–903.
    [115] X. Tang, J. Xu. Optimizing Lifetime for Continuous Data Aggregation with Pre-cision Guarantees in Wireless Sensor Networks[J]. IEEE/ACM Transactions onNetworking (TON),2008,16(4):904–917.
    [116] Z. Ye, A. A. Abouzeid, J. Ai. Optimal Stochastic Policies for Distributed DataAggregation in Wireless Sensor Networks[J]. IEEE/ACM Transactions on Net-working,2009,17(5):1494–1507.
    [117] Y. Wu, X.-Y. Li, Y. Liu, et al. Energy-efcient Wake-up Scheduling for Data Col-lection and Aggregation[J]. IEEE Transactions on Parallel and Distributed System-s,2010,21(2):275–287.
    [118] Z. Li, M. Li, J. Wang, et al. Ubiquitous Data Collection for Mobile Users in Wire-less Sensor Networks[C]//INFOCOM,2011Proceedings IEEE. Washington, DC,USA,2011:2246–2254.
    [119] S. Ozdemir, Y. Xiao. Secure Data Aggregation in Wireless Sensor Networks: AComprehensive Overview[J]. Computer Networks,2009,53(12):2022–2037.
    [120] C. Luo, F. Wu, J. Sun, et al. Compressive Data Gathering for Large-scale WirelessSensor Networks[C]//Proceedings of the15th annual international conference onMobile computing and networking. New York, NY, USA,2009:145–156.
    [121] A. Kesselman, D. R. Kowalski. Fast Distributed Algorithm for Convergecast in AdHoc Geometric Radio Networks[J]. Journal of Parallel and Distributed Computing,2006,66(4):578–585.
    [122] H. Lee, A. Keshavarzian. Towards Energy-optimal and Reliable Data Collection vi-a Collision-free Scheduling in Wireless Sensor Networks[C]//The27th Conferenceon Computer Communications. IEEE INFOCOM2008. Washington, DC, USA,2008:2029–2037.
    [123] X. Chen, X. Hu, J. Zhu. Minimum Data Aggregation Time Problem in WirelessSensor Networks[C]//Proceedings of the First international conference on MobileAd-hoc and Sensor Networks. Berlin, Heidelberg: Springer-Verlag,2005:133–142.
    [124] S.-H. Huang, P.-J. Wan, C. T. Vu, et al. Nearly Constant Approximation for DataAggregation Scheduling in Wireless Sensor Networks[C]//Proceedings of the26thIEEE International Conference on Computer Communications. IEEE INFOCOM2007. Washington, DC, USA,2007:366–372.
    [125] S. Gandham, Y. Zhang, Q. Huang. Distributed Minimal Time ConvergecastScheduling in Wireless Sensor Networks[C]//26th IEEE International Confer-ence on Distributed Computing Systems. ICDCS2006. Washington, DC, USA,2006:50–59.
    [126] P.-J. Wan, S. C.-H. Huang, L. Wang, et al. Minimum-latency Aggregation Schedul-ing in Multihop Wireless Networks[C]//Proceedings of the tenth ACM internation-al symposium on Mobile ad hoc networking and computing. New York, NY, USA:ACM,2009:185–193.
    [127] X. Xu, S. Wang, X. Mao, et al. An Improved Approximation Algorithm for DataAggregation in Multi-hop Wireless Sensor Networks[C]//Proceedings of the2ndACM international workshop on Foundations of wireless ad hoc and sensor net-working and computing. New York, NY, USA,2009:47–56.
    [128] Y. Li, L. Guo, S. K. Prasad. An Energy-efcient Distributed Algorith-m for Minimum-latency Aggregation Scheduling in Wireless Sensor Network-s[C]//Proceedings of the2010IEEE30th International Conference on DistributedComputing Systems. Washington, DC, USA: IEEE Computer Society,2010:827–836.
    [129] X.-Y. Li, X. Xu, S. Wang, et al. Efcient Data Aggregation in Multi-hop WirelessSensor Networks under Physical Interference Model[C]//Mobile Adhoc and Sen-sor Systems,2009. MASS’09. IEEE6th International Conference on. Washington,DC, USA,2009:353–362.
    [130] H. Li, Q. S. Hua, C. Wu, et al. Minimum-latency Aggregation Scheduling in Wire-less Sensor Networks under Physical Interference Model[C]//Proceedings of the13th ACM international conference on Modeling, analysis, and simulation of wire-less and mobile systems. New York, NY, USA,2010:360–367.
    [131] H. Li, C. Wu, Q.-S. Hua, et al. Latency-minimizing Data Aggregation in Wire-less Sensor Networks under Physical Interference Model[J]. Ad Hoc Networks,2011:1–17.
    [132] A. Das, D. Dutta. Data Acquisition in Multiple-sink Sensor Networks[J]. MobileComputing and Communications Review,2005,9(3):82–85.
    [133] P. Ciciriello, L. Mottola, G. P. Picco. Efcient Routing from Multiple Sources toMultiple Sinks in Wireless Sensor Networks[C]//EWSN.2007:34–50.
    [134] H. Kim, Y. Seok, N. Choi, et al. Optimal Multi-sink Positioning and Energy-efcient Routing in Wireless Sensor Networks[M]//Information Networking. Con-vergence in Broadband and Mobile Networking. Springer,2005:264–274.
    [135] R. Kawano, T. Miyazaki. Distributed Data Aggregation in Multi-sink Sensor Net-works Using a Graph Coloring Algorithm[C]//AINA Workshops.2008:934–940.
    [136] H. Liu, Z.-L. Zhang, J. Srivastava, et al. Pwave: A Multi-source Multi-sink AnycastRouting Framework for Wireless Sensor Networks[M]//NETWORKING2007. AdHoc and Sensor Networks, Wireless Networks, Next Generation Internet. Springer,2007:179–190.
    [137] K. Yuen, B. Li, B. Liang. Distributed Data Gathering in Multi-sink Sensor Net-works with Correlated Sources[M]//NETWORKING2006. Networking Technolo-gies, Services, and Protocols; Performance of Computer and Communication Net-works; Mobile and Wireless Communications Systems. Springer,2006:868–879.
    [138] G. Lu, N. Sadagopan, B. Krishnamachari, et al. Delay Efcient Sleep Schedulingin Wireless Sensor Networks[C]//Proceedings of24th Annual Joint Conferenceof the IEEE Computer and Communications Societies. IEEE INFOCOM2005.Washington, DC, USA,2005,4:2470–2481.
    [139] Y. Gu, T. He. Data Forwarding in Extremely Low Duty-cycle Sensor Networks withUnreliable Communication Links[C]//Proceedings of the5th international confer-ence on Embedded networked sensor systems. New York, NY, USA,2007:321–334.
    [140] S. Guo, Y. Gu, B. Jiang, et al. Opportunistic Flooding in Low-duty-cycle Wire-less Sensor Networks with Unreliable Links[C]//Proceedings of the15th annualinternational conference on Mobile computing and networking, MOBICOM. NewYork, NY, USA: ACM,2009:133–144.
    [141] S. Lai, B. Ravindran. On Multihop Broadcast Over Adaptively Duty-cycled Wire-less Sensor Networks[M]//Distributed Computing in Sensor Systems. Springer,2010:158–171.
    [142] F. Wang, J. Liu. Duty-cycle-aware Broadcast in Wireless Sensor Network-s[C]//IEEE INFOCOM2009. Washington, DC, USA,2009:468–476.
    [143] X. Jiao, W. Lou, J. Ma, et al. Duty-cycle-aware Minimum Latency BroadcastScheduling in Multi-hop Wireless Networks[C]//30th International Conference onDistributed Computing Systems (ICDCS). Washington, DC, USA,2010:754–763.
    [144] S. Biswas, R. Morris. Exor: Opportunistic Multi-hop Routing for Wireless Net-works[C]//Proceedings of the2005conference on Applications, technologies, ar-chitectures, and protocols for computer communications. New York, NY, USA:ACM,2005:133–144.
    [145] Z. Chen, K. G. Shin. Opag: Opportunistic Data Aggregation in Wireless Sen-sor Networks[C]//Real-Time Systems Symposium,2008. Washington, DC, USA,2008:345–354.
    [146] Q. Zhao, L. Tong. Distributed Opportunistic Transmission for Wireless SensorNetworks[C]//IEEE International Conference on Acoustics, Speech, and SignalProcessing,2004. Proceedings.(ICASSP’04). Washington, DC, USA,2004,3:833–836.
    [147] S.-S. Tan, D. Zheng, J. Zhang, et al. Distributed Opportunistic Scheduling for Ad-hoc Communications under Delay Constraints[C]//INFOCOM. Washington, DC,USA: IEEE,2010:1–9.
    [148] P.-J. Wan, K. M. Alzoubi, O. Frieder. Distributed Construction of Connected Dom-inating Set in Wireless Ad Hoc Networks[J]. Mob. Netw. Appl.,2004,9(2):141–149.
    [149] B. N. Clark, C. J. Colbourn, D. S. Johnson. Unit Disk Graphs[J]. Discrete Mathe-matics,1990,86(1-3):165–177.
    [150] F. Aurenhammer. Voronoi Diagrams—a Survey of a Fundamental Geometric DataStructure[J]. ACM Comput. Surv.,1991,23(3):345–405.
    [151] GreenOrbs [OL]. http://www.greenorbs.org/.
    [152] J. Beutel, S. Gruber, A. Hasler, et al. Permadaq: A Scientific Instrument for Preci-sion Sensing and Data Recovery in Environmental Extremes[C]//IPSN.2009:265–276.
    [153] N. Burri, P. von Rickenbach, R. Wattenhofer. Dozer: Ultra-low Power Data Gath-ering in Sensor Networks[C]//IPSN.2007:450–459.
    [154] M. R. Garey, D. S. Johnson. Computers and Intractability; a Guide to the Theory ofNP-Completeness[M]. New York, NY, USA: W. H. Freeman&Co.,1990:25–47.
    [155] B. Yu, J. Li, Y. Li. Distributed Data Aggregation Scheduling in Wireless SensorNetworks[C]//INFOCOM. Washington, DC, USA,2009:2159–2167.
    [156] D. S. J. D. Couto, D. Aguayo, J. C. Bicket, et al. A High-throughput Path Met-ric for Multi-hop Wireless Routing[C]//MOBICOM. New York, NY, USA: ACM,2003:134–146.
    [157] R. Fonseca, O. Gnawali, K. Jamieson, et al. Four-bit Wireless Link Estima-tion[C]//the Sixth Workshop on Hot Topics in Networks (HotNets). New York,NY, USA,2007:1–7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700