用户名: 密码: 验证码:
和厚朴酚衍生物的设计、合成及分子对接研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的癌症是严重危害人类生命健康的重大疾病。随着对癌症发病机制的深入研究,众多与癌症相关的调节蛋白与抗癌靶标逐渐得到了阐明,促使抗癌药物从单纯的细胞毒药物向针对抗癌靶标的靶向药物发展。本研究拟从具有抗癌活性的中药单体和厚朴酚出发,通过反向分子对接的方法探讨其潜在的抗肿瘤作用靶点,为和厚朴酚的抗肿瘤分子机制提供一定的理论依据。在此基础上,围绕和厚朴酚潜在的作用靶点,设计并合成一系列衍生物,通过虚拟筛选的方法,寻找靶点选择性更高、活性更强的先导化合物。
     方法本文以和厚朴酚为分子探针,选择了16个与抗肿瘤作用相关的靶标作为筛选对象,以结合自由能ΔG、抑制常数Ki作为筛选指标,在Autodock分子对接软件平台上进行反向分子对接研究;以和厚朴酚为先导化合物,基于基质金属蛋白酶MMP-2和MMP-9的结构,结合药物拼合原理,设计两系列和厚朴酚衍生物—通过不同的连接链,在和厚朴酚的4位羟基引入(5-卤代)尿嘧啶(系列Ⅰ)或N-1取代苄基(5-卤代)尿嘧啶结构片段(系列Ⅱ)。通过分子对接的方法,从设计的和厚朴酚衍生物中筛选出活性较高的化合物,并探讨这些衍生物的构效关系。通过Williamson反应、烃化反应等方法合成了9个虚拟活性较高的衍生物,目标化合物的结构通过1H NMR、MS等方法确证。
     结果反向分子对接结果表明,和厚朴酚在环氧合酶-2(COX-2)、基质金属蛋白酶-9(MMP-9)、基质金属蛋白酶-2(MMP-2)、细胞周期蛋白依赖性激酶-2(CDK-2)和p38丝裂原活化蛋白激酶(p38 MAPK)中表现出较高的结合能力。其中,和厚朴酚与COX-2活性腔的结合能要高于原始配体—氟比洛芬。另外,和厚朴酚与MMP-2/9的对接模拟显示,和厚朴酚分子嵌入MMP-2/9活性腔的S1′口袋,这为我们提供较大的结构修饰空间。虚拟筛选结果表明,和厚朴酚系列Ⅱ衍生物与MMP-2/9的结合能高于系列Ⅰ衍生物,与活性腔的空间匹配较好。本文合成了系列Ⅱ衍生物中的9个化合物,结构经1H NMR、MS等方法确证,均未见文献报道。
     结论环氧合酶-2(COX-2)、基质金属蛋白酶-2/9(MMP-2/9)、细胞周期蛋白依赖性激酶2(CDK-2)和p38丝裂原活化蛋白激酶(p38 MAPK)均有可能是和厚朴酚发挥抗肿瘤作用的潜在结合靶标。和厚朴酚4位羟基连接取代苄基尿嘧啶结构片段有利于提高与MMP-2/9活性腔的结合能力。
Objective Cancer is a severe disease threatening the health and lives of human being. Current treatments of cancer have limited effectiveness and numerous serious unintended side effects. Following advances on the pathogenetic mechanisms of cancer, more and more regulatory protein and drug targets relating cancer have been clarified, promoting the development of anticancer drugs from cytotoxic drugs to targeted drugs. The Chinese medicine have afforded a rich source of anticancer agents with multi-targeted and low toxicity. Hence, our study focused on the active component isolated from Chinese traditional herb magnolia—honokiol with potential anticancer activities. To understand the antitumor mechanisms of honokiol at molecule level, we investigate the potential antitumor targets of honokiol with reverse docking approach. To increase the activity of honokiol, we designed and synthesized a serial of honokiol analogues based on the existing SAR study of honokiol and virtual screening method.
     Methods The reverse docking study was performed on the autodock4.2 program, honokiol was used as a probe,16 antitumor targets were selected as screen objects, binding energyΔG and inhibition constant Ki were used to evaluate the docking results. Based on the structures of matrix metalloproteinases 2/9, as well as the combination principle, two serials of honokiol derivatives were designed. Virtual screening method with autodock4.2 program was used to evaluate the activities of the designed analogues. All of the three dimensional structures of compounds prepared for docking study were constructed by the Corina program. Nine honokiol analogues were synthesized by Williamson reaction and alkylation reaction, the structures of which were confirmed by 1H NMR, MS.
     Results Reverse docking results revealed that the binding energy between honokiol and COX-2, MMP-9, MMP-2, CDK-2 and p38 MAPK are ranked at the top of the list, in which the binding energy between honokiol and COX-2 is higher than the positive control compound—flurbiprofen. In addition, molecule modeling showed that honokiol inserted into the S1' pocket of MMP2/9, and leave space for structural modification. Virtual screening results showed that the series II of honokiol derivatives possessed higher affinity than the series I analogues, as well as space match, with MMP-9. Nine honokiol derivatives of series II have been synthesized, all of which have not been reported in literature.
     Conclusions COX-2, MMP-9, MMP-2, CDK-2 and p38 MAPK are the potential binding targets of honokiol. The structure of N1-substituted benzyl-(5-halogeno) uracil at 4-position of hydroxyl group of honokiol plays important role in the affinity between honokiol derivatives of seriesⅡand MMP2/9.
引文
[1]Winer E, Gralow J, Diller L, et al. Clinical cancer advances 2008:major research advances in cancer treatment, prevention, and screening--a report from the American Society of Clinical Oncology[J]. J Clin Oncol,2009; 27(5):812-826.
    [2]陈凯先,蒋华良,罗小民等.后基因组时代的药物发现:趋势和实践[J].中国天然药物,2004;2(5):257-260.
    [3]郭宗儒.药物分子设计[M].北京:科学出版社,2005:17.
    [4]Yu DQ. Prospect in the study of creating new drugs from Chinese herbal medicine[J]. Acta Acad Med Sin,2002; 24(4):335-338.
    [5]阴健,郭力弓.中药现代研究及临床应用[M].北京:学苑出版社,1993.
    [6]王承南,夏传格.厚朴药理作用及综合利用研究进展[J].经济林研究,2003;21(3):80-81.
    [7]邓世明,程永现,周俊等.长缘厚朴中的新苯醌及新木脂素类化合物[J].云南植物研究,2001;23(1):121-125.
    [8]李玲玲.厚朴挥发油化学成分研究[J].中草药,2001;32(8):686-687.
    [9]王洪燕,周先礼,黄帅等.凹叶厚朴中生物碱成分的研究[J].华西药学杂志,2007;22(1):30-33.
    [10]Fujita M, Itokawa H, Sashida Y. Honokiol, a new phenolic compound isolated from the bark of Magnolia obovata Thunb[J]. Chem Pharm Bull,1972; 20(1):212-213.
    [11]Lo YC, Teng CM, Chen CF, et al. Magnolol and honokiol isolated from Magnolia officinalis protect rat heart mitochondria against lipid peroxidation[J]. Biochem Pharmacol,1994; 47(3):549-53.
    [12]Wang JP, Ho TF, Chang LC, at al. Anti-inflammatory effect of magnolol, isolated from Magnolia officinalis, on A23187-induced pleurisy in mice[J]. J Pharm Pharmacol.1995; 47(10):857-860.
    [13]Liou KT, Lin SM, Huang SS, et al. Honokiol ameliorates cerebral infarction from ischemia-reperfusion injury in rats [J]. Planta Med,2003; 69(2):130-134.
    [14]Maruyama Y, Kuribara H, Morita M, et al. Identification of Magnolol and Honokiol as Anxiolytic Agents in Extracts of Saiboku-to, an Oriental Herbal Medicine[J]. J. Nat. Prod,1998; 61(1):135-138.
    [15]Clark AM, EI-Feraly FS, Li WS. Antimicrobial activity of phenolic constituents of Magnolia grandiflora L[J]. J Pharm Sci,1981; 70(8):951-952.
    [16]Teng CM, Chen CC, Ko FN, et al. Two antiplatelet agents from Magnolia officinalis[J]. Thromb Res, 1988; 50(6):757-765.
    [17]Hirano T, Gotoh M, Oka K. Natural flavonoids and lignans are potent cytostatic agents against human leukemic HL-60 cells[J]. Life Sci.1994; 55(13):1061-1069.
    [18]Hengartner MO. The biochemistry of apoptosis[J]. Nature,2000; 407(6805):770-776.
    [19]甄永苏.抗肿瘤药物研究与开发[M].北京:化学工业出版社.2004.
    [20]Hibasami H, Achiwa Y, Katsuzaki H, et al. Honokiol induces apoptosis in human lymphoid leukemia Molt 4B cells[J]. Int J Mol Med,1998; 2(6):671-673.
    [21]Yang SE, Hsieh MT, Tsai TH, et al. Down-modulation of Bcl-XL, release of cytochrome c and sequential activation of caspases during honokiol-induced apoptosis in human squamous lung cancer CH27 cells[J]. Biochem Pharmacol,2002; 63(9):1641-1651.
    [22]Chen F, Wang T, Wu YF, et al. Honokiol:A potent chemotherapy candiate for human colorectal carcinoma[J]. World J Gastroenterol,2004; 10(23):3459-3463.
    [23]Wang T, Chen F, Chen Z, et al. Honokiol induces apoptosis through p53-independent pathway in human colorectal cell line RKO[J]. World J Gastroenterol,2004; 10(15):2205-2208.
    [24]Li Z, Liu Y, Zhao X, et al. Honokiol, a natural therapeutic candidate,induces apoptosis and inhibits angiogenesis of ovarian tumor cells[J]. Eur J Obstet Gynecol Rerod Biol.2008; 140(1):95-102.
    [25]Battle TE, Arbiser J, Frank DA. The natural product honokiol induces caspase-dependent apoptosis in B-cell chronic lymphocytic leukemia (B-CLL) cells[J]. BLOOD,2005; 106(2):690-697.
    [26]Ishitsuka K, Hideshima T, Hamasaki M, et al. Honokiol overcomes conventional drug resistance in human multiple myeloma by induction of caspase-dependent and-independent apoptosis[J]. BLOOD, 2005; 106(5):1794-1800.
    [27]Ahn KS, Sethi G, Shishodia S, et al. Honokiol Potentiates Apoptosis, Suppresses Osteoclastogenesis, and Inhibits Invasion through Modulation of Nuclear Factor-KB Activation Pathway[J]. Mol Cancer Res 2006;4(9):621-633.
    [28]Sheu ML, Liu SH, Lan KH. Honokiol induces calpain-mediated glucose-regulated protein-94 cleavage and apoptosis in human gastric cancer cells and reduces tumor growth. PLoS ONE,2007; 2(10): e1096.
    [29]Folkman J. Anti-angiogenesis:new concept for therapy of solid tumors[J]. Ann Surg,1972; 175(3):409-416.
    [30]Rak J,Filmus J, Finkenzeller G, et al. Oncogenes as inducers of tumor angiogenesis[J]. Cancer Metastasis Rev.1995; 14(4):263-277.
    [31]Ellis LM, Hicklin DJ. VEGF-targeted therapy:mechanisms of anti-tumour activity[J]. Nat Rev Cancer. 2008; 8(8):579-591.
    [32]Rabbani SA. Metalloproteases and urokinase in angiogenesis and tumor progression[J]. In Vivo.1998; 12(1):135-142.
    [33]Moghaddam A, Zhang HT, Fan TP, et al. Thymidine phosphorylase is angiogenic and promotes tumor growth[J]. Proc Natl Sci U S A.1995; 92(4):998-1002.
    [34]Erdreich-Epstein A, Tran LB, Cox OT, et al. Endothelial apoptosis induced by inhibition of integrins alphavbeta3 and alphavbeta5 involves ceramide metabolic pathways[J]. Blood,2005; 105(11):4353-4361.
    [35]Kanthou C, Greco O, Stratford A, et al. The tubulin-binding agent combretastatin A-4-phosphate arrests endothelial cells in mitosis and induces mitotic cell death[J]. Am J Pathol,2004; 165(4):1401-1411.
    [36]Gao P, Zhang H, Dinavahi R, et al. HIF-dependent antitumorigenic effect of antioxidants in vivo[J]. Cancer Cell,2007; 12(3):230-238.
    [37]Bai X, Cerimele F, Ushio-Fukai M, et al. Honokiol, a small molecular weight natural product, inhibits angiogenesis in vitro and tumor growth in vivo[J]. J Biol Chem,2003; 278(37):3551-35507.
    [38]Liu H, Zang C, Emde A, et al. Anti-tumor effect of honokiol alone and in combination with other anti-cancer agents in breast cancer[J]. Eur J Pharmacol,2008; 591(1-3):43-51.
    [39]王嘉,王弢,王自强等.和厚朴酚抗血管生成作用的实验研究[J].肿瘤,2007;27(7):527-530.
    [40]Biedler JL, Riehm H. Cellular resistance to actinomycin D in Chinese hamster cells in vitro: cross-resistance, radioautographic, and cytogenetic studies[J]. Cancer Res,1970; 30(4):1174-1184.
    [41]Xu D, Lu Q, Hu X. Down-regulation of P-glycoprotein expression in MDR breast cancer cell MCF-7/ADR by honokiol. Cancer Lett,2006; 243(2):274-280.
    [42]贾晖,陈世忠.静脉注射和厚朴酚的药代动力学及组织分布研究[J].北京大学学报(医学版),2003;35(3):328.
    [43]王莲华,盖玉梅,袁成等.厚朴酚与和厚朴酚药代动力学的实验研究[J].实用医药杂志,2004;21(2):137-139.
    [44]丁婉萍,唐星,陶秀梅等.厚朴提取物中主要成分的小肠吸收特性[J].沈阳药科大学学报,2003;20(6):399-401.
    [45]苏文娟,黄熙,秦峰等.大鼠灌胃厚朴及厚朴三物汤后和厚朴酚的药动学比较[J].中药材,2008;31(2):255-8.
    [46]Kuribara H, Kishi E, Kimura M, et al. Comparative assessment of the anxiolytic-like activities of honokiol and derivatives[J]. Pharmacol Biochem Behav,2000; 67(3):597-601.
    [47]Esumi T, Makado G, Zhai H, et al. Efficient synthesis and structure-activity relationship of honokiol, a neurotrophic biphenyl-type neolignan[J]. Bioorg Med Chem Lett,2004; 14(10):2621-2625.
    [48]Kong ZL, Tzeng SC, Liu YC. Cytooxic neolignans:an SAR study[J]. Bioorg Med Chem Lett,2005; 15(1):163-166.
    [49]Amblard F, Govindarajan B, Lefkove B, et al. Synthesis, cytotoxicity, and antiviral activities of new neolignans related to honokiol and magnolol[J]. Bioorg Med Chem Lett,2007; 17(16):4428-4431.
    [50]Luo Y, Xu Y, Chen L, et al. Semi-synthesis and anti-proliferative activity evaluation of novel analogues of Honokiol[J]. Bioorg Med Chem Lett,2009; 19(16):4702-4705.
    [51]Brooijmans N, Kuntz ID. Molecular recognition and docking algorithms[J]. Annu Rev Biophys Biomol Struct,2003; 32:335-373.
    [52]Senderowitz H, Marantz Y. G Protein-Coupled Receptors:target-based in silico screening[J]. Curr Pharm Des,2009; 15(35):4049-4068.
    [53]Kolb P, Ferreira RS, Irwin JJ, et al. Docking and chemoinformatic screens for new ligands and targets[J]. Curr Opin Biotechol,2009; 20(4):429-436.
    [54]陈凯先,蒋华良,嵇汝云.计算机辅助药物设计—原理、方法及应用[M].上海:上海科学技术出版 社,2000:255-266.
    [55]Morris G M, Goodsell D S, Pique M E, et al. User Guide of AutoDock Version4.2.
    [56]Li H, Gao Z, Kang L, et al. TarFisDock:a web server for identifying drug targets with docking approach[J]. Nucleic Acids Res,2006; 34(Web Server issue):W219-224.
    [57]刘廷林,谢焕章,魏于全等.探索应用反向对接技术研究蛋白激酶抑制剂选择性的可行性[J].药学学报,2009;44(7):758-763.
    [58]Chen YZ, Ung CY. Prediction of potential toxicity and side effect protein targets of a small molecule by a ligand-protein inverse docking approach[J]. J Mol Graph Model,2001; 20(3):199-218.
    [59]Chen YZ, Zhi DG. Ligand-protein inverse docking and its potential use in the computer search of protein targets of a small molecule[J]. Proteins,2001; 43(2):217-226.
    [60]Rapid computational identification of the targets of protein kinase inhibitors [J]. J Med Chem,2005; 48(12):4138-4152.
    [61]Nagase H, Ikeda K, Sakai Y. Inhibitory effect of magnolol and honokiol from Magnolia obovata on human fibrosarcoma HT-1080. Invasiveness in vitro[J]. Planta Med,2001; 67(8):705-708.
    [62]Lee B, Kim CH, Moon SK. Honokiol causes the p21WAF1-mediated G(1)-phase arrest of the cell cycle through inducing p38 mitogen activated protein kinase in vascular smooth muscle cells[J]. FEBS Lett,2006; 580(22):5177-5184.
    [63]Wilks AF. The JAK kinases:not just another kinase drug discovery target[J]. Semin Cell Dev Biol, 2008; 19(4):319-328.
    [64]Nitiss JL. Targeting DNA topoisomerase II in cancer chemotherapy [J]. Nat Rev Cancer,2009; 9(5):338-350.
    [65]Dalgard CL, Lu H, Mohyeldin A, Verma A. Endogenous 2-oxoacids differentially regulate expression of oxygen sensors[J]. Biochem J,2004; 380(Pt 2):419-424.
    [66]杜钢军,王莉莉,王敏伟等.抗肿瘤新生血管形成作用的靶点Bcl-2蛋白[J].中国药理学和毒理学杂志,2004;18(4):317-320.
    [67]郭文娟,王爱英.凋亡抑制基因Bcl-xL的研究进展[J].世界华人消化杂志,2008;16(25):2871-2876.
    [68]Zhou HY, Shin EM, Guo LY, et al. Anti-inflammatory activity of 4-methoxyhonokiol is a function of the inhibition of iNOS and COX-2 expression in RAW 264.7 macrophages via NF-kappaB, JNK and p38 MAPK inactivation[J]. Eur J Pharmacol,2008; 586(1-3):340-349.
    [69]Toomey DP, Murphy JF, Conlon KC. COX-2, VEGF and tumour angiogenesis[J]. Surgeon,2009; 7(3):174-180.
    [70]Miyazaki Y, Matsunaga S, Tang J, et al. Novel 4-amino-furo[2,3-d]pyrimidines as Tie-2 and VEGFR2 dual inhibitors[J]. Bioorg Med Chem Lett,2005; 15(9):2203-2207.
    [71]Lovejoy B, Welch AR, Carr S, et al. Crystal structures of MMP-1 and -13 reveal the structural basis for selectivity of collagenase inhibitors [J]. Nat Struct Biol,1999; 6(3):217-221.
    [72]Feng Y, Likos JJ, Zhu L, et al. Solution structure and backbone dynamics of the catalytic domain of matrix metalloproteinase-2 complexed with a hydroxamic acid inhibitor[J]. Biochim Biophys Acta,2002; 1598(1-2):10-23.
    [73]Tochowicz A, Maskos K, Huber R, et al. Crystal structures of MMP-9 complexes with five inhibitors: contribution of the flexible Arg424 side-chain to selectivity [J]. J Mol Biol,2007; 371(4):989-1006.
    [74]Walker EH, Pacold ME, Perisic O, et al. Structural determinants of phosphoinositide 3-kinase inhibition by wortmannin, LY294002, quercetin, myricetin, and staurosporine[J]. Mol Cell,2000; 6(4):909-919.
    [75]He MM, Smith AS, Oslob JD, et al. Small-molecule inhibition of TNF-alpha[J]. Science,2005; 310(5750):1022-1025.
    [76]Anderson M, Andrews DM, Barker AJ, et al. Imidazoles:SAR and development of a potent class of cyclin-dependent kinase inhibitors[J]. Bioorg Med Chem Lett,2008; 18(20):5487-5892.
    [77]Pargellis C, Tong L, Churchill L, et al. Inhibition of p38 MAP kinase by utilizing a novel allosteric binding site[J]. Nat Struct Biol,2002; 9(4):268-272.
    [78]Kurumbail RG, Stevens AM, Gierse JK, et al. Structural basis for selective inhibition of cyclooxygenase-2 by anti-inflammatory agents[J]. Nature,1996; 384(6610):644-648.
    [79]Wei H, Ruthenburg AJ, Bechis SK, et al. Nucleotide-dependent domain movement in the ATPase domain of a human type IIA DNA topoisomerase[J]. J Biol Chem,2005; 280(44):37041-37047.
    [80]Lucet IS, Fantino E, Styles M, et al. The structural basis of Janus kinase 2 inhibition by a potent and specific pan-Janus kinase inhibitor[J]. Blood,2006; 107(1):176-183.
    [81]Boggon TJ, Li Y, Manley PW, et al. Crystal structure of the Jak3 kinase domain in complex with a staurosporine analog[J]. Blood,2005; 106(3):996-1002.
    [82]Elkins JM, Hewitson KS, McNeill LA, et al. Structure of factor-inhibiting hypoxia-inducible factor (HIF) reveals mechanism of oxidative modification of HIF-1 alpha[J]. J Biol Chem,2003; 278(3):1802-1806.
    [83]Oltersdorf T, Elmore SW, Shoemaker AR, et al. An inhibitor of Bcl-2 family proteins induces regression of solid tumours[J]. Nature,2005; 435(7042):677-681.
    [84]Hahm ER, Singh SV. Honokiol causes G0-G1 phase cell cycle arrest in human prostate cancer cells in association with suppression of retinoblastoma protein level/phosphorylation and inhibition of E2F1 transcriptional activity[J]. Mol Cancer Ther,2007; 6(10):2686-2695.
    [85]Lee B, Kim CH, Moon SK. Honokiol causes the p21WAFl-mediated G(1)-phase arrest of the cell cycle through inducing p38 mitogen activated protein kinase in vascular smooth muscle cells [J]. FEBS Letters,2006; 580:5177-5184.
    [86]郭长彬,易翔,徐志斌等.COX抑制剂—氟比洛芬衍生物的作用方式及选择性研究[J].化学学报,2003;61(10):1653-1657.
    [87]Hanessian S, Moitessier N, Therrien E. A comparative docking study and the design of potentially selective MMP inhibitors[J]. J Comput Aided Mol Des,2001; 15(10):873-881.
    [88]Harris RE. Cyclooxygenase-2 (cox-2) blockade in the chemoprevention of cancers of the colon, breast, prostate, and lung[J]. Inflammopharmacology,2009; 17(2):65-67.
    [89]Menczer J. Cox-2 expression in ovarian malignancies:a review of the clinical aspects[J]. Eur J Obstet Gynecol Reprod Biol,2009; 146(2):129-132.
    [90]Kessenbrock K, Plaks V, Werb Z. Matrix metalloproteinases:regulators of the tumor microenvironment[J]. Cell,2010; 141(1):52-67.
    [91]Dhulipala VC, Welshons WV, Reddy CS. Cell cycle proteins in normal and chemically induced abnormal secondary palate development:a review[J]. Hum Exp Toxicol,2006; 25(11):675-682.
    [92]Cuenda A, Rousseau S. p38 MAP-kinases pathway regulation, function and role in human diseases[J]. Biochim Biophys Acta,2007; 1773(8):1358-1375.
    [93]张丽,徐文方.基质金属蛋白酶抑制剂在抗肿瘤治疗中的研究现状[J].生命的化学,2005;25(1):39-40.
    [94]Hidalgo M, Eckhardt S G. Development of matrix metalloproteinase inhibitors in cancer therapy[J]. J Natl Cancer Inst,2001; 93(3):178-193.
    [95]Peterson JT. Matrix metalloproteinase inhibitor development and the remodeling of drug discovery [J]. Heart Failure Reviews,2004; 9:63-79.
    [96]Shepherd F A, Sridhar S S. Angiogenesis inhibitors under study for the treatment of lung cancer[J]. Lung Cancer,2003; 41(Supp 1):S63-72.
    [97]Bernard P. Insight into the structural determinants for selective inhibition of matrix metalloproteinases[J]. Drug Discov Today,2007; 12(15-16):640-646.
    [98]Roopali R, Jiang Y, Marsha A M. Matrix metalloproteinases as novel biomarkers and potential therapeutic targets in human cancer [J].
    [99]Auge F, Hornebeck W, Laronze J Y. A novel strategy for designing specific gelatinase A inhibitors: potential use to control tumor progression[J]. Crit Rev Oncol Hematol,2004; 49(3):277-282.
    [100]Oh JH, Kang LL, Ban JO, et al. Anti-inflammatory effect of 4-O-methylhonokiol, a novel compound isolated from Magnolia officinalis through inhibition of NF-kappaB[J]. Chem Biol Interact,2009; 180(3):506-514.
    [101]Matsuda H, Kageura T, Oda M, et al. Effects of constituents from the bark of Magnolia obovata on nitric oxide production in lipopolysaccharide-activated macrophages[J]. Chem Pharm Bull,2001; 49(6):716-720.
    [102]Hajduk P J, Shuker S B, Nettesheim D G, et al. NMR-based modification of matrix metalloproteinase inhibitors with improved bioavailability[J]. J Med Chem,2002; 45(26):5628-5639.
    [103]郭宗儒.药物分子设计的策略:双靶标药物设计[J].药学学报,2009;44(3):209-218.
    [104]甄永苏.抗肿瘤药物研究与开发[M].北京:化学工业出版社,2004:17.
    [105]Melik-Ogandzhanyan RG, Khachatryan VE, Gapoyan AS. Synthesis and antitumor activity of N-benzyl-5-fluorouracils[J]. Pharmaceutical Chemistry Journal,1982; 16(12):1468-1470.
    [106]李加晓,李嘉燚,翁新楚.厚朴酚衍生物的合成及其抗氧化作用研究[J].中国粮油学报,2007;22(2):71-74.
    [107]赵毅民.苯丙素[M].北京:化学工业出版社,2004:220.
    [108]孙昌俊,李洪祥,戚聿新等.芳酰基氟尿嘧啶衍生物的合成及其抗肿瘤活性[J].中国药物化学杂志,2000;10(3):164-167.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700