用户名: 密码: 验证码:
纳米Au、Ag催化剂的合成及其在液相巴豆醛选择加氢制巴豆醇反应中的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
α,β不饱和醇是重要的有机合成中间体,在香料、药物及其他精细化学品生产中有着广泛的应用。目前,工业上制备α,β-不饱和醇的方法多是采用四氢化锂铝、硼氢化钠或异丙醇铝等化学还原剂直接还原α,β-不饱和醛。虽然这种方法可以得到较高收率的α,β-不饱和醇,但反应条件苛刻、产物与还原剂、溶剂分离困难、产品的后处理繁琐、产生的三废多,不符合现代绿色化工的要求。但催化选择加氢α,β-不饱和醛为α,β-不饱和醇的难点在于C=C键的键能小于C=O的键能,所以C=C键加氢在热力学上更有利。因此,研制高效、环境友好的α,β-不饱和醛选择加氢催化剂,通过动力学途径来提高C=O键的加氢活性和选择性,具有重要的经济价值和学术价值。
     前人大量的研究工作表明,在绝大多数金属催化剂上,α,β-不饱和醛倾向于C=C键加氢生成饱和醛,而对α,β-不饱和醇的选择性不高。在近些年的研究发现,纳米Au、Ag催化剂,在一些α,β-不饱和醛的气相和液相加氢反应中,均显示出优于传统贵金属加氢催化剂的催化性能,因而受到广泛的关注。本论文设计和制备了新型的纳米金属催化齐(?)(Au、Ag),以巴豆醛催化选择加氢为探针反应,通过各种表征手段,深入地研究了催化剂的结构、电子性质、活性物种尺寸以及金属和载体之间的相互作用对催化剂性能的影响,催化性能与活性中心的微观结构及电子性质进行了关联。论文的主要工作及结果如下:
     1.氨基硅烷功能化介孔SBA-15负载金催化剂上的巴豆醛选择加氢性能研究
     以介孔分子筛SBA-15为载体,通过对其进行不同种类氨基硅烷(APTS、TPED、TPDT)的表面修饰,制备了高度分散的纳米Au催化剂,并应用于巴豆醛催化选择加氢制取巴豆醇反应,研究了活性物种尺寸及金属与载体之间的相互作用对催化性能的影响。采用嫁接方法制备的金催化剂上有机官能团与金颗粒之间存在较强的互作用,这种相互作用一方面使得金粒子高度分散在介孔分子筛的孔道中,另一方而对纳米金粒子的电子性质起到修饰作用。在Au5.0/APTS-SBA-15、Au5.0/TPED-SBA-15和Au5.0/TPDT-SBA-15催化剂上,金的粒径和电子性质存在着差异,Au5.0/APTS-SBA-15上金最富电子,而后二者依次降低。由理论计算可知,若金属原子上的电子密度越高,α,β-不饱和醛中的C=C键在表面上的吸附就会因泡利四电子排斥作用增强而削弱,使其不易加氢;而富电子的金属原子更容易把电子反馈到C=O键的反键轨道上,这不仅增强了C=O键在表而的吸附,而且使得C=O键活化,从而有利于不饱和醇生成。研究了Au的负载量对催化性能的影响,发现当Au负载量为10wt%,在APTS-SBA-15载体上,巴豆醇的收率和选择性达到最大值(分别为60%和64%)。同时研究了APTS嫁接量对催化性能影响,发现嫁接量对改变活性中心与载体的相互作用的影响并不显著。
     2. Au/MWCNTs及氨基硅烷功能化的Au/APTS-MWCNTs催化剂上的巴豆醛选择加氢性能研究
     以MWCNTs为载体,采用浸渍法制备了纳米Au催化剂,在巴豆醛选择加氢中,表现出对C=C键强的加氢性能。通过改变MWCNTs载体的外管径,系统研究了活性中心粒子的尺寸及电子性质对巴豆醛加氢选择性的影响。研究发现,C=C键的初始的加氢速率随着外管径的增大而减小,而C=O键初始加氢速率随着外管径的增大而增大。通过TEM表征:该方法制备的金催化剂,其金的粒径较大(>10nm),分散性不好。通过加氢产物与粒径进行关联,发现随着金的粒径增大,C=C加氢产物的选择性是下降的。
     布此基础上,采用嫁接法制备了一系列APTS修饰的不同外管径MWCNTs负载纳米Au催化剂。通过TEM表征发现,金颗粒的粒径明显小于浸渍法制备的催化剂,并随着外管径的增大而增大,而且在巴豆醛加氢反应中表现出较高C=O加氢选择性。通过XPS表征发现,在这类催化剂上Au 4f的结合能均小于体相84.0 eV,说明Au是表而富电子的。Au表而电子是由嫁接在MWCNTs上的氨基提供的,而富电子的Au有利于C=O加氢。这些研究表明不同载体导致金颗粒的粒径及金属与载体之间相互作用的变化,是影响金催化剂催化性能的主要因素。此外,对嫁接法制备的金催化剂上的反应动力学研究,发现在该催化剂上,对巴豆醛为零级,对氢气为一级,反应的表观活化能为60kJmol-1。
     3.高效Au/AlOx和Au/CeAlOx催化剂上的巴豆醛选择加氢性能研究
     以蒸发溶剂诱导法制备的AIOx为载体,用沉积-沉淀法负载纳米Au催化剂,应用于巴豆醛催化选择加氢反应中,并与商业γ-AI2O3作为载体负载的金催化剂作比较。XPS结果表明,Au在AIOx载体上主要以Au0的形式存在,同时有少量的Auδ+孙存在,并且二者存在一定的协同作用。考察了载体的焙烧温度对催化性能的影响,发现载体的焙烧温度升高,金的粒径增大,在金的粒径为3.1 nm时,巴豆醛的收率和选择性达到最大值,分别为77%和78%,达到了文献中的较好水平。进一步升高焙烧温度使得金粒径明显增大,目标产物的选择性也随之明显降低。在催化剂的套用过程中,发现AlOx-N-773作为载体的负载金催化剂表现出较好的催化稳定性。进而我们制备催化剂载体过程中,添加了Ce,发现Ce有助于巴豆醇选择性的进一步提高,巴豆醇的得率可达到81%,对应的选择性为83%。其原因:一方面,Ce离子能够稳定更多的Auδ+;另一方面,Ce离子和AUδ+离子均能作为路易斯酸,促进C=O键的吸附和活化。
     4.Ag及AgIn/SBA-15催化剂上的巴豆醛选择加氢性能研究
     尽管Ag催化剂是一种重要的氧化反应催化剂,但研究者发现其在加氢中能够表现出催化活性。我们采用浸渍法、双溶剂法和不同载体(SBA-15, SiO2)制备了纳米Ag催化剂,在巴豆醛选择制加氢取巴豆醇的反应中,表现出了较高的催化活性。在本实验室前期工作和文献工作的基础上,通过添加第二组分In,制备了高选择性的Agln/SBA-15催化剂。在组成为Ag9.oln3.o/SBA-15的催化剂上巴豆醇的收率和选择性分别为86%和87%,是目前文献中报道的巴豆醛选择加氢制取巴豆醇中的较好结果。通过表征,发现In的作用主要有两个方而:(1)使得银纳米粒子能够高度分散在SBA-15上,从而为加氢提供更多活性位。由于小晶粒的配位不饱和的表面原子数多,有利于氢气的解离化学吸附;(2)In的存在极大地的抑制了C=C键加氢,对C=O键的加氢也有较好的促进作用。此外,还对Ag/SBA-15和Ag9.oln3.o/SBA-15催化剂对巴豆醛加氢中间产物(丁醛、巴豆醇)的加氢性能进行了研究,发现在前者上比在后者上更容易发生中间产物的后续加氢,表明In的加入有利于巴豆醇的稳定存在。
α,β-unsaturated alcohols are important intermediates in the production of perfumes, pharmaceuticals and organic synthesis reaction. Presently, the unsaturated alcohols are commercially achieved by using NaBH4 or AlLiH4 as reductant, but this process involves a lot of pollutants. Heterogeneous catalysis via direct hydrogenation ofα,β-unsaturated aldehydes are able to reduce the conjugated C=O double bond in the presence of molecular H2. This process provides a clean and economic approach to the production ofα,β-unsaturated alcohols. However, the manipulation of the selectivity in the hydrogenation ofα,β-unsaturated aldehydes is of considerable challenge, as it is thermodynamically more favored to produce saturated aldehyde or saturated alcohol than the unsaturated alcohol on metals. Therefore, development of the alternative green processes for the synthesis ofα,β-unsaturated alcohols has an important academic value and economic benefit.
     It have been documented that lots of metal-based catalyst is prone to hydrogenate C=C bond instead of C=O. In recent years, gold and silver have attracted growing interest in catalyst research since they have shown greater activity in liquid hydrogenation reactions than traditional hydrogenation catalysts. In this dissertation, the gold and silver were chosen as active species. The Au and Ag catalysts have been investigated systematically for the hydrogenation of crotonaldehyde. The influence of surface structure, electronic properties and the interaction between metal and support of the catalyst were studied in detail by various analytical and spectroscopic techniques. In addition, by correlation of the hydrogenation reaction results with above results, the active sites were discussed.
     1. Studies on the Aminosilane-Functionalized SBA-15 for chemoselective hydrogenation of crotonaldehyde
     SBA-15 was functionalized by three kinds of aminosilane (ATPS: 3-aminopropyltrimethoxysilane, TPED: N-[3-(trimethoxysilyl)-propylethylene] diamine, TPDT:trimethoxysilyl propyl diethylenetriamine). The highly dispersed gold nanoparticles in mesoporous silicas were applied into chemoselective hydrogenation of crotonaldehyde to crotyl alcohol, and the effect of the gold size and the interaction between metal and support were investigated. According to the catalytic results, we found the Au/amine-SBA-15 catalysts exhibit surprisingly high reaction activity and selectivity to crotyl alcohol compared with the Au/SBA-15. The excellent catalytic performance is mainly attributed to the strong interaction between gold nanoparticles and support. The role of interaction made the gold nanoparticles highly dispersed into the channel of SBA-15. On the other hand, it modified the surface charge of gold nanoparticles, which is favorable for the polarization of the C=O bond and enhances the hydrogenation of this functional group. Their different selectivity behaviors were tentatively interpreted on the basis of XPS measurements. The degree of binding energy shift was:Au/APTS-SBA-15> Au/TPED-SBA-15> Au/TPDT-SBA-15, suggesting that there were more electron on the surface of Au/APTS-SBA-15 catalyst. The increased electron density on metallic gold not only alter the interaction of the active sites with the functional group and facilitate a partial transfer to theπc=O* orbital of the unsaturated bond, but also weaken the binding of the C=C group on the active sites. In addition, the gold loading and APTS content on the catalytic have been studied, it was found that the optimum yield of crotoyl alcohol was obtained on Au/APTS-SBA-15 with 10 wt% and there is no influence on interaction between active sites and supports.
     2. Preparation, characterization of Au/MWCNTs catalysts and their catalytic properties for the hydrogenation of crotonaldehyde
     The Au/MWCNTs catalysts prepared by impregnation method have been investigated systematically for the hydrogenation of crotonaldehyde. And the effects of treatment condition and reduction method on catalytic performance in hydrogenation of crotonaldehyde were studied. The results showed that Au/MWCNTs catalysts exhibited strong hydrogenation of C=C bonds into butanal. The particle size of Au nanoparticles and electronic characterization were investigated systematically for hydrogenation crotonaldehyde. It was found that the original rate of hydrogenation of C=C decreased with the outer diameter of MWCNTs, however, the original rate over hydrogenation of C=O increased with the outer diameter of MWCNTs. Based on the TEM (transmission electron microscopy) characterization, we found the good relationships between the particle size of Au and the selectivity of butanal, that is, the biggher the particle size the lower the selectivity of C=C hydrogenation product. It was suggesting that the size effect is major factor influencing the products distribution.
     Besides above-mentioned method, the Au/APTS-MWCNTs catalysts were prepared by post-grafting method. The Au particle size was obviously smaller than the prepared by impregnation method with TEM (transmission electron microscopy) characterization. And the size of Au nanoparticles was became large increasing with the outer diameter of MWCNTs. The binding energy of gold catalysts was below 84.0 eV, manifesting that the rich-electron on the surface of gold nanoparticles. At the same time, N 1s binding energy of support showed that the electron on the surface of gold surface was supplied by amino of support. The effect of electron-rich metallic Au can account for the increased reactivity of the C=O group relative to the C=O group. Subsequently, the reaction conditions were optimized and displayed that zero-order for crotonaldehyde, one-order for hydrogen and 60 kJ mol-1 for the apparent energy of activation.
     3. Preparation, characterization of Au/AlOx and Au/CeAlOx catalysts and their catalytic properties for the hydrogenation of crotonaldehyde
     The AlOx was prepared by sol-gel process associated with nonionic block copolymer as templates in ethanol solvent. Then, the Au/Alox and Au/y-Al2O3 were prepared by deposition precipitation method and applied into the hydrogenation of crotonaldehyde. It was found that Au/AlOx exhibited excellent performance on the hydrogenation of crotyl alcohol. Combined with kinds of characterizations, we found that the morphology of supports, structure and crystal structure played important role in the surface electron-structure of Au nanoparticles. Based on the XPS characterization, the gold has two species, one is metallic Au0, the other is oxidized Auδ+. And there is synergy effect. At the same time, the calcination temperature has been investigated for the hydrogenation of crotonaldehyde. It was found that the size of Au naoparticles became large when the calcined temperature was raised. On the Au/A1Ox-N-773 catalyst with the 3.1 nm diameter of gold particles, the yield of crotyl alcohol reached 77%, and the selectivity of crotyl alcohol amounted to 78%. Finally, the Au/AlOx-N-773 catalyst has a good stability after five successive runs comparing Au/y-Al2O3 catalyst, confirming that the nature of the catalyst did not change during the reaction. Besides, the rare-earth element Ce was added during the preparation. It was found that the addition of Ce was favorable for improving the selectivity of crotyl alcohol, therefore, the yield of crotyl was 81% and the selectivity was up to 83%. There are two reasons:on one hand, the Ce ion were help for the much more Auδ+ ion, on the other hand, Ce ion and Auδ+ could be the Lewis acid site. Furthermore, the Lewis acid site can active C=O group and promote the produce the crotyl alcohol.
     4. Studies on the Ag and AgIn/SBA-15 catalysts for the chemoselective hydrogenation of crotonaldehyde
     Silver is widely used as an active component in oxidation reactions, surprizingly, it can also be used as a catalyst for reduction reactions, for instance, selective hydrogenation of unsaturated aldehydes such as acrolein and crotonaldehyde. Herein, we prepared and characterized the SBA-15-supported Ag and In-promoted Ag catalysts by modified "two solvents" strategy for crotonaldehyde hydrogenation to crotyl alcohol. On the optimum Ag9.0In3.0/SBA-15 catalyst, the initial selectivity amounts to 88%, and the maximum yield reaches 86%, which is one of the best results reported in the open literatures dealing with theα,β-unsaturated aldehydes hydrogenation toα,β-unsaturated alcohol. The investigations of the effect In on structures and properties of Ag catalyst showed that the addition of indium to Ag catalyst led to improvement the diepersion of Ag nanoparticles. Since the smaller Ag nanoparticles are favorable for dissociative adsorption of H2. The existing of indium greatly suppressed the hydrogenation of the C=C bond, and enhanced the hydrogenation of the C=C bond. On the other hand, the modified In3+ions function as Lewis acid sites, the crotonaldehyde molecule being adsorbed via the donation of a lone electron pair from the oxygen of the carbonyl group. Besides all, the hydrogenation of intermediate products was studied over Ag/SBA-15 and AgIn/SBA-15 catalysts. It was demonstrated that the monometallic Ag catalyst is prone to take place further hydrogenation comparing with bimetallic catalyst. Therefore, the addition of indium is contributory to high selectivity to crotyl alcohol.
引文
[1]Chambers A., Jackson S.D., Stirling D., Webb G. Selective Hydrogenation of Cinnamaldehyde over Supported Copper Catalysts [J]. J. Catal.,1997,168(2): 301-314.
    [2]Chen X.F., Li H.X., Dai W.L., Wang J., Ran Y., Qiao M.H. Selective hydrogenation of cinnamaldehyde to cinnamyl alcohol over the Co-La-B/SiO2 amorphous catalyst and the promoting effect of La-dopant [J]. Appl. Catal. A, 2003,253(2):359-369.
    [3]Marchi A.J., Gordo D.A., Trasarti A.F., Apesteguia C.R. Liquid phase hydrogenation of cinnamaldehyde on Cu-based catalysts [J]. Appl. Catal. A, 2003,249(1):53-67.
    [4]Michalska Z.M., Ostaszewski B., Zientarska J., Rynkowski J.M. Novel polymer-supported platinum catalyst for selective hydrogenation of crotonaldehyde [J]. J. Mol. Catal. A,2002,185(1-2):279-283.
    [5]Loffreda D., Delbecq F., Vigne F., Sautet P. Chemo-Regioselectivity in Heterogeneous Catalysis:Competitive Routes for C=O and C=C Hydrogenations from a Theoretical Approach [J]. J. Am. Chem. Soc,2006,128(4):1316-1323.
    [6]Poltarzewski Z., Galvagno S,. Pietropaolo R., Staiti P. Hydrogenation of α,β-unsaturated aldehydes over Pt-Sn/Nylon [J]. J Catal,1986,102(1):190-198.
    [7]Reyes P., Pecchi G, Fierro J.L.G. Surface Structures of Rh-Cu Sol-Gel Catalysts and Performance for Crotonaldehyde Hydrogenation [J]. Langmuir,2001,17(2): 522-527.
    [8]Bartok M., Molnar A. The Chemistry of Double-Bonded Functional Groups [M]. New York:Wiley,1983,843-865.
    [9]Mills P.L., Ramachandran P.A., Chaudhari R.V. Multiphase reaction-engineering for fine chemicals and pharmaceuticals [J]. Chem. Eng. Rev.,1992,8(1-2): 1-176.
    [10]Kim I. Dow moves with responsible care [J]. Chem. Eng.,1993,100(1):50-50.
    [11]Gemal A.L., Luche J.L. Lanthanoids in organic synthesis 6 Reduction of α-enones by sodium borohydride in the presence of lanthanoid chlorides: synthetic and mechanistic aspects [J]. J. Am. Chem. Soc.,1981,103(18): 5454-5459.
    [12]黄宪.有机合成[M].北京:高等教育出版社,1992:308-310.
    [13]Claus P., Bruckner A., Mohr C., Hofmeister H. Supported Gold Nanoparticles from Quantum Dot to Mesoscopic Size Scale:Effect of Electronic and Structural Properties on Catalytic Hydrogenation of Conjugated Functional Groups [J]. J. Am. Chem. Soc.,2000,122(46):11430-11439.
    [14]Delbecq F., Sautet P. Competitive C=C and C=O Adsorption of α,β-Unsaturated Aldehydes on Pt and Pd Surfaces in Relation with the Selectivity of Hydrogenation Reactions:A Theoretical Approach [J]. J. Catal.,1995,152(2): 217-236.
    [15]Delbecq F., Sautet P. A Density Functional Study of Adsorption Structures of Unsaturated Aldehydes on Pt(111):A Key Factor for Hydrogenation Selectivity [J]. J. Catal.,2002,211(2):398-406.
    [16]Carother W.H, Adams R. Platinum oxide as a catalyst in the reduction of organic compounds. Ⅱ. Reduction of aldehydes. Activation of the catalyst by the salts of certain metals [J]. J. Am. Chem. Soc.,1923,45(4):1071-1086.
    [17]Turley W.F., Adams R.J. Selective hydrogenation of cinnamaldehyde over Pt-Zn-Fe [J]. J. Am. Chem. Soc.,1925,47(2):306-309.
    [18]Rylander P.N. Hydrogenation Method [M]. New York:Academic Press, 1985,11-13.
    [19]Hubaut R., Daage M., Bonnelle J.P. Selective hydrogenation on copper chromite catalysts IV. Hydrogenation selectivity for α,β-unsaturated aldehydes and ketones [J]. Appl. Catal. A,1986,22(2):231-241.
    [20]Serrano-Ruiz J.C., Lopez-Cudero A., Solla-Gullon J., Sepulveda-Escribano A., Aldaz A., Rodriguez-Reinoso F. Hydrogenation of α,β-unsaturated aldehydes over polycrystalline, (111) and (100) preferentially oriented Pt nanoparticles supported on carbon [J]. J. Catal.,2008,253(1):159-166.
    [21]Noller H., Lin W.M., Activity and selectivity of Ni-Cu/Al2O3 catalysts for hydrogenation of crotonaldehyde and mechanism of hydrogenation [J]. J. Catal. 1984,85(1):25-30.
    [22]Consonni M., Jokic D., Murin D.Y., Touroude R. High performances of Pt/ZnO catalysts in selective hydrogenation of crotonaldehyde [J]. J. Catal.,1999,188(1): 165-175.
    [23]Margitfalvi J.L., Borbath I., Hegedus M., Tompos A. Preparation of new type of Sn-Pt/SiO2 catalysts for carbonyl activation [J]. Appl. Catal. A,2002,229(1-2): 35-49.
    [24]Rodrigues E.L., Bueno J.M.C., Co/SiO2 catalysts for selective hydrogenation of crotonaldehyde:III. Promoting effect of zinc [J]. Appl. Catal. A,2004,257(2): 201-211.
    [25]Reyes P., Aguirre M.C., Melian-Cabrera I., Lopez Granados M., Fierro J.L.G. Interfacial properties of an Ir/TiO2 system and their relevance in crotonaldehyde hydrogenation [J]. J. Catal.,2002,208(1):229-237.
    [26]Liberkova K., Touroude R., Preformace of Pt/SnO2 catalyst in the gas phase hydrogenation of crotonaldehyde [J]. J. Mol. Catal. A,2002,180(1-2):221-230.
    [27]Englisch M., Jentys A., Lercher J.A., Structure sensitivity of the hydrogenation of crotonaldehyde over Pt/TiO2 and Pt/TiO2 [J]. J. Catal.,1997,166(1):25-35.
    [28]Reyes P., Aguirre M.C., Fierro J.L.G., Santori G., Ferretti O. Hydrogenation of Crotobaldehyde on Rh-Sn/SiO2 catalysts prepared by reaction of tetrabutyltin on prereduced Rh/SiO2 precursors [J]. J. Mol. Catal. A,2002,184(1-2):431-441.
    [29]Claus P., Homfmeister H. Electron microscopy and catalytic study of silver catalysys:structure sensitivity and mechanism [J]. J. Phys. Chem. B,1999, 103(14):2766-2775.
    [30]Zanella R., Louis C, Giorgio S., Touroude R. Crotonaldehyde hydrogenation by gold supported on TiO2:structure sensitivity and mechanism [J]. J. Catal.2004, 223(2):328-339.
    [31]Campo B., Volpe M., Ivanova S., Touroude R. selective hydrogenation of crotonaldehyde on Au/HSA-CeO2 catalysts [J]. J. Catal.,2006,242(1):162-171.
    [32]Cordier G., Colleuille Y., Fouilloux P. Catalyse par les Metaux [M]. Paris:du CNRS,1984,349-356.
    [33]Ryndin Y.A., Santini C.C., Prat D., Basset J.M. Chemo-, Regio-, and Diastereoselective Hydrogenation of Oxopromegestone into Trimegestone over Supported Platinoids:Effects of the Transition Metal, Support Nature, Tin Additives, and Modifiers [J]. J. Catal.,2000,190(2):364-373.
    [34]Pradier C.M., Birchem T., Berthier Y. Hydrogenation of 3-methyl-butenal on Pt (110) comparison with Pt (111) [J]. Catal. Lett.,1994,29(3-4):371-378.
    [35]Birchem T., Pradier C.M., Berthier Y, Cordier G. Reactivity of 3-methyl-crotonaldehyde on Pt(111) [J]. J. Catal.,1994,146(2):503-510.
    [36]Beccat P., Bertolini J.C., Gauthier Y., Massardier J., Ruiz P. Crotonaldehyde and methylcrotonaldehyde hydrogenation over platinum (111) and platinum-iron (Pt80Fe20) (111) single crystals [J]. J. Catal.,1990,126(2):451-456.
    [37]Richard D., Fouilloux P., Gallezot P. Structure and selectivity in cinnamaldehyde hydrogenation of new platinum catalysts on high surface area graphite [C]. Proc. Int. Congr. Catal.9th, Ottawa:Chem. Inst. Of. Canada,1988(3):1074-1081.
    [43]Giroir-Fendler A., Richard D., Gallezot P. Chemoselectivity in the catalytic hydrogenation of cinnamaldehyde:effect of metal particle morphology [J]. Catal. Lett.,1990,5(2):175-181.
    [38]Minot C., Gallezot P. Competitive hydrogenation of benzene and toluene: theoretical study of their adsorption on ruthenium, rhodium, and palladium [J]. J. Catal.,1990,123(2):341-348.
    [39]Nitta Y., Ueno K., Imanaka T. Selective hydrogenation of α,β-unsaturated aldehydes on cobalt-silica catalysts obtalt chrysotile [J]. Appl. Catal. A,1989, 56(1):9-22.
    [40]Coq B., Figueras F., Moreau C. Hydrogenation of substituted acrolein over alumina supported euthenium catalysts [J]. Catal. Lett.,1993,22(3):189-195.
    [41]Gallezot P., Giroir-Fendler A., Richard D. Chemoselectivity in cinnamaldehyde hydrogenation induced by shape selectivity effects in platinum-Y zeolite catalysts [J]. Catal. Lett.,1990,5(2):169-174.
    [42]Tas D., Parton R.F., Vercruysse K., Jacobs P.A. Studies in Surface Science and Catalysis [M]. Amsterdam:Elsevier,1997,1261-1268.
    [43]Didillon B., El M.A., Candy J.P., Bournonville J.P., Basset J.M. Studies in Surface Science and Catalysis [M]. Amsterdam:Elsevier,1991,137-143.
    [44]Satagopan V., Chandalia S.B. Selectivity aspects in the multi-phase hydrogenation of α,β-unsaturated aldehydes over supported noble metal catalysts: part 1 [J]. J. Chem. Tech. Biotechnol.,1994,59(3):257-263.
    [45]Santori G.F., Casella M.L., Ferretti O.A. Hydrogenation of carbonyl compounds using tin-modified platinum-based catalysts prepared via surface organometallic chemistry on metals (SOMC/M) [J]. J. Mol. Catal. A,2002,186(1-2):223-239.
    [46]Margitfalvi J.L., Tompos A., Kolosova I., Valyon J. Reaction induced selectivity improvement in the hydrogenation of crotonaldehyde over Sn-Pt/SiO2 catalysts [J]. J. Catal.,1998,174(2):246-249.
    [47]Giroir-Fendler A., Richard D., Gallezot P. Studies in surface science and catalysis [M]. Amsterdam:Elsevier,1988,171-172.
    [48]Tran M.T., Massardier J., Gallezot P., Imelik B. Studies in Surface Science and Catalysis [M]. Amsterdam:Elsevier,1982,141-148.
    [49]Planeix J.M., Coustel N., Coq B., Brotons V., Kumbhar P.S., Dutartre R., Geneste P., Bernier P., Ajayan P.M. Application of Carbon Nanotubes as Supports in Heterogeneous Catalysis [J]. J. Am. Chem. Soc.,1994,116(17): 7935-7936.
    [50]Coloma F., Sepulveda-Escribano A., Rodriguez-Reinoso F. Improvement of the selectivity to crotyl alcohol in the gas-phase hydrogenation of crotonaldehyde over platinum/activated carbon catalysts [J]. Appl. Catal. A,1995,123(1): L1-L5.
    [51]Hoang-Van C., Zegaoui O. Studies of high surface area Pt/MoO3 and Pt/WO3 catalysts for selective hydrogenation reactions. Ⅱ. Reactions of acrolein and allyl alcohol [J]. Appl. Catal. A,1997,164(1-2):91-103.
    [52]Englisch M., Jentys A., Lercher J.A. Structure sensitivity of the hydrogenation of crotonaldehyde over Pt/SiO2 and Pt/TiO2 [J]. J. Catal.,1997,166(1):25-35.
    [53]Sepulveda-Escribano A., Coloma F., Rodriguez-Reinoso F. Promoting effect of ceria on the gas phase hydrogenation of crotonaldehyde over platinum catalysts [J]. J. Catal.1998,178(2):649-657.
    [54]Poondi D., Vannice M.A. The influence of MSI (metal support interactions) on phenylacetaldehyde hydrogenation over Pt catalysts [J]. J. Mol. Catal. A,1997, 124(1):79-89.
    [55]Dandekar A., Vannice M.A. Crotonaldehyde hydrogenation on Pt/TiO2 and Ni/TiO2 SMSI catalysts [J]. J. Catal.,1999,183(2):344-354.
    [56]Huidobro A., Sepulveda-Escribano A., Rodriguez-Reinoso F., Vapor-Phase Hydrogenation of Crotonaldehyde on Titania-Supported Pt and PtSn SMSI Catalysts [J]. J. Catal.,2002,212(1):94-103.
    [57]Gruenert W., Brueckner A., Hofmeister H., Claus P. Structural Properties of Ag/TiO2 Catalysts for Acrolein Hydrogenation [J]. J. Phys. Chem. B,2004, 108(18):5709-5717.
    [58]Reyes P., Aguirre M.C., Melian-Cabrera I., Lopez Granados M., Fierro J.L.G. Interfacial Properties of an Ir/TiO2 System and Their Relevance in Crotonaldehyde Hydrogenation [J]. J. Catal.,2002,208(1):229-237.
    [59]Abid M., Touroude R., Murzin D.Y. Catalysis of Organic Reactions [M]. New York:Dekker 2003,577-585.
    [60]Vanderspurt T.H. Catalysis in Organic Syntheses [M]. New York:Academic Press 1978,11-33.
    [61]Galvagno S., Capannelli G., Neri G., Donato A., Pietropaolo R. Hydrogenation of cinnamaldehyde over ruthenium/carbon catalysts:effect of ruthenium particle size [J]. J. Mol. Catal. A,1991,64(2):237-246.
    [62]Hutchings G.J., King F., Okoye I.P., Rochester C.H. Influence of sulfur poisoning of copper/alumina catalyst on the selective hydrogenation of crotonaldehyde [J]. Appl. Catal. A,1992,83(2):L7-L13.
    [63]Chiu M.E., Watson D.J., Kyriakou G., Tikhov M.S., Lambert R.M. Tilt the molecule and change the chemistry:Mechanism of S-promoted chemoselective catalytic hydrogenation of crotonaldehyde on Cu(111) [J]. Angew. Chem. Int. Ed.,2006,45(45):7530-7534.
    [64]Patil A.N., Banares M., Lei X.J., Fehlner T.P., Wolf E.E. Selective hydrogenation of 2-butenal using cluster of clusters-based catalysts [J]. J. Catal., 1996,159(2):458-472.
    [65]Bond G.C., Thompson D.T. Catalysis by gold [J]. Catal Rev Sci Eng,1999, 41(3-4):319-388.
    [66]Wang J., Koel B.E. IRAS Studies of NO2, N2O3, and N2O4 Adsorbed on Au(111) Surfaces and Reactions with Coadsorbed H2O [J]. J. Phys. Chem. A,1998, 102(44):8573-8579.
    [67]Bond G.C., Sermon P.A., Webb G., Buchanan D.A., Wells P.B., Hydrogenation over supported gold catalysts [J]. J. Chem. Soc., Chem. Commun.,1973, (13): 444b-445.
    [68]Haruta M., Kobayashi T., Sano H., Yamada N. Novel gold catalysts for oxidation of carbon monoxide at a temperature far below 0 "C [J]. Chem. Lett.,1987,16(2): 405-406.
    [69]Huctchings G.J. Vapor phase hydrochlorination of acetylene:Correlation of catalytic activity of supported metal chloride catalysts [J]. J. Catal.,1985,96(1): 292-295.
    [70]Schwartz V., Mullins D.R., Yan W.F., Chen B., Dai S., Overbury S.H. XAS Study of Au Supported on TiO2:Influence of Oxidation State and Particle Size on Catalytic Activity [J]. J. Phys. Chem. B,2004,108(40):15782-15790.
    [71]Trimm D.L. Minisation of carbon monoxide in a hydrogen stream for fuel application [J]. Appl. Catal. A,2005,296(1):1-11.
    [72]Cameron D., Holliday R., Thompson D. Gold's future role in fuel cell systems [J]. J. Power Souces,2003,118(1-2):298-303.
    [73]Landon P., Ferguson J., Solsona B.E., Garcia S., Al-Sayari S., Carley A.F., Herzing A.A., Kiely C.J., Makkee M., Moulijn J.A., Overweg A., Golunski S.E., Huchings G.J. Selective oxidation of CO in the presence of H2, H2O and CO2 utilising Au/a-Fe2O3 catalysts for use in fuels cells [J]. J. Mater. Chem.,2005, 16(2):199-208.
    [74]Schubert M.M., Venugopal A., Kahlich M.J., Plzak V., Behm R.J., Influence of H2O and CO2 on the selective CO oxidation in H2-rich gases over Au/a-Fe2O3 [J]. J. Catal.,2004,222(1):32-40.
    [75]Kahlich M.J., Gasteiger H.A., Behm R.J. Kinetics of the selective low-temperature oxidation of CO in H2-rich gases over Au/a-Fe2O3 [J]. J. Catal., 1999,182(2):430-440.
    [76]Schuber M.M., Plzak V., Grache J., Behm R.J. Acttivity, selectivity, and long-term stability of different metal oxide supported gold catalysts for preferential CO oxidation in H2-rich gas [J]. Catal. Lett.,2001,76(3-4):143-150.
    [77]Kurz, E.A., Hudson J.B., The adsorption of H2 and D2 on Fe(110) Helium scattering as a probe of adsorption [J]. Surf. Sci.,1988,195(1-2):15-30.
    [78]Askgaard T.S., NΦrskov, J.K., Ovesen C.V., Stoltze P. A Kinetic Model of Methanol Synthesis [J]. J. Catal.,1995,156(2):229-242.
    [79]Choi Y., Stenger H.G., Fuel cell grade hydrogen from methanol on a commercial Cu/ZnO/Al2O3 catalyst [J]. Appl. Catal. B,2002,38(4):259-269.
    [80]南京大学化学系催化教研室.……氧化碳中温变换催化剂[M].北京.化学工业出版社.1979.
    [81]岳伟,张益群,周伟,马建新.汽车尾气催化净化过程中的水煤气反应和蒸汽转换反应[J].工业催化,2000,8(5):29-33.
    [82]Haruta M., Date M. Advances in the catalysis of Au nanoparticles [J]. Appl. Catal. A,2001,222(1-2):427-437.
    [83]Andreeva D., Idakiev V., Tabakova T., Andreev A. Low-temperature water-gas shift reaction over Au/a-Fe2O3 [J]. J. Catal,.1996,158(1):354-355.
    [84]Tabakova T., Idakiev V., Andreeva D., Mitov 1. Influence of the microscopic properties of the support on the catalytic activity of Au/ZnO, Au/ZrO2, Au/Fe2O3, Au/Fe2O3-ZnO, Au/Fe2O3-ZrO2 catalysts for the WGS reaction [J]. Appl. Catal. A,2000,202(1):91-97.
    [85]Bond G.C., Thompson D.T. Catalysis by gold [J]. Catal. Rev. Sci. Eng.,1999, 41(3-4):319-388.
    [86]Uphade B.S., Yamada Y., Akita T., Nakamura T., Haruta M. Synthesis and characterization of Ti-MCM-41 and vapor-phase epoxidation of propylene using H2 and O2 over Au/Ti-MCM-41 [J].Appl. Catal. A,2001,215(1-2):137-148.
    [87]Haruta M., Uphade B.S., Tsubota S., Miyamoto A. Selective oxidation of propylene over gold deposited on titanium-based oxides [J]. Res. Chem. Intermed.,1998,24(3):329-336.
    [88]Kalvachev Y.A., Hayashi T., Tsubota S., Haruta M. Vapor-Phase Selective Oxidation of Aliphatic Hydrocarbons over Gold Deposited on Mesoporous Titanium Silicates in the Co-Presence of Oxygen and Hydrogen [J]. J. Catal., 1999,186(1):228-233.
    [89]Nijhuis T.A., Huizinga B.J., Makkee M., Moulijn J.A. Direct epoxidation of propene using gold dispersed on TS-1 and other titanium-containing supports [J]. Ind. Eng. Chem. Res.,1999,38(3):884-891.
    [90]Hayashi T., Tanaka K., Haruta M. Selective vapor-phase epoxidation of propylene over Au/TiO2 catalysts in the presence of oxygen and hydrogen [J]. J. Catal.,1998,178(2):566-575.
    [91]Uphade B.S., Tsubota S., Hayashi T., Haruta M. Selective oxidation of propylene to propylene oxide or propionaldehyde over Au supported on titanosilicates in the presence of H2 and O2 [J]. Chem. Lett.,1998,12:1277-1278.
    [92]Okumura M., Akita T., Haruta M. Hydrogenation of 1,3-butadiene and of crotonaldehyde over highly dispersed Au catalysts [J]. Catal. Today,2002, 74(3-4):265-269.
    [93]Milone C., Tropeano M.L., Gulino G., Neri G., Ingoglia R., Galvagno S. Selective liquid phase hydrogenation of citral on Au/Fe2O3 catalysts [J]. Chem. Commun.,2002,2(8):868-869.
    [94]Milone C., Ingoglia R., Pistone A., Neri G., Frusteri F., Galvagno S. Selective hydrogenation of α,β-unsaturated ketones to α,β-unsaturated alcohols on gold-supported catalysts [J]. J. Catal.,2004,222(2):348-356.
    [95]Bailie J.E., Hutching G.J. Promotion by sulfur of gold catalysts for crotyl alcohol formation from crotonaldehyde hydrogenation [J]. Chem. Commun.,1999, 999(21):2151-2152.
    [96]Shinoda K. Vapor-phase hydrochlorination of acetylene over metal chlorides supported on activated carbon [J]. Chem. Lett.,1975,3:219-220.
    [97]Hutchings G.J. Gold catalysis in chemical processing [J]. Catal. Today,2002, 72(1-2):11-17.
    [98]Nkosi B., Coville N.J., Hutchings G.J., Adams M.D., Friedl J., Wagner F.E. Hydrochlorination of acetylene using gold catalysts:a study of catalyst deactivation [J]. J. Catal.,1991,128(2):366-377.
    [99]Ueda A., Oshima T., Haruta M. Reduction of nitrogen monoxide with propene in the presence of oxygen and moisture over gold supported on metal oxides [J]. Appl. Catal. B,1997,12(2-3):81-93.
    [100]Ueda A., Haruta M. Reduction of nitrogen monoxide with propene over Au/Al2O3 mixed mechanically with Mn2O3 [J]. Appl. Catal. B,1998,18(1-2): 115-121.
    [101]Gluhoi A.C., Lin S.D., Nieuwenhuys B.E. The beneficial effect of the addition of base metal oxides to gold catalysts on reactions relevant to air pollution abatement [J]. Catal. Today,2004,90(3-4):175-181.
    [102]Prati L., Rossi M. Gold on carbon as a new catalyst for selective liquid phase oxidation of diols [J]. J. Catal.,1998,176(2):552-560.
    [103]Biella S., Castiglioni G.L., Fumagalli C., Prati L., Rossi M. Application of gold catalysts to selective liquid phase oxidation [J]. Catal. Today,2002,72(1-2): 43-49.
    [104]Shi F., Deng Y.Q. Polymer-Immobilized Gold Catalysts for the Efficient and Clean Syntheses of Carbamates and Symmetrical Ureas by Oxidative Carbonylation of Aniline and Its Derivatives [J]. J. Catal.,2002,211(2): 548-551.
    [105]Hao Z., Cheng D., Guo Y., Liang Y. Supported gold catalysts used for ozone decomposition and simultaneous elimination of ozone and carbon monoxide at ambient temperature [J]. Appl. Catal. B,2001,33(3):217-222.
    [106]Aida T., Higuchi R., Niiyama H. Decomposition of Freon-12 and methyl chloride over supported gold catalysts [J]. Chem. Lett.,1990,19(12):2247-2250.
    [107]Xu Q., Kharas K.C.C., Datye A.K. The Preparation of Highly Dispersed Au/Al2O3 by Aqueous Impregnation [J]. Catal. Lett.,2003,85(3-4):229-235.
    [108]Haruta M., Yamada N., Kobayashi T., Iijima S. Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide [J]. J. Catal.,1989,115(2):301-309.
    [109]Tsubota S., Haruta M., Kobayashi J. Preparation of Catalysis [M]. Amsterdam:Elsevier,1991,695-704.
    [144]Yang G., Gao G., Wang C, Xu C.L., Li H.L. Controllable deposition of Ag nanoparticles on carbon nanotubes as a catalysts for hydrazine oxidation [J]. Carbon,2008,46(5):747-752.
    [145]Geng J., Bi Y., Lu G. Morphology-dependent activity of silver nanostructures towards the electro-oxidation of formaldehyde [J]. Electro. Commun.,2009, 11(6):1255-1258.
    [146]Tu C.H., Wang A.Q., Zheng M.Y., Meng Y, Shan J.H., Zhang T. A novel active catalyst Ag/SBA-15 for CO oxidation [J]. Chin. J. Catal.,2005,26(8):631-635.
    [147]Grunert W., Bruckner A., Hofmeister H., Claus P. Structural Properties of Ag/TiO2 Catalysts for Acrolein Hydrogenation [J]. J. Phys. Chem. B,2004, 108(18):5709-5717.
    [148]Lim K.H., Mohammad A.B., Yudanov I.V., Neyman K.M., Bron M., Claus P., Rosch N. Mechanism of Selective Hydrogenation of α,β-Unsaturated Aldehydes on Silver Catalysts:A Density Functional Study [J]. J. Phys. Chem. C,2009, 113(30):13231-13240.
    [149]Bron M., Teschner D., Knop-Gericke A., Jentoft F.C., Krohnert J., Hohmeyer J., Volckmar C., Steinhauer B., Schlogl R., Claus P. Silver as acrolein hydrogenation catalyst:intricate effects of catalyst nature and reactant partial pressures [J]. Phys. Chem. Chem. Phys.,2007,9(27):3559-3569.
    [150]Mertens P.G.N., Vandezande P., Ye X.P., Poelman H., Vankelecom I.F.J., De Vos D.E. Recyclable Au0, Ag0 and Au0-Ag0 nanocolloids for the chemoselective hydrogenation of α,β-unsaturated aldehydes and ketones to allylic alcohols [J]. Appl. Catal. A,2009,355(1-2):176-183.
    [151]Claus P. Selective hydrogenation of α,β-unsaturated aldehydes and other C=O and C=C bonds containing compounds [J]. Topics in Catal.,1998,5(1-4):51-62.
    [152]Steffan M., Jakob A., Claus P., Lang H. Silicas supported silver nanoparticles from a silver (1) carboxylate:Highly active catalysts for regioselective hydrogenation [J]. Catal. Commurn.,2009,10(5):437-441.
    [153]Lim K.H., Mohammad A.B., Yudanov I.V., Neyman K.M., Bron M., Claus P., Rosch N. Mechanism of Selective Hydrogenation of α,β-Unsaturated Aldehydes on Silver Catalysts:A Density Functional Study [J]. J. Phys. Chem. C,2009, 113(30):13231-13240.
    [1]Zhao D.Y., Feng J.L., Huo Q.S., Melosh N., Fredrickson G.H., Chmelka B.F., Stucky G.D. Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores [J]. Science,1998,279(5350):548-552.
    [2]Yoshitake H., Yokoi T., Tatsumi T. Synthesis of anionic-surfactant-templated mesoporous silica using organoalkoxysilane-containing amino groups [J]. Chem. Letter.,2002,31(6):586-587.
    [3]Yoshitake H., Yokoi T., Tatsumi T. Adsorption of Chromate and Arsenate by Amino-Functionalized MCM-41 and SBA-15 [J]. Chem. Mater.,2002,14(11): 4603-4610.
    [4]Kim B., Sigmund W.M. Functionalized multiwall carbon nanotube/gold nanoparticle composites [J]. Langmuir,2004,20(19):8239-8242.
    [5]李艳亮.碳纳米管的化学修饰[D].北京化工大学材料科学与工程学院,2004.
    [6]李艳亮,程斌,沈增民.酸处理对多壁碳纳米管形态的影响[J].北京大学学报.2004,31(4):60-64.
    [7]Yuan Q., Yin A.X., Luo C., Sun L.D., Zhang Y.W., Duan W.T., Liu H.C., Yan C.H. Facile synthesis for ordered mesoporous γ-aluminas with high thermal stability [J]. J. Am. Chem. Soc.,2008,130(11):3465-3472.
    [8]Morris S.M., Fulvio P.F., Jaroniec M. Ordered mesoporousalumina-supported metal oxides [J].J. Am. Chen. Soc.,2008,130(45):15210-15216.
    [9]Zanella R., Louis C., Giorgio S., Touroude R. Crotonaldehyde hydrongenation by gold supported on TiO2:structure sensitivity and mechanism [J]. J. Catal.,2004, 223(2):329-339.
    [10]Yang Q.Y., Zhu Y., Tian L., Xie S.H., Pei Y, Li H., Li H.X., Qiao M.H., Fan K.N. Appl. Catal. A,2009,369(1-2):67-76.
    [11]Lopes L., Hassan N.E., Guerba H., Wallez G., Davidson A. Size-induced structural modifications affecting Co3O4 nanoparticles patterned in SBA-15 silicas [J]. Chem. Mater.,2006,18(25):5826-8528.
    [12]Brunauer S, Emmett P.H., Teller E. Adsorption of Gases in Multimolecular Layers [J]. J. Am. Chem. Soc.,1938,60(2):309-319.
    [13]Robertson S.D., Anderson R.B. Structure of Raney nickel Ⅳ X-ray diffraction studies [J]. J. Catal.,1971,23(2):286-294.
    [14]Boudeville Y., Figueras F., Forissier M., Portefaix J.L., Vedrine J.C. Correlations between x-ray photoelectron spectroscopy data and catalytic properties in selective oxidation on antimony-tin-oxygen catalysts [J]. J. Catal.,1979,58(1): 52-60.
    [15]van der M.J., Bardez-Giboire I., Mercier C., Revel B., Davidson A., Denoyel R. Mechanism of metal oxide nanoparticle loading in SBA-15 by the double solvent technique [J]. J. Phys. Chem. C,2010,114(8):3507-3515.
    [16]万小红.[D].合肥:中国科学技术大学
    [17]Sayers D.E., Bunker B.A. X-ray Absorption, Principles, Applications, Techniques of EXAFS, SEXAFS and XANES [M]. New York:John Wiley and Sons Inc, 1998,211-253.
    [18]Wei S., Oyanagi H., Liu W., Hu T., Yin S., Bian G. Local structure of liquid gallium studied by X-ray absorption fine structure [J]. J. Non-Crystal Solids, 2000,275(3):160-168.
    [1]Kresge C.T., Leonowicz M.E., Roth W.J., Vartuli J.C., Beck J.S. Ordered mesoporous molecular-sieves synthesized by a liquid-crystal template mechanism [J]. Nature,1992,359(8):710-712.
    [2]Beck J.S., Vartuli C., Roth W.J., Leonowicz M.E., Kresge C.T., Schmitt K.D., Chu C.T.W., Olson D.H., Sheppard E.W. A new family of mesoporous molecular sieves prepared with liquid crystal templates [J]. J. Am. Chem. Soc.,1992, 114(27):10834-10843.
    [3]Anagisawa T.Y., Schimizu T., Kuroda K., Kato C. The preparation alkyltrimethy lammonium-kanemite complexes and their conversion to mocroporous materials [J]. Bull. Chem. Soc. Jpn.,1990,63(4):988-992.
    [4]Inagaki S., Fukushima Y., Kuroda K.J. Synthesis of highly ordered mesoporous materials from a layered polysilicate [J]. Chem. Soc., Chem. Commun.,1993, (8): 680-682.
    [5]张一平,周春晖,王学杰,杨彤,徐羽展.有机功能化介孔氧化硅的制备和表征[J].化学进展,2008,20(1):33-41.
    [6]邹旭华,齐世学,索掌怀,安立敦,段雪.预处理条件对Au/Al2O3催化CO氧化性能的影响[J].催化学报,2004,25(2):153-157.
    [7]Schubert M.M., Hackenberg S., van Veen A.C., Muhler M., Plzak V, Behm R.J. CO oxidation over supported gold catalysts "Inert" and "Active" support materials and their role for the oxygen supply during reaction [J]. J. Catal.,2001, 197(1):113-122.
    [8]Bond G.C., Thopson D.T., Catalysis by gold [J]. Catal. Rev.-Sci. Eng.,1999, 41(3-4):319-388.
    [9]Dekkers M.A.P., Lippits M.J., Nieuwenhuys B.E. Supported Au/MOx catalysts for NO/H2 and CO/O2 reactions [J]. Catal. Today,1999,54(4):381-390.
    [10]Delannoy L., Hassan N.E., Musi A., Le To N.N., Krafft J.M., Louis C Preparation of supported gold nanoparticles by a modified incipient wetness impregnation method [J]. J. Phys. Chem. B,2006,110(45):22471-22478.
    [11]Overbury S.H., Ortiz-Soto L., Zhu H.G., Lee B., Amiridis M.D., Dai S. Comparison of Au catalysts supported on mesoporous titania and silica: investigation of Au particle size effects and Metal-support interactions [J]. Catal. Lett.,2004,95(3-4):99-106.
    [12]Chou J., Franklin N.R., Baeck S.H., Jaramillo T.F., McFarland E.W. Gas-phase catalysis by Micelle derived Au nanoparticles on oxide supports [J]. Catal. Lett., 2004,95(3-4):107-111.
    [13]Okummura M., Nakamura S., Tsubota S., Nakamura T., Azuma M., Haruta M. Chemical vapor deposition of gold on Al2O3, SiO2, and TiO2 for the oxidation of CO and H2 [J]. Catal. Lett.,1998,51(1-2):53-58.
    [14]Okummura M., Tsubota S., Haruta M. Preparation of supported gold catalysts by gas-phase grafting of gold acethylacetone for low-temperature oxidation of CO and of H2 [J]. J. Mol. Catal. A,2003,199(1-2):73-84.
    [15]Yang C.M., Kalwei M., Schiith F., Chao K.J. Gold nanopartiles in SBA-15 showing catalytic activity in CO oxidation [J]. Appl. Catal. A,2003,254(2): 289-296.
    [16]Caruso F. Nanoengineering of particle surfaces [J]. Adv. Mater.,2001,13(1): 11-22.
    [17]Prodan E., Radloff C., Halas N.J., Nordlander P. A hybridization model for the Plasmon response of complex nanostructures [J]. Science,2003,302(5644): 419-422.
    [18]Yang H.H., Qu H.Y., Lin P., Li S.H., Ding M.T., Xu J.G. Nanometer fluorescent hydrid silica particle as ultrasensitive and photostable biological labels [J]. Analyst,2003,128(5):462-466.
    [19]Perruchot C., Chehimi M.M., Delamar M., Fievet F. Use of aminosilane coupling agent in the synthesis of conducting, hybrid polypyrrole-silica gel particles [J]. Sur. Interface Anal.,1998,26(9):689-698.
    [20]Pei Y., Guo P.J., Zhu L.J., Yan S.R., Qiao M.H., Fan K.N. Selective hydrogenation of crotonaldehyde over Au nanoparticles confined in APTS-functionalized mesoporous silicas [J]. Stud. Surf. Sci. Catal.,2007,170: 1174-1181.
    [21]Yang Q.Y., Zhu Y., Tian L., Xie S.H., Pei Y., Li H., Li H.X., Qiao M.H., Fan K.N. Preparation and characterization of Au-In/APTMS-SBA-15 catalysts for chemoselective hydrogenation of crotonaldehyde to crotyl alcohol [J]. Appl. Catal. A,2009,369(1-2):67-76.
    [22]Zhao D.Y., Feng J.L., Huo Q.S., Melosh N., Fredrickson G.H., Chmelka B.F., Stucky G.D. Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores [J]. Science,1998,279(5350):548-552.
    [23]Zhao D.Y., Huo Q.S., Feng J.L., Chmelka B.F., Stucky G.D. Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures [J]. J. Am. Chem. Soc.,1998,120(10):6024-6036.
    [24]Tanev P.T., Chibwe M., Pinnavaia T.J. Titanium-containing mesoporous molecular sieves for catalytic oxidation of aromatic compounds [J]. Nature,1994, 368(6469):321-323.
    [25]Shah P., Ramaswamy A.V., Lazar K., Ramaswamy V. Synthesis and characterization of tin oxide-modified mesoporous SBA-15 molecular sieves and catalytic activity in trans-esterification reaction [J]. Appl. Catal. A,2004, 273(1-2):239-248.
    [26]Cregg S.J., Sing K.S.W. Adsorption, Surface Area and Porosity,2nd, [M]. London: Academic Press,1982:1-303.
    [27]Zhang L.X., Yu C.C., Zhao W.R., Hua Z.L., Chen H.R., Li L., Shi J.L. Preparation of multi-amine-grafted mesoporous silicas and their application to hevavy metal ions adsorption [J]. J. Non-Crystal Solids,2007,353(44-46): 4055-4061.
    [28]Margolese D., Melero J.A., Christansen S.C., Chemlka B.F., Stucky G.D Direct syntheses of ordered SBA-15 mesoporous silicas containing sulfonic acid groups [J]. Chem. Mater.2000,12(8):2448-2459.
    [29]Tanev P.T., Pinnavaia T.J. A neutral templating route to mesoporous molecular-sieves [J]. Science,1995,167(8):865-867.
    [30]Zanella R., Louis C, Giorgio S., Touroude R. Crotonaldehyde hydrogenation by gold supported on TiO2:structure sensitivity and mechanism [J]. J. Catal.,2004, 223(2):328-339.
    [31]Moulder J.F., Stickle W.F., Sobol P.E., Bomben K.D., Chastain J. Handbook of X-Ray Photoelectron Spectroscopy [M]. Minnesota:Perkin-Elmer Corporation, 1992:39,84-85.
    [32]Moulder J.F., Stickle W.F., Sobol P.E., Bomben K.D., Chastain J. Handbook of X-ray Photoelectron Spectroscopy [M]. Minnesota:Perkin-Elmer Corporation, 1992:39,182-183.
    [33]Okumura M., Akita T., Haruta M. Hydrogenation of 1,3-butadiene and of crotonaldehyde over highly dispersed Au catalysts [J]. Catal. Today,2002, 74(3-4):265-269.
    [34]Schimpf S., Lucas M., Mohr C., Rodemerck U., Bruckner A., Radnik J., Hofmeister H., Claus P. Supported gold nanoparticles:in-depth catalyst characterization and application in hydrogenation and odidation [J]. Catal. Today, 2002,72(1):63-78.
    [35]Claus P., Bruckner A., Mohr C., Hofmeister H. Supported Gold Nanoparticles from Quantum Dot to Mesoscopic Size Scale:Effect of Electronic and Structural Properties on Catalytic Hydrogenation of Conjugated Functional Groups [J]. J. Am. Chem. Soc.,2000,122(46):11430-11439.
    [36]Bailie J.E., Abdullah H.A., Anderson J.A., Rochester C.H., Richardson N.V., Hodge N., Zhang J.G., Burrows A., Kiely C.J., Hutchings G.J. Hydrogenatiion of but-2-enal over supported Au/ZnO catalysts [J]. Phys. Chem. Chem. Phys.,2001, 3(18):4113-4121.
    [37]Milone C., Crisafulli C., Ingoglia R., Schipilliti L., Galvagno S. A comparative study on the selective hydrogenation of α,β-unsaturated aldehyde and ketone to unsaturated alcohols on Au supported catalysts [J]. Catal. Today,2007,122(3-4): 341-351.
    [38]Milone C., Ingoglia R., Schipilliti L., Crisafulli C, Neri G., Galvagno S. Selective hydrogenation of α,β-unsaturated alcohol on gold-supported iron oxide catalysts:Role of the support [J]. J. Catal.,2005,236(1),80-90.
    [39]Delbecq F., Sautet P. Competitive C=C and C=O Adsorption α,β3-unsaturated aldehydes on Pt and Pd Surfaces in Relation with the Selectivity of Hydrogenation Reactions:A Theoretical Apporach [J]. J. Catal.,1995,152(2): 217-236.
    [40]Pradier C.M., Birchem T., Berthier Y., Cordier G. Hydrogenation of 3-methyl-butenal on Pt(110) comparison with Pt(111) [J]. Catal. Lett.,1994, 29(3-4):371-378.
    [41]Claus P., Bruckner A., Mohr C., Hofmeister H. Supported Gold Nanoparticles from Quantum Dot to Mesoscopic Size Scale:Effect of Electronic and Structural Properties on Catalytic Hydrogenation of Conjugated Functional Groups [J]. J. Am. Chem. Soc.,2000,122(46):11430-11439.
    [42]Delbecq F., Sautet P. Competitive C=C and C=O Adsorption of α-β-Unsaturated Aldehydes on Pt and Pd Surfaces in Relation with the Selectivity of Hydrogenation Reactions:A Theoretical Approach [J]. J. Catal.,1995,152(2): 217-236.
    [43]Delbecq F., Sautet P. A Density Functional Study of Adsorption Structures of Unsaturated Aldehydes on Pt(111):A Key Factor for Hydrogenation Selectivity [J]. J. Catal.,2002,211(2):398-406.
    [1]Iijima S. Helical microtubules of graphitic carbon [J]. Nature,1991,354(7): 56-58.
    [2]Georgakilas V., Goumis D., Tzitzios V., Pasquato L., Guldi D.M., Prato M. Decorating carbon nanotubes with metal or semiconductor nanoparticles [J]. J. Mater. Chem.,2005,17(26):2679-2694.
    [3]Buttner M., Oelhafen P. XPS study on the evaporation of gold submonolayers on carbon surfaces [J]. Surf. Sci.,2006,600(5):1170-1177.
    [4]Jiang K.Y., Eitan A., Schadler L.S., Ajayan P.M., Siegel R.W. Selective Attachment of Gold Nanoparticles to Nitrogen-Doped Carbon Nanotubes [J]. Nano Lett.,2003,3(3):275-277.
    [5]Ellis A.V., Vijayamohanan K., Goswami R., Chakrapani N., Ramanathan L.S., Ajayan P.M., Ramanath G. Hydrophobic Anchoring of Monolayers-Protected Gold Nanoclusters to Carbon Nanotubes [J]. Nano Lett.,2003,3(3),279-282.
    [6]Liu X., Imae T. Size-Controlled in situ Synthesis of Metal Nanoparticles on Dendrimer-Modified Carbon Nanotube [J]. J. Phys. Chem. C,2007,111(6): 2416-2420.
    [7]Tessonnier J.P., Pesant L., Ehret G., Ledoux M.J., Pham-Huu C. Pd nanoparticles introduced inside multi-walled carbon nanotubes for selective hydrogenation of cinnamaldehyde into hydrocinnaldehyde [J]. Appl. Catal. A,2005,288(1-2): 203-210.
    [8]Corma A., Garcia H., Leyva A. Catalytic activity of palladium supported on single wall carbon nanotubes compared to palladium supported on activated carbon: Study of the Heck and Suzuki couplings, aerobic alcohol oxidation and selective hydrogenation [J]. J. Mol. Catal. A,2005,230(1-2):97-105.
    [9]Liu Z.T., Wang C.X., Liu Z.W., Lu J. Selective hydrogenation of cinnaldehyde over Pt-supported multi-walled carbon nanotubes into the tube-size effects [J]. Appl. Catal. A,2008,344(1-2):114-123.
    [10]Xing Y.C., Li L., Chesuei C.C., Hull R.V. Sonochemical Oxidation of Multiwalled Carbon Nanotubes [J]. Langmuir,2005,21(9):4185-4190.
    [11]Sing K.S.W., Everett D.H., Haul R.A.W., Moscou L., Pierotti R.A., Rouquerol J., Siemieniewska T. Reporting physisorption data for gas/solid system with special reference to the determination of surface area and porosity [J]. Pure Appl. Chem., 1985,57(4):603-619.
    [12]Sing K.S.W., Williams R.T. Physisorption Hysteresis Loops and the Characterization of Nanoporous Materials [J]. Adsorpt. Sci. Technol.,2004, 22(10):773-782.
    [13]Yang K., Xing B.S. Desorption of polycyclic aromatic hydrocarbons from carbon nanomaterials in water [J]. Environ. Pollut.,2007,145(2):529-537.
    [14]Li Z.J., Pan Z.W., Dai S. Nitrogen adsorption characterization of aligned multi-walled carbon nanotubes and their acid modification [J]. J. Colloid. Interface Sci.,2004,277(1):35-42.
    [15]Rossi M.P., Ye H.H., Gogotsi Y., Babu S., Ndungu P., Bradley J.C. Environmental Scanning Electron Microscopy Study of water in Carbon nanopipes [J]. Nano. Lett.,2004,4(5):989-993.
    [16]Tessonnier J.P., Pesant L., Ehret G., Ledoux M.J., Huu-Pham C. Pd nanoparticles introduced inside multi-walled carbon nanotubes for selective hydrogenation of cinnamaldehyde into hydrocinnamaldehyde [J]. Appl. Catal. A,2005,288(1-2): 203-210.
    [17]Khanderi J., Hoffmann R.C., Engstler J., Schneider J.J., Arras J., Claus P., Cherkashinin G. Binary Au/MWCNT and Ternary Au/ZnO/MWCNT Nanocomposites:Synthesis, Characterisation and Catalytic Performance [J]. Chem. Eur. J.,2010,16(7):2300-2308.
    [18]Estrade-Szwarckopf H. XPS photoemission in carbonaceous materials:A "defect" peak beside the graphitic asymmetric peak [J]. Carbon,2004,42(8-9): 1713-1721.
    [19]Serp P., Corrias M., Kalck P. Carbon nanotubes and nanofibes in catalysis [J]. Appl. Catal. A,2003,253(2):337-358.
    [20]Toebes M.L., Zhang Y.H., Hajek J., Nijhuis T.A., Bitter J.H., van Dillen A.J., Yu Murzin D., Koningsberger D.C., de Jong K.P. Support effects in the hydrogenation of cinnamaldehyde over carbon nanofiber-supported platinum catalysts:characterization and catalysis [J]. J. Catal.,2004,226(1):215-225.
    [21]Shi H., Xu N., Zhao D., Xu B.-Q. Immobilized PVA-stabilized gold nanoparticles on silica show an unusual selectivity in the hydrogenation of cinnamaldehyde [J]. Catal. Commun,2008,9(10):1949-1954.
    [22]Ponec V. On the role of promoter in hydrogenations on metals:α,β-unsaturated aldehydes and ketones [J]. Appl. Catal. A,1997,149(1):27-48.
    [23]Loffreda D., Delbecq F., Vigne F., Sautet P. Catalytic Hydrogenation of Unsaturated Aldehydes Pt(111):Understanding the Selectivity from First Principles Calculations [J]. Angew. Chem. Int. Ed.,2005,44(33):5279-5282.
    [24]Loffreda D., Delbecq F., Vigne F., Sautet P. Chem-Regioselectivity in Heterogeneous Catalysis:Competitive Routes for C=O and C=C Hydrogenations from a Theoretical Approach [J]. J. Am. Chem. Soc,2006,128(4):1316-1323.
    [22]Haruta M., Uphade B.S., Tsubota S., Miyamoto A. Selective oxidation of propylene over gold deposited on titanium-based oxides [J]. Res. Chem. Intern., 1998,24(3):329-336.
    [23]Haruta M., Date M. Advances in the catalysis of Au nanoparticles [J]. Appl. Catal. A,2001,222(1-2):427-437.
    [24]Zanella R., Louis C., Giorgio S., Touroude R. Crotonaldehyde hydrogenation by gold supported on TiO2:structure sensitivity and mechanism [J]. J. Catal.,2004, 223(2):328-339.
    [25]刘百军,潘秀莲,熊国兴,盛世善,杨维慎. Co/yAl2O3催化剂上肉桂醛的选择加氢-反应性能的考察[J].分子催化,1999,13(6):424-428.
    [1]张立德,牟季美.纳米材料[M].辽宁科技出版社,1994.
    [2]张中太,林元华,唐子龙,张俊英.纳米材料及其技术的应用前景[J].材料工程,2000,(3):42-48.
    [3]李大东.控制氧化铝孔径的途径[J].石油化工,1989,18(7):488-494.
    [4]Zhang Z.R., Pinnavaia T.J. Mesostructured γ-Al2O3 with a Lathlike Framework Morphology [J]. J. Am. Chem. Soc.,2002,124(41):12294-12310.
    [5]Breysse M., Afanasive P., Geantet C., Vrinat M. Overview of support effects in hydrotreating catalysts [J]. Catal. Today,2003,86(1-4):5-16.
    [6]Haruta M., Yamada N., Kobayashi T., Iijima S. Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide [J]. J. Catal.,1989,115(2):301-309.
    [7]Andreeva D., Idakiev V., Tabakova T., Ilieva L., Falaras P., Bourlinos A., Travlos A. Low-temperature water-gas shift reaction over Au/CeO2 catalysts [J]. Catal. Today,2002,72(1-2):51-57.
    [8]Wolf A., Schuth F. A systematic study of the synthesis conditions for the preparation of highly active gold catalysts [J]. Appl. Catal. A,2002,226(1-2): 1-13.
    [9]Margitfalvi J.L., Fasi A., Hegedus M., Lonyi F., Gobolos S., Bogdanchikova N. Au/MgO Catalysts modified with ascorbic acid for low temperature CO oxidation [J]. Catal. Today,2002,72(1-2):157-169.
    [10]Grisel R.J.H., IMieuwenhuys B.E.J. Selective Oxidation of CO over Supported Au Catalysts [J]. J. Catal.,2001,199(1):48-59.
    [11]Costello C.K., Kung M.C., Oh H.S., Wang Y., Kung H.H. Nature of the active site for CO oxidation on highly active Au/γ-Al2O3 [J]. Appl. Catal. A,2002, 232(1-2):159-168.
    [12]Bond G.C., Thompson D.T. Catalysis by Gold [J]. Catal. Rev.-Sci. Eng.,1999, 41(3-4):319-388.
    [13]Yuan Q., Duan H.-H., Li L.-L., Li Z.X., Duan W.-T., Zhang L.-S., Song W.-G., Yan C.-H. Homogeneously Dispered Ceria Nanocatalyst Stabilized with Ordered Mesoporous Alumina [J]. Adv. Mater.,2010,22(13):1475-1478.
    [14]Yuan Q., Yin A.-X., Luo C., Sun L.-D., Zhang Y.-W., Duan W.-T., Liu H.-C., Yan C.-H. Facile Synthesis for Ordered Mesoporous y-Aliminas with High Thermal Stability [J]. J. Am. Chem. Soc,2008,130(11):3465-3472.
    [15]Krokidis X., Raybaud P., Gobichon A.E., Rebours B., Euzen P., Toulhoat H. Theoretical study of the dehydration process of boehmite to y-alumina [J]. J. Phys. Chem.2001,105(22):5121-5130.
    [16]Lippens B.C., Steggerda J.J., Physical and chemical aspects of adsorbents and catalysts [B]. Academic Press, London,1970:171.
    [17]Nortier P., Fourre P., Saad A.B., Saur O., Lavalley J.C. Effects of crystallinity and morphology on the surface properties of alumina [J]. Appl. Catal. A,1990, 61(1):141-160.
    [18]Cregg S.J., Sing K.S.W. Adsorption, Surface Area and Porosity,2nd, [M]. London: Academic Press,1982:1-303.
    [1]Ha J.M., Solovyov A., Katz A. Synthesis and Characterization of Accessible Metal Surfaces in Calisane-Bound Gold Nanoparticles [J]. Langmuir,2009,25(18): 10548-10553.
    [2]Crooks R.M., Zhao M.Q., Sun L., Chechik V., Yeung L.K. Dendrimer Encapsulated Metal Nanoparticles:Synthesis, Characterization, and Applications to Catalysis [J]. Accounts Chem. Res.,2001,34(3):181-190.
    [3]Chen P., Zhang X.G., Miao Z.J., Han B.X., An G.M., Liu Z.M. In-suit Synthesis of Noble Metal Nanoparticles in Alginate Solution and Their Application in catalysis [J]. J. Nanosci. Nanotechnol.,2009,9(4):2628-2633.
    [4]Kamat P.V. Photophysical, Photochemical and Photocatalytic Aspects of Metal Nanopartocles [J]. J. Phys. Chem. C,2002,160(32):7729-7744.
    [5]Emory S.R., Nie S. Screening and Enrichment of Metal Nanoparticles with Novel Optical Properties [J]. J. Phys. Chem. B,1998,102(3):493-497.
    [6]Prikulis J., Svedberg R., Kall M. Optical Spectroscopy of Sigle Trapped Metal Nanoparticles in Solution [J]. Nano Lett.,2004,4(1):115-118.
    [7]Yan C.L., Xue D.F. A modified electroless deposition route to dendritic Cu metal nanostructures [J]. Crytal Growth & Design,2008,8(6):1849-1854.
    [8]Brown L.O., Doom S.K. Optimization of the Preparation of Glass-coated, dye-tagged Metal Nanoparticles as SERS Substrates [J]. Langmuir,2008,24(5): 2178-2185.
    [9]Lu Y., Liu G.L., Lee L.P. High-density Silver Nanoparticle Silm With Temperature-Controllable Interparticle Spacing for a tunable surface enchanced Raman Scattering Substrate [J]. Nano Lett.,2005,5(1):5-9.
    [10]Haes A.J., Zou S.L., Schatz G.C., Van Duyne R.P. Nanoscale Optical Biosensor: Short Range Distance Dependence of the Localized Surface Plasmon Resonance of Noble Metal Nanoparticles [J]. J. Phys. Chem. B,2004,108(22):6961-6968.
    [11]Haes A.J., Zou S.L., Schatz G.C., Van Duyne R.P. A nanoscale Optical Biosensor: The Long Range Distance Dependence of the Localized Surface Plasmon Resonance of Noble Metal Nanoparticles [J]. J. Phys. Chem. B,2004,108(1): 109-116.
    [12]Kamins T.I., Sharma S., Yasseri A.A., Li Z., Straznicky J. Metal-catalyzed, bridging nanowires as vapour sensors and concept for their use in a sensor system [J]. Nanotechnol.,2006,17(11):S291-S297.
    [13]Kelly K.L., Coronado E., Zhao L.L., Schatz GC. The Optical Properties of Metal Nanoparticles:The Influence of Size, Shape, and Dielectric Environment [J]. J. Phys. Chem. B,2003,107(3):668-677.
    [14]Sosa I.O., Noguez C, Barrera R.G. Optical properties of metal nanoparticles with arbitrary shapes [J]. J. Phys. Chem. B,2003,107(26):6269-6275.
    [15]Sun Y.G., Xia Y.N. Shape-controlled synthesis of gold and silver nanoparticles [J]. Science,2002,298(5601):2176-2179.
    [16]Murphy C.J., San T.K., Gole A.M., Orendorff C.J., Gao J.X., Gou L.F., Hunyadi S.E., Li T. Anisotropic Metal Nanoparticles:Synthesis, Assembly, and Optical Applicantions [J]. J. Phys. Chem. B,2005,109(29):13857-13870.
    [17]Roberts M.W. Catalysis and the Oil-based Industry (1930-1960) [J]. Catal. Lett. 2000,67(1):17-21.
    [18]Grunert W., Bruckner A., Hofmeister H., Claus P. Structural Properties of Ag/TiO2 Catalysts for Acrolein Hydrogenation [J]. J. Phys. Chem. B,2004, 108(18):5709-5717.
    [19]Lim K.H., Mohammad A.B., Yudanov I.V., Neyman K.M., Bron M., Claus P., Rosch N. Mechanism of Selective Hydrogenation of α,β-Unsaturated Aldehydes on Silver Catalysts:A Density Functional Study [J]. J. Phys. Chem. C,2009, 113(30):13231-13240.
    [20]Fujii S., Osaka N., Akita M., ltoh K. Infrared Reflection Absorption Spectroscopic study on the adsorption Structures of Acrolein on an Evaporated Silver Film [J]. J. Phys. Chem.,1995,99(18):6994-7001.
    [21]Carter R.N., Anton A.B., Apai G. Reactions of π-allyl with atomic oxygen and hydroxyl on Ag(110) [J]. Surf. Sci.,1993,290(3):319-334.
    [22]Solomon J.L., Madix R.J., Wurth W., Stohr J. NEXAFS and EELS study of the orientation of sulfur dioxide on silver (110) [J]. J. Chem. Phys.,1991,95(9): 3687-3691.
    [23]Solomon J.L., Madix R.J. Kinetic and mechanism of the oxidation of allyl alcohol on silver (110) [J]. J. Phys. Chem.,1987,91(24):6241-6244.
    [24]Claus P., Kraak P., Schodel R. in:Studies in Surface Science and Catalysis, Vol. 108:Heterogeneous Catalysis and Fine Chemicals IV, eds. H.U. Blaser, A. Baiker and R. Prins (Elsevier, Amsterdam,1997) p.281.
    [25]Claus P., Hofmeister H. Electron Microscopy and Catalytic study of Silver Catalysts:Structure Sensitivity of the Hydrogenation of Crotonaldehyde [J]. J. Phys. Chem. B,1999,103(14):2766-2775.
    [26]Tanev P.T., Chibwe M., Pinnavaia T.J. Titanium-containing mesoporous molecular sieves for catalytic oxidation of aromatic compounds [J]. Nature,1994, 368(6469):321-323.
    [27]Shah P., Ramaswamy A.V., Lazar K., Ramaswamy V. Synthesis and Characterization of Tin Oxide-modified Mesoporous SBA-15 Molecular Sieves and Catalytic Activity in Trans-esterification Reaction [J]. Appl. Catal. A,2004, 273(1-2):239-248.
    [28]Moulder J.F., Stickle W.F., Sobol P.E., Bomben K.D., Chastain J. Handbook of X-ray Photoelectron Spectroscopy [M]. Minnesota:Perkin-Elmer Corporation, 1992:39,84-85.
    [29]Moulder J.F., Stickle W.F., Sobol P.E., Bomben K.D., Chastain J. Handbook of X-ray Photoelectron Spectroscopy [M]. Minnesota:Perkin-Elmer Corporation, 1992:39,120.
    [30]Moulder J.F., Stickle W.F., Sobol P.E., Bomben K.D., Chastain J. Handbook of X-ray Photoelectron Spectroscopy [M]. Minnesota:Perkin-Elmer Corporation, 1992:39,121.
    [31]Moulder J.F., Stickle W.F., Sobol P.E., Bomben K.D., Chastain J. Handbook of X-ray Photoelectron Spectroscopy [M]. Minnesota:Perkin-Elmer Corporation, 1992:39,124-125.
    [32]Haass F., Bron M., Fuess H., Claus P. In suit X-ray investigations on AgIn/SiO2 hydrogenation catalysts [J]. Appl. Catal. A,2007,318(1):9-16.
    [33]Zanella R., Louis C, Giorgio S., Touroude R. Crotonaldehyde hydrogenation by gold supported on TiO2:structure sensitivity and mechanism [J]. J. Catal.,2004, 223(2):328-339.
    [34]Lucas M., Claus P. Hydrogenation over Silver:A Highly Active and Chemoselective Ag-In/SiO2 Catalyst for the One-Step Synthesis of Allyl Alcohol from Acrolein [J]. Chem. Eng. Technol.,2005,28(8):867-870.
    [35]Steffan M., Lucas M., Brandner A., Wollny M., Oldenburg N., Claus P. Selective Hydrogenation of Citral in an Organic Solvent, in a Ionic Liduid, and in substance [J]. Chem. Eng. Technol.,2007,30(4):481-486.
    [36]Yang Q.-Y, Zhu Y, Tian L., Xie S.-H., Pei Y, Li H., Li H.-X., Qiao M.-H., Fan K.-N. Preparation and characterization of Au-ln/APTMS-SBA-15 catalysts for chemoselective hydrogenation of crotonaldehyde to crotyl alcohol [J]. Appl. Catal. A,2009,369(1):67-76.
    [37]Nagase Y., Muramatu H., Sato T. Selective Hydrogenation of Crotonaldehyde to Crotyl Alcohol on Ag-MnO2/Al2O3-5AlPO4 Catalysts [J]. Chem. Lett.,1988, 17(10):1695-1698.
    [38]Van Hardeveld R., Hartog F. The statistics of surface atoms and surface sites on metal crystals [J]. Surf. Sci.,1969,15(2):189-230.
    [39]Delbecq F., Sautet P. Competitive C=C and C=O Adsorption of a,(3-Unsaturated Aldehydes on Pt and Pd Surfaces in Relation with the Selectivity of Hydrogenation Reactions:A Theoretical Approach [J]. J. Catal.,1995,152(2): 217-236.
    [40]Bron M, Teschner D., Knop-Gericke A., Jentoft F.C., Krohnert J., Hohmeyer J., Volckmar C., Steinhauer B., Schlogl R., Claus P. Silver as acrolein hydrogenation catalyst:intricate effects of catalyst nature and reactant partial pressure [J]. Phys. Chem. Chem. Phys.,2007,9(27):3559-3569.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700