用户名: 密码: 验证码:
CpG ODN对非小细胞肺癌放射增敏作用的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
据世界卫生组织统计全球每年肺癌新发病例超过120万,每年因肺癌而死亡的人高达约110万,已经成为第一癌症杀手。非小细胞肺癌(NSCLC)占全部肺癌的85%以上。放疗在NSCLC综合治疗中占据了重要地位,但癌细胞自身对放射线的抗拒性往往导致放疗失败,寻找行之有效的放射增敏剂是多年来肺癌研究领域倍受关注的热点。既往研究证实,含有非甲基化CpG二核苷酸的寡聚脱氧核苷酸(CpG ODN oligodeoxynucleotide, CpG ODN)可激活机体免疫系统,从而增强多种抗癌措施的疗效;但近年的文献报道,CpG ODN可直接诱导癌细胞凋亡,抑制癌细胞生长,并对NSCLC和前列腺癌有化疗增敏作用。诱导细胞凋亡是肿瘤治疗的关键,对放疗敏感的癌细胞较不敏感细胞更易进入放射线诱导的细胞凋亡过程。而目前CPG ODN是否能增强人NSCLC细胞放射敏感性尚未见报道。
     在本研究的第一部分,为了探索CpG ODN对人NSCLC放射增敏作用及其可能作用机理,我们以人肺腺癌A549细胞株为观察对象,首先用MTS法检测不同浓度CpG ODN7909 (5,10,30,60μg/ml)分别作用24 h、48 h后,对A549细胞活力的影响。结果表明,CpG ODN7909可直接抑制A549细胞活力,并呈剂量和时间的依赖性。随后将A549细胞随机分为四组:空白对照组、CpGODN7909组、照射组、CpG ODN7909+照射组。并用克隆集落形成法检测各组细胞增殖情况;流式细胞仪检测细胞凋亡情况及细胞周期分布;ELISA法检测细胞培养液中肿瘤坏死因子(TNF-a)的浓度。结果表明,CpG ODN7909(10μg/ml)联合照射组与空白对照组相比,细胞克隆存活分数降低、细胞凋亡率明显增高、细胞周期G2/M期阻滞、TNF-a因子分泌增多。随后我们用RT-PCR法检测A549细胞TLR9的mRNA的表达。结果表明,A549细胞表达TLR9,但CpG ODN7909是否通过A549细胞内TLR9信号途径起放射增敏作用,还有待于进一步的研究。因此,我们认为CpG ODN7909 (10μg/ml)能有效提高A549细胞放射敏感性,为今后临床上使用CpG ODN7909联合放疗治疗非小细胞肺癌提供了实验依据。
     本课题组在之前体内试验中发现,CPG ODN1826(每只小鼠腹腔注射0.3mg)可通过增强小鼠免疫功能来提高C57BL/6小鼠Lewis肺癌移植瘤放射敏感性。为进一步探索CPG ODN1826对C57BL/6小鼠Lewis肺癌移植瘤放射增敏作用的剂量效应,本研究第二部分,我们以Lewis肺癌移植瘤模型为对象,首先将成功建立Lewis肺癌移植瘤模型随机分为6组,每组8只:对照组(腹腔注射PBS液)、X线照射组(单纯给予分次照射:250 cGY/fx,共1250 cGY/5fx)、CpG ODN组(每只小鼠腹腔注射CpG ODN 1826,注射时间为第1,2,9天,共0.3 mg)及低、中、高剂量CpG ODN联合X线照射组(每只小鼠腹腔注射CpG ODN1826联合分次照射,CpG ODN总剂量分别为0.15、0.3、0.6 mmg)(注射时间及照射方法同上);其次随移植瘤的生长,定期观察荷瘤小鼠一般生存状况、移植瘤生长情况、小鼠免疫功能(脾指数)、TUNEL法检测移植瘤细胞凋亡情况等。研究结果表明,CpG ODN有利于改善荷瘤小鼠一般生存状况,并呈剂量依赖性;且各处理组与对照组相比,肿瘤生长速度减慢,肿瘤绝对生长延迟时间(AGD)延长,其中高剂量CPG ODN联合照射组AGD最长,为9.0天,放射增敏比(SER)为17.9; CPG ODN组和CPG ODN联合照射组与对照组、单纯照射组相比,瘤重明显减轻(p<0.05),且抑瘤率随着CPG ODN浓度增高而逐渐增大;单纯CPGODN组和中、高剂量CPG ODN联合照射组脾指数分别为(19.13±2.19)mg/g、(17.41±3.25) mg/g、(22.45±0.73) mg/g,与对照组(11.97±3.73) mg/g、单纯照射组(12.71±3.33) mg/g相比增大,有统计学差异(p<0.05);单纯X线照射组、CpG ODN组及低、中、高剂量CPG ODN联合X线组移植瘤细胞凋亡率分别为(5.78±1.32)%、(14.12±2.89)%、(12.42±2.41)%、(20.89±4.87)%、(28.63±2.69)%,均高于对照组(2.67±2.14)%(p<0.05)。因此,CpG ODN1826可通过改善小鼠一般生存状况、抑制肿瘤生长、增强小鼠的免疫功能、促进移植瘤细胞凋亡等途径,明显提高Lewis肺癌放射敏感性,且呈剂量依赖性。
Lung cancer worldwide each year, according to World Health Organization (WH O) more than 1.2 million new cases each year die from it up to about 1.1 million people, has become the first cancer killer. Non-small cell lung cancer (NSCLC) accounts for 85% of all lung cancer. Comprehensive treatment of radiotherapy in NSCLC occupies an important position, but the cancer cells themselves on the radiation resistance to radiation therapy often lead to failure. To find an effective radiosensitizer of lung cancer research over the years is a hot issue. Previous studies confirmed that contain unmethylated CpG oligodeoxynucleotides (CpG ODN) can activate the immune system, thereby enhancing the efficacy of various anti-cancer measures; but recent reports showed that CpG ODN may direc tly induce apoptosis, inhibit cancer cell growth and enhance the chemotherapy sensitivity of NSCLC or prostate cancer. Induction of apoptosis is a key mechanism of cytotoxicity for most antitumor agents, including radiation, and radiation-sensitive tumors undergo radiation-induced apoptosis more readily than do radiation-resistant tumors. Whether the CPG ODN can enhance the radio-sensitivity of NSCLC cells has not been reported.
     In the first part of this study, to explore the CpG ODN radiosensitization of human NSCLC and its possible mechanism, human lung adenocarcinoma A549 cell line was used. Firstly, MTS assay was used to determine the cell viability at 24 h,48 h after different concentrations of CpG ODN7909 (5,10,30,60μg/ml) treated. The results showed that CpG ODN7909 directly inhibited cell viability in a dose-and time-dependent manner. Sencondly, A549 cell randomly divided into four groups: control group, CpG ODN7909 group, irradiated group, CpG ODN7909+ irradiation group. Colony formation was tested in each group to further determine clonogenic cell survival; flow cytometry was used to detect cell apoptosis and cell cycle distribution; ELISA assay was used to measure tumor necrosis factorα(TNF-α) concentrations in cell culture medium. Decreased cell clonogenic survival, enhanced cell apoptotic index, accumulated pertentage of cells in G2/M phase and increased TNF-a secretion were showed in the combined treatments of CpG ODN7909 and irradiation as compared to either treatment alone (p<0.05). Thirdly, TLR9 mRNA was found express in A549 cells by RT-PCR. Therefore, we believe that CpG ODN7909 (10μg/ml) can effectively improve the radiosensitivity of A549 cells.
     Our group found in the previous studies in vivo, CPG ODN1826 (each mouse intraperitoneally 0.30 mg) can enhance the radiosensitivity of Lewis lung cancer by activating the immune system of C57BL/6 mice. To further explore the dose effect of CPG ODN1826 combined with irradiation, in the second part of this study, firstly, we successfully established model of Lewis lung cancer in C57BL/6J mice, which were randomly divided into 6 groups (8 mice in each group):control group (intraperitoneal injection of PBS solution), X-ray irradiation group (only for fractionated radiation, 250 cGY/fx, a total of 1250 cGY/5fx), CpG ODN group (intraperitoneal injection of each mouse CpG ODN1826, a total dose of 0.3 mg) and low, medium and high doses of CpG ODN (a total dose of 0.15,0.3,0.6 mg, respectively) combined with X-ray irradiation group (as above). Followed with tumor growth, mice were regularly viewed, like the general living conditions, the tumor growth, the immune function (spleen index), the apoptosis of tumor cells and so on. The results show that, CpG will help to improve the general living conditions of tumor-bearing mice in a dose-dependent manner; And mice in the treatment group compared with the control group, tumor growth delayed, the absolute tumor growth delay (AGD) extended; In high doses of CpG ODN combined with X-ray irradiation group radiosensitization ratio (SER) was 17.9; Compared with control group or irradiation alone group, tumor weight significantly reduced in CpG ODN and CpG ODN combined with X-ray irradiation group (p<0.05), and the inhibition rate increased gradually with the increasing concentration of CpG ODN; In CpG ODN group, medium and high doses of CpG ODN combined with X-ray irradiation group spleen index were (19.13±2.19) mg/g, (17.41±3.25) mg/g, (22.45±0.73) mg/g, increased compared with that in control group (11.97±3.73) mg/g or X-ray irradiation group (12.71±3.33) mg/g (p<0.05); Tumor cell apoptosis rates were (5.78±1.32)%, (14.12±2.89)%, (12.42±2.41)%, (20.89±4.87)%, (28.63±2.69)% in X-ray irradiation group, CpG ODN group and the low, medium and high doses of CpG ODN group combined with X-ray irradiation group, higher than that in the control group (2.67±2.14)%, respecitively (p<0.05). Therefore, CpG ODN1826 can significantly enhance radiosensitivity of Lewis lung cancer in a dose-dependent manner, by improving the general living conditions of mice, delaying tumor growth, increasing immune function and promoting tumor cell apoptosis.
引文
[1]Roy S, John V, Scott M. Lung cancer. Mol Orig Cancer,2008;13(359):1367-1380.
    [2]Sinchaikul S, Hongsachart P, Sriyam S, et al. Current proteomic analysis and post-translational modifications of biomarkers in human lung cancer materials. Chang Gung Med J,2008;31(5):417-430.
    [3]Anglim PP, Alonzo TA, Laird-Offringa IA. DNA methylation-based biomarkers for early detection of non-small cell lung cancer:an update. Mol Cancer, 2008;7:81-94.
    [4]Molina JR, Yang P, Cassivi SD, et al. Non-small cell lung cancer:epidemiology, risk factors, treatment, and survivorship. Mayo Clin Proc,2008;83(5):584-594.
    [5]Krug A, Rothenfusser S, Hornung V, et al. Identification of CpG oligonucleotide sequences with high induction of IFN-alpha/beta in plasmacytoid dendritic cells. Eur J Immunol,2001;31(7):2154-2163.
    [6]Hartmann G, Battiany J, Poeck H, et al. Rational design of new CpG oligonucleotides that combine B cell activation with high IFN-alpha induction in plasmacytoid dendritic cells. Eur J Immunol,2003;33(6):1633-1641.
    [7]Gupta K, Cooper C. A review of the role of CpG oligodeoxynucleotides as toll-like receptor 9 agonists in prophylactic and therapeutic vaccine development in infectious diseases. Drugs R D,2008;9(3):137-145.
    [8]Murad YM, Clay TM. CpG oligodeoxynucleotides as TLR9 agonists:therapeutic applications in cancer. BioDrugs,2009;23(6):361-375.
    [9]Chamoto K, Takeshima T, Wakita D, et al. Combination immunotherapy with radiation and CpG-based tumor vaccination for the eradication of radio-and immuno-resistant lung carcinoma cells. Cancer Sci,2009;100(5):934-939.
    [10]Bertin S, Samson M, Pons C, et al. Comparative proteomics study reveals that bacterial CpG motifs induce tumor cell autophagy in vitro and in vivo. Mol Cell Proteomics,2008;2:2311-2322.
    [11]Bourquin C, Anz D, Zwiorek K, et al. Targeting CpG oligonucleotides to the lymph node by nanoparticles elicits efficient antitumoral immunity. J Immunol, 2008;181(5):2990-2998.
    [12]Krieg AM. Antiinfective applications of toll-like receptor 9 agonists. Proc Am Thorac Soc,2007;4(3):289-294.
    [13]Klinman DM, Yi AK, Beaucage SL, et al. CpG motifs present in bacteria DNA rapidly induce lymphocytes to secrete interleukin 6, interleukin 12, and interferon gamma. Proc Natl Acad Sci U S A,1996;93(7):2879-2883.
    [14]Heeg K, Dalpke A, Peter M, et al. Structural requirements for uptake and recognition of CpG oligonucleotides. Int J Med Microbiol,2008;298(1):33-38.
    [15]Jurk M, Vollmer J. Therapeutic applications of synthetic CpG oligodeoxynucleotides as TLR9 agonists for immune modulation. BioDrugs, 2007;21(6):387-401.
    [16]Vollmer J, Weeratna R, Payette P, et al. Characterization of three CpG oligodeoxynucleotide classes with distinct immunostimulatory activities. Eur J Immunol,2004;34(1):251-262.
    [17]Booth JS, Nichani AK, Benjamin P, et al. Innate immune responses induced by classes of CpG oligodeoxynucleotides in ovine lymph node and blood mononuclear cells. Vet Immunol Immunopathol,2007; 115(2):24-34.
    [18]Krieg AM, Yi AK, Matson S, et al. CpG motifs in bacterial DNA trigger direct B-cell activation. Nature,1995;374(6522):546-549.
    [19]Roman M, Martin-Orozco E, Goodman JS, et al. Immunostimulatory DNA sequences function as T helper-1-promoting adjuvants. Nat Med,1997;3(8):849-854.
    [20]Krieg AM. Development of TLR9 agonists for cancer therapy. J Clin Invest, 2007;117(5):1184-1194.
    [21]Verthelyi D, Ishii KJ, Gursel M, et al. Human peripheral blood cells differentially recognize and respond to two distinct CPG motifs. J Immunol, 2001;166(4):2372-2377.
    [22]Krieg AM, Kline JN. Immune effects and therapeutic applications of CpG motifs in bacterial DNA. Immunopharmacology,2000;48(3):303-305.
    [23]Ballas ZK, Krieg AM, Warren T, et al. Divergent therapeutic and immunologic effects of oligodeoxynucleotides with distinct CpG motifs. J Immunol, 2001; 167(9):4878-4886.
    [24]Kumagai Y, Takeuchi O, Akira S. TLR9 as a key receptor for the recognition of DNA. Adv Drug Deliv Rev,2008;60(7):795-804.
    [25]Qiao B, Li B, Yang X, et al. Specific siRNA downregulated TLR9 and altered cytokine expression pattern in macrophage after CpG DNA stimulation. Cell Mol Immunol,2005;2(2):130-135.
    [26]Lim EJ, Lee SH, Lee JG, et al. Toll-like receptor 9 dependent activation of MAPK and NF-kB is required for the CpG ODN-induced matrix metalloproteinase-9 expression. Exp Mol Med,2007;39(2):239-245.
    [27]Osawa Y, Iho S, Takauji R, et al. Collaborative action of NF-kappaB and p38 MAPK is involved in CpG DNA-induced IFN-alpha and chemokine production in human plasmacytoid dendritic cells. J Immunol,2006; 177(7):4841-4852.
    [28]Kandimalla ER, Bhagat L, Wang D, et al. Divergent synthetic nucleotide motif recognition pattern:design and development of potent immunomodulatory oligodeoxyribonucleotide agents with distinct cytokine induction profiles. Nucleic Acids Res,2003;31(9):2393-2400.
    [29]Nichani AK, Kaushik RS, Mena A, et al. CpG oligodeoxynucleotide induction of antiviral effector molecules in sheep. Cell Immunol,2004;227(1):24-37.
    [30]Hanten JA, Vasilakos JP, Riter CL, et al. Comparison of human B cell activation by TLR7 and TLR9 agonists. BMC Immunol,2008;9:39-47.
    [31]Roda JM, Parihar R, Carson WE 3rd. CpG-containing oligodeoxynucleotides act through TLR9 to enhance the NK cell cytokine response to antibody-coated tumor cells. J Immunol,2005;175(3):1619-1627.
    [32]Ballas ZK. Modulation of NK cell activity by CpG oligodeoxynucleotides. Immunol Res,2007;39(3):15-21.
    [33]Buhtoiarov IN, Lum HD, Berke G, et al. Synergistic activation of macrophages via CD40 and TLR9 results in T cell independent antitumor effects. J Immunol, 2006;176(1):309-318.
    [34]Sester DP, Brion K, Trieu A, et al. CpG DNA activates survival in murine macrophages through TLR9 and the phosphatidylinositol 3-kinase-Akt pathway. J Immunol,2006;177(7):4473-4480.
    [35]Roberts TL, Dunn JA, Terry TD, et al. Differences in macrophage activation by bacterial DNA and CpG-containing oligonucleotides. J Immunol, 2005;175(6):3569-3576.
    [36]Chen L, Arora M, Yarlagadda M, et al. Distinct responses of lung and spleen dendritic cells to the TLR9 agonist CpG oligodeoxynucleotide. J Immunol, 2006;177(4):2373-2383.
    [37]Marshall JD, Heeke DS, Abbate C, et al. Induction of interferon-gamma from natural killer cells by immunostimulatory CpG DNA is mediated through plasmacytoid-dendritic-cell-produced interferon-alpha and tumour necrosis factor-alpha. Immunology,2006;117(1):38-46.
    [38]Verthelyi D. Adjuvant properties of CpG oligonucleotides in primates. Methods Mol Med,2006;127:139-158.
    [39]Lin L, Gerth AJ, Peng SL. CpG DNA redirects class-switching towards "Thl-like" Ig isotype production via TLR9 and MyD88. Eur J Immunol, 2004;34(5):1483-1487.
    [40]Meng Y, Carpentier AF, Chen L, et al. Successful combination of local CpG-ODN and radiotherapy in malignant glioma. Int J Cancer,2005;116(6):992-997.
    [41]Mason KA, Neal R, Hunter N, et al. CpG oligodeoxynucleotides are potent enhancers of radio-and chemoresponses of murine tumors. Radiother Oncol, 2006;80(2):192-198.
    [42]Bradbury PA, Shepherd FA. Immunotherapy for lung cancer. J Thorac Oncol, 2008;3(6):164-170.
    [43]Wang H, Rayburn ER, Wang W, et al. Chemotherapy and chemosensitization of non-small cell lung cancer with a novel immunomodulatory oligonucleotide targeting Toll-like receptor 9. Mol Cancer Ther,2006;5(6):1585-1592.
    [44]E1 Andaloussi A, Sonabend AM, Han Y, et al. Stimulation of TLR9 with CpG ODN enhances apoptosis of glioma and prolongs the survival of mice with experimental brain tumors. Glia,2006;54(6):526-535.
    [45]Petrangolini G, Tortoreto M, Perego P, et al. Combination of metronomic gimatecan and CpG-oligodeoxynucleotides against an orthotopic pancreatic cancer xenograft. Cancer Biol Ther,2008;7(4):596-601.
    [46]Shen W, Waldschmidt M, Zhao X, et al. Antitumor mechanisms of oligodeoxynucleotides with CpG and polyG motifs in murine prostate cancer cells: decrease of NF-kappaB and AP-1 binding activities and induction of apoptosis. Antisense Nucleic Acid Drug Dev,2002;12(3):155-164.
    [47]Klinman DM. Use of CpG oligodeoxynucleotides as immunoprotective agents. Expert Opin Biol Ther,2004;4(6):937-946.
    [48]Stewart VA, McGrath S, Krieg AM, et al. Activation of innate immunity in healthy Macaca mulatta macaques by a single subcutaneous dose of GMP CpG 7909: safety data and interferon-inducible protein-10 kinetics for humans and macaques. Clin Vaccine Immunol,2008; 15(2):221-226.
    [49]Harris TH, Mansfield JM, Paulnock DM. CpG oligodeoxynucleotide treatment enhances innate resistance and acquired immunity to African trypanosomes. Infect Immun,2007;75(5):2366-2373.
    [50]Adamsson J, Lindblad M, Lundqvist A, et al. Novel immunostimulatory agent based on CpG oligodeoxynucleotide linked to the nontoxic B subunit of cholera toxin. J Immunol,2006;176(8):4902-4913.
    [51]Pedras-Vasconcelos JA, Goucher D, Puig M, et al. CpG oligodeoxynucleotides protect newborn mice from a lethal challenge with the neurotropic Tacaribe arenavirus. J Immunol,2006;176(8):4940-4949.
    [52]Davis HL, Suparto II, Weeratna RR, et al. CpG DNA overcomes hyporesponsiveness to hepatitis B vaccine in orangutans. Vaccine, 2000;18(18):1920-1924.
    [53]Lubaroff DM, Karan D. CpG oligonucleotide as an adjuvant for the treatment of prostate cancer. Adv Drug Deliv Rev,2009;61(3):268-274.
    [54]Angel JB, Cooper CL, Clinch J, et al. CpG increases vaccine antigen-specific cell-mediated immunity when administered with hepatitis B vaccine in HIV infection. J Immune Based Ther Vaccines,2008;6(1):4-11.
    [55]Halperin SA, Van Nest G, Smith B, et al. A phase I study of the safety and immunogenicity of recombinant hepatitis B surface antigen co-administered with an immunostimulatory phosphorothioate oligonucleotide adjuvant. Vaccine, 2003;21(19-20):2461-2467.
    [56]Cooper CL, Davis HL, Morris ML, et al. CPG 7909, an immunostimulatory TLR9 agonist oligodeoxynucleotide, as adjuvant to Engerix-B HBV vaccine in healthy adults:a double-blind phase Ⅰ/Ⅱ study. J Clin Immunol,2004;24(6):693-701.
    [57]Sur S, Wild JS, Choudhury BK, et al. Long term prevention of allergic lung inflammation in a mouse model of asthma by CpG oligodeoxynucleotides. J Immunol, 1999;162(10):6284-6293.
    [58]Kline JN. Eat dirt:CpG DNA and immunomodulation of asthma. Proc Am Thorac Soc,2007;4(3):283-288.
    [59]Heckelsmiller K, Rall K, Beck S, et al. Peritumoral CpG DNA elicits a coordinated response of CD8 T cells and innate effectors to cure established tumors in a murine colon carcinoma model. J Immunol,2002;169(7):3892-3899.
    [60]Mahfouz M, Hashimoto W, Das Gupta TK, et al. Bacterial proteins and CpG-rich extrachromosomal DNA in potential cancer therapy. Plasmid,2007;57(1):4-17.
    [61]Baines J, Celis E. Immune-mediated tumor regression induced by CpG-containing oligodeoxynucleotides. Clin Cancer Res,2003;9(7):2693-2700.
    [62]Vicari AP, Luu R, Zhang N, et al. Paclitaxel reduces regulatory T cell numbers and inhibitory function and enhances the anti-tumor effects of the TLR9 agonist PF-3512676 in the mouse. Cancer Immunol Immunother,2009;58(4):615-628.
    [63]Krieg AM. Toll-like receptor 9 (TLR9) agonists in the treatment of cancer. Oncogene,2008;27(2):161-167.
    [64]Vicari AP, Luu R, Zhang N, et al. Paclitaxel reduces regulatory T cell numbers and inhibitory function and enhances the anti-tumor effects of the TLR9 agonist PF-3512676 in the mouse. Cancer Immunol Immunother,2009;58(4):615-628.
    [65]Hofmann MA, Kors C, Audring H, et al. Phase 1 evaluation of intralesionally injected TLR9-agonist PF-3512676 in patients with basal cell carcinoma or metastatic melanoma. J Immunother,2008;31(5):520-527.
    [66]Molenkamp BG, Sluijter BJ, van Leeuwen PA, et al. Local administration of PF-3512676 CpG-B instigates tumor-specific CD8+ T-cell reactivity in melanoma patients. Clin Cancer Res,2008;14(14):4532-4542.
    [67]Murad YM, Clay TM, Lyerly HK, et al. CPG-7909 (PF-3512676, ProMune): toll-like receptor-9 agonist in cancer therapy. Expert Opin Biol Ther, 2007;7(8):1257-1266.
    [68]Bradbury PA, Shepherd FA. Immunotherapy for lung cancer. J Thorac Oncol, 2008;3:164-170.
    [69]Chamoto K, Takeshima T, Wakita D, et al. Combination immunotherapy with radiation and CpG-based tumor vaccination for the eradication of radio-and immuno-resistant lung carcinoma cells. Cancer Sci,2009;100(5):934-939.
    [70]Manegold C, Gravenor D, Woytowitz D, et al. Randomized phase II trial of a toll-like receptor 9 agonist oligodeoxynucleotide, PF-3512676, in combination with first-line taxane plus platinum chemotherapy for advanced-stage non-small-cell lung cancer. J Clin Oncol,2008;26(24):3979-3986.
    [71]Droemann D, Albrecht D, Gerdes J, et al. Human lung cancer cells express functionally active Toll-like receptor 9. Respir Res,2005;6:1-13.
    [72]Ilvesaro JM, Merrell MA, Swain TM, et al. Toll like receptor-9 agonists stimulate prostate cancer invasion in vitro. Prostate,2007;67(7):774-781.
    [73]Merrell MA, Ilvesaro JM, Lehtonen N, et al. Toll-like receptor 9 agonists promote cellular invasion by increasing matrix metalloproteinase activity. Mol Cancer Res,2006;4(7):437-447.
    [74]袁素娟,乔田奎,史继敏等.CpG对X线放射治疗Lewis肺癌小鼠移植瘤的增敏效应.中国肿瘤生物治疗杂志,2008;15(3):238-242.
    [75]Bucher N, Britten CD. G2 checkpoint abrogation and checkpoint kinase-1 targeting in the treatment of cancer. Br J Cancer,2008;98(3):523-528.
    [76]Martin SA, Ouchi T. BRCA1 phosphorylation regulates caspase-3 activation in UV-induced apoptosis. Cancer Res,2005;65(23):10657-10662.
    [77]Bernstein C, Bernstein H, Payne CM, et al. DNA repair/pro-apoptotic dual-role proteins in five major DNA repair pathways:fail-safe protection against carcinogenesis. Mutat Res,2002;511(2):145-178.
    [78]Wang HM, Chen LH, Zheng XK, et al. The role of cell cycle arrest in radiosensitization of nasopharyngeal carcinoma cell line CNE1 by inhibiting ATM expression. Ai Zheng,2008;27(5):466-470.
    [79]Bache M, Pigorsch S, Dunst J, et al. Loss of G2/M arrest correlates with radiosensitization in two human sarcoma cell lines with mutant p53. Int J Cancer, 2001;96(2):110-117.
    [80]Gekeler V, Gimmnich P, Hofmann HP, et al. G3139 and other CpG-containing immunostimulatory phosphorothioate oligodeoxynucleotides are potent suppressors of the growth of human tumor xenografts in nude mice. Oligonucleotides, 2006;16(1):83-93.
    [81]Hamasu T, Inanami O, Asanuma T, et al. Enhanced induction of apoptosis by combined treatment of human carcinoma cells with X rays and death receptor agonists. J Radiat Res,2005;46(1):103-110.
    [82]Valerie K, Yacoub A, Hagan MP, et al. Radiation-induced cell signaling: inside-out and outside-in. Mol Cancer Ther,2007;6(3):789-801.
    [83]Jorgensen TJ. Enhancing radiosensitivity:targeting the DNA repair pathways. Cancer Biol Ther,2009;8(8):665-670.
    [84]Nakajima T. Signaling cascades in radiation-induced apoptosis:roles of protein kinase C in the apoptosis regulation. Med Sci Monit,2006; 12(10):220-224.
    [85]Xie YF, Sheng W, Xiang J, et al. Adenovirus-mediated ING4 expression suppresses pancreatic carcinoma cell growth via induction of cell-cycle alteration, apoptosis, and inhibition of tumor angiogenesis. Cancer Biother Radiopharm, 2009;24(2):261-269.
    [86]Pawlik TM, Keyomarsi K. Role of cell cycle in mediating sensitivity to radiotherapy. Int J Radiat Oncol Biol Phys,2004;59(4):928-942.
    [87]Simoens C, Lardon F, Pauwels B, et al. Comparative study of the radiosensitizing and cell cycle effects of vinflunine and vinorelbine, in vitro. BMC Cancer, 2008;8:65-77.
    [88]Rayburn ER, Wang W, Zhang R, et al. Experimental therapy for colon cancer: anti-cancer effects of TLR9 agonism, combination with other therapeutic modalities, and dependence upon p53. Int J Oncol,2007;30(6):1511-1519.
    [89]Xu L, Wang C, Wen Z, et al. Selective up-regulation of CDK2 is critical for TLR9 signaling stimulated proliferation of human lung cancer cell. Immunol Lett, 2010;127(2):93-99.
    [90]Secchiero P, Melloni E, Tiribelli M, et al. Combined treatment of CpG-oligodeoxynucleotide with Nutlin-3 induces strong immune stimulation coupled to cytotoxicity in B-chronic lymphocytic leukemic (B-CLL) cells. J Leukoc Biol, 2008;83(2):434-437.
    [91]Yamada K, Nakao M, Fukuyama C, et al. Phase I study of TLR9 agonist PF-3512676 in combination with carboplatin and paclitaxel in patients with advanced non-small-cell lung cancer. Cancer Sci,2010;101(1):188-195.
    [92]Jeong SY, Seol DW. The role of mitochondria in apoptosis. BMB Rep, 2008;41(1):11-22.
    [93]Dejean LM, Martinez-Caballero S, Kinnally KW. Is MAC the knife that cuts cytochrome c from mitochondria during apoptosis?. Cell Death Differ, 2006;13(8):1387-1395.
    [94]Oberst A, Bender C, Green DR. Living with death:the evolution of the mitochondrial pathway of apoptosis in animals. Cell Death Differ, 2008;15(7):1139-1146.
    [95]Shareef MM, Cui N, Burikhanov R, et al. Role of tumor necrosis factor-alpha and TRAIL in high-dose radiation-induced bystander signaling in lung adenocarcinoma. Cancer Res,2007;67(24):11811-11820.
    [96]Cande C, Cecconi F, Dessen P, et al. Apoptosis-inducing factor (AIF):key to the conserved caspase-independent pathways of cell death?. J Cell Sci,2002;115(Pt 24):4727-4734.
    [97]Lin JC, Ho YS, Lee JJ, et al. Induction of apoptosis and cell-cycle arrest in human colon cancer cells by meclizine. Food Chem Toxicol,2007;45(6):935-944.
    [98]Fan TJ, Han LH, Cong RS, et al. Caspase family proteases and apoptosis. Acta Biochim Biophys Sin (Shanghai),2005;37(11):719-727.
    [99]Mullen GE, Ellis RD, Miura K, et al. Phase 1 trial of AMA1-C1/Alhydrogel plus CPG 7909:an asexual blood-stage vaccine for Plasmodium falciparum malaria. PLoS ONE,2008;3(8):e2940.
    [100]Najar HM, Dutz JP. Topical CpG enhances the response of murine malignant melanoma to dacarbazine. J Invest Dermatol,2008;128(9):2204-2210.
    [101]Pratesi G, Petrangolini G, Tortoreto M, et al. Therapeutic synergism of gemcitabine and CpG-oligodeoxynucleotides in an orthotopic human pancreatic carcinoma xenograft. Cancer Res,2005;65(14):6388-6393.
    [102]Vellanki SH, Grabrucker A, Liebau S, et al. Small-molecule XIAP inhibitors enhance gamma-irradiation-induced apoptosis in glioblastoma. Neoplasia, 2009;11(8):743-752.
    [103]Biade S, Stobbe CC, Chapman JD. The intrinsic radiosensitivity of some human tumor cells throughout their cell cycles. Radiat Res,1997;147(4):416-421.
    [104]Khorramizadeh MR, Hosseinzadeh S, Safavifar F, et al. Interaction of CpG-oligodeoxynucleotides with Toll like receptor 9 induces apoptosis and modulates metaloproteinase-2 activity in human intestinal epithelium. Iran J Allergy Asthma Immunol,2007;6(3):107-114.
    [105]Bauer S, Wagner H. Bacterial CpG-DNA licenses TLR9. Curr Top Microbiol Immunol,2002;270:145-154.
    [106]Yi JY, Jung YJ, Choi SS, et al. TNF-alpha Downregulates E-cadherin and Sensitizes Response to gamma-irradiation in Caco-2 Cells. Cancer Res Treat, 2009;41(3):164-170.
    [107]颜伟,丁国富,李斌等.CpGODN107增强人脑胶质瘤细胞放射敏感性的研究.中华肿瘤防治杂志,2007;14(7):481-484.
    [108]Milas L, Mason K, Hunter N, et al. In vivo enhancement of tumor radioresponse by C225 antiepidermal growth factor receptor antibody. Clin Cancer Res, 2000;6(2):701-708.
    [109]Zhao N, Wang L, Mou HY, et al. [Synergism and attenuation effects of taurine on cyclophosphamide]. Ai Zheng,2009;28(3):244-248.
    [110]Cai J, Lei LS, Chi DB. [Antineoplastic effect of koumine in mice bearing H22 solid tumor]. Nan Fang Yi Ke Da Xue Xue Bao,2009;29(9):1851-1852.
    [111]Zhou HB, Chen JM, Cai JT, et al. Anticancer activity of genistein on implanted tumor of human SG7901 cells in nude mice. World J Gastroenterol, 2008;14(4):627-631.
    [112]Blazar BR, Krieg AM, Taylor PA. Synthetic unmethylated cytosine-phosphate-guanosine oligodeoxynucleotides are potent stimulators of antileukemia responses in naive and bone marrow transplant recipients. Blood, 2001;98(4):1217-1225.
    [113]Ishii KJ, Akira S. Innate immune recognition of, and regulation by, DNA. Trends Immunol,2006;27(11):525-532.
    [114]Weigel BJ, Rodeberg DA, Krieg AM, et al. CpG oligodeoxynucleotides potentiate the antitumor effects of chemotherapy or tumor resection in an orthotopic murine model of rhabdomyosarcoma. Clin Cancer Res,2003;9(8):3105-3114.
    [115]Khatami M. "Yin and Yang" in inflammation:duality in innate immune cell function and tumorigenesis. Expert Opin Biol Ther,2008;8(10):1461-1472.
    [116]Standish LJ, Sweet ES, Novack J, et al. Breast cancer and the immune system. J Soc Integr Oncol,2008;6(4):158-168.
    [117]Gao JQ, Okada N, Mayumi T, et al. Immune cell recruitment and cell-based system for cancer therapy. Pharm Res,2008;25(4):752-768.
    [118]Meltzer EO. The role of the immune system in the pathogenesis of asthma and an overview of the diagnosis, classification, and current approach to treating the disease. J Manag Care Pharm,2003;9(5):8-13.
    [119]Cheredeev AN. [Interleukins:functional role as mediators of the immune system (review of the literature)]. Lab Delo,1990(10):4-11.
    [120]Dermime S, Barrett J, Gambacorti-Passerini C. The role of the immune system in anti-tumour responses. Potential for drug therapy. Drugs Aging, 1995;7(4):266-277.
    [121]Ninalga C, Loskog A, Klevenfeldt M, et al. CpG oligonucleotide therapy cures subcutaneous and orthotopic tumors and evokes protective immunity in murine bladder cancer. J Immunother,2005;28(1):20-27.
    [122]袁素娟,乔田奎,何惠忠等.CpG联合x射线照射对Lewis肺癌小鼠IL-10和TNF-α的影响.中华放射医学与防护杂志,2009;29(2):166-168.
    [123]Mousavi T, Salek Moghadam A, Falak R. Immunotherapy of Chenopodium album induced asthma by intranasal administration of CpG oligodeoxynucleotides in BALB/c mice. Iran J Immunol,2008;5(1):57-63.
    [124]Kawarada Y, Ganss R, Garbi N, et al. NK-and CD8(+) T cell-mediated eradication of established tumors by peritumoral injection of CpG-containing oligodeoxynucleotides. J Immunol,2001;167(9):5247-5253.
    [125]Labi V, Grespi F, Baumgartner F, et al. Targeting the Bcl-2-regulated apoptosis pathway by BH3 mimetics:a breakthrough in anticancer therapy?. Cell Death Differ, 2008;15(6):977-987.
    [126]Schuler S, Fritsche P, Diersch S, et al. HDAC2 attenuates TRAIL-induced apoptosis of pancreatic cancer cells. Mol Cancer,2010;9(1):80.
    [127]Ballard KS, Homesley HD, Hodson C, et al. Endometrial carcinoma in vitro chemosensitivity testing of single and combination chemotherapy regimens using the novel microculture kinetic apoptosis assay:implications for endometrial cancer treatment. J Gynecol Oncol,2010;21(1):45-49.
    [128]Tsuji T, Du W, Nishioka T, et al. Phellinus linteus extract sensitizes advanced prostate cancer cells to apoptosis in athymic nude mice. PLoS One,2010;5(3):e9885.
    [129]Strus M, Janczyk A, Gonet-Surowka A, et al. Effect of hydrogen peroxide of bacterial origin on apoptosis and necrosis of gut mucosa epithelial cells as a possible pathomechanism of inflammatory bowel disease and cancer. J Physiol Pharmacol, 2009;60 Suppl 6:55-60.
    [130]Martirosyan A, Clendening JW, Goard CA, et al. Lovastatin induces apoptosis of ovarian cancer cells and synergizes with doxorubicin:potential therapeutic relevance. BMC Cancer,2010;10:103-116.
    [131]Meyer M, Essack M, Kanyanda S, et al. A low-cost flow cytometric assay for the detection and quantification of apoptosis using an anionic halogenated fluorescein dye. Biotechniques,2008;45(3):317-320.
    [132]Oo TF, Burke RE. Histochemical methods for the detection of apoptosis in the nervous system[M]. Curr Protoc Neurosci,2007:15.
    [133]Martin DD, Vilas GL, Prescher JA, et al. Rapid detection, discovery, and identification of post-translationally myristoylated proteins during apoptosis using a bio-orthogonal azidomyristate analog. FASEB J,2008;22(3):797-806.
    [134]Mukhopadhyay P, Rajesh M, Hasko G, et al. Simultaneous detection of apoptosis and mitochondrial superoxide production in live cells by flow cytometry and confocal microscopy. Nat Protoc,2007;2(9):2295-2301.
    [135]Huerta S, Goulet EJ, Huerta-Yepez S, et al. Screening and detection of apoptosis. J Surg Res,2007;139(1):143-156.
    [136]陈春燕,贾继辉,潘祥林等.CpG基序诱导HL60细胞分化和凋亡作用的初步研究.中华微生物学和免疫学杂志,2004;24(2):97-98.
    [137]Klinman D, Shirota H, Tross D, et al. Synthetic oligonucleotides as modulators of inflammation. J Leukoc Biol,2008;84(4):958-964.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700