用户名: 密码: 验证码:
含有糖基片段的DNA双插入剂和氨基糖有机锡羧酸酯的合成及活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文共分为三部分,分别为含有糖基片段的DNA双插入剂的合成和DNA结合活性研究,氨基糖有机锡羧酸酯的合成及抗肿瘤活性、造血干细胞毒性研究,糖修饰姜黄素类似物的设计合成。
     DNA是生物体遗传信息的载体,是大多数抗癌、抗病毒试剂在体内的主要作用靶点。小分子物质与DNA通过分子识别、结合、修饰、剪切等方式发生作用,研究小分子物质与DNA的相互作用不仅对阐明抗肿瘤、抗病毒及致癌物的作用机理,而且对进一步设计合成以DNA为作用靶点的药物具有重要意义。
     嵌插结合是小分子与DNA相互作用的重要形式之一。近年来合成的多种DNA双重嵌插试剂由于具有良好的DNA结合能力和一定的序列选择性引起了药学家的关注。单糖由于构型单一且含有丰富的官能团和反应位点,长久以来被用作生物活性物质的结构骨架。很多以DNA为作用靶点的抗生素和抗肿瘤药物均含有糖基片段,如蒽环类抗生素(Anthracyclines),烯二炔类抗肿瘤抗生素(Enediyne antibiotics)等等。近年来,研究发现这些药物分子中的糖片段对DNA的识别及选择位点起着非常重要的作用。
     由此做为出发点,本论文分别合成了含有D-吡喃葡萄糖、2-脱氧-2-氨基D-葡萄糖和D-吡喃葡萄糖醛酸等糖基片段的结构骨架,以喹啉、喹喔啉、吖啶、吲哚[3,2-b]喹啉类等含氮芳香环作为嵌插部分,合成了三个系列的DNA双重嵌插试剂。第一类为葡萄糖6位羟基与8-OH喹啉相连,一位分别以对苯二酚,乙二醇和三聚乙二醇等不同连接臂相连的化合物;第二类为2-氨基葡萄糖一位分别与不同的含氮芳香环如8-OH喹啉、9-羟乙基吖啶和吲哚[3,2-b]喹啉环相连,2位氨基与对苯二甲酰氯发生缩合反应的化合物;第三类是结构类似于棘霉素(Echinomycin)含有糖醛酸骨架的大环化合物,环上连有喹喔啉基团。所合成的化合物用核磁共振(~1H NMR,~(13)C NMR)、质谱(MS,HR-MS)进行了结构确认。并用紫外可见光谱法、荧光发射光谱和EB竞争结合DNA等手段,研究了化合物与小牛胸腺DNA(CT-DNA)的结合活性。研究结果表明部分化合物能够以嵌插的形式与DNA进行结合。
     应用拼合原理,将对肿瘤细胞具有较好的杀伤作用,而对人体正常细胞毒性很小的D-氨基葡萄糖衍生物与氧化二正丁基锡反应合成了两个新的有机锡(Ⅳ)羧酸酯类化合物双-[顺-N-1,3,4,6-四-O-苯甲酰基-2-去氧吡喃葡萄糖基丁烯二酸单酰胺]-二正丁基锡酯(35b)和双-[顺-N-1,3,4,6-四-O-苯甲酰基-2-去氧吡喃葡萄糖基邻苯二甲酸单酰胺]-二正丁基锡酯(36b),并经红外光谱(IR),核磁共振(~1H NMR,~(13)C NMR)谱学研究,初步确定了其结构。体外抗肿瘤活性结果表明,化合物35b、36b对肿瘤细胞株小鼠白血病细胞株P388、人白血病细胞株HL-60、人肺癌细胞株A-549和人肝癌细胞株BEL-7402均显示出较强的细胞毒活性,其中化合物对P388和HL-60的IC_(50)值为0.06μM;克隆基因分析表明化合物有造血细胞毒性浓度为2.06μM。表明化合物35b、36b具有较高的肿瘤细胞毒性和较低的造血细胞毒性,是有开发前途的先导化合物。
     姜黄素类化合物由于其广谱的抗癌活性、疗效确切和低毒性,备受人们的关注。由于该类化合物具有稳定性差,生物利用度低等缺点,限制了其成为药物的可能性。糖对先导化合物进行活性修饰后,可以降低化合物毒副作用,增加化合物的脂溶性和水溶性,增强靶向性。目前对姜黄素类化合物的糖修饰研究相对较少。本章研究并建立了一条简便可行的反应路线,以此来合成对姜黄素4位活泼亚甲基进行糖修饰的化合物。同时设计合成了一系列苯环以不同的取代基进行取代,姜黄素4位亚甲基上进行葡萄糖修饰的化合物,希望开发出稳定性好,药物安全性高,同时能增加抗肿瘤活性和水溶性的姜黄素类似物。所得到的8个化合物(39a-39h)用核磁共振(~1H NMR,~(13)C NMR)、质谱(MS,HR-MS)进行了结构确认。生物活性测试正在进行中。
This dissertation was divided into three parts,the first part is study on thesynthesis of DNA intercalators containing sugar skelecton and their DNA bindingproperties;the second part is the synthesis of novel dibutyltin carboxylates ofaminoglucosyl derivatives and their anti-tumor activity and myelotoxicity study;thethird part is the design and synthesis of curcumin derivatives containing sugarhybrids.
     DNA is the carrier of genetic information and plays an important role in thecourse of genetic,which is the main target molecule that exists in anticancer andantiviral therapies.Small molecules that interact with DNA through recognition,binding,modification and cleavage have attracted great interests in the healthcarefield.
     Intercalators are the most important group of compounds that interact reversiblywith the DNA double helix.In recent years,synthese of various bisintercalators hasbeen popularly studied for their higher DNA-binding capacity and substantialsequence selectivity.Monosaccharides have long been known as biologically relevantscaffolds.Advantages of using saccharides are that they display a high density offunctional groups,are available as single enantiomers and contain multiple sites forattachment of recognition groups.Carbohydrate also exists in many antitumorantibiotics which targeting in DNA helix,including Anthracyclines family andEnediyne antibiotics.And it has been found that the carbohydrate part in thesemoleculars play a crucial role in the DNA recognition and sequence selectivity.
     According to this,we design and synthesis three series of DNA bisintercalators containing D-glucose,2-deoxy-2-amino-D-glucose and D-glucopyranuronic acidscatffold.For the chromophore part,we choose quinoline,quinoxaline,acridine andindol[3,2-b]quinoline ring as the intercalating agents.In the first series of compounds,8-hydroxy-quinoline is linked to the 6-CH_2OH group of glucose and the 1-OH groupof glucose was connected with different linkers including quinol,glycol andtriethylene glycol.The second series of the intercalators is based on the 2-aminoglucose which the amino group is coupled with terephthaloyl chloride and the 1-OHof the sugar is connected with different chromophores including 8-OH quinoline,9-hydroxyethyl acridine and indol[3,2-b]quinolin.The third part is the analogues ofEchinomycin based on D-glucopyranuronic acid which contains the macrocycles andquinoxaline group.All the synthesized compounds are characterized by ~1H NMR,~(13)CNMR,MS and HR-MS.Also their interactions with calf thymus DNA (CT-DNA)were also investigated with UV-absorption,fluorescence spectroscopy and EBdisplacement analysis.The primary results suggest that the binding mode betweensome compounds and calf thymus DNA might be intercalation.
     D-amino glucose(2-amino-2-deoxy-D-glucose) is one of the most importantmonosaccharides in the glycosylprotein of higher animals and present in almost alltissues of human body.One of its interesting biological properties is that itsderivatives such as chitosan and glucosamine derivatives could kill the tumor cellswhile being less toxic to normal cells in human body.To take the advantage of thepositive biological properties of organotin (Ⅳ) compounds and D-amino glucose,wedesigned two dibutyltin complexes of aminoglucosyl derivative compoundsbis-{cis-4-[N-(1′,3′,4′,6′-tetra-O-benzoyl-2-deoxy-glucopyranosyl)imido]-4-oxo-2-butenoic acid]-di-n-butyltin} carboxylate (35b) and bis-{o-[N-(1′,3′,4′,6′-tetra-O-benzoyl-2-deoxy-glucopyranosyl) carbamoyl]benzoic acid]-di-n-butyltin}carboxylate(36b).These two compounds were then characterized by IR,NMR and MS.In vitrotests showed that both compounds have high cytotoxicity to four tumor cell lines(P388,HL-60,A549 and BEL-7402) while compound (36b) is more efficient to P388and HL-60 (IC_(50)=0.06μM).Clonogenic assays demonstrated that both compounds (35b) and (36b) have hematopoietic cell toxicity at 2.06μM.This indicates thatcompound 36b could be a potential leading compound for antitumor drugs.
     Curcumin has attracted considerable attention due to its wide range of anticancerproperties,definitely curative effect and low toxicity.But poor water and plasmasolubility and easy decompose in water Caused by curcumin structure extremelylimited the use of curcumin.It has been found that whcn modified by carbohydrates,the lead compounds show lower toxicity and side effects,improved bioavailability.According to this,a series of carbohydrate modified compounds based on curcuminskelecton were designed and synthesized.And 4-methylene of the curcumin wassubstituted by 1-O-bromoethoxy glucose and the function groups in the two benzenerings are various.We postulated that the glycosylecurcuminoids derivatives mayincrease their stability,antitumor activity and water solubility.All the eightcompounds are novel and the structures are confirmed by ~1H NMR,~(13)C NMR,ESI-MS and HR-MS.The screening of their bioactivities is underway.
引文
[1]Elizabeth K,Joshy J,Danaboyina R.Novel Bifunctional Acridine-Acridinium Conjugates:Synthesis and Study of Their Chromophore-Selective Electron-Transfer and DNA-Binding Properties,J.Phys.Chem.B 2005,109,21997-22002
    [2]Watson J.D.,Crick F.H.C.Genetical implication of the structure of deoxyribonucleic acid.Nature,1954,171:964-967
    [3]Blackburn G.M.,Gait M.J.Nucleic Acids in Chemistry and Biology,Oxford:Oxford University Press,1990,295-336
    [4]Nararro J.A.R.,Salas J.M.,Romera M.A.et al.J.Med.Chem.,1998,41:32
    [5]Kumar,C.V.;Asuncion,Emma H.DNA binding studies and site selective fluorescence sensitization of an anthryl probe.J.Am.Chem.Soc.1993,115(19),8547-8553.
    [6]Record M T Jr;Lohman M L;De Haseth P Ion effects on ligand-nucleic acid interactions.J.Mol.Biol,1976,107(2),145-58.
    [7]张蓉颖,庞代文,蔡汝秀,DNA与其靶向分子相互作用研究进展;高等学校化学学报,1999,20(2):1020.
    [8]Wilson W.D.,Li Y.,Veal J.M.,Adv.DNA Sequence Specific Agents,1992,1:89.
    [9]Eis P.S.,Smith J.A.,Rydzewski J.M.,et al.High resolution solution structure of a DNA duplex alkylated by the antiumor agent duocarmycin SA,J.Mol.Biol.,1997,272(2):237-252
    [10]Vanderwall D.E.,Lui S.M.,Wu W.,et al.A model of the structure of HOO-Co.bleomycin bound to d(CCAGTACTGG):recognition at the d(GpT) site and implications for double-stranded DNA cleavage.Chemistry & Biochemistry,1997,4:373-387.
    [11]Sigman D.S.,Chemical nucleases,Biochemistry,1990,39:9097-9105
    [12]李来生,王丽苹,黄伟东等,荧光法研究金属配合物与脱氧核糖核酸的相互作用,分析化学,2002,30(6):675-679
    [13]Lerman L.S.Structure considerations in the interaction of deoxyribonucleic acid and acridings,J.Mol.Biol.,196 l,3:18-30.
    [14]LongE.C,Barton J.R.On demonstrating DNA intercalation,ACC CHEM.Res.,1990,23:271-273.
    [15] Michael A. Marino etc, Spectral Measurements of Intercalated PCR-Amplified Short Tandem Repeat Alleles, Anal. Chem. 1998,70,4514-4519
    [16] Wakelin, L. P. G.; Romanos, M.; Chen, T. K.; Glaubiger, D.; Canellakis, E. S.; Waring, M. J. Structural limitations on the bifunctional intercalation of diacridines into DNA. Biochemistry 1978,17,5057-5063.
    [17] King, H. D.; Wilson, W. D.; Gabbay, E. J. Interactions of some novel amide-linked bis(acridines) with deoxyribonucleic acid. Biochemistry 1982,21,982-4989.
    [18] Atwell, G. J.; Stewart, G. M.; Leupin, W.; Denny, W. A. A diacridine derivative that binds by bisintercalation at two contiguous sites on DNA. J. Am. Chem. Soc. 1985, 707, 4335-4337.
    [19] Brana M. F., Castellano J. M., Rold(?)n C. M., et al. Synthesis and mode(s) of action of a new series of imide derivatives of 3-nitro-l ,8-naphthalic acid. Cancer Chemother. Pharmacol, 1980, 4,61.
    [20] Brana, M. F., Sanz A. M., Castellano J. M., et al. Synthesis and cytostatic activity of benz[de]isoquinoline-l,3-diones. Structure-activity relationships. Eur. J. Med. Chem. 1981, 16,207.
    [21] Moody C. J., Swann E., Houlbrook S., et al. Synthesis and Biological Activity of Thiazolylindolequinones, Analogs of the Natural Product BE 10988. J. Med. Chem., 1995,38,1039.
    [22] Leenders R. G., Damen F. W., Bijsterreld E. J., et al. ovel anthracycline-spacer-β-glucuronide, -β-glucoside, and -β-galactoside prodrugs for application in selective chemotherapy. Bioorg. Med. Chem., 1999,7, 1597.
    [23] De Groot F. M., de Bart A. C, Verheijen J. H., et al. Synthesis and Biological Evaluation of Novel Prodrugs of Anthracyclines for Selective Activation by the Tumor-Associated Protease Plasmin. J. Med. Chem., 1999,42, 5277.
    [24] Chaires J. B., Leng F., Przewloka T., et al. Structure-Based Design of a New Bisintercalating Anthracycline Antibiotic. J. Med. Chem., 1997, 40, 261.
    [25] Robinson H., Priebe W., Chaires J. B. et al. Binding of two novel bisdaunorubicins to DNA studied by NMR spectroscopy. Biochemistry, 1997, 36, 8663.
    [26] Gary G. H., Xiuqi S., Leng F., et al. Structure of a DNA-Bisdaunomycin Complex. Biochemistry, 1997, 36, 5940.
    [27] Cheung H. T., Freeney J., Robert G. C, et al. The conformation of echinomycin in solution. J. Am. Chem. Soc, 1978, 100, 46.
    [28] Otsuka H., Shoji J. Isolation and structural study on minor components of quinoxaline antibiotics.Journal of Antibiotics Ser. A, 1966,14,128.
    [29] Fox K. R., Gauvreau D., Goodwin D. C, et al. Binding of quinoline analogs of echinomycin to deoxyribonucleic acid. Role of the chromophores. Biochemical Journal, 1980,191,729.
    [30] Low C. M., Drew H. R., Waring M. J. Sequence-specific binding of echinomycin to DNA: evidence for conformational changes affecting flanking sequences. Nucleic Acids Res., 1984,12,4865.
    [31] Van Dyke M. M., Dervan P. B. Echinomycin binding sites on DNA. Science, 1984, 225, 1122.
    [32] Olsen R. K., Ramasaky K., Bhat K. L., et al. Synthesis and DNA-binding studies of [lac2, lac6]TANDEM, an analog of des-N-tetramethyltriostin A (TANDEM) having L-lactic acid substituted for each L-alanine residue. J. Am. Chem. Soc., 1986,108,6032.
    [33] Tomita K., Hoshino Y., Sasahira T., et al. BBM-928, a new antitumor antibiotic complex. Ⅱ. Taxonomic studies on the producing organism.Antibiot., 1980,33,1098.
    [34] Bailly C, Crow S., Minnock A., et al. DNA recognition by quinoline antibiotics: use of base-modified DNA molecules to investigate determinants of sequence-specific binding of luzopeptin. Nucleosides Nucleotides & Nucleic Acids, 2000, 19, 1337-1353.
    [35] Denny W. A. In Cancer Chemotherapeutic Agents, Foye W.O. American Chemical Society: Washington, D.C., 1995, pp. 218-239.
    [36] Arlin Z. A. A special role for amsacrine in the treatment of acute leukemia. Cancer Invest., 1989,7,607.
    [37] Liu L. F. DNA topoisomerase poisons as antitumor drugs.Annu. Rev. Biochem., 1989, 58, 351.
    [38] McCrystal M. R., Evans B. D. et al. Phase I study of the cytotoxic agent N-[2-(dimethyIamino)ethyl]acridine-4-carboxarnide. Cancer Chemother. Pharmacol., 1999,44,39.
    [39] Atwell G. J., Denny W. A. et al. Potential antitumor agents. 47. 3'-Methylamino analogues of amsacrine with in vivo solid tumor activity. J. Med. Chem., 1986,29,1769.
    [40] Wakelin L. P. G., Atwell G. J., Rewcastle G. W., et al. J. Med. Chem., 1987,30, 855.
    [41] Adams A., Guss J. M., Collyer C. A., et al. Relationships between DNA-binding kinetics and biological activity for the 9-aminoacridine-4-carboxamide class of antitumor agents. Biochemistry, 1999, 38,9221.
    [42] Bailly C, Denny W. A., Waring M. J. Molecular origins of selectivity in the interaction of amsacrine-4-carboxamide with GC-rich sequences in DNA. Anticancer Drug Des., 1996, 11,611.
    [43] Wakelin L. P. G. Polyfunctional DNA intercalating agents. Med. Res. Rev., 1986,6,275.
    [44] Goldin A., Vendetti M., McDonald J.S. et al., Current results of the screening program at the Division of Cancer Treatment, National Cancer Institute. Eur. J. Cancer, 1981,17, 129.
    [45] Gamage S.A., Spicer J.A., Atwell G.J., et al. Structure-activity relationships for substituted bis(acridine-4-carboxamides): a new class of anticancer agents. J. Med. Chem., 1999, 42, 2383.
    [46] Lown J. W., Morgan A. R., Yen S.-F., et al. Characteristics of the binding of the anticancer agents mitoxantrone and ametantrone and related structures to deoxyribonucleic acids. Biochemistry, 1985,24,4028.
    [47] Ratain M. J., Mick R., Berezin F. et al., Phase I study of amonafide dosing based on acetylator phenotype. Cancer Res., 1993,53,2304.
    [48] Llombart M., Poveda A., Forner E., et al. Phase I study of mitonafide in solid tumors. Investigational new drugs, 1992, 10,177.
    [49] Feigon J., Denny W. A., Leupin W., et al. Interactions of antitumor drugs with natural DNA: ~1H NMR study of binding mode and kinetics. J. Med. Chem., 1984,27,450.
    [50] Brana M. F., Castellano J. M., Moran M., et al. Bis-naphthalimides: a new class of antitumor agents. Anticancer Drug Des., 1993, 8,257.
    [51] Brana M. F., Castellano J. M., Moran M., et al. Bis-naphthalimides 3: synthesis and antitumor activity of N, N'-bis[2-(l,8-naphthalimido)-ethyl] alkanediamines. Anticancer Drug Des. 1996, 11, 297.
    [52] Bousquet P. F., Brana M. F., Conlon D., et al. Preclinical evaluation of LU 79553: a novel bis-naphthalimide with potent antitumor activity. Cancer Res., 1995, 55, 1176.
    [53] Bailly C, Brana M., Waring J., Sequence-selective intercalation of antitumour bis-naphthalimides into DNA. Evidence for an approach via the major groove. Eur. J. Biochem., 1996,240, 195.
    [54] Gallego J., Reid B. R., Solution structure and dynamics of a complex between DNA and the antitumor bisnaphthalimide LU-79553: intercalated ring flipping on the millisecond time scale. Biochemistry, 1999, 38,15104.
    [55] Marmot M, Mauffret O., Simon V., et al. DNA-drug recognition and effects on topoisomerase II-mediated cytotoxicity. A three-mode binding model for ellipticine derivatives.J. Biol. Chem., 1991, 266, 1820.
    [56] Kaczmarek L., Peczynska-Czoch W., Osiadacz J., et al. Synthesis, and cytotoxic activity of some novel indolo[2,3-b]quinoline derivatives: DNA topoisomerase Ⅱ inhibitors. Bioorg. Med. Chem., 1999, 7, 2457.
    [57] Garbay-Jaureguiberry C, Laugaa P., Delepierre M., et al. DNA bis-intercalators as new anti-tumour agents: modulation of the anti-tumour activity by the linking chain rigidity in the ditercalinium series. Anticancer Drug Des., 1987, 1, 323.
    [58] Mendoza R., Markovits J., Jaffrezou J. P., et al. DNase I susceptibility of bent DNA and its alteration by ditercalinium and distamycin. Biochemistry, 1990,29, 5035.
    [59] Esnault C, Roques B. P., Jacquemin-Sablon A. et al., Effects of new antitumor bifunctional intercalators derived from 7H-pyridocarbazole on sensitive and resistant L1210 cells. Cancer Res., 1984, 44,4355.
    [60] de Pascual-Teresa B., Gallego J., Ortiz A. R., et al. Molecular Dynamics Simulations of the Bis-Intercalated Complexes of Ditercalinium and Flexi-Di with the Hexanucleotide d(GCGCGC)2: Theoretical Analysis of the Interaction and Rationale for the Sequence Binding Specificity. J. Med. Chem., 1996, 39, 4810.
    [61] Peek M. E., Lipscomb L. A., Haseltine J., et al. Asymmetry and dynamics in bis-intercalated DNA. Bioorg. Med. Chem., 1995, 3, 693-699
    [62] Tanious F. A., Jekins T. C, Neidle S., et al. Substituent position dictates the intercalative DNA-binding mode for anthracene-9,10-dione antitumor drugs. Biochemistry, 1992, 31, 11632.
    [63]Armitage B.,Yu C.,Devadoss C.,et al.Cationic Anthraquinone Derivatives as Catalytic DNA Photonucleases:Mechanisms for DNA Damage and Quinone Recycling.J.Am.Chem.Soc.,1994,116,9847.
    [64]Kapuscinski J.,Darzynkiewicz Z.Relationship between the pharmacological activity of antitumor drugs Ametantrone and mitoxantrone (Novatrone) and their ability to condense nucleic acids.Proc.Natl.Acad.Sci.U.S.A.,1986,83,6302.
    [65]Tsuchiya T.,Takagi Y.,Yamada H.Preparation of 5-(2,6-dideoxy-2-fluoro-Ltalopyranosyloxy)-6-hydroxynaphtho[2,3-f]quinoline-7,12-dione (FT-Alz),a new-type,potentially antitumor substance with various biological activities.Bioorg.Med.Chem.Lett.,2000,10,203.
    [66]Spicer J.A.,Gamage S.A.,Rewcastle G.W.,et al.Bis(phenazine-l-carboxamides):structure-activity relationships for a new class of dual topoisomerase Ⅰ/Ⅱ-directed anticaneer drugs.J.Med.Chem.,2000,43,1350.
    [67]Takenaka S.,Sato H.,Ihara T.,et al.Synthesis and DNA binding properties of bis-9-acridinyl derivatives containing mono-,di-and tetra-viologen units as a connector of bis-intercalators.J.Heterocyclic Chem.,1997,34,123.
    [68]Jourdan M.,Garcia J.,Lhomme J.,et al.Threading Bis-Intercalation of a Macrocyclic Bisacridine at Abasic Sites in DNA:Nuclear Magnetic Resonance and Molecular Modeling Study.Biochemistry,1999,38,14205.
    [69]Zimmerman S.C.,Lamberson C.R.,Cory M.,et al.Topologically constrained bifunctional intercalators:DNA intercalation by a macrocyclic bisacridine.J.Am.Chem.Soc.,1989,111,6805.
    [70]Waksman S.A.,WooderuffH.B.Bacteriostatic and bactericidal substances produced by a soil Actinomyces.Proc.Soc.Exp.Biol.Med.,1940,45,609.
    [71]Sengupta S.K.In Cancer Chemotherapeutic Agents,Foye W.O.,American Chemical Society:Washington,D.C.,1995,pp.270-292.
    [72]Claire G.,Maurizot J.C.,Durand M.Conformational variability of the synthetic peptide 129-141 of the mouse prion protein.J.Biomol.Struct.& Dyn.,2000,17,237.
    [73]Nguyen C.H.,Marchand C.,Delage S.,et al.Synthesis of 13H-Benzo[6,7]-and 13H-Benzo[4,5]indolo[3,2-c]-quinolines:A New Series of Potent Specific Ligands for Triplex DNA.J.Am.Chem.Soc.,1998,120,2501.
    [74]Silver G.C.,Sun J.S.,Nguyen C.H.,et al.Stable Triple Helical DNA Complexes Formed by Benzopyridoindole-and Benzopyridoquinoxaline-Oligonucleotide Conjugates.J.Am.Chem.Soc.,1997,119,263.
    [75]Takenaka,S.;Takagi,M.Threading Intercalators as a New DNA Structural Probe.Bull.Chem.Soc.Jpn.,1999,72,327.
    [76]Jie Liu,Tixiang Zhang,Tongbu Lu et al,DNA-binding and cleavage studies of macrocyclic copper(Ⅱ) complexes.J Inorg.Biochem.9(2002)269.
    [77]C.V.Sastri,D.Eswaramoorthy,L.Giribabu et al,J.Inorg.Biochem.94(2003)138.
    [78]沈同,王镜岩,生物化学,第二版,北京,高等教育出版社1990,347.
    [79]Pasternack P.F.,Gibbs F.J.,Villatmaca J.Interactions of porphyrins with nucleic acids.Biochem.22(1983)2406.
    [80]Kumar C.V,Turner R.S,Asuncion E.H,Groove binding of a styrylcyanine dye to the DNA double helix:the salt effect.J.Photochem.Photobiol.A:Chem.74 (1993) 231.
    [81]Pattarkine M.V,Ganesh K.N,DNA-Surfactant Interactions:Coupled Cooperativity in Ligand Binding Leads to Duplex Stabilization.Biochem.Biophys.Res.Commun.263(1999) 41.
    [82]李文友,朱守田,何锡文,梁宏,光谱法研究Ge-132与DNA的作用机理。化学学报60(2002)105.
    [83]Per L,Bengt N,DNA Binding Geometries of Ruthenium (Ⅱ) Complexes with 1,10-Phenanthroline and 2,2'-Bipyridine Ligands Studied with Linear Dichroism Spectroscopy.Borderline Cases of Intercalation.J.Phys.Chem.(B) 102 (1998) 9583.
    [84]韩大雄,杨频,铜离子(Ⅱ)抑制Aβ多肽聚集机理的分子模拟。中国科学(B辑)30(2000)393.
    [85]Rehmann J P,Barton J K,Biochemistry 29 (1990) I70I.
    [86]Kumar C V,Asuncion E H,Sequence dependent energy transfer from DNA to a simple aromatic chromophore.J Chem.Soc.Chem.Commun.6 (1992) 470.
    [87]Yang G Ji LN,Zhou X G,Zhou J Y,Transit.Met.Chem.23 (1998) 273.
    [88]Kumar C.V,Asuncion E.H,DNA binding studies and site selective fluorescence sensitization of an anthryl probe.J Am.Chem.Soc.115 (1993) 8547.
    [89]Li W Y,Xu J G,Guo X Q et al,Spectrochim.Acta.PartA.53 (1997) 78I.
    [90]Netzel T.L,Nafisi K,Zhao M,Lenhard J R et al,Base-Content Dependence of Emission Enhancements,Quantum Yields,and Lifetimes for Cyanine Dyes Bound to Double-Strand DNA:Photophysical Properties of Monomeric and Bichromomphodc DNA Stains.J.Phys.Chem.99 (1995) 17936.
    [91]Sanja R.Grguric-Sipka,Rosario A.Vilaplana,Jose M.Perez et al,Synthesis,characterization,interaction with DNA and cytotoxicity of the new potential antitumour drug cis-K[Ru(eddp)Cl(2)].J Inorg.Biochem.97 (2003) 215.
    [92]彭小彬,梁世强,手性苏氨酸卟啉锌配合物的圆二色谱。物理化学学报17(2001)234.
    [93]Zinchenko AA,Sergeyev V G,Yamabe K et al,Biochemistry 5 (2004) 360.
    [94]何忠效,张树政,电泳,科学出版社2(1999)11.
    [95]杨频,高飞,生物无机化学原理科学出版社2002.
    [96]Nygren J,Svanvik N,Kubista M,The interactions between the fluorescent dye thiazole orange and DNA.Biopolymers 46 (1998) 39.
    [97]藻宸,医用药理学第三版,人民卫生出版社1994.
    [98]Paleeek,Emil,Surface-attached molecular beacons light the way for DNA sequencing.Trends in Biotechnology 22 (2004) 55.
    [99]Pang D.W,Abruna H D,Micromethod for the Investigation of the Interactions between DNA and Redox-Active Molecules.Anal Chem.70 (1998) 3162.
    [100]Zhao Y D,Pang D W,Wang Z Let al,J.Electroanal.Chem.413 (1997) 178.
    [101]M.T.Carter,M.Rodriguez,A.J.Bard,Voltammetric studies of the interaction of metal chelates with DNA.2.Tris-chelated complexes of cobalt (Ⅲ) and iron (Ⅱ) with 1,10-phenanthroline and 2,2'-bipyridine.J.Am.Chem.Soc.1989,111,8901.
    [102]W.W.Thomas,H.H.Thorp,Distribution of metal complexes bound to DNA determined by normal pulse voltammetry.J.Phys.Chem.1996,100 13829.
    [103]包晓玉,张伟,杨莉萍,生物分子间相互作用的电化学研究。南阳师范学院学报(自然科学版)2(2003)50.
    [104]Satyanara Y S,Dabrowiak J C,Chairs J B,Tris(phenanthroline)ruthenium(Ⅱ) enantiomer interactions with DNA:mode and specificity of binding.Biochemistry 32 (1993) 2573.
    [105]Brun A.M.Harriuman et al.Energy-and electron-transfer processes involving palladium porphyrins bound to DNA.J.Am.Chem.Soc.116 (1994) 10383.
    [106]Pitchumony T.S.,Mallayan P.Spectral,viscometric and electrochemical studies on mixed ligand cobalt(Ⅲ) complexes of certain diimine ligands bound to calf thymus DNA.Inorg.Chim.Acta.337 (2002) 420.
    [107]Jian-Zhong Wu,Li Yuan,Synthesis and DNA interaction studies of a binuclear ruthenium(Ⅱ) complex with 2,9-bis(2-imidazo[4,5-f][1,10]phenanthroline)-1,10-phenanthroline as bridging and intercalating ligand.J.Inorg.Biochem.98 (2004) 41.
    [108]Liu A,Majumdar,Hu Wet al,NMR Detection of N-H O:C Hydrogen Bonds in 13C,15N-Labeled Nucleic Acids.J.Am.Chem.Soc.122 (2000) 3206.
    [109]Lam S L,IP L N,Low temperature solution structures and base pair stacking of double helical d(CGTACG)2.J.Biomol.Struct.Dyn.19 (2002) 907.
    [110]Marzilli L G,Saad J S,Kuklenyik Z et al,Relationship of Solution and Protein-Bound Structures of DNA Duplexes with the Major Intrastrand Cross-Link Lesions Formed on Cisplatin Binding to DNA.J Am.Chem.Soc.123 (2001)2764.
    [111]Neault J F,Tajmir,Riahi H A,DNA-Chlorophyllin Interaction.J.Phys.Chem.B102(1998) 1610.
    [112]王树玲,于俊生,表面增强拉曼光谱研究小檗碱与DNA的相互作用。高等学校化学学报23(2002)1676.
    [113]1999科学发展报告,中国科学院,科学出版社,1999
    [1 14]罗纪盛,生物化学,华东师大出版社,1997
    [115]朱汝潘,张楚富主编。生物化学(M).武汉:武汉大学出版社1989:11。
    [116]杨福顺,卓仁喜,侧链含5-氟尿嘧啶甲壳胺的合成极其抗肿瘤活性的研究高分子学报,1990,3:332。
    [117]Pithayanukul P.,Onishi H.,Nagai T.In vitro pH-dependent drug release from N4-(4-carboxybutyryl)-1-β-D-arabinofuranosylcytosine and its conjugate with poly-L-lysine or decylenediamine-dextran T70.Chem.Pharm.Bull.1989,37(6):1587.
    [118]Sanzgiri Y.D.,Blanton C.D.et al.Synthesis,characterization,and in vitro stability of chitosan-methotrexate conjugates.Pharm.Res.1990,7(4):418.
    [119]Singh P.L.,Hingorani,Trivedi G.K.Drivatives of Substituted Propionic Acid as Antiinflammatory Agents.Indian J.Chem.,1988,27B:498-500.
    [120]Kar.et al.JNephrolDisly Trans Plant,1997,6,509.
    [121]周绪斌等,组特异性亲和配基甾分离纯化中的应用。中国生化药物杂志2000,21(6):308-310。
    [122]邱蔚然等,核糖在保护心脏功能中的作用,[J].中国生化药物杂志,2000,21(6) 319-321。
    [123]Kirschning,A.;Bechthold,A.F.-W.;Rohr,J.Chemical and biochemical aspects of deoxysugars and deoxysugar oligosaccharides.Top.Curr.Chem.1997,184,1-84.
    [124]Walker,S.;Valentine,K.G.;Kahne,D.Sugars as DNA binders:a comment on the calicheamicin oligosaccharide.J.Am.Chem.Soc.1990,112,6428-6429.
    [125]Martin,Jason N.;Munoz,Eva M.et al.Carbohydrate-Based DNA Ligands:Sugar-Oligoamides as a Tool to Study Carbohydrate-Nucleic Acid Interactions.J.Am.Chem.Soc.(2005),127(26),9518-9533.
    [126]Lown,J.William.Discovery and development of anthracycline antitumour antibiotics.Chemical Society Reviews (1993),22(3),165-76.
    [127]Lown,J.William;Editor.Bioactive Reviews,Vol.6:Anthracycline and Anthracenedione-Based Anticancer Agents.1988,753 pp.CAN 110:185946 AN 1989:185946
    [128]Searle,M.S.;Maynard,A.J.;Williams,H.E.L.Organic &Biomolecular Chemistry 2003,1,60-66.
    [129]Valentini,Omar;Biamonti,Giuseppe;Pandolfo,Massimo;Morandi,Carlo;Riva,Silvano.Mammalian single-stranded DNA binding proteins and heterogeneous nuclear RNA proteins have common antigenic determinants.Nucleic Acids Research (1985),13(2),337-46.
    [130]Bailly C.,Marehand C.,Hung Nguyen C.,et al.Eur.J.Biochem.,1995,232,66.
    [131]Chaires,Jonathan B.;Leng,Fenfei;et al.Structure-Based Design of a New Bisintercalating Anthracycline Antibiotic.J.Med.Chem.(1997),40(3),261-266.
    [132]Gary G.Hu,Xiuqi Shui,Fenfei Leng,Waldemar Priebe.,Jonathan B.Chaires,| and Loren Dean Williams,Structure of a DNA-Bisdaunomycin Complex.Biochemistry 1997,36,5940-5946
    [133]Jose Portugal and Jonathan B.Chaires etc,A New Bisintercalating Anthracycline with Picomolar DNA Binding Affinity,J.Med.Chem.2005,48,8209-8219
    [134]Kecke E,Jonas N,Susanne M,et al.Cleavage of cellular DNA by calicheamieinγ1[J].DNA Repair,2003,2:363
    [135]Egidio G,Katsunori T,Weidong D,et al.Theoretical simulation of the electronic circular dichroism spectrum of calicheamicin[J].Bioorg Med Chem,2005,13(17):5072
    [136]张迎春,艾木拉古丽·阿布拉,杨秀萍,烯二炔类高效抗肿瘤抗生素Calicheamicin的研究进展国外医药抗生素分册2008,29(1)20-23
    [137]Li,T.;Zeng,Z.;Estevez,V.A.;Baldenius,K.U.;Nicolaou,K.C.;Joyce,G,F.J.Am.Chem.Soc.1994,116,3709-3715.
    [138]Kwon,Y.;Xi,Z.;Kappen,L.S.;Goldberg,I.H.;Gao,X.Biochemistry 2003,42,1186-1198.
    [139]Takashi Takahashi,Hiroshi Tanaka,Akihisa Matsuda,Takayuki Doi,Haruo Yamada,DNA Cleaving Activities of 9-Membered Masked Enediyne Analogues Possessing DNA Intercalator and Sugar Moieties.Bioorganic & Medicinal Chemistry Letters 8 (1998)3303-3306
    [140]Krishna,A.G.;Balasubramanian,D.;Ganesh,K.N.Sugar-DNA molecular recognition:specific interaction of a-l,4-glucopyranose chains with DNA in the minor groove,Biochem.Biophys.Res.Commun.1994,202,204.
    [141]Bert Willis and Dev P.Arya,Major Groove Recognition of DNA by Carbohydrates,Current Organic Chemistry,2006,10,663-673 663
    [142]Prudhomme,M.Indolocarbazoles as anti-cancer agents.Curr.Pharm.Des.1997,3,265-290.
    [143]Bailly,C.;Goossens,J.;Laine,W.;Anizon,F.;Prudhomme,M.;Ren,J.;Chaires,J.B.J.Med.Chem.2000,43,4711-4720.
    [144]陈苏婷尤启冬,吲哚咔唑类化合物及其衍生物的抗肿瘤活性,化学进展,2008,20(3),368-374
    [145]Domingos J.Silva and Daniel E.Kahne,Studies of the 2:1 Chromomycin A3-Mg2+Complex in Methanol:Role of the Carbohydrates in Complex Formation,J.Am.Chem.Soc.1993,115,7962-7970
    [146]Kouchakdjian,Michael;Marinelli,Edmund;Gao,Xiaolian;Johnson,Francis;Grollman, Arthur;Patel,Dinshaw.NMR studies of exocyclic 1,N2-propanodeoxyguanosine adducts (X) opposite purines in DNA duplexes:protonated X(syn) A(anti) pairing (acidic pH) and X(syn) G(anti) pairing (neutral pH) at the lesion site.Biochemistry 1989,28,5647-5657.
    [147]Hayasaka,T.;Inoue,Y.Biochemistry 1969,8,2342-2347.
    [148]Armitage,B.Chem.Rev.,1998,98,1171.
    [149]Kazunobu Toshima,Nonnatural Glycosyl Anthraquinones as DNA Binding and Photocleaving Agents,Top Curr Chem 2007 10.128-147
    [150]Kazunobu Toshima,Yoko Nakajima,Yutaka Maeda and Shuichi Matsumura,Novel Anthraquinone-Carbohydrate Hybrids:The Significant Improvement of the DNA Photocleaving Activity and the Cytotoxic Selectivity,Letters in Organic Chemistry,2004,1,31-33
    [151]Kazunobu Toshima,Tomonori Kimura,Ryusuke Takano,Tomohiro Ozawa,Akiko Ariga,Yutaka Shima,Kazuo Umezawa and Shuichi Matsumura,Molecular design,chemical synthesis and biological evaluation of quinoxaline-carbohydrate hybrids as novel and selective photo-induced DNA cleaving and cytotoxic agents,Tetrahedron 59 (2003) 7057-7066
    [152]Jason N.Martin,Eva M.Muoz,et al.Carbohydrate-Based DNA Ligands:Sugar-Oligoamides as a Tool to Study Carbohydrate-Nucleic Acid Interactions.J.Am.Chem.Soc.,2005,127 (26),9518-9533
    [153]庄惠生,王琼娥等,化学发光免疫分析试剂吖啶酯的合成新路线,高等学校化学学报,1998,19,1933-1936
    [154]Zhang,Wei;Jiang,Tao;Ren,Sumei;Zhang,Zhongwei;Guan,Huashi;Yu,Jingsheng.
    Metal-N-saccharide chemistry:synthesis and structure determination of two Cu(Ⅱ) complexes containing glycosylamines.Carbohydrate Research.2004,339(12),2139-2143.
    [155]Huifen Chenl and Dinshaw J.Patel.Solution Structure of a Quinomycin Bisintercalator-DNA Complex.J.Mol.Biol.(1995) 246,164-179
    [156]Otohiko Tsuge,Minoru Nishinohara and Masashi Tashiro,Compounds related to acridine.I.Condensation of Acridine Derivative having active active methyl group and acromatic.1963,1477-1485
    [157]Lee G.S.,Lee Y.J.,Choi S.Y.,Park Y.S.;Yoon K.B.Self-Assembly of Glucosidase and D-Glucose-Tethering Zeolite Crystals into Fibrous Aggregates.J.Am.Chem.Soc.;2000,122,12151-12157.
    [158]Suzuki H.,Nagasawa H.etc.(2006) Quinoline glycosides as antimalarial drugs.JP patent 2006056872;24 pp:7
    [159]Trinidad V.T.,Murphy P.V.Synthesis and conformational analysis of novel water soluble macrocycles incorporating carbohydrates,including acyclodextrin mimic.Tetrahedron:Asymmetry;2005,16,261-272.
    [160]Liu,J.;Zhang,T.-X.;Lu,T.-B.;Qu,L.-H.;Zhou,H.;Ji,L.-N.J.lnorg.Biochem.2002,91,269.
    [161]许汝正,中华人民共和国药典·药典注释,化学工业出版社,北京,1993,p.494
    [162]Long Chao-yang,Yu Ying et al.Synthesis and deoxyribonucleic acid binding studies of copper(Ⅱ)-(1,10-phenanthroline)-(1,10-phenanthroline-5,6-dione)complex[J].Anal Chem,2002,30(4):392-396.
    [163]王海滔,胡婷婷,张黔玲,刘剑洪等钌(Ⅱ)多吡啶配合物的合成、荧光性质及与脱氧核糖核酸DNA的作用机制研究,化学学报,66(13),2008,1565-1571
    [164]张蓉颖,庞代文,蔡汝秀,高等学校化学学报20(1999)1201.
    [165]Long E.C.,Barton J.K,On demonstrating DNA intercalation.Chem.Res.23 (1990) 271.
    [166]Satyanarayana S,Dabrowiak J C,Chaires J B,Neither delta-nor lambda-tris (phenanthroline) ruthenium(Ⅱ) binds to DNA by classical intercalation.Biochemistry 31,1992,9319.
    [167]Pastemack R.F.et al.Long-range fluorescence quenching of ethidium ion by cationic porphyrins in the presence ofDNA.J.Am.Chem.Soc.,1991,113,6835.
    [168]Chen Y.D.,Cai M.Y.et al.Study on the mechanism of Chitosan complex formation with pEGFPC_3 DNA.Pharmaceutical Biotechnology;2005,12:291-293 (in Chinese)
    [169]Kumar C.V.,Barton J.K.,Turro N.J.Photophysics of ruthenium complexes bound to double helical DNA.J.Am.Chem.Soc;1985,107:5518-5523.
    [170]杨频,生物无机化学导论,西安交通大学出版社,西安1991.155
    [171]Y.Pin,J.Lan,YB.Sheng,Cheru.J.Chinese University 5 (1994) 1742.
    [172]J.Lan,Y.Pin,L.Q.Shang,Chem.J.Chinese University 17 (1996) 1345.
    [173]Brown,N.M.;"Tin-based antitumour drugs",Berlin:Springerverlag,1990,P69
    [174]Crowe,A.J.,Smith,P.J..Chem.Biol.Inteact.,1980,32:171
    [175]Gielen,M,Acheddad,M,Mahieu Betal,.Main Group Metal Chem.1991,14:74
    [176]Pettina,C.,Pellei,M.,Marchetti,F.,Santini,C,Miliani,M..Polyhedron 1998,17,561
    [177]Huber F,Roger G,carl L.et al,J.chem.Soc.Dalton.Trans.1985,52
    [178]Gielen M.et al.Silcom Germanium Tin and lead compounds 1986,9,349
    [179]胡盛志等,Inorg.Chim.Acta.1990,173:1
    [180]Gielen M.,Biesmans M.,Vos D.,Willem R.,J.Organometal.Chem.2000,79,139-145
    [181]Kemmer M.,Dalil H.,Biesmans M.et al.J.Organometal.Chem.2000,608,63-70
    [182]Casini A.,Messori L.,Orioli P.,Gielen M.et al.J.Inorg.Biochem.2001,85,297-300
    [183]Crowe A.J.,Smith P.J.,et al.Inorg.Chem.Aca.,1984,93(4),179-184
    [184]Khan,M.I.;Baloch,M.K.;Ashfaq,M.J.Organomet.Chem.2004,689:3370.
    [185]Gielen,M.;Biesemans,M.;Willem,R.Appl.Organomet.Chem.2005,19,440.
    [186]Bregadze,V.I.;Glazun,S.A.;Petrovskii,P.V.;Starikova,Z.A.;Buyanovskaya,A.G;Takazova,R.U.;Gielen,M.;de Vos,D.;Kemmer,M.;Biesemans,M.;Willem,R.Appl.Organomet.Chem.2004,18,191.
    [187]Pettina,C.;Pellei,M.;Marchetti,F.;Santini,C.;Miliani,M.Polyhedron,1998,17,561.
    [188]Kemmer,M.;Dalil,H.;Biesemans,M.;Martins,J.C.;Mahieu,B.;Horn,E.;deVos,D.;Tieki-nk,E.,R.,T.;Willem,R.;Gielen,M.J.Organomet.Chem.2000,608,63.
    [189]Bregadze,V.I.;Glazun,S.,A.;Petrovskii,P.V.;Starikova,Z.A.;Rochev,V.Y.;Dalil,H.;Biesemans,M.;Willem,R.;Gielen,M.;de Vos,D.Appl.Organomet.Chem.2003,17,453.
    [190]Yamamura,Y.;Kobayashi,S.;Fukuda,T.Bull.Chem.Soc.Jpn.1984,57,3182.
    [191]Muzzarelli,A.A.Carbohydr.Polym.1983,3,53.
    [192]刘勇,硕士论文,中国海洋大学,青岛,2003
    [193]Zhou,Y.-Z.;Jiang,T.;Ren,S.-M.;Yu,J.-S.;Xia,Z.J.Organomet.Chem.2005,690,2186.
    [194]尹汉东,王传华,王勇,张如芬,马春林,无机化学学报,2002,18,201.
    [195]卢文贯,陶家洵,王大奇,化学学报,2004,62,160.
    [196]Sandhu,G.K.;Sharma,N.;Tiekink,E.R.T.J.Organomet.Chem.1991,403,119.
    [197]Yin,H.-D.;Wang,Q.-B.;Xue,S.-C.J.Organomet.Chem.2005,690,435.
    [198]Rufen,Z.;Jiafeng,S.;Chunlin,M.J.Organomet.Chem.2005,690,4366.
    [199]Zhang,Z.W.;Jiang,T.;Ren,S.-M.;Zhang,Y.X.;Yu,J.S.Acta Chim.Sinca.2005,23,1655.
    [200]I.Malerba,D.Parent-Massin,et al.Toxicology in Vitro 18 (2004) 293.
    [201]王诗玺,中国海洋大学博士论文,2008
    [202]Sugiyama Y,Kawakishi S,Qsawa T,et al.Involvement of the beta-diketone moiety in the antioxidative mechanism of tetrahydrocurcumin.Biochem Pharmacol,1996,2:519-525.
    [203]Priyadarsini K I,Maity D K,Naik G H,et al.Role of phenolic O-H and methylene hydrogen on the free radical reactions and antioxidant activity of curcumin.Free Rad Biol.Med,2003,35 (5):475-784.
    [204]Sreejayan,Rao M N.Curcuminoids as potent inhibitors of lipid peroxidation.JPharm Pharmacol,1994,46 (12):1013-1016
    [205]Unnikrishnan M K,Rao M N.Inhibition of nitrite induced oxidation of hemoglobin by curcuminoids.Pharmazie,1995,50 (7) 490-492.
    [206]Bonte F,Noel-Hudson M S,Wepierre J,et al.Protective effect of curcuminoids on epidermal skin cells under free oxygen radical stress.Planta Med,1997,63 (3) 265-266.
    [207]Vajragupta O,Boonchoong P.Morris G.M,etal.Activesite binding modes of curcuminin HIV-1 protease and integrase.Bioorganic & Medicinal Chemistry Letter,2005,15:3364.
    [208]许东晖,王胜,金晶,梅雪婷,许实波,姜黄素的药理作用研究进展中草药,2005,36(11)1737-1740
    [209]Rajasingh J,Raikwar H.P,Muthian G,et al.Curcumin induces growth arrest and apoptosis in association with the inhibition of constitutively active JAKSTAT pathway in T cell leukemia.Biochemical & Biophysical Research Communications,2006,340:359.
    [210]Hong R L,Spohn W H,Hung M C.Curcumin inhibits tyrosine kinase activity ofp185~(neul) and also depletes p185~(neul).Clin Cancer Res,1999,5 (7) 1884-1891.
    [211]Shin C A,Lin J K.Inhibition of 8-hydroxydeoxyguano sine formation by curcumin in mouse fibroblast cells.Carcino-genesis,1993,14 (4) 709-712
    [212]Wang W,He H,Fan L,et al.Effect of Curcumin on Growth and Ultrastructure of Human Hepatocarcinoma Cell Line HepG-2.Acta Med Univ Sci Technol Hua zhong,2005,34:323.
    [213]Weber W.M,Hunsaker L.A,Roybal C.N,et al.Cureumin (diferuloylmethane) inhibits constitutive NF-κB activation,induces G1/S arrest,suppresses proliferation,and induces apoptosisin mantle cell lymphoma.Bioorganic & Medicinal Chemistry,2006,14:2450.
    [214]Wei Q Y,Chen WF,Zhou B,et al.Inhibition of lipid peroxidation and protein oxidation in rat liver mitochondria by cureumin and its analogues.BBA-General Subjects,2006,17:70.
    [215]McNally S.J.Curcumin Induces Heme Oxygenase-1 in Hepatocytes and Is Protective in Simulated Cold Preservation and Warm Reperfusion Injury.Transplantation,2006,81:623.
    [216]Oda M,Tanahashi N,Niimi H,et al.Effects of curcumin on tumor angiogenes is and biomarkers,COX-2 and VEGF,in hepatocellular carcinoma cell-implanted nude mice.Clinical Hemorheology & Microcirculation,2006,34:109.
    [217]Abe Y,Hashimoto S,Horie T.Curcumin inhibition of inflammatory cytokine production by human peripheral blood monocytes and alveolar macrophages.Pharmacol Res,1999,39 (1) 41-47.
    [218]Literat A,Su F,Norwicki M,et al.Regulation of pro-inflammatory cytokine expression by curcumin in hyaline membrane disease (HMD) Life Sci,2001,70 (3):253-267.
    [219]Kobayashi T,Hashimoto S,Horie T.Curcumin inhibition of dermatophagoides farines-induced interleukin-5 (L-5) and granulocyte macrophage-colony stimulating factor (GM-CSF) production by lymphocytes from bronchial asthmatics.Biochem Pharmacol,1997,54 (7):819-824.
    [220]Mazumder A,Raghavan K,Weinstein J,et al.Inhibition of human immunodeficiency virus type-1 integrase by curcumin.Biochem Pharmacol,1995,49 (8):1165-1170.
    [221]Ranjan D,Siquijo r A,Johnston T D,et al.The effect of curcumin on human B-cell immortalization byepstein-barrvirus[J].Am Surg,1998,64 (1):47-51.
    [222]Hergenhahn M,Soto U,Weninger A,et al.The chemopreventive compound curcumin is an efficient inhibitor of epstein-barrvirus BZL F1 transcription in RajiDR-LUC cells.Mol Carcinog,2002,33 (3):137-145.
    [223]NanjiA A,Jokelainen K,Tipoe G L,et al.Curcumin prevents alcohol induced liver disease in rats by inhibiting the expression of N F-kappa B-dependent genes[J].Am J Physiol Gastrointes Liver Physiol,2003,284 (2):G321-327.
    [224]Park E J,Jeon C H,Ko G,et al.Protective effect of curcumin in rat liver injury induced by carbon tetrachloride[J]..JPharm Pharmacol,2000,52 (4),437-440.
    [225]黄珈雯,姜黄素的抗肿瘤作用研究进展,甘肃中医,2008,21(1),55-56
    [226]Wei Shi,Sukanta Dolai,Samar Rizk,et al.Synthesis of Monofunctional Curcumin Derivatives,Clicked Curcumin Dimer,and a PAMAM Dendrimer Curcumin Conjugate for Therapeutic Applications.Organic letter,2007,9 (26):5461~5464
    [227]Venkateswarlu,Somepalli;Ramachandra,Marellapudi S.;Subbaraju,Gottumukkala V.Synthesis and biological evaluation of polyhydroxycurcuminoids.Bioorganic & Medicinal Chemistry,2005,13 (23):6374~6380
    [228]Ishida,Junko;Ohtsu,Hironori;Tachibana,Yoko;et al.Antitumor agents.Part 214:synthesis and evaluation of curcumin analogues as cytotoxic agents.Bioorganic & Medicinal Chemistry,2002,10 (11):3481~3487
    [229]Ohtsu,Hironori;Xiao,Zhiyan;Ishida,Junko;et al.Antitumor Agents.217.Curcumin Analogues as Novel Androgen Receptor Antagonists with Potential as Anti-Prostate Cancer Agents.Journal of Medicinal Chemistry,2002,45 (23):5037~5042
    [230]Lin,Li;Shi,Qian;Su,Ching-Yuan;et al.Antitumor agents 247.New 4-ethoxycarbonyl ethyl curcumin analogs as potential antiandrogenic agents.Bioorg.Med.Chem.,2006,14 (8):2527~2534
    [231]Barry M.Markaverich,Thomas H.Schauweker,Rebecca R.Gregory,et al.Nuclear Type Ⅱ Sites and Malignant Cell Proliferation:Inhibition by 2,6-Bis-benzyliden ecyclohexanones.Cancer Res,1992,52:2482~2488
    [232]Marino Artico,Roberto Di Santo,Roberta Costi,et al.Geometrically and Conformationally Restrained Cinnarnoyl Compounds as Inhibitors of HIV-1 Integrase:Synthesis,Biological Evaluation,and Molecular Modeling.J.Med.Chem.,1998,41:3948~3960
    [233]Hussein I.El-Subbagh,Suhair M.Abu-Zaid,Mona A.Mahran,Farid A.Badria,and Abdulrahrnan M.Al-Obaid.Synthesis and Biological Evaluation of Certain α,β-Unsaturated Ketones and Their Corresponding Fused Pyridines as Antiviral and Cytotoxic Agents.J.Med.Chem.,2000,43:2915~2921
    [234] Brian K. Adams, Eva M. Ferstl, Matthew C. Davis, et al. Synthesis and biological evaluation of novel curcumin analogs as anti-cancer and anti-angiogenesis agents. Bioorg. & Med. Chem., 2004,12:3871-3883
    [235] Thomas Philip Robinson, Tedman Ehlers, Richard B. Hubbard, et al. Design, Synthesis, and Biological Evaluation of Angiogenesis Inhibitors: Aromatic Enone and Dienone Analogues of Curcumin. Bioorg. Med. Chem. Lett, 2003,13: 115-117
    [236] Kobayashi, Tatsuya; Hashimoto, Shu; Horie, Takashi. Curcumin inhibition of Dermato phagoides farinea induced interleukin-5 (IL-5) and granulocyte macrophage -colony stimulating factor (GM-CSF) production by lymphocytes from bronchial asthmatics. Biochemical Pharmacology, 1997, 54 (7): 819-824
    [237] Ho Bum Woo, Woon-Seob Shin, Seokjoon Leed and Chan Mug Ahna. Synthesis of novel curcumin mimics with asymmetrical units and their anti-angiogenic activity. Bioorg. Med. Chem. Lett., 2005,15: 3782-3786
    [238] Sanjay Kumar, Upma Narain, Snehlata Tripathi, and Krishna Misra. Syntheses of Curcumin Bioconjugates and Study of Their Antibacterial Activities against (?)-VLactamase-Producing Microorganisms. Bioconjugate Chem., 2001, 12:464-469

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700