用户名: 密码: 验证码:
白光发光二极管用几种典型氮(氧)化物荧光材料的制备及其发光性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为一类新型的白光发光二极管用荧光转换材料,氮(氧)化物因其丰富的发光颜色、较高的荧光转换效率、稳定的化学-物理性质以及较小的热猝灭性能,近年来备受关注。但是,相对于氧化物荧光材料来说,氮(氧)化物的研究还处于起步阶段。本论文针对目前氮(氧)化物荧光材料的研究中存在的主要问题,从三个方面展开研究:
     1.通过Al、Ga对典型硅基氮氧化物CaSi2O2N2:Eu2+晶体非金属层[Si2O2N2]2-中Si的部分替代对样品的光谱性能进行了调节与改善,探索了其中的光谱峰位移动以及发光强度提高的机理,结果表明:样品的光谱调控可以通过这种阴离子基团杂化的方式实现;此外,通过改变激活剂配位多面体的大小、对称性,减小激活剂离子进入基质晶格后的失配度,减弱其周围的晶格应变力,可以增加其在基质晶格中的稳定性,从而提高激活剂离子融入基质晶格中的几率,使荧光材料的发射强度增强。
     2.选用空气中稳定、简单易得的α-Si3N4、SrCO3、SiO2和Eu203为原料,在1400-1500℃、NH3-N2保护下制备合成了一种性能突出的新型红色硅基氮氧化物荧光材料Sr2SiNzO4-1.5z:Eu2+(0.7     3.通过对氮化硼基氮(氧)化物的制备和研究,提出了一种可用于较低温度、常压下制备氮(氧)化物荧光材料的方法。(1)在700-900℃,空气气氛,常压下,获得无稀土掺杂的BCNO:Al氮氧化物荧光材料。该材料在紫外和蓝光区均有较强的吸收,可被LED紫外或蓝光芯片有效激发:通过原料配比、制备条件的调控,BCNO:Al氮氧化物发光颜色从蓝光到橙红光可调,量子效率最高可达74.7%。(2)通过制备方法的探索和改进,采用了较为简便的两步合成方案,在较低温度、常压、无模板剂和催化剂的条件下,成功合成了大量具有六边形形貌、径向尺寸300-500nm、厚度~30nm的h-BN纳米片。该方案拓展了可用于在低温、常压下制备细小颗粒、均匀分布的氮化物发光材料的合成方法。
(Oxy)nitride phosphors, as a new class of luminescent materials for use in white LED, have received significant attention in recent years, due to their abundant emission colors, high conversion efficiency, high physical-chemical stability, as well as their low thermal quenching. However, compared with oxide phosphors, the study of (oxy)nitrides is at an early stage. In this paper, focus on the problems of the existing research on the nitride/oxynitride phosphors, the researches have been carried out in three aspects:
     1. Luminescence spectra have been tuned and improved by simultaneous equivalent substitution of Al or Ga for Si in the anion [Si2O2N2]2-layer of typical oxynitride CaSi2O2N2:Eu2+. And the mechanism of the spectra shift and the luminescence intensity increasing have been explored. It indicated that the anion substitution is the other choice to tune the emission color, shift their excitation and emission bands. In addition, the photoluminescence intensity or the intensity of the emission maximum could be strengthen by reducing the lattice mismatch between the activator ions and the replaced host crystal ions and increase the critical dopant concentration of Eu+.
     2. A novel remarkable red oxonitridosilicate phosphor Sr2SiNzO4-1.5z:Eu2+(0.7     3. A viable method for the production of (oxy)nitride phosphors with fine and well-dispersed powders at relatively low temperatures under ambient atmospheric pressure have been developed during the synthesis and investigation of the BN-based (oxy)nitride phosphors.(1) The oxynitride phosphors, which is composed of BCNO: Al without rare earth ions, have been synthesized at low sintering temperature (700-900℃) under atmospheric pressure. The result indicates that these BCNO:Al phosphors can emit under excitation not only by UV but also blue light; the color emission can be easily tuned from the blue to the orange regions of the photoluminescence spectrum by manipulating both the composition ratios of the raw materials as well as the reaction conditions; and with high quantum efficiency, i.e.,74.7%.(2) Large quantities of h-BN nanoplates with hexagonal morphologies have been successfully prepared by a facile template-and catalyst-free two-step method, which was carried out at comparatively low-temperature and under normal pressure conditions. The synthesized nanoplates have diameters of300-500nm and the thickness is about30nm. This two-step facile route developed the methods for growing nanosize nitride phosphors with uniform size distribution at relatively low temperatures under ambient atmospheric pressure.
引文
1. 徐叙熔;苏勉曾,发光学与发光材料.化学工业出版社:2004.
    2. Madelung, O., Semiconductors--basic data. Springer Berlin:1996.
    3. Schubert, E. F.; Gessmann, T.; Kim, J. K., Light emitting diodes. Wiley Online Library: 2005.
    4. Round, H. J., A note on carborundum. Electrical world 1907,49 (6),309.
    5. Holonyak, N.; Bevacqua, S., Coherent (visible) light emission from Ga (As1-xPx) junctions. Applied Physics Letters 1962,1(4),82-83.
    6. Lang, D., Fast capacitance transient appartus:Application to ZnO and O centers in GaP p-n junctions. Journal of Applied Physics 1974,45 (7),3014-3022.
    7. Van Opdorp, C.; Werkhoven, C.; Vink, A., A method to determine bulk lifetime and diffusion coefficient of minority carriers; application to n-type LPE GaP. Applied Physics Letters 1977,30(1),40-42.
    8. Nakamura, S.; Mukai, T.; Senoh, M., High-power GaN pn junction blue-light-emitting diodes. Japanese journal of applied physics 1991,30 (12A), L1998-L2001.
    9. Nakamura, S.; Mukai, T.; Senoh, M., High-brightness InGaN/AlGaN double heterostructure blue-green-light-emitting diodes. Journal of Applied Physics 1994,76 (12), 8189-8191.
    10. Nakamura, S.; Senoh, M.; Iwasa, N.; Nagahama, S., High-brightness InGaN blue, green and yellow light-emitting diodes with quantum well structures. Japanese journal of applied physics 1995,34 (7), L797-L799.
    11. Steigerwald, D. A.; Bhat, J. C.; Collins, D.; Fletcher, R. M.; Holcomb, M. O.; Ludowise, M. J.; Martin, P. S.; Rudaz, S. L., Illumination with solid state lighting technology. Selected Topics in Quantum Electronics, IEEE Journal of 2002,8 (2),310-320.
    12. Ye, S.; Xiao, F.; Pan, Y.; Ma, Y.; Zhang, Q., Phosphors in phosphor-converted white light-emitting diodes:Recent advances in materials, techniques and properties. Materials Science and Engineering:R:Reports 2010,71 (1),1-34.
    13. Mueller-Mach, R.; Mueller, G. O.; Krames, M. R.; Trottier, T., High-power phosphor-converted light-emitting diodes based on Ⅲ-nitrides. Selected Topics in Quantum Electronics, IEEE Journal of 2002,8 (2),339-345.
    14. Park, J. K.; Kim, C. H.; Park, S. H.; Park, H. D.; Choi, S. Y., Application of strontium silicate yellow phosphor for white light-emitting diodes. Applied Physics Letters 2004,84 (10), 1647-1649.
    15. Xie, R. J.; Hirosaki, N.; Sakuma, K.; Yamamoto, Y.; Mitomo, M., Eu2+-doped Ca-a-SiAlON: A yellow phosphor for white light-emitting diodes. Applied physics letters 2004,84 (26), 5404-5406.
    16. Wu, H.; Zhang, X.; Guo, C.; Xu, J.; Wu, M.; Su, Q., Three-band white light from InGaN-based blue LED chip precoated with green/red phosphors. Photonics Technology Letters, IEEE 2005,17 (6),1160-1162.
    17. Yang, C. C.; Lin, C. M.; Chen, Y. J.; Wu, Y. T.; Chuang, S. R.; Liu, R. S.; Hu, S. F., Highly stable three-band white light from an InGaN-based blue light-emitting diode chip precoated with (oxy) nitride green/red phosphors. Applied physics letters 2007,90(12),123503-123503-3.
    18. Sakuma, K.; Hirosaki, N.; Kimura, N.; Ohashi, M.; Rong-Jun, X.; Yamamoto, Y.; Suehiro, T.; Asano, K.; Tanaka, D., White light-emitting diode lamps using oxynitride and nitride phosphor materials. IEICE transactions on electronics 2005,88 (11),2057-2064.
    19. Sheu, J. K.; Chang, S. J.; Kuo, C.; Su, Y. K.; Wu, L.; Lin, Y.; Lai, W.; Tsai, J.; Chi, G. C.; Wu, R., White-light emission from near UV InGaN-GaN LED chip precoated with blue/green/red phosphors. Photonics Technology Letters, IEEE 2003,15(1),18-20.
    20. Mukai, T.; Yamada, M.; Nakamura, S., Characteristics of InGaN-based UV/blue/green/amber/red light-emitting diodes. Japanese journal of applied physics 1999,38 (part 1),3976-3981.
    21. Kuo, C. H.; Sheu, J. K.; Chang, S. J.; Su, Y. K.; Wu, L. W.; Tsai, J. M.; Liu, C.; Wu, R., n-UV+ blue/green/red white light emitting diode lamps. Japanese Journal of Applied Physics 2003,42,2284.
    22. Kim, J. S.; Jeon, P. E.; Park, Y. H.; Choi, J. C.; Park, H. L.; Kim, G. C.; Kim, T. W., White-light generation through ultraviolet-emitting diode and white-emitting phosphor. Applied physics letters 2004,85 (17),3696-3698.
    23. Pavese, A.; Artioli, G.; Prencipe, M., X-ray single-crystal diffraction study of pyrope in the temperature range 30-973 K. American Mineralogist 1995,80 (5),457-464.
    24. Meagher, E., The crystal structures of pyrope and grossularite at elevated temperatures. American Mineralogist 1975,60 (3-4),218-228.
    25. Chenavas, J.; Joubert, J.; Marezio, M.; Ferrand, B., On the crystal symmetry of the garnet structure. Journal of the Less Common Metals 1978,62,373-380.
    26. Blasse, G.; Bril, A., Investigation of Some Ce-Activated Phosphors. The journal of chemical physics 1967,47,5139.
    27. Dorenbos, P., The 5d level positions of the trivalent lanthanides in inorganic compounds. Journal of Luminescence 2000,91 (3),155-176.
    28. Nakamura, S.; Senoh, M.; Nagahama, S.; Iwasa, N.; Yamada, T.; Matsushita, T.; Kiyoku, H.; Sugimoto, Y., InGaN-based multi-quantum-well-structure laser diodes. Japanese Journal of Applied Physics Part 2 Letters 1996,35,74-76.
    29. Kimura, N.; Sakuma, K.; Hirafune, S.; Asano, K.; Hirosaki, N.; Xie, R. J., Extrahigh color rendering white light-emitting diode lamps using oxynitride and nitride phosphors excited by blue light-emitting diode. Applied physics letters 2007,90 (5),051109-051109-3.
    30. Yang, H.; Kim, Y. S., Energy transfer-based spectral properties of Tb-, Pr-, or Sm-codoped YAG:Ce nanocrystalline phosphors. Journal of Luminescence 2008,128 (10),1570-1576.
    31. Wang, L.; Zhang, X.; Hao, Z.; Luo, Y.; Wang, X.; Zhang, J., Enriching red emission of Y3Al5O12:Ce3+ by codoping Pr3+ and Cr3+ for improving color rendering of white LED. Optics express 2010,18(24),25177-25182.
    32. Wang, W.; Tang, J.; Hsu, S. T. V.; Wang, J.; Sullivan, B. P., Energy transfer and enriched emission spectrum in Cr and Ce co-doped Y3AlSO12 yellow phosphors. Chemical Physics Letters 2008,457(1),103-105.
    33. Kong, L.; Gan, S.; Hong, G.; ZHANG, J., Luminescence Properties of YAG:Ce Codoped with Pr3+ or Sm3+. Chinese Journal of Luminescence 2007,28 (3),393.
    34. Mu, Z. F.; Hu, Y. H.; Wang, Y. H.; Chen, L.; Wang, X. J., Effect of the Co-Substitution of Ca2+ and Si4+ on the Structure and Luminescence Properties of Y3Al5O12:Ce3+. Advanced Materials Research 2011,233,1844-1849.
    35. Zhang, K.; Hu, W.; Wu. Y.; Liu, H., Photoluminescence investigations of (Y1-xLnx)3Al5O12: Ce (Ln3+= Gd3+,a3+) nanophosphors. Physica. B, Condensed matter 2008,403 (10-11), 1678-1681.
    36. Maniquiz, M.; Jung, K. Y., Preparation of (Y, Gd)3Al5-2y(Si, Mg)yO12:Ce Phosphor by Spray Pyrolysis:Effect of Precursor Type and Flux on Its Luminescence Characteristics. ECS Transactions 2010,28 (3),175-182.
    37. Shi, Y.; Wang, Y.; Wen, Y.; Zhao, Z.; Liu, B.; Yang, Z., Tunable luminescence Y3Al5O12: 0.06 Ce3+, xMn2+ phosphors with different charge compensators for warm white light emitting diodes. Optics Express 2012,20 (19).21656-21664.
    38. Wang, X.; Zhou, G.; Zhang, H.; Li, H.; Zhang, Z.; Sun, Z., Luminescent properties of yellowish orange Y3Al5-xSixO12-xNx:Ce phosphors and their applications in warm white light-emitting diodes. Journal of Alloys and Compounds 2012.
    39. Pan, Y.; Wu, M.; Su, Q., Comparative investigation on synthesis and photoluminescence of YAG:Ce phosphor. Materials Science and Engineering:B 2004,106 (3),251-256.
    40. Sang, Y.; Lv, Y.; Qin, H.; Zhang, X.; Liu, H.; Wang, J.; Sun, X.; Boughton, R. I., Chemical composition evolution of YAG co-precipitate determined by pH during aging period and its effect on precursor properties. Ceramics International 2011.
    41. Veith, M.; Mathur, S.; Kareiva, A.; Jilavi, M.; Zimmer, M.; Huch, V., Low temperature synthesis of nanocrystalline Y3Al5O12 (YAG) and Ce-doped Y3Al5O12 via different sol-gel methods.J. Mater. Chem.1999,9(12),3069-3079.
    42. Chiang, C.; Tsai, M.; Hsiao, C.; Hon, M. H., Synthesis of YAG:Ce phosphor via different aluminum sources and precipitation processes. Journal of alloys and compounds 2006,416 (1), 265-269.
    43. Zych, E.; Walasek, A.; Szemik-Hojniak, A., Variation of emission color of Y3Al5O12:Ce induced by thermal treatment at reducing atmosphere. Journal of Alloys and Compounds 2008, 451 (1),582-585.
    44. Mancic, L.; Del Rosario, G.; Stanojevic, Z.; Milosevic, O., Phase evolution in Ce-doped yttrium-aluminum-based particles derived from aerosol. Journal of the European Ceramic Society 2007,27(13),4329-4332.
    45. Purwanto, A.; Wang, W. N.; Lenggoro, I. W.; Okuyama, K., Formation of BaTiO3 nanoparticles from an aqueous precursor by flame-assisted spray pyrolysis. Journal of the European Ceramic Society 2007,27(16),4489-4497.
    46. Jia, D.; Wang, Y.; Guo, X.; Li, K.; Zou, Y.; Jia, W., Synthesis and characterization of YAG: Ce3+ LED nanophosphors. Journal of The Electrochemical Society 2007,154 (1), J1-J4.
    47. Kasuya, R.; Isobe, T.; Kuma, H., Glycothermal synthesis and photoluminescence of YAG: Ce3+ nanophosphors. Journal of alloys and compounds 2006,408,820-823.
    48. Kasuya, R.; Isobe, T.; Kuma, H.; Katano, J., Photoluminescence enhancement of peg-modified YAG:Ce3+ nanocrystal phosphor prepared by glycothermal method. The Journal of Physical Chemistry B 2005,109 (47).22126-22130.
    49. Asakura, R.; Isobe, T.; Kurokawa, K.; Takagi, T.; Aizawa, H.; Ohkubo, M., Effects of citric acid additive on photoluminescence properties of YAG:Ce3+ nanoparticles synthesized by glycothermal reaction. Journal of luminescence 2007,127 (2),416-422.
    50. Lu, C. H.; Hsu, W. T.; Dhanaraj, J.; Jagannathan, R., Sol-gel pyrolysis and photoluminescent characteristics of europium-ion doped yttrium aluminum garnet nanophosphors. Journal of the European Ceramic Society 2004,24 (15),3723-3729.
    51. Lu, C. H.; Jagannathan, R., Cerium-ion-doped yttrium aluminum garnet nanophosphors prepared through sol-gel pyrolysis for luminescent lighting. Applied physics letters 2002,80 (19), 3608-3610.
    52. Furman, J.; Gundiah, G.; Page, K.; Pizarro, N.; Cheetham, A., Local structure and time-resolved photoluminescence of emulsion prepared YAG nanoparticles. Chemical Physics Letters 2008,465 (1),67-72.
    53. Chatterjee, M.; Naskar, M. K., Synthesis of Yttrium-Aluminum-Garnet Hollow Microspheres by Reverse-Emulsion Technique. Journal of the American Ceramic Society 2006, 89 (4),1443-1446.
    54. Fu, Y. P., Preparation of Y3Al5O12:Ce powders by microwave-induced combustion process and their luminescent properties. Journal of alloys and compounds 2006,414 (1),181-185.
    55. Vaidhyanathan, B.; Binner, J. G. P., Microwave assisted synthesis of nanocrystalline YAG. Journal of materials science 2006,41 (18),5954-5957.
    56. Letichevsky, Y.; Sominski, L.; Moreno, J. C.; Gedanken, A., The sonochemical and microwave-assisted synthesis of nanosized YAG particles. New journal of chemistry 2005,29 (11), 1445-1449.
    57. Li, X.; Liu, H.; Wang, J.; Cui, H.; Han, F., YAG:Ce nano-sized phosphor particles prepared by a solvothermal method. Materials research bulletin 2004,39 (12),1923-1930.
    58. Jia, N.; Zhang, X.; He, W.; Hu, W. J.; Meng, X.; Du, Y.; Jiang, J.; Du, Y., Property of YAG:Ce phosphors powder prepared by mixed solvothermal method. Journal of Alloys and Compounds 2011,509 (5),1848-1853.
    59. Kim, K. M.; Ryu, J. H.; Mhin, S. W.; Park, G. S.; Shim, K. B., Luminescence of Nanocrystalline Tb3A15O12:Ce3+ Phosphors Synthesized by Nitrate-Citrate Gel Combustion Method. Journal of The Electrochemical Society 2008,155 (10), J293-J296.
    60. Chen, Y.; Wang, J.; Gong, M.; Su, Q., Comparative study on the synthesis, photoluminescence and application in InGaN-based light-emitting diodes of TAG:Ce3+ phosphors. Journal of Solid State Chemistry 2007,180 (4),1165-1170.
    61. Luo, H.; Liu, J.; Xu, B.; Lu, Y.; Han, L.; Ren, K.; Yu, X., Synthesis and Luminescence Properties of Mg-Si Co-doped Tb3Al5O12:Ce3+ Phosphors with Blue Excitation for White LED. Journal of the American Ceramic Society 2012,95 (11),3582-3587.
    62. Zorenko, Y.; Gorbenko, V.; Konstankevych, I.; Grinev, B.; Globus, M., Scintillation properties of Lu3Al5O12:Ce single-crystalline films. Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers, Detectors and Associated Equipment 2002,486 (1),309-314.
    63. Birkel, A.; Denault, K. A.; George, N. C.; Doll, C. E.; Hery, B.; Mikhailovsky, A. A.; Birkel, C. S.; Hong, B. C.; Seshadri, R., Rapid Microwave Preparation of Highly Efficient Ce3+-Substituted Garnet Phosphors for Solid State White Lighting. Chemistry of Materials 2012, 24(6),1198-1204.
    64. Setlur, A. A.; Heward, W. J.; Gao, Y.; Srivastava, A. M.; Chandran, R. G.; Shankar, M. V., Crystal chemistry and luminescence of Ce3+ doped Lu2CaMg2 (Si, Ge)3O12 and its use in LED based lighting. Chemistry of materials 2006,18 (14),3314-3322.
    65. Shimomura, Y.; Honma, T.; Shigeiwa, M.; Akai, T.; Okamoto, K.; Kijima, N., Photoluminescence and crystal structure of green-emitting Ca3Sc2Si3O12:Ce3+ phosphor for white light emitting diodes. Journal of The Electrochemical Society 2007,154 (1), J35-J38.
    66. Jiang, Z.; Wang, Y.; Wang, L., Enhanced Yellow-to-Orange Emission of Si-Doped Mg3Y2Ge3O12:Ce3+ Garnet Phosphors for Warm White Light-Emitting Diodes. Journal of The Electrochemical Society 2010,157 (5), J155-J158.
    67. Blasse, G.; Wanmaker, W.; ter Vrugt, J., Some New Classes of Efficient Eu2+-Activated Phosphors. Journal of The Electrochemical Society 1968,115 (6),673-673.
    68. Barry, T. L., Fluorescence of Eu2+-Activated Phases in Binary Alkaline Earth Orthosilicate Systems. Journal of The Electrochemical Society 1968,115 (11),1181-1184.
    69. Barry, T. L., Equilibria and Eu2+ Luminescence of Subsolidus Phases Bounded by Ba3MgSi2O8, Sr3MgSi2 O8, and Ca3MgSi2O8. Journal of The Electrochemical Society 1968,115 (7),733-738.
    70. Barry, T. L., Luminescent Properties of Eu2+ and Eu2++Mn2+ Activated BaMg2Si2O7. Journal of The Electrochemical Society 1970,117(3),381-385
    71. Yao, G.; Lin, J.; Zhang, L.; Lu, G.; Gong, M.; Su, M., Luminescent properties of BaMg2Si2O7:Eu2+, Mn2+. Journal of Materials Chemistry 1998,8 (3),585-588.
    72. Yamazaki, K.; Nakabayashi, H.; Kotera, Y.; Ueno, A., Fluorescence of Eu2+-Activated Binary Alkaline Earth Silicate. Journal of The Electrochemical Society 1986,133 (3),657-660.
    73. Jang, H. S.; Jeon, D. Y., Yellow-emitting Sr3SiO5:Ce3+,Li+ phosphor for white-light-emitting diodes and yellow-light-emitting diodes. Applied Physics Letters 2007,90 (4),041906.
    74. Xie, R. J., Nitride Phosphors and Solid-State Lighting. CRC Press:2011.
    75. Park, J. K.; Lim, M. A.; Kim, C. H.; Park, H. D.; Park, J. T.; Choi, S. Y., White light-emitting diodes of GaN-based Sr2SiO4:Eu and the luminescent properties. Applied Physics Letters 2003,82 (5),683-685.
    76. Yoo, J. S.; Kim, S. H.; Yoo, W. T.; Hong, G. Y.; Kim, K. P.; Rowland, J.; Holloway, P. H., Control of Spectral Properties of Strontium-Alkaline Earth-Silicate-Europium Phosphors for LED Applications. Journal of The Electrochemical Society 2005,152 (5), G382-G385.
    77. Park, J. K.; Choi, K. J.; Park, S. H.; Kim, C. H.; Kim, H. K., Application of Ba2+-Mg2+ Co-doped Sr2SiO4:Eu Yellow Phosphor for White-Light-Emitting Diodes. Journal of The Electrochemical Society 2005,152 (8), H121-H123.
    78. Kim, J. S.; Park, Y. H.; Kim, S. M.; Choi, J. C.; Park, H. L., Temperature-dependent emission spectra of M2Si04:Eu2+(M=Ca, Sr, Ba) phosphors for green and greenish white LED. Solid State Communications 2005,133 (7),445-448.
    79. Suehiro, T.; Hirosaki, N.; Xie, R. J.; Sakuma, K.; Mitomo, M.; Ibukiyama, M.; Yamada, S., One-step preparation of Ca-α-SiAlON:Eu2+ fine powder phosphors for white light-emitting diodes. Applied Physics Letters 2008,92 (19),191904-191904-3.
    80. Notzold, D.; Wulff, H.; Jilg, S.; Kantz, L.; Schwarz, L., Structure and optical properties under VUV/UV excitation of Eu2+ doped Alkaline Earth Aluminate Phosphors. Physica status solidi (a) 2006,203 (5),919-929.
    81. Pawade, V.; Dhoble, S., Optical properties of blue emitting Ce3+activated XMg2Al16O27(X= Ba, Sr) phosphors. Optics Communications 2011,284 (18),4185-4189.
    82. Pawade, V.; Dhoble, S., Novel blue-emitting SrMg2Al16O27:Eu2+ phosphor for solid-state lighting. Luminescence 2011,26 (6),722-727.
    83. Yerpude, A.; Dhoble, S., Luminescent properties of Eu2+ and Dy3+ ions in Ba4Al2O7 phosphor for solid state lighting. Journal of Luminescence 2012,132 (7),1781-1785.
    84. Im, W. B.; Fellows, N. N.; DenBaars, S. P.; Seshadri, R.; Kim, Y. I., LaSr2AlO5, a Versatile Host Compound for Ce3+-Based Yellow Phosphors:Structural Tuning of Optical Properties and Use in Solid-State White Lighting. Chemistry of Materials 2009,21 (13),2957-2966.
    85. Im, W. B.; Fourre, Y.; Brinkley, S.; Sonoda, J.; Nakamura, S.; DenBaars, S. P.; Seshadri, R., Substitution of oxygen by fluorine in the GdSr2AlO5:Ce3+ phosphors:Gd1-xSr2+xAlO5-xFx solid solutions for solid state white lighting. Optics Express 2009,17 (25),22673-22679.
    86. Im, W. B.; Fellows, N. N.; DenBaars, S. P.; Seshadri, R., La1-x-0.025Ceo.o25Sr2+xAl1-xSixO5 solid solutions as tunable yellow phosphors for solid state white lighting. Journal of Materials Chemistry 2009,19 (9),1325-1330.
    87. Jia, D.; Wang, X., Alkali earth sulfide phosphors doped with Eu2+ and Ce3+ for LED. Optical Materials 2007,30 (3),375-379.
    88. Hu, Y.; Zhuang, W.; Ye, H.; Zhang, S.; Fang, Y.; Huang, X., Preparation and luminescent properties of (Ca1-x, Srx)S:Eu2+ red-emitting phosphor for white LED. Journal of luminescence 2005,111 (3),139-145.
    89. Poelman, D.; Haecke, J.; Smet, P., Advances in sulfide phosphors for displays and lighting. J Mater Sci:Mater Electron 2009,20 (1),134-138.
    90. Kuo, T.-W.; Huang, C.-H.; Chen, T.-M., Novel yellowish-orange Sr8Al12O24S2:Eu2+ phosphor for application in blue light-emitting diode based white LED. Optics Express 2010,18 (S2),A231-A236.
    91. Peters, T. E.; Baglio, J. A., Luminescence and Structural Properties of Thiogallate Phosphors Ce+3 and Eu+2-Activated Phosphors. Part Ⅰ. Journal of The Electrochemical Society 1972,119 (2),230-236.
    92. Do, Y. R.; Ko, K.-Y.; Na, S.-H.; Huh, Y.-D., Luminescence Properties of Potential Sr1-xCaxGa2S4:Eu Green- and Greenish-Yellow-Emitting Phosphors for White LED. Journal of The Electrochemical Society 2006,153 (7), H142-H146.
    93. Yoo, H. S.; Im, W. B.; Vaidyanathan, S.; Park, B. J.; Jeon, D. Y., Effects of Eu2+ Concentration Variation and Ce3+ Codoping on Photoluminescence Properties of BaGa2S4:Eu2+ Phosphor. Journal of The Electrochemical Society 2008,155 (3), J66-J70.
    94. Hu, Y.; Zhuang, W.; Ye, H.; Wang, D.; Zhang, S.; Huang, X., A novel red phosphor for white light emitting diodes. Journal of Alloys and Compounds 2005,390(1),226-229.
    95. Liu, J.; Lian, H.; Shi, C., Improved optical photoluminescence by charge compensation in the phosphor system CaMo04:Eu3+. Optical Materials 2007,29 (12),1591-1594.
    96. Pan, J.; Yau, L.; Chen, L.; Zhao, G.; Zhou, G.; Guo, C., Studies on spectra properties of Na5Eu(WO4)4 luminescent crystal. Journal of Luminescence 1988,40,856-857.
    97. Wang, J.; Jing, X.; Yan, C.; Lin, J., Ca1-2xEuxLixMoO4:A Novel Red Phosphor for Solid-State Lighting Based on a GaN LED. Journal of The Electrochemical Society 2005,152 (3), G186-G188.
    98. Wang, X.-X.; Xian, Y.-L.; Shi, J.-X.; Su, Q.; Gong, M.-L., The potential red emitting Gd2-yEuy (WO4)3 x(MoO4)x phosphors for UV InGaN-based light-emitting diode. Materials Science and Engineering:B 2007,140 (1-2),69-72.
    99. Neeraj, S.; Kijima, N.; Cheetham, A. K., Novel red phosphors for solid-state lighting:the system NaM(WO4)2x(MoO4)x:Eu3+(M= Gd, Y. Bi). Chemical Physics Letters 2004,387 (1-3), 2-6.
    100. Sivakumar, V.; Varadaraju, U. V., Intense Red-Emitting Phosphors for White Light Emitting Diodes. Journal of The Electrochemical Society 2005,152 (10), H168-H171.
    101. Do, Y. R.; Huh, Y. D., Optical Properties of Potassium Europium Tungstate Phosphors. Journal of The Electrochemical Society 2000,147 (11),4385-4388.
    102. Nguyen, H. D.; Mho, S.; Yeo,I. H., Preparation and characterization of nanosized (Y, Bi) VO4:Eu3+ and Y (V, P) O4:Eu3+ red phosphors. Journal of Luminescence 2009,129 (12), 1754-1758.
    103. Xia, Z.; Chen, D.; Yang, M.; Ying, T., Synthesis and luminescence properties of YVO4:Eu3+,Bi3+ phosphor with enhanced photoluminescence by Bi3+ doping. Journal of Physics and Chemistry of Solids 2010,71 (3),175-180.
    104. Choi, S.; Moon, Y. M.; Kim, K.; Jung, H. K.; Nahm, S., Luminescent properties of a novel red-emitting phosphor:Eu+-activated CajSr;;(VO4)4. Journal of Luminescence 2009,129 (9), 988-990.
    105. Rao, B. V.; Jang, K.; Lee, H. S.; Yi, S. S.; Jeong, J. H., Synthesis and photoluminescence characterization of RE3+(= Eu3+, Dy3+)-activated Ca3La(VO4)3 phosphors for white light-emitting diodes. Journal of Alloys and Compounds 2010,496 (1),251-255.
    106. Gundiah, G.; Shimomura, Y.; Kijima, M.; Cheetham, A. K., Novel red phosphors based on vanadate garnets for solid state lighting applications. Chemical Physics Letters 2008,455 (4-6), 279-283.
    107. Tang, Y.-S.; Hu, S.-F.; Lin, C. C.; Bagkar, N. C.; Liu, R.-S., Thermally stable luminescence of KSrPO4:Eu2+ phosphor for white light UV light-emitting diodes. Applied Physics Letters 2007, 90(15),151108.
    108. Lin, C. C.; Xiao, Z. R.; Guo, G.-Y.; Chan, T.-S.; Liu, R.-S., Versatile Phosphate Phosphors ABPO4 in White Light-Emitting Diodes:Collocated Characteristic Analysis and Theoretical Calculations. Journal of the American Chemical Society 2010,132 (9),3020-3028.
    109. Lee, S. S.; Lim, S.; Sun, S. S.; Wager, J. F., Photoluminescence and electroluminescence characteristics of CaSiN2:Eu phosphor. Proc. Soc. Photo-Optical Instrum.(SPIE) 1997,3241, 75-83.
    110. Van Krevel, J.; Hintzen, H.; Metselaar, R.; Meijerink, A., Long wavelength Ce3+ emission in Y-Si-O-N materials. Journal of alloys and compounds 1998,268 (1),272-277.
    111.Hoppe, H.; Lutz, H.; Morys, P.; Schnick, W.; Seilmeier, A., Luminescence in Eu2+-doped Ba2Si5Ng:fluorescence, thermoluminescence, and upconversion. Journal of Physics and Chemistry of Solids 2000,61 (12),2001-2006.
    112. Xie, R. J.; Hirosaki, N.; Mitomo, M.; Yamamoto, Y.; Suehiro, T.; Sakuma, K., Optical properties of Eu2+ in a-SiAlON. The Journal of Physical Chemistry B 2004,108 (32), 12027-12031.
    113. Xie, R. J.; Hirosaki, N., Silicon-based oxynitride and nitride phosphors for white LED-A review. Science and Technology of Advanced Materials 2007,8 (7),588-600.
    114. Uheda, K.; Takizawa, H.; Endo, T.; Yamane, H.; Shimada, M.; Wang, C. M.; Mitomo, M., Synthesis and luminescent property of Eu3+-doped LaSi3N5 phosphor. Journal of Luminescence 2000,87,967-969.
    115. Xie, R. J.; Hirosaki, N.; Kimura, N.; Sakuma, K.; Mitomo, M.,2-phosphor-converted white light-emitting diodes using oxynitride/nitride phosphors. Applied physics letters 2007,90 (19), 191101-191101-3.
    116. Xie, R. J.; Hirosaki, N.; Takeda, T., Wide color gamut backlight for liquid crystal displays using three-band phosphor-converted white light-emitting diodes. Applied physics express 2009,2 (2),2401.
    117. Xie, R.-J., Nitride Phosphors and Solid-State Lighting. Taylor and Francis Group, LLC: 2011.
    118. Starosvetsky, D.; Gotman, I., TiN coating improves the corrosion behavior of superelastic NiTi surgical alloy. Surface and Coatings Technology 2001,148 (2),268-276.
    119. Su, Y.; Yao, S-, On the performance and application of CrN coating. Wear 1997,205 (1), 112-119.
    120. Bemporad, E.; Pecchio, C.; De Rossi, S.; Carassiti, F., Characterisation and wear properties of industrially produced nanoscaled CrN/NbN multilayer coating. Surface and Coatings Technology 2004,188,319-330.
    121. Feng, W.; Yan, D.; He, J.; Zhang, G.; Chen, G.; Gu, W.; Yang, S., Microhardness and toughness of the TiN coating prepared by reactive plasma spraying. Applied Surface Science 2005, 243(1),204-213.
    122. Caicedo, J.; Amaya, C.; Yate, L.; Nos, O.; Gomez, M.; Prieto, P., Hard coating performance enhancement by using [Ti/TiN]n,[Zr/ZrN]n and [TiN/ZrN]n multilayer system. Materials Science and Engineering:B2010,171 (1),56-61.
    123. Prosini, P. P., A Composite Electrode Based on Graphite and β Li3N for Li-Ion Batteries. Journal of The Electrochemical Society 2003,150 (10), A1390-A1393.
    124. Shodai, T.; Sakurai, Y.; Suzuki, T., Reaction mechanisms of Li2.6Co0.4N anode material. Solid State Ionics 1999,122 (1),85-93.
    125. Liua, Y.; Matsumuraa, T.; Hiranob, A.; Ichikawab, T.; Imanishib, N.; Takedab, Y., Novel negative electrode materials with high capacity density for further rechargeable lithium ion batteries. Res. Rep. Fac. Eng. Mie Univ 2004,29,65-72.
    126. Shodai, T.; Okada, S.; Tobishima, S.; Yamaki, J., Study of Li3-XMxN (M:Co, Ni or Cu) system for use as anode material in lithium rechargeable cells. Solid State Ionics 1996,86, 785-789.
    127. Stoeva, Z.; Jager, B.; Gomez, R.; Messaoudi, S.; Yahia, M. B.; Rocquefelte, X.; Hix, G. B.; Wolf, W.; Titman, J. J.; Gautier, R., Crystal chemistry and electronic structure of the metallic lithium ion conductor, LiNiN. Journal of the American Chemical Society 2007,129 (7), 1912-1920.
    128. Yamane, H.; Kikkawa, S.; Koizumi, M., Lithium aluminum nitride, Li3AlN2 as a lithium solid electrolyte. Solid State Ionics 1985,15 (1),51-54.
    129. Yamane, H.; Kikkawa, S.; Koizumi, M., Preparation of lithium silicon nitrides and their lithium ion conductivity. Solid State Ionics 1987,25 (2),183-191.
    130. Chen, P.; Xiong, Z.; Luo, J.; Lin, J.; Tan. K. L., Interaction of hydrogen with metal nitrides and imides. Nature 2002,420 (6913),302-304.
    131. Kojima, Y.; Kawai, Y.; Ohba, N., Hydrogen storage of metal nitrides by a mechanochemical reaction. Journal of power sources 2006,159 (1),81-87.
    132. Strite, S.; Morkoc, H., GaN, AIN, and InN:a review. Journal of Vacuum Science & Technology B:Microelectronics and Nanometer Structures 1992,10 (4),1237-1266.
    133. Ponce, F.; Bour, D., Nitride-based semiconductors for blue and green light-emitting devices. Nature 1997,386 (6623),351-359.
    134. Cao, G.; Metselaar, R.,. a'-SiAlON ceramics:a review. Chemistry of Materials 1991,3 (2), 242-252.
    135. Hampshire, S.; Park, H.; Thompson, D.; Jack, K., a'-SiAlON ceramics. Nature 1978,274 (5674),880-882.
    136.Ekstroem, T.; Nygren, M., SiAION ceramics. Journal of the American Ceramic Society 2005, 75 (2),259-276.
    137. Li, Y. Q.; Fang, C. M.; Hintzen, H., Preparation, structure and photoluminescence properties of Eu2+ and Ce3+ -doped SrYSi4N7. Journal of Solid State Chemistry 2004,177(12),4687-4694.
    138. Yamane, H.; DiSalvo, F. J., Preparation and crystal structure of a new barium silicon nitride, Ba5Si2N6,. Journal of alloys and compounds 1996,240 (1),33-36.
    139. Borgen, O.; Seip, H., Crystal Structure of β-Si3N4. Acta Chemica Scandinavica 1961,15 (8), 1789.
    140. Kohatsu,I.; McCauley, J. W., Re-examination of the crystal structure of α-Si3VN4 Materials Research Bulletin 1974,9 (7),917-920.
    141. Huppertz, H.; Schnick, W., Edge-sharing SiN4 Tetrahedra in the Highly Condensed Nitridosilicate BaSi7N10. Chemistry-A European Journal 1997,3 (2),249-252.
    142. Orth, M.; Schnick, W., Zur Kenntnis von LiSi2N3:Synthese und Verfeinerung der Kristallstruktur. Zeitschrift fur anorganische und allgemeine Chemie 1999,625 (9),1426-1428.
    143. Schlieper, T.; Schnick, W., Nitrido-Silicate. I. Hochtemperatur-Synthese und Kristallstruktur von Ca2Si5N8. Zeitschrift fur anorganische und allgemeine Chemie 1995,621 (6),1037-1041.
    144. Inoue, Z.; Mitomo, M.; Ii, N., A crystallographic study of a new compound of lanthanum silicon nitride, LaSi3N5. Journal of Materials Science 1980,15 (11),2915-2920.
    145. Hecht, C.; Stadler, F.; Schmidt, P. J.; auf der Gunne, J. r. S.; Baumann, V.; Schnick, W., SrAlSi4N7:Eu2+-A Nitridoalumosilicate Phosphor for Warm White Light (pc)LED with Edge-Sharing Tetrahedra. Chemistry of Materials 2009,21 (8),1595-1601.
    146. Huppertz, H.; Schnick, W., Synthese, Kristallstruktur und Eigenschaften der Nitridosilicate SrYbSi4N7 und BaYbSi4N?. Zeitschrift fur anorganische und allgemeine Chemie 1997,623 (1-6), 212-217.
    147. Kechele, J. A.; Hecht, C.; Oeckler, O.; Schmedt auf der Gunne, J.; Schmidt, P. J.; Schnick, W., Ba2AlSi5N9 A New Host Lattice for Eu2+-Doped Luminescent Materials Comprising a Nitridoalumosilicate Framework with Corner-and Edge-Sharing Tetrahedra. Chemistry of Materials 2009,21 (7),1288-1295.
    148. Schlieper, T.; Schnick, W., Nitrido-silicate. Ⅲ. Hochtemperatur-Synthese, Kristallstruktur und magnetische Eigenschaften von Ce3[Si6N11]. Zeitschrift fur anorganische und allgemeine Chemie 1995,621 (9),1535-1538.
    149. Woike, M.; Jeitschko, W., Preparation and Crystal Structure of the Nitridosilicates Ln3Si6Nu (Ln= La, Ce, Pr, Nd, Sm) and LnSi3N5 (Ln= Ce, Pr, Nd). Inorganic Chemistry 1995,34 (21), 5105-5108.
    150. Schmolke, C.; Bichler, D.; Johrendt, D.; Schnick, W., Synthesis and Crystal Structure of the First Chain-Type Nitridosilicates Ln5Si3N9 (Ln:La, Ce). Chemlnform 2009,40 (19), no-no.
    151.Gaido, D., and Zykov, Photoluminescence of MgSiN2 activated by europium. Izv. Akad. Nauk SSSR, Neorg. Mater.1974,10 (3) 3.
    152. Endo, T.; Takizawa, H.; Shimada, M., High-pressure synthesis of "periodic compound" and its optical and electrical properties. T. Tsuruta, M. Doyama and Seno (Editors), New Functionality Materials 1993,100,107-112.
    153. Lee, S. S.; Lim, S.; Sun, S.-S.; Wager, J. F., Photoluminescence and electroluminescence characteristics of CaSiN2:Eu phosphor. SPIE Proceedings 1997,3241,75-83.
    154. Uheda, K.; Takizawa, H.; Endo, T.; Yamane, H.; Shimada, M.; Wang, C. M.; Mitomo, M., Synthesis and luminescent property of Eu3+-doped LaSi3N5 phosphor. Journal of Luminescence 2000,87-89(0),967-969.
    155. Van Krevel, J.; Van Rutten, J.; Mandal, H.; Hintzen, H.; Metselaar, R., Luminescence Properties of Terbium-, Cerium-, or Europium-Doped a-SiAlON Materials. Journal of Solid State Chemistry 2002,165 (1),19-24.
    156. Xie, R. J.; Mitomo, M.; Uheda, K.; Xu, F. F.; Akimune, Y., Preparation and Luminescence Spectra of Calcium-and Rare-Earth (R= Eu, Tb, and Pr)-Codoped a-SiAlON Ceramics. Journal of the American Ceramic Society 2002,85 (5),1229-1234.
    157. Zeuner, M.; Pagano, S.; Schnick, W., Nitridosilicates and Oxonitridosilicates:From Ceramic Materials to Structural and Functional Diversity. Angewandte Chemie International Edition 2011, 50 (34),7754-7775.
    158. Xie, R. J.; Hirosaki, N.; Mitomo, M.; Uheda, K.; Suehiro, T.; Xu, X.; Yamamoto, Y.; Sekiguchi, T., Strong Green Emission from a-SiAlON Activated by Divalent Ytterbium under Blue Light Irradiation. The Journal of Physical Chemistry B 2005,109 (19),9490-9494.
    159. Bachmann, V.; Jystel, T.; Meijerink, A.; Ronda, C.; Schmidt, P. J., Luminescence properties of SrSi2O2N2 doped with divalent rare earth ions. Journal of Luminescence 2006,121 (2), 441-449.
    160. Zhang, Z.; ten Kate, O. M.; Delsing, A.; van der Kolk, E.; Notten, P. H. L.; Dorenbos, P.; Zhao, J.; Hintzen, H. T., Photoluminescence properties and energy level locations of RE3+(RE= Pr, Sm, Tb, Tb/Ce) in CaAlSiN3 phosphors. Journal of Materials Chemistry 2012,22 (19), 9813-9820.
    161. Xie, R.-J.; Hirosaki, N.; Liu, X.-J.; Takeda, T.; Li, H.-L., Crystal structure and photoluminescence of Mn2+-Mg2+ codoped gamma aluminum oxynitride (gamma-AlON):A promising green phosphor for white light-emitting diodes. Applied Physics Letters 2008,92 (20), 201905.
    162. Duan, C. J.; Otten, W. M.; Delsing, A. C. A.; Hintzen, H. T., Preparation and photoluminescence properties of Mn2+-activated M2Si5N8 (M=Ca, Sr, Ba) phosphors. Journal of Solid State Chemistry 2008,181 (4),751-757.
    163. Inoue, K.; Hirosaki, N.; Xie, R. J.; Takeda, T., Highly efficient and thermally stable blue-emitting AlN:Eu2+ phosphor for ultraviolet white light-emitting diodes. The Journal of Physical Chemistry C 2009,113 (21).9392-9397.
    164. Do, H. S. K.; Choi, S. W.; Hong, S. H., Blue-emitting AIN:Eu2+ Powder Phosphor Prepared by Spark Plasma Sintering. Journal of the American Ceramic Society 2010,93 (2), 356-358.
    165. Shioi, K.; Hirosaki, N.; Xie, R.-J.; Takeda, T.; Li, Y., Luminescence properties of SrSi6N8:Eu2+. Journal of Materials Science 2008,43 (16),5659-5661.
    166. Li, Y. Q.; Delsing, A.; Metslaar, R.; Hintzen, H., Photoluminescence properties of rare-earth activated BaSi7N10. Journal of Alloys and Compounds 2009,487 (1),28-33.
    167. Li, H. L.; Xie, R. J.; Zhou, G. H.; Hirosaki, N.; Sun, Z., A cyan-emitting BaSi7N10:Eu2+ phosphor prepared by gas reduction and nitridation for UV-pumping white LED. Journal of The Electrochemical Society 2010,157 (7), J251-J255.
    168. Xie, R. J.; Hirosaki, N.; Li, Y.; Takeda, T., Photoluminescence of (Ba1-xEux) Si6NgO (0.005≤ x≤0.2) phosphors. Journal of Luminescence 2010,130 (2),266-269.
    169. Winkler, B.; Hytha, M.; Hantsch, U.; Milman, V., Theoretical study of the structures and properties of SrSiAl2O3N2 and Ce4[Si4O4N6] O. Chemical physics letters 2001,343 (5),622-626.
    171. Tang, J. Y.; Xie, W. J.; Huang, K.; Hao, L. Y.; Xu, X.; Xie, R. J., A High Stable Blue BaSi3Al3O4N5:Eu2+ Phosphor for White LED and Display Applications. Electrochemical and Solid-State Letters 2011,14 (8), J45-J47.
    172. Yamane, H.; Shimooka, S.; Uheda, K., Synthesis, crystal structure and photoluminescence of a new Eu-doped Sr containing SiAlON (Sr0.94Eu0.06)(Al0.3Si0.7)4(N0.8O0.2)6.Journal of Solid State Chemistry 2012.
    173. Dierre, B.; Xie, R.; Hirosaki, N.; Sekiguchi, T., Blue emission of Ce3+ in lanthanide silicon oxynitride phosphors. Journal of materials research-pittsburgh then warrendale 2007,22 (7), 1933.
    174. Takahashi, K.; Hirosaki, N.; Xie, R. J.; Harada, M.; Yoshimura, K.; Tomomura, Y., Luminescence properties of blue La1-xCexAl (Si6-zAlz)(N10-zOz) (z-1) oxynitride phosphors and their application in white light-emitting diode. Applied Physics Letters 2007,91 (9), 091923-091923-3.
    175. Li, Y. Q.; Van Steen, J.; Van Krevel, J.; Botty, G.; Delsing, A.; DiSalvo, F.; Hintzen, H., Luminescence properties of red-emitting M2Si5N8:Eu2+(M= Ca, Sr, Ba) LED conversion phosphors. Journal of alloys and compounds 2006,417 (1),273-279.
    176. Li, Y. Q.; Hintzen, H., Synthesis, structure, and luminescence properties of Eu2+ and Ce3+ activated BaYSi4N7. Journal of alloys and compounds 2004,385 (1),1-11.
    177. Hirosaki, N.; Xie, R. J.; Kimoto, K.; Sekiguchi, T.; Yamamoto, Y.; Suehiro, T.; Mitomo, M., Characterization and properties of green-emitting β-SiAlON:Eu2+ powder phosphors for white light-emitting diodes. Applied Physics Letters 2005,86 (21),211905-211905-3.
    178. Xie, R. J.; Hirosaki, N.; Li, H. L.; Li, Y.; Mitomo, M., Synthesis and Photoluminescence Properties of β-SiAlON:Eu2+(Si6-zAlzOzN8-z:Eu2+) A Promising Green Oxynitride Phosphor for White Light-Emitting Diodes. Journal of The Electrochemical Society 2007,154 (10), J314-J319.
    179. Li, Y. Q.; Delsing, A.; G. de With, a.; Hintzen, H., Luminescence properties of Eu2+-activated alkaline-earth silicon-oxynitride MSi2O2-δN2+2/3δ (M= Ca, Sr, Ba):a promising class of novel LED conversion phosphors. Chemistry of materials 2005,17 (12),3242-3248.
    180. Bachmann, V.; Ronda, C.; Oeckler, O.; Schnick, W.; Meijerink, A., Color Point Tuning for (Sr,Ca,Ba)Si2O2N2:Eu2+ for White Light LED. Chemistry of Materials 2008,21 (2),316-325.
    181. Braun, C.; Seibald, M.; Borger, S. L.; Oeckler, O.; Boyko, T. D.; Moewes, A.; Miehe, G.; Tucks, A.; Schnick, W., Material Properties and Structural Characterization of M3Si6O12N2:Eu2+ (M= Ba, Sr)-A Comprehensive Study on a Promising Green Phosphor for pc-LED. Chemistry-A European Journal 2010,16 (31),9646-9657.
    182. Fukuda, Y.; Ishida, K.; Mitsuishi, I.; Nunoue, S., Luminescence Properties of Eu2+-Doped Green-Emitting Sr-SiAlON Phosphor and Its Application to White Light-emitting Diodes. Applied physics express 2009,2 (1),2401.
    183. Oeckler, O.; Kechele, J. A.; Koss, H.; Schmidt, P. J.; Schnick, W., Sr5Al5+xSi21-xN35-xO2+x:Eu2+(x≈0)-A Novel Green Phosphor for White-Light pcLED with Disordered Intergrowth Structure. Chemistry-A European Journal 2009,15 (21),5311-5319.
    184. Shioi, K.; Michiue, Y.; Hirosaki, N.; Xie, R. J.; Takeda, T.; Matsushita, Y.; Tanaka, M.; Li, Y. Q., Synthesis and photoluminescence of a novel Sr-SiAlON:Eu2+ blue-green phosphor (Sr14Si68-sAl6+sOsN106-s:Eu2+(s≈7)). Journal of alloys and compounds 2011,509 (2),332-337.
    185. Wang, X. M.; Wang, C. H.; Kuang, X. J.; Zou, R. Q.; Wang, Y. X.; Jing, X. P., Promising Oxonitridosilicate Phosphor Host Sr3Si2O4N2:Synthesis, Structure, and Luminescence Properties Activated by Eu2+ and Ce3+/Li+ for pc-LED. Inorganic chemistry 2012,51 (6),3540-3547.
    186. Xie, R. J.; Hirosaki, N.; Mitomo, M.; Sakuma, K.; Kimura, N., Wavelength-tunable and thermally stable Li-α-SiAlON:Eu2+ oxynitride phosphors for white light-emitting diodes. Applied physics letters 2006,89 (24),241103-241103-3.
    187. Shioi, K.; Hirosaki, N.; Xie, R. J.; Takeda, T.; Li, Y. Q.; Matsushita, Y., Synthesis, Crystal Structure, and Photoluminescence of Sr-a-SiAlON:Eu+. Journal of the American Ceramic Society 2010,93 (2),465-469.
    188. Suehiro, T.; Onuma, H.; Hirosaki, N.; Xie, R. J.; Sato, T.; Miyamoto, A., Powder Synthesis of Y-a-SiAlON and Its Potential as a Phosphor Host. The Journal of Physical Chemistry C 2009, 114(2),1337-1342.
    189. Park, W. B.; Shin, N.; Hong, K.-P.; Pyo, M.; Sohn, K.-S., A New Paradigm for Materials Discovery:Heuristics-Assisted Combinatorial Chemistry Involving Parameterization of Material Novelty. Advanced Functional Materials 2012,22 (11),2258-2266.
    190. Kijima, N.; Seto, T.; Hirosaki, N., A New Yellow Phosphor La3Si6N11:Ce3+ for White LED. ECS Transactions 2009,25 (9),247-252.
    191. Li, Y.; Hirosaki, N.; Xie, R.; Takeda, T.; Mitomo, M., Yellow-orange-emitting CaAlSiN3: Ce3+ phosphor:structure, photoluminescence, and application in white LED. Chemistry of Materials 2008,20 (21),6704-6714.
    192. Duan, C.; Wang, X.; Otten, W.; Delsing, A.; Zhao, J.; Hintzen, H., Preparation, Electronic Structure, and Photoluminescence Properties of Eu2+-and Ce3+/Li+-Activated Alkaline Earth Silicon Nitride MSiN2 (M= Sr, Ba). Chemistry of Materials 2008,20 (4),1597-1605.
    193. Watanabe, H.; Wada, H.; Seki, K.; Itou, M.; Kijima, N., Synthetic Method and Luminescence Properties of SrxCa1-xxAISiN3:Eu2+ Mixed Nitride Phosphors. Journal of The Electrochemical Society 2008,155 (3), F31-F36.
    194. Uheda, K.; Hirosaki, N.; Yamamoto, Y.; Naito, A.; Nakajima, T.; Yamamoto, H., Luminescence properties of a red phosphor, CaAlSiN3:Eu2+,for white light-emitting diodes. Electrochemical and solid-state letters 2006,9 (4), H22-H25.
    195. Hecht, C.; Stadler, F.; Schmidt, P.; Schnick, W., SrAlSi4N7:Eu2+-A Nitridoalumosilicate Phosphor for Warm White-light LED with Edge-sharing Tetrahedrons. Zeitschrift fur anorganische und allgemeine Chemie 2008,634 (11),2044-2044.
    196. Suehiro, T.; Hirosaki, N.; Xie, R. J., Synthesis and Photoluminescent Properties of (La, Ca)-3Si6N11:Ce3+ Fine Powder Phosphors for Solid-State Lighting. ACS Applied Materials & Interfaces 2011,3 (3),811-816.
    197. Ruan, J.; Xie, R. J.; Hirosaki, N.; Takeda, T., Nitrogen Gas Pressure Synthesis and Photoluminescent Properties of Orange-Red SrAlSi4N7:Eu2+Phosphors for White Light-Emitting Diodes. Journal of the American Ceramic Society 2011,94 (2),536-542.
    198. Hintze, F.; Hummel, F.; Schmidt, P. J.; Wiechert, D.; Schnick, W., Ba3Ga3N5 A Novel Host Lattice for Eu2+-Doped Luminescent Materials with Unexpected Nitridogallate Substructure. Chemistry of Materials 2012,24 (2),402-407.
    199. Le Toquin, R.; Cheetham, A., Red-emitting cerium-based phosphor materials for solid-state lighting applications. Chemical physics letters 2006,423 (4),352-356.
    200. Schnick, W.; Huppertz, H., Nitridosilicates-A Significant Extension of Silicate Chemistry. Chemistry-A European Journal 1997,3 (5),679-683.
    201.Mueller-Mach, R.; Mueller, G.; Krames, M. R.; Hoppe, H. A.; Stadler, F.; Schnick, W.; Juestel, T.; Schmidt, P., Highly efficient all-nitride phosphor-converted white light emitting diode. physica status solidi (a) 2005,202 (9),1727-1732.
    202. Suehiro, T.; Hirosaki, N.; Xie, R. J.; Sato, T., Blue-emitting LaSiN:Ce fine powder phosphor for UV-converting white light-emitting diodes. Applied Physics Letters 2009,95,051903.
    203. Yamada, S.; Emoto, H.; Ibukiyama, M.; Hirosaki, N., Properties of SiAlON powder phosphors for white LED. Journal of the European Ceramic Society 2012,32 (7),1355-1358.
    204. Xie, R. J.; Hirosaki, N.; Suehiro, T.; Xu, F. F.; Mitomo, M., A simple, efficient synthetic route to Sr2Si5N8:Eu2+-based red phosphors for white light-emitting diodes. Chemistry of materials 2006,18 (23),5578-5583.
    205. Li, Y. Q.; Hintzen, H., The effect of replacement of Sr by Ca on the structural and luminescence properties of the red-emitting Sr2Si5N8:Eu2+ LED conversion phosphor. Journal of solid stale chemistry 2008,181 (3),515-524.
    206. Schnick, W.; Huppertz, H.; Lauterbach, R., High temperature syntheses of novel nitrido-and oxonitrido-silicates and SiAlONs using rf furnaces. Journal of Materials Chemistry 1999,9 (1), 289-296.
    207. Schnick, W., Nitridosilicates, oxonitridosilicates (sions), and oxonitridoaluminosilicates (SiAlONs):New materials with promising properties. International Journal of Inorganic-Materials 2001,3 (8),1267-1272.
    208. Suehiro, T.; Tatami, J.; Meguro, T.; Matsuo, S.; Komeya, K., Synthesis of spherical AlN particles by gas-reduction-nitridation method. Journal of the European Ceramic Society 2002,22 (4),521-526.
    209. Suehiro, T.; Hirosaki, N.; Xie, R. J.; Mitomo, M., Powder synthesis of Ca-α'-SiAlON as a host material for phosphors. Chemistry of materials 2005,17 (2),308-314.
    210. Li, H. L.; Xie, R. J.; Hirosaki, N.; Suehiro, T.; Yajima, Y., Phase Purity and Luminescence Properties of Fine Ca-a-SiAlON:Eu Phosphors Synthesized by Gas Reduction Nitridation Method. Journal of The Electrochemical Society 2008,155 (6), J175-J179.
    211. Li, H.-L.; Xie, R.-J.; Hirosaki, N.; Yajima, Y., Synthesis and Photoluminescence Properties of Sr2Si5N8:Eu2+ Red Phosphor by a Gas-Reduction and Nitridation Method. Journal of The Electrochemical Society 2008,155 (12), J378-J381.
    212. Zhang, H.; Horikawa, T.; Hanzawa, H.; Hamaguchi, A.; Machida, K.-i., Photoluminescence Properties of α-SiA10N:Eu2+ Prepared by Carbothermal Reduction and Nitridation Method. Journal of The Electrochemical Society 2007,154 (2), J59-J61.
    213.Piao, X.; Horikawa, T.; Hanzawa, H.; Machida, K.-i., Characterization and luminescence properties of Sr2Si5N8:Eu2+ phosphor for white light-emitting-diode illumination. Applied Physics Letters 2006,88 (16),161908.
    214. Piao, X.; Machida, K.-i.; Horikawa, T.; Hanzawa, H., Self-propagating high temperature synthesis of yellow-emitting Ba2Si5N8:Eu2+ phosphors for white light-emitting diodes. Applied Physics Letters 2007,91 (4),041908.
    215. Li, J.; Watanabe, T.; Wada, H.; Setoyama, T.; Yoshimura, M., Low-Temperature Crystallization of Eu-Doped Red-Emitting CaAlSiN3 from Alloy-Derived Ammonometallates. Chemistry of Materials 2007,19 (15),3592-3594.
    216. Li, J.; Watanabe, T.; Sakamoto, N.; Wada, H.; Setoyama, T.; Yoshimura, M., Synthesis of a Multinary Nitride, Eu-Doped CaAlSiN3, from Alloy at Low Temperatures. Chemistry of Materials 2008,20 (6),2095-2105.
    217. Zeuner, M.; Schmidt, P. J.; Schnick, W., One-pot synthesis of single-source precursors for nanocrystalline LED phosphors M2Si5Ng:Eu2+ (M= Sr, Ba). Chemistry of Materials 2009,21 (12), 2467-2473.
    218. Xie, R. J.; Hirosaki, N.; Mitomo, M.; Suehiro, T.; Xu, X.; Tanaka, H., Photoluminescence of Rare-Earth-Doped Ca-α-SiAlON Phosphors:Composition and Concentration Dependence. Journal of the American Ceramic Society 2005,88 (10),2883-2888.
    219. Jung, K. Y.; Seo, J. H., Preparation of Fine-Sized SrSi2O2-δN2+2/3δ:Eu2+ Phosphor by Spray Pyrolysis and its Luminescent Characteristics. Electrochemical and solid-state Letters 2008,11 (7), J64-J67.
    220. Piao, X.; Machida, K.; Horikawa, T.; Hanzawa, H., Synthesis of Nitridosilicate CaSr1-xEuxSi5N8 (x= 0-1) Phosphor by Calcium Cyanamide Reduction for White Light-Emitting Diode Applications. Journal of The Electrochemical Society 2008,155 (1), J17-J22.
    221. Piao, X.; Machida, K.; Horikawa, T.; Hanzawa, H.; Shimomura, Y.; Kijima, N., Preparation of CaAlSiN3:Eu2+ phosphors by the self-propagating high-temperature synthesis and their luminescent properties. Chemistry of Materials 2007,19(18),4592-4599.
    1. Rietveld, H., Line profiles of neutron powder-diffraction peaks for structure refinement. Acta Crystallographica 1967,22 (1),151-152.
    2. Rietveld, H., A profile refinement method for nuclear and magnetic structures. Journal of Applied Crystallography 1969,2 (2),65-71.
    3. Toraya, H., Whole-powder-pattern fitting without reference to a structural model:application to X-ray powder diffraction data. Journal of applied crystallography 1986,19 (6),440-447.
    4. Young, R.; Sakthivel, A.; Moss, T.; Paiva-Santos, C., DBWS-9411-an upgrade of the DBWS*.* programs for Rietveld refinement with PC and mainframe computers. Journal of Applied Crystallography 1995,28 (3),366-367.
    5. Rodriguez-Carvajal, J. In FULLPROF:a program for Rietveld refinement and pattern matching analysis, Satellite Meeting on Powder diffraction of the XV Congress of the IUCr, Toulouse, France:[sn]:1990.
    6. Ferrari, M.; Lutterotti, L., Method for the simultaneous determination of anisotropic residual stresses and texture by x-ray diffraction. Journal of applied physics 1994,76 (11),7246-7255.
    7. Matthies, S.; Lutteroti, L.; Wenk, H., Advances in texture analysis from diffraction spectra. Journal of applied crystallography 1997,30 (1),31-42.
    8. Lutterotti, L.; Gialanella, S., X-ray diffraction characterization of heavily deformed metallic specimens. Acta Materialia 1998,46 (1),101-110.
    1. Xu, X. W.; Fu, K.; Hu, L.; Lu, Z. M.; Zhang. X. H.; Tang, C. C., Synthesis and Photoluminescence Properties of Two-Bands Excited SrSi2O2N2:Yb2+ Phosphors. Advanced Materials Research 2012,430,315-318.
    2. Yun, B. G.; Miyamoto, Y.; Yamamoto, H., Luminescence Properties of (Sr1-uBau)Si2O2N2: Eu2+, Yellow or Orange Phosphors for White LED, Synthesized with (Sri-uBau)2SiO4 Eu2+ as a Precursor. Journal of The Electrochemical Society 2007,154 (10), J320-J325.
    3. Zhang, M.; Wang, J.; Zhang, Z.; Zhang, Q.; Su, Q., A tunable green alkaline-earth silicon-oxynitride solid solution (Ca1-xSrx)Si2O2N2:Eu2+ and its application in LED. Applied Physics B:Lasers and Optics 2008,93 (4),829-835.
    4. Yun, B. G.; Horikawa, T.; Hanzawa, H.; Machida, K., Preparation and Luminescence Properties of Single-Phase BaSi2O2N2:Eu2+, a Bluish-Green Phosphor for White Light-Emitting Diodes. Journal of the Electrochemical Society 2010,157 (10), J364-J370.
    5. Gu, Y.; Zhang, Q.; Li, Y.; Wang, H. Preparation and luminescence properties of Eu2+-doped CaSi2O2-dN2+2/3d phosphors. Journal of Physics:Conference Series 2009,152 (1),012083.
    6. Oeckler, O.; Stadler, F.; Schnick, W., Real structure investigations on oxonitridosilicates MSi2O2N2 (M= Ca, Sr, Ba, Eu). Acta Cryst 2006,62,202.
    7. Yeh, C. W.; Li, Y.; Wang, J.; Liu, R. S., Appropriate green phosphor of SrSi2O2N2:Eu2+, Mn 2+for AC LED. Optics express 2012,20 (16),18031-18043.
    8. Guo, H.; Wang, X. F.; Zhang, X. B.; Tang, Y. F.; Chen, L. X.; Ma, C. G., Effect of NH4F flux on structural and luminescent properties of Sr2Si04:Eu2+ phosphors prepared by solid-state reaction method. Journal of the Electrochemical Society 2010,157 (8), J310-J314.
    9. Lakshminarasimhan, N.; Varadaraju, U., White-Light Generation in Sr2SiO4:Eu2+, Ce3+ under Near-UV Excitation A Novel Phosphor for Solid-State Lighting. Journal of the Electrochemical Society 2005,152 (9), H152-H156.
    10. Zhi-Jun, W.; Zhi-Ping, Y.; Qing-Lin, G.; Pan-Lai, L.; Guang-Sheng, F., Luminescence characteristics of Eu2+ activated Ca2SiO4, Sr2SiO4 and Ba2SiO4 phosphorsfor white LED. Chinese Physics B 2009,18 (05),2068-2071.
    11. Kim, J.; Jeon, P.; Choi, J.; Park, H., Emission color variation of M2SiO4:Eu2+(M= Ba, Sr, Ca) phosphors for light-emitting diode. Solid state communications 2005,133 (3),187-190.
    12. Kim, J. S.; Park, Y. H.; Kim, S. M.; Choi, J. C.; Park, H. L., Temperature-dependent emission spectra of M2SiO4:Eu2+(M= Ca, Sr, Ba) phosphors for green and greenish white LED. Solid state communications 2005,133 (7),445-448.
    13. Li, H. L.; Xie, R. J.; Hirosaki, N.; Takeda, T.; Zhou, G. H., Synthesis and Luminescence Properties of Orange-Red-Emitting M2Si5N8:Eu2+(M= Ca, Sr, Ba) Light-Emitting Diode Conversion Phosphors by a Simple Nitridation of MSi2.International Journal of Applied Ceramic Technology 2009,6 (4),459-464.
    14. Zeuner, M.; Schmidt, P. J.; Schnick, W., One-pot synthesis of single-source precursors for nanocrystalline LED phosphors M2Si5N8:Eu2+(M= Sr, Ba). Chemistry of Materials 2009,21 (12), 2467-2473.
    15. Kim, Y. I.; Kim, K. B.; Lee, Y. H.; Kim, K. B., Structural Chemistry of M2Si5N8:Eu2+(M= Ca, Sr, Ba) Phosphor via Structural Refinement. Journal of Nanoscience and Nanotechnology 2012.12 (4),3443-3446.
    16. Van den Eeckhout, K.; Smet, P. F.; Poelman, D., Persistent luminescence in rare-earth codoped Ca2Si5N8:Eu2+. Journal of Luminescence 2009,129 (10),1140-1143.
    17. Miyamoto, Y.; Kato, H.; Honna, Y.; Yamamoto, H.; Ohmi, K., An orange-emitting, long-persistent phosphor, Ca2i5N8:Eu2+, Tm3+. Journal of The Electrochemical Society 2009, 156(9),J235-J241.
    18. Brinkley, S. E.; Pfaff, N.; Denault, K. A.; Zhang, Z.; Hintzen, H. T. B.; Seshadri, R.; Nakamura, S.; DenBaars, S. P., Robust thermal performance of Sr2Si5N8:Eu2+:An efficient red emitting phosphor for light emitting diode based white lighting. Applied Physics Letters 2011,99, 241106.
    19. Nersisyan, H.; Won, H. L; Won, C. W., Highly effective synthesis and photoluminescence of Sr2Si5N8:Eu2+ red-emitting phosphor for LED. Chemical Communications 2011,47 (43), 11897-11899.
    20. Zeuner, M.; Pagano, S.; Schnick, W., Nitridosilicates and oxonitridosilicates:from ceramic materials to structural and functional diversity. Angewandte Chemie International Edition 2011, 50 (34),7754-7775.
    21. Mueller-Mach, R.; Mueller, G.; Krames, M. R.; H6ppe, H. A.; Stadler, F.; Schnick, W.; Juestel, T.; Schmidt, P., Highly efficient all-nitride phosphor-converted white light emitting diode, physica status solidi (a) 2005,202 (9),1727-1732.
    22. Hoeppe, H. A.; Stadler, F.; Oeckler, O.; Schnick, W., Ca [Si2O2N2]-A novel layer silicate. Angewandte Chemie International Edition 2004,43 (41),5540-5542.
    23. Hoppe, H. A.; Stadler, F.; Oeckler, O.; Schnick, W., Ca [Si2O2N2]-ein neuartiges Schichtsilicat. Angewandte Chemie 2004,116(41),5656-5659.
    24. Kechele, J. A.; Oeckler, O.; Stadler, F.; Schnick, W., Structure elucidation of BaSi2O2N2-A host lattice for rare-earth doped luminescent materials in phosphor-converted (pc)-LED. Solid State Sciences 2009,11 (2),537-543.
    25. Schmidt, P.; Tuecks, A.; Bechtel, H.; Wiechert, D.; Mueller-Mach, R.; Mueller, G.; Schnick, W. Layered oxonitrido silicate (SiON) phosphors for high power LED. Proceedings of SPIE 2008, 7058,70580L-1.
    26. Li, Y. Q.; Delsing, A.; G. de With, a.; Hintzen, H., Luminescence properties of Eu2+-activated alkaline-earth silicon-oxynitride MSi2O2-δN2+2/3δ (M= Ca, Sr, Ba):a promising class of novel LED conversion phosphors. Chemistry of materials 2005,77(12),3242-3248.
    27. Lu, Y.; Shi, G.; Zhang, Q.; Wang, H.; Li, Y., Photoluminescence properties of Eu2+ and Mg2+ co-doped CaSi2O2N2 phosphor for white light LED. Ceramics International 2012,38 (4), 3427-3433.
    28. Han, B. Y.; Sohn, K. S., Ternary Combinatorial Library of (Sr, Ba, Ca)Si2N2O2 Phosphors in Terms of Photoluminescence and Color Chromaticity. Electrochemical and Solid-State Letters 2010.13 (5), J62-J64.
    29. Yang, L.; Xu, X.; Hao, L.; Wang, Y.; Yin, L.; Yang, X.; He, W.; Li, Q., Optimization mechanism of CaSi2O2N2:Eu2+ phosphor by La3+ ion doping. Journal of Physics D:Applied Physics 2011,44 (35),355403.
    30. Yang, L. X.; Xu, X.; Hao, L. Y.; Yang, X. F.; Tang, J. Y.; Xie, R. J., Photoluminescence of lanthanide-doped CaSi2O2N2 phosphors and the energy-level diagram of lanthanide ions in CaSi2O2N2. Optical Materials 2011,33(11),1695-1699.
    31. Jee, S. D.; Choi, K. S.; Kim, J. S., Luminescence properties of (Sr.96-x-yMgxYy)Si2O2-yN2+y: Eu24+0.05 for novel LED conversion phosphors. Metals and Materials International 2011,17 (4), 655-660.
    32. Bachmann, V.; Ronda, C.; Oeckler, O.; Schnick, W.; Meijerink, A., Color point tuning for (Sr, Ca, Ba) Si2O2N2:Eu2+ for white light LED. Chemistry of Materials 2008,21 (2),316-325.
    33. Xie, R. J.; Hirosaki, N.; Sakuma, K.; Yamamoto, Y.; Mitomo, M., Eu2+-doped Ca-a-SiAlON: A yellow phosphor for white light-emitting diodes. Applied physics letters 2004,84 (26), 5404-5406.
    34. Park, W.; Jones, T.; Tong, W.; Schon, S.; Chaichimansour, M.; Wagner, B.; Summers, C., Luminescence decay kinetics in homogeneously and delta-doped ZnS:Mn. Journal of applied physics 1998,84 (12),6852-6858.
    35. Song, X.; Fu, R.; Agathopoulos, S.; He, H.; Zhao, X.; Zhang, S., Photoluminescence properties of Eu-activated CaSiON:Redshift and concentration quenching. Journal of Applied Physics 2009,106,033103.
    36. Wang, M.; Zhang, J.; Zhang, X.; Luo, Y.; Ren, X.; Lu, S.; Liu, X.; Wang, X., Photoluminescent properties of yellow emitting Ca1-xEuxSi2O2-δN2+25/3 phosphors for white light-emitting diodes. Journal of Physics D:Applied Physics 2008,41 (20),205103.
    37. Vercaemst, R.; Poelman, D.; Fiermans, L.; Van Meirhaeghe, R.; Laflere, W.; Cardon, F., A detailed XPS study of the rare earth compounds EuS and EuF3. Journal of electron spectroscopy and related phenomena 1995,74 (1),45-56.
    38.谷鉴鑫;王宏志;李耀刚;解荣军,Eu2+掺杂CaSi2O2N2荧光粉发光性能.发光学报2008,29(4),689-694.
    1. Uheda, K.; Hirosaki, N.; Yamamoto, Y.; Naito, A.; Nakajima, T.; Yamamoto, H., Luminescence properties of a red phosphor, CaAlSiN3:Eu2+, for white light-emitting diodes. Electrochemical and solid-state letters 2006,9 (4), H22-H25.
    2. Piao, X.; Machida, K.; Horikawa, T.; Hanzawa, H.; Shimomura, Y.; Kijima, N., Preparation of CaAlSiN3:Eu2+ phosphors by the self-propagating high-temperature synthesis and their luminescent properties. Chemistry of Materials 2007,19 (18),4592-4599.
    3. Uheda, K.; Hirosaki, N.; Yamamoto, H.; Yamane, H.; Yamamoto, Y.; Inami, W.; Tsuda, K. The Crystal Structure and Photoluminescence Properties of a New Red Phosphor, Calcium Aluminum Silicon Nitride Doped With Divalent Euroium,206th Meeting of the Electro Chemical Society,2004.
    4. Lei, B.; Machida, K.; Horikawa, T.; Hanzawa, H., Synthesis and Photoluminescence Properties of CaAlSiN3:Eu2+ Nanocrystals. Chemistry Letters 2010,39 (2),104-105.
    5. Kim, H. S.; Horikawa, T.; Hanzawa, H.; Machida, K., Luminescence properties of CaAlSiN3: Eu2+mixed nitrides prepared by carbothermal process, Journal of Physics:Conference Series 2012,379(1),012016.
    6. Xie, R. J.; Hirosaki, N.; Suehiro, T.; Xu, F. F.; Mitomo, M., A simple, efficient synthetic route to Sr2Si5N8:Eu2+-based red phosphors for white light-emitting diodes. Chemistry of materials 2006,18 (23),5578-5583.
    7. Li, H. L.; Xie, R. J.; Hirosaki, N.; Yajima, Y., Synthesis and Photoluminescence Properties of Sr2SisN8:Eu2+ Red Phosphor by a Gas-Reduction and Nitridation Method. Journal of The Electrochemical Society 2008,155 (12), J378-J381.
    8. Brinkley, S. E.; Pfaff, N.; Denault, K. A.; Zhang, Z.; Hintzen, H. T. B.; Seshadri, R.; Nakamura, S.; DenBaars, S. P., Robust thermal performance of Sr2Si5N8:Eu2+:An efficient red emitting phosphor for light emitting diode based white lighting. Applied Physics Letters 2011,99, 241106.
    9. Zeuner, M.; Hintze, F.; Schnick, W., Low temperature precursor route for highly efficient spherically shaped LED-phosphors M2Si5N8:Eu2+(M= Eu, Sr, Ba). Chemistry of Materials 2008, 21 (2),336-342.
    10. Zeuner, M.; Schmidt, P. J.; Schnick, W., One-pot synthesis of single-source precursors for nanocrystalline LED phosphors M2Si5N8:Eu2+(M= Sr, Ba). Chemistry of Materials 2009,21 (12), 2467-2473.
    11. Li, Y. Q.; Van Steen, J.; Van Krevel, J.; Botty, G.; Delsing, A.; DiSalvo, F.; Hintzen, H., Luminescence properties of red-emitting M2Si5Ng:Eu2+(M= Ca, Sr, Ba) LED conversion phosphors. Journal of alloys and compounds 2006,417 (1),273-279.
    12. Li, H. L.; Xie, R. J.; Hirosaki, N.; Takeda, T.; Zhou, G. H., Synthesis and Luminescence Properties of Orange-Red-Emitting M2Si5N8:Eu2+(M= Ca, Sr, Ba) Light-Emitting Diode Conversion Phosphors by a Simple Nitridation of MSi2. International Journal of Applied Ceramic Technology 2009,6 (4),459-464.
    13. Duan, C.; Otten, W.; Delsing, A.; Hintzen, H., Preparation and photoluminescence properties of Mn2+-activated M2Si5N8(M= Ca, Sr, Ba) phosphors. Journal of Solid State Chemistry 2008,181 (4),751-757.
    14. Miyamoto, Y.; Kato, H.; Honna, Y.; Yamamoto, H.; Ohmi, K., An orange-emitting, long-persistent phosphor, Ca2Si5N8:Eu2+,Tm3+. Journal of The Electrochemical Society 2009,156 (9), J235-J241.
    15. Hecht, C.; Stadler, F.; Schmidt, P.; Schnick, W., SrAlSi4N7:Eu2+-A Nitridoalumosilicate Phosphor for Warm White-light LED with Edge-sharing Tetrahedrons. Zeitschrift fur anorganische und allgemeine Chemie 2008,634 (11),2044-2044.
    16. Suehiro, T.; Hirosaki, N.; Xie, R. J., Synthesis and Photoluminescent Properties of (La,Ca)3Si6N11:Ce3+ Fine Powder Phosphors for Solid-State Lighting. ACS Applied Materials & Interfaces 2011,3 (3),811-816.
    17. Ruan, J.; Xie, R. J.; Hirosaki, N.; Takeda, T., Nitrogen Gas Pressure Synthesis and Photoluminescent Properties of Orange-Red SrAlSi4N7:Eu2+ Phosphors for White Light-Emitting Diodes. Journal of the American Ceramic Society 2011,94 (2),536-542.
    18. Duan, C.; Wang, X.; Otten, W.; Delsing, A.; Zhao, J.; Hintzen, H., Preparation, Electronic Structure, and Photoluminescence Properties of Eu2+-and Ce3+/Li+-Activated Alkaline Earth Silicon Nitride MSiN2 (M= Sr, Ba). Chemistry of Materials 2008,20 (4),1597-1605.
    19. Xie, R. J., Nitride Phosphors and Solid-State Lighting. CRC Press:2011.
    20. Yeh, C.-W.; Chen, W.-T.; Liu, R.-S.; Hu, S.-F.; Sheu, H.-S.; Chen, J.-M.; Hintzen, H. T., The Origin of Thermal Degradation in Sr2-xSi5N8:Eux Phosphors in air for Light-emitting Diodes. Journal of the American Chemical Society 2012,134 (34),14108-14117.
    21. Shannon, R., Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica Section A:Crystal Physics, Diffraction, Theoretical and General Crystallography 1976,32 (5),751-767.
    22. Catti, M.; Gazzoni, G.; Ivaldi, G., Structures of twinned-Sr2SiO4 and a'-Sr,9Ba0.1SiO4. Acta Crystallographica Section C:Crystal Structure Communications 1983,39 (1),29-34.
    23. Hoppe, H. A.; Stadler, F.; Oeckler, O.; Schnick, W., Ca [Si2O2N2]-A novel layer silicate. Angewandte Chemie International Edition 2004,43 (41),5540-5542.
    24. Wang, X.-M.; Wang, C.-H.; Kuang, X.-J.; Zou, R.-Q.; Wang, Y.-X.; Jing, X.-P., Promising Oxonitridosilicate Phosphor Host Sr3Si2O4N2:Synthesis, Structure, and Luminescence Properties Activated by Eu2+ and Ce3+/Li+ for pc-LED. Inorganic chemistry 2012,51 (6),3540-3547.
    25. Sohn, K.-S.; Lee, B.; Xie, R.-J.; Hirosaki, N., Rate-equation model for energy transfer between activators at different crystallographic sites in Sr2Si5N8:Eu2+. Optics letters 2009,34 (21), 3427-3429.
    26. Xie, R.-J.; Hirosaki, N., Silicon-based oxynitride and nitride phosphors for white LED-A review. Science and Technology of Advanced Materials 2007,8 (7),588-600.
    27. Xie, R.-J.; Hirosaki, N.; Sakuma, K.; Yamamoto, Y.; Mitomo, M., Eu 2+-doped Ca-a-SiAlON: A yellow phosphor for white light-emitting diodes. Applied physics letters 2004,84 (26), 5404-5406.
    28. Van Krevel, J.; Van Rutten, J.; Mandal, H.; Hintzen, H.; Metselaar, R., Luminescence Properties of Terbium-, Cerium-, or Europium-Doped a-SiAlON Materials. Journal of Solid State Chemistry 2002,165(1),19-24.
    29. Xie, R.-J.; Hirosaki, F.; Mitomo, M.; Yamamoto, Y.; Suehiro, T.; Sakuma, K., Optical properties of Eu2+ in a-SiAlON. The Journal of Physical Chemistry B 2004,108 (32), 12027-12031.
    30. Chiu, Y.-C.; Huang, C.-H.; Lee, T.-J.; Liu, W.-R.; Yeh, Y.-T.; Jang, S.-M.; Liu, R.-S., Eu2+-activated silicon-oxynitride Ca3Si2O4N2:a green-emitting phosphor for white LED. Optics Express 2011,19 (S3), A331-A339.
    31. Kim, J. S.; Park, Y. H.; Kim, S. M.; Choi, J. C.; Park, H. L., Temperature-dependent emission spectra of M2SiO4:Eu2+(M= Ca, Sr, Ba) phosphors for green and greenish white LED. Solid state communications 2005,133 (7),445-448.
    1. Hirosaki, N.; Xie, R. J.; Kimoto, K.; Sekiguchi, T.; Yamamoto, Y.; Suehiro, T.; Mitomo, M., Characterization and properties of green-emitting β-SiAlON:Eu2+ powder phosphors for white light-emitting diodes. Applied Physics Letters 2005,86 (21),211905-211905-3.
    2. Li, Y. Q.; Delsing, A.; G. de With, a.; Hintzen, H., Luminescence properties of Eu2+-activated alkaline-earth silicon-oxynitride MSi2O2-δN2+/3δ (M= Ca, Sr, Ba):a promising class of novel LED conversion phosphors. Chemistry of materials 2005,17(12),3242-3248.
    3. Xie, R. J.; Hirosaki, N.; Suehiro, T.; Xu, F. F.; Mitomo, M., A simple, efficient synthetic route to Sr2Si5N8:Eu2+-based red phosphors for white light-emitting diodes. Chemistry of materials 2006,18 (23),5578-5583.
    4. Xie, R. J.; Hirosaki, N., Silicon-based oxynitride and nitride phosphors for white LED-A review. Science and Technology of Advanced Materials 2007,8 (7),588-600.
    5. Loiseau, A.; Willaime, F.; Demoncy, N.; Hug, G.; Pascard, H., Boron nitride nanotubes with reduced numbers of layers synthesized by arc discharge. Physical review letters 1996,76 (25), 4737-4740.
    6. Zeng, H.; Zhi, C.; Zhang, Z.; Wei, X.; Wang, X.; Guo, W.; Bando, Y.; Golberg, D., "White Graphenes":Boron Nitride Nanoribbons via Boron Nitride Nanotube Unwrapping. Nano letters 2010,10 (12),5049-5055.
    7. Liu, L.; Feng, Y.; Shen, Z., Structural and electronic properties of h-BN. Physical Review B 2003,65(10),104102.
    8. Museur, L.; Anglos, D.; Petitet, J. P.; Michel, J. P.; Kanaev, A. V., Photoluminescence of hexagonal boron nitride:effect of surface oxidation under UV-laser irradiation. Journal of luminescence 2007,127 (2),595-600.
    9. Solozhenko, V.; Lazarenko, A.; Petitet, J. P.; Kanaev, A., Bandgap energy of graphite-like hexagonal boron nitride. Journal of Physics and Chemistry of Solids 2001,62 (7),1331-1334.
    10. Zhuge, F.; Ji, Z.; He, H.; Ye, Z.; Zhu, L., Preparation and photoluminescent investigation of h-BN-like layered material B4CN4. Journal of Crystal Growth 2008,310 (16),3869-3872.
    11. Watanabe, K.; Taniguchi, T.; Kanda, H., Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal. Nature materials 2004,3 (6),404-409.
    12. Kubota, Y.; Watanabe, K.; Tsuda, O.; Taniguchi, T., Deep ultraviolet light-emitting hexagonal boron nitride synthesized at atmospheric pressure. Science 2007,317 (5840),932-934.
    13. Bai, X.; Wang, E.; Yu, J.; Yang, H., Blue-violet photoluminescence from large-scale highly aligned boron carbonitride nanofibers. Applied Physics Letters 2000,77 (1),67-69.
    14. Watanabe, M.; Itoh, S.; Sasaki, T.; Mizushima, K., Visible-Light-Emitting Layered BC2N Semiconductor. Physical review letters 1996,77 (1),187-189.
    15. Wu, J.; Han, W. Q.; Walukiewicz, W.; Ager Ⅲ, J.; Shan, W.; Haller, E.; Zettl, A., Raman Spectroscopy and Time-Resolved Photoluminescence of BN and BxCyNz Nanotubes. Nano letters 2004,4 (4),647-650.
    16. Kawaguchi, M., B/C/N materials based on the graphite network. Advanced Materials 2004,9 (8),615-625.
    17. Chen, Y.; Barnard, J.; Palmer, R.; Watanabe. M.; Sasaki, T., Indirect Band Gap of Light-Emitting BC2N. Physical review letters 1999, 83(12),2406-2408.
    18. Ponce, F3; Bour, D., Nitride-based semiconductors for blue and green light-emitting devices. Nature 1997,386 (6623),351-359.
    19. Ogi, T.; Kaihatsu, Y.; Iskandar, F3; Wang, W. N.; Okuyama, K., Facile Synthesis of New Full-Color-Emitting BCNO Phosphors with High Quantum Efficiency. Advanced Materials 2008,20(17),3235-3238.
    20. Kaihatsu, Y.; Iskandar, F.; Widiyandari, H.; Wang, W. N.; Okuyama, K., Fabrication and Characterization of a Yellow-Emitting BCNO Phosphor for White Light-Emitting Diodes. Electrochemical and Solid-State Letters 2009,12 (3), J33-J36.
    21. Liu, X.; Qiao, Y.; Dong, G.; Ye, S.; Zhu, B.; Zhuang, Y.; Qiu, J., BCNO-Based Long-Persistent Phosphor. Journal of The Electrochemical Society 2009,156 (5), P81-P84.
    22. Dong, G.; Liu, X.; Xiao, X.; Zhang, Q.; Lin, G.; Ma, Z.; Chen, D.; Qiu, J., Tunable Emission of BCNO Nanoparticle-Embedded Polymer Electrospun Nanofibers. Electrochemical and Solid-State Letters 2009,12 (8), K53-K55.
    23. Kaihatsu, Y.; Wang, W. N.; Iskandar, F.; Ogi, T.; Okuyama, K., Effect of the Carbon Source on the Luminescence Properties of Boron Carbon Oxynitride Phosphor Particles. Journal of The Electrochemical Society 2010,757(10), J329-J333.
    24. Liu, X.; Ye, S.; Qiao, Y.; Dong, G.; Zhang, Q.; Qiu, J., Facile synthetic strategy for efficient and multi-color fluorescent BCNO nanocrystals. Chemical Communications 2009, (27), 4073-4075.
    25. Wang, W. N.; Ogi, T.; Kaihatsu, Y.; Iskandar, F.; Okuyama, K., Novel rare-earth-free tunable-color-emitting BCNO phosphors. Journal of Materials Chemistry 2011,21 (14), 5183-5189.
    26. Liu, X.; Ye, S.; Dong, G.; Qiao, Y.; Ruan, J.; Zhuang, Y3; Zhang. Q.; Lin, G.; Chen, D.; Qiu, J., Spectroscopic investigation on BCNO-based phosphor:photoluminescence and long persistent phosphorescence. Journal of Physics D:Applied Physics 2009,42 (21),215409.
    27. Single, L.; Chopra, V., Effect of Preparation Conditions on the Crystallinity of Chemically Synthesized BCNO Nanophosphor. Journal of Materials Science & Technology 2011,27 (11), 967-972.
    28. Suryamas, A. B.; Munir, M. M.; Ogi, T.; Okuyama, K., Intense green and yellow emissions from electrospun BCNO phosphor nanofibers. Journal of Materials Chemistry 2011,21 (34), 12629-12631.
    29. Lei, W.; Portehault, D.; Dimova, R.; Antonietti, M., Boron Carbon Nitride Nanostructures from Salt Melts:Tunable Water-Soluble Phosphors. Journal of the American Chemical Society 2011,133 (18),7121-7127.
    30. Ogi, T.; Iskandar, F3; Nandiyanto, A. B. D.; Wang, W. N.; Okuyama, K., Influence of Polymer Decomposition Temperature on the Formation of Rare-Earth Free Boron Carbon Oxynitride Phosphors. Journal of Chemical Engineering of Japan 2012,45 (12),995-1000.
    31. Guo, Q.; Xie, Y.; Yi, C.; Zhu, L.; Gao, P., Synthesis of ultraviolet luminescent turbostratic boron nitride powders via a novel low-temperature, low-cost, and high-yield chemical route. Journal of Solid State Chemistry 2005,178 (6),1925-1928.
    32. Mannan, M.; Nagano, M.; Shigezumi, K.; Kida, T.; Hirao, N.; Baba, Y., Characterization of Boron Carbonitride (BCN) Thin Films Deposited by Radiofrequency and Microwave Plasma Enhanced Chemical Vapor Deposition. American Journal of Applied Sciences 2008,5 (6), 736-741.
    33. Takahashi, K.; Hirosaki, N.; Xie, R. J.; Harada, M.; Yoshimura, K.; Tomomura, Y., Luminescence properties of blue La1-xCexAl(Si6-zAlz)(N10-zOz)(z~1) oxynitride phosphors and their application in white light-emitting diode. Applied Physics Letters 2007,91 (9), 091923-091923-3.
    34. Tang, C.; Bando, Y.; Zhi, C.; Golberg, D., Boron-oxygen luminescence centres in boron-nitrogen systems. Chemical Communications 2007, (44),4599-4601.
    35. Zhai, H. J.; Wang, L. M.; Li, S. D.; Wang, L. S., Vibrationally resolved photoelectron spectroscopy of BO-and BO2-:A joint experimental and theoretical study. The Journal of Physical Chemistry A 2007,111 (6),1030-1035.
    36. Kawaguchi, M.; Nozaki, K.; Kita, Y.; Doi, M., Photoluminescence characteristics of BN (C, H) prepared by chemical vapour deposition. Journal of materials science 1991,26 (14), 3926-3930.
    37. Kimura, C.; Sota, H.; Aoki, H.; Sugino, T., Atomic bonds in boron carbon nitride films synthesized by remote plasma-assisted chemical vapor deposition. Diamond and Related Materials 2009,18 (2),478-481.
    38. Lian, J.; Kim, T.; Liu, X.; Ma, J.; Zheng, W., Ionothermal Synthesis of Turbostratic Boron Nitride Nanoflakes at Low Temperature. The Journal of Physical Chemistry C 2009,113 (21), 9135-9140.
    39. Mirkarimi, P.; McCarty, K.; Medlin, D., Review of advances in cubic boron nitride film synthesis. Materials Science and Engineering:R:Reports 1997,21 (2),47-100.
    40. Hamilton, E. J. M.; Dolan, S. E.; Mann, C. M.; Colijn, H. O.; Shore, S. G., Preparation of amorphous boron nitride from the reaction of haloborazines with alkali metals and formation of a novel tubular morphology by thermal annealing. Chemistry of materials 1995,7(1),111-117.
    41. Lin, Y.; Williams, T. V.; Xu, T. B.; Cao, W.; Elsayed-Ali, H. E.; Connell, J. W., Aqueous dispersions of few-layered and monolayered hexagonal boron nitride nanosheets from sonication-assisted hydrolysis:critical role of water. The Journal of Physical Chemistry C 2011, 115 (6),2679-2685.
    42. Nemanich, R.; Solin, S.; Martin, R. M., Light scattering study of boron nitride microcrystals. Physical Review B 1981,23 (12),6348.
    43. Zhi, C.; Bando, Y.; Tang, C.; Golberg, D.; Xie, R.; Sekigushi, T., Phonon characteristics and cathodolumininescence of boron nitride nanotubes. Applied Physics Letters 2005,86 (21), 213110-213110-3.
    44. Geick, R.; Perry, C.; Rupprecht, G., Normal modes in hexagonal boron nitride. Physical Review 1966,146(2),543.
    45. Sana, S.; Muthu, D.; Golberg, D.; Tang, C.; Zhi, C.; Bando, Y.; Sood, A., Comparative high pressure Raman study of boron nitride nanotubes and hexagonal boron nitride. Chemical physics letters 2006,421 (1):86-90.
    46. Yu, J.; Qin, L.; Hao, Y.; Kuang, S.; Bai, X.; Chong, Y. M.; Zhang, W.; Wang, E., Vertically aligned boron nitride nanosheets:Chemical vapor synthesis, ultraviolet light emission, and superhydrophobicity. ACS nano 2010,4 (1),414-422.
    47. Xu, S.; Fan, Y.; Luo, J.; Zhang, L.; Wang, W.; Yao, B.; An, L., Phonon characteristics and photoluminescence of bamboo structured silicon-doped boron nitride multiwall nanotubes. Applied physics tetters 2007,90 (1),013115-013115-3.
    48. Lauret, J.; Arenal, R.; Ducastelle, F.; Loiseau, A.; Cau, M.; Attal-Tretout, B.; Rosencher, E.; Goux-Capes, L., Optical transitions in single-wall boron nitride nanotubes. Physical review letters 2005,94 (3),37405.
    49. Jaffrennou, P.; Barjon, J.; Lauret, J. S.; Maguer, A.; Golberg, D.; Attal-Tretout, B.; Ducastelle, F.; Loiseau, A., Optical properties of multiwall boron nitride nanotubes. physica status solidi (b) 2007,244 (11),4147-4151.
    50. Su, C. Y.; Chu, W. Y.; Juang, Z. Y.; Chen, K. F.; Cheng, B. M.; Chen, F. R.; Leou, K. C.; Tsai, C. H., Large-scale synthesis of boron nitride nanotubes with iron-supported catalysts. The Journal of Physical Chemistry C 2009,113 (33),14732-14738.
    51. Gevko, P.; Bulusheva, L.; Okotrub, A.; Koroteev, V.; Yushina, I.; Bresson, L.; Loiseau, A., Optical absorption of boron nitride nanomaterials. physica status solidi (b) 2008,245 (10), 2107-2110.
    52. Orellana, W.; Chacham, H., Stability of native defects in hexagonal and cubic boron nitride. Physical Review B 2001,63 (12),125205.
    53. Zobelli. A.; Ewels. C.; Gloter, A.; Seifert, G.; Stephan, O.; Csillag, S.; Colliex, C., Defective structure of BN nanotubes:From single vacancies to dislocation lines. Nano letters 2006,6 (9), 1955-1960.
    54. Chen, Z. G.; Zou, J.; Liu, G.; Li, F.; Wang, Y.; Wang, L.; Yuan, X. L.; Sekiguchi, T.; Cheng, H. M.; Lu, G. Q., Novel boron nitride hollow nanoribbons. ACS nano 2008,2 (10),2183-2191.
    55. Katzir, A.; Suss, J.; Zunger, A.; Halperin, A., Point defects in hexagonal boron nitride. I. EPR, thermoluminescence, and thermally-stimulated-current measurements. Physical Review B 1975,11 (6),2370.
    56. Jimenez, I.; Jankowski, A.; Tenninello, L.; Sutherland, D.; Carlisle, J.; Doll, G.; Tong, W.; Shuh, D.; Himpsel, F., Core-level photoabsorption study of defects and metastable bonding configurations in boron nitride. Physical Review B 1997,55 (18),12025.
    57. Schmidt, T.; Baierle, R.; Piquini, P.; Fazzio, A., Theoretical study of native defects in BN nanotubes. Physical Review B 2003,67 (11),113407.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700