用户名: 密码: 验证码:
倍硫磷和速灭威半抗原分子设计及其免疫效果研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有机磷农药倍硫磷由硫代磷酸酯结构(X)和芳香环结构(Y)两部分构成,从倍硫磷分子上5个不同位置各自引出连接手臂结构(Arm),设计了5种形式的半抗原:X-Arm-Y(手臂结构位于近似整个分子中间的位置)、Arm-X-Y、X-Y-Arm、X-Arm和Arm-Y;合成了5种相应的倍硫磷半抗原,即4-[2-(二甲氧基硫代磷酰氧基)-4-甲基-5(甲硫基)苯胺基]-4-羰基丁酸(Hapten A)、6-{甲氧基[4-(甲硫基)苯氧基]硫代磷酰胺基}己酸(Hapten B)、4-[4-(二甲氧基硫代磷酰氧基)-2-甲基苯基胺基]-4-羰基丁酸(Hapten C)、4-[3-甲级-4-(甲硫基)苯氧基]丁酸(Hapten D)和4-(二甲氧基硫代磷酰胺基)丁酸(Hapten E);质谱和核磁共振谱鉴定了这5种半抗原结构。
     合成的倍硫磷5个半抗原中,Hapten A试图在人工抗原上平等地暴露倍硫磷的两个结构特征,即硫代磷酸酯基团X和苯环基团Y,Hapten B偏向于暴露X,Hapten C偏向于暴露Y,Hapten D只暴露Y,Hapten E只暴露X。利用活泼酯方法将Hapten A-C与牛血清白蛋白(BSA)偶联,将Hapten A-E与卵清蛋白(OVA)偶联。利用3个BSA偶联物共制备了6个鼠多克隆抗体,共测定了30个抗体/包被抗原组合对倍硫磷分析的灵敏度和特异性,筛选出一个最佳组合,该组合具有高度的灵敏度(I_(50)为0.08ng/mL)和特异性。结果表明,当目标分析物与免疫半抗原的结构差异性小于包被半抗原与免疫半抗原的结构差异性的时候,具有高灵敏度的异源ELISA方法就很有可能被建立。免疫结果表明,采用不同空间手臂连接位点的免疫半抗原有可能显著地提高抗体的质量,即灵敏度和/或特异性。结果还表明,半抗原连接位点附近取代基的变化对半抗原与抗体结合的削弱作用比远离半抗原结合位点基团的变化的削弱作用更大。
     根据以上倍硫磷免疫与包被半抗原组合分析结果,选择利用活泼酯法将人工合成的2种倍硫磷半抗原4-[4-(二甲氧基硫代磷酰氧基)-2-甲基苯基胺基]-4-羰基丁酸(Hapten C)和6-{甲氧基[4-(甲硫基)苯氧基]硫代磷酰胺基}己酸(Hapten B)分别与牛血清白蛋白(BSA)和卵清蛋白(OVA)共价偶联,以Hapten C-BSA为免疫原制备倍硫磷兔多克隆抗体,以Hapten B-OVA为包被抗原测定所得抗血清效价(抗血清呈现阳性的最大稀释倍数)都在64000倍以上,而且抗体仅与杀螟硫磷有4.5%的交叉反应,而与其他农药的交叉反应率都在0.1%以下;通过分析条件优化,确定了倍硫磷酶联免疫吸附分析(ELISA)的最佳工作条件,建立了定量测定倍硫磷的间接竞争ELISA方法,I_(50)为0.0107 ng/mL,检测限为0.0002 ng/mL。葡萄和桃的果实及水中的平均添加回收率在81.9-104.0%之间。本研究为倍硫磷农药在农产品和环境中残留量快速检测新增一种有效的方法。
     针对氨基甲酸酯农药速灭威设计了五种结构半抗原。以3-甲基苯酚、双光气和3-氨基丙酸为主要原料合成了Hapten 1,即3-(3-甲苯基氧基羰基氨基)丙酸;以苯酚、双光气和6-氨基己酸为主要原料合成了Hapten 2,即6-(苯氧基羰基氨基)己酸;以2-异丙氧基苯酚、双光气和4-氨基丁酸为主要原料合成了Hapten 3,即4-((2-异丙氧基苯氧基)羰基氨基)丁酸;以3-甲基苯酚和4-溴丁酸乙酯为主要原料合成了Hapten 4,即4-(3-甲苯基氧基)丁酸;并把3-(3-羟基)苯丙酸设计为Hapten 5;质谱和(或)核磁共振谱鉴定了这些半抗原结构。
     利用活泼酯法将速灭威的以上5种半抗原(Hapten 1-5)与载体牛血清白蛋白(BSA)或卵清蛋白(OVA)共价偶联制备成速灭威抗原,其中BSA-Hapten 1用来制备速灭威兔多克隆抗体MpAb01和MpAb02,而OVA-Hapten 1-5用作包被抗原,共测定并比较了10个抗原/抗体组合的相对亲和性、6个组合的灵敏度和3个组合的特异性。数据显示,MpAb01/OVA-Hapten 4组合的灵敏度最高(I_(50)=0.11μg/mL)且特异性最强(与混灭威等7种农药的CR值均为0),但亲和性相对偏弱;Hapten 2和Hapten 1作为包被半抗原的亲和性及灵敏度相差不大,但Hapten 2的异源组合对混灭威、残杀威等6种农药都有不同程度交叉反应,而Hapten 1的同源ELISA组合只对混灭威有交叉反应(30%)。结合半抗原和分析物化学结构分析,结果表明:(1)在保证一定滴度值前提下,包被半抗原与免疫半抗原结构相差越远(尤其是半抗原空间手臂连接位点差异)可能越有利于建立较高灵敏度的ELISA;(2)免疫半抗原连接位点处及附近的基团在抗体-半抗原互作中可能起非常重要的作用。
     根据以上速灭威免疫与包被半抗原组合分析结果,选择抗原抗体组合MpAb01/OVA-Hapten 1进行进一步研究、测定了离子强度、有机溶剂、pH值、封闭物等影响因子对免疫分析的影响,确定了速灭威酶联免疫吸附分析(ELISA)的最佳工作参数,并建立了定量测定速灭威的间接竞争ELISA方法,检测线性范围为1~10000ng/mL,I_(50)为40.738ng/mL,检测限为0.014~0.018ng/mL,批内变异系数4.0%,批间变异系数11.4%,土壤、稻谷和水中的添加回收率依次为80%、93%和107%。所建立的ELISA分析方法灵敏实用,为速灭威在环境和农产品中残留量快速检测新增一种有效的方法。
     提出了半抗原-抗体互作模型,内容包括:(1)免疫半抗原结构(尤其指空间手臂连接位点不同的半抗原结构)与抗体反应特性之间是一一对应关系,特定空间手臂连接位点的半抗原与其相应抗体结合后的复合物就有一个特定的最稳定空间结合形式;(2)在半抗原-抗体的最稳定空间结合形式中,免疫半抗原空间手臂连接位点左右的基团靠近相应抗体的“活性中心”,并与之相互吻合;(3)与免疫半抗原结构相比,差异基团远离免疫半抗原空间手臂连接位点的类似物与抗体的结合能力较强,而差异基团靠近免疫半抗原空间手臂连接位点的类似物与抗体的结合能力较弱或根本就没有结合能力。利用倍硫磷抗体和速灭威抗体与反应半抗原的互作表现对以上模型进行实例证明。最后讨论了半抗原-抗体互作模型的局限性及前景。
     综上所述,本文一方面为化学农药倍硫磷和速灭威的残留检测新增加了有效的免疫分析方法,另一方面为农药等小分子化学品免疫分析研究中的半抗原设计提供了理论基础。
Hapten spacer arm structures (Arm) were derived from five different attachment siteson fenthion molecule and five forms of hapten, such as X-Arm-Y, Arm-X-Y, X-Y-Arm,X-Ann and Arm-Y, were designed according to characteristic of organophosphoruspesticide fenthion composed of phosphorothionate (X) and aromatic circle (Y). The haptenswere synthesized correspondingly, which were 4-(2-(dimethoxyphosphorothioyloxy)-4-methyl-5-(methylthio) phenylamino)-4-oxobutanoic acid (Hapten A), 6-(methoxy(4-(methylthio) phenoxy) phosphorothioylamino) hexanoic acid (Hapten B), 4-(4-(dimethoxyphosphorothioyloxy)-2-methylphenylamino)-4-oxobutanoic acid (Hapten C),4-(3-methyl-4-(methylthio) phenoxy) butanoic acid (Hapten D), and 4-(dimethoxy-phosphorothioylamino) butanoic acid (Hapten E). These hapten's structures were identifiedby mass chromatography and nuclear magnetic resonance spectnma.
     Among the above haptens, Hapten A was attempted to expose equally two features ofthe fenthion structure, the phosphorothioate group X and the aromatic group Y, in theresulting conjugates, Hapten B was designed to partially expose X, Hapten C was designedto partially expose Y, Hapten D to expose Y, and Hapten E to expose X. Haptens A-C wereconjugated with bovine serum albumin (BSA) and haptens A-E were conjugated withovalbumin (OVA). Six polyclonal antisera were raised against the three BSA conjugates,and thirty antibody/coating conjugate combinations were selected for studies of assaysensitivity and specificity for fenthion. The study revealed the best combination with highsensitivity (I_(50)=0.08 ng/mL) and high assay specificity, which indicated that whenstructural difference between the analyte and an immunizing hapten is more than thatbetween a coating hapten and the immunizing hapten, a high sensitive ELISA in theheterologous system may stand a good chance to be developed. The immunity resultsshowed that heterology in the hapten spacer-arm attachment site of the immunogen couldachieve a remarkable improvement in the quantity, sensitivity, and/or specificity of antibody,and that the moiety of an analyte, which is the same as the moiety near/on the immunizingspacer-arm hapten attachment site, contributes greatly to the interaction of antibody and hapten.
     According to the analysis of combinations of immunizing and coating hapten forfenthion, two fenthion haptens synthesized, 4-(4-(dimethoxyphosphorothioyloxy)-2-methyl-phenylamino)-4-oxobutanoic acid (Hapten C) and 6-(methoxy (4-(methylthio)phenoxy)-phosphorothioylamino) hexanoic acid (Hapten B) were selected. Hapten C was conjugatedwith BSA and Hapten B with OVA by active ester method. Then Hapten B-OVA was usedas coating antigen, while Hapten C-BSA was used as immunogen. Titer values of theantisera were both above 64000, and there was only cross reactivity (CR) with fenitrothion(28.6%), and CRs with other pestisides were all below 0.1%. After optimization, aneffective competitive indirect Enzyme-Linked Immunosorbent Assay (ELISA) procedurefor determination of fenthion was established, I_(50) of which was 0.0107ng/mL, limit ofdetection (LOD) of which was 0.0002ng/mL. The recoveries obtained by standard fenthionaddition to the different samples such as grape, peach and river water were all from 81.9%to 104.0%. The development of ELISA procedure may become a new convenient andsatisfied analytical tool for monitoring fenthion residues in environment and agriculturalsamples.
     Five haptens of metolcarb were designed and synthesized here: Hapten 1,3-(m-tolyloxycarbonylamino) propanoic acid, was synthesized with main materials ofm-cresol, trichloromethyl carbonochloridate, and 3-aminopropanoic acid; Hapten 2,6-(phenoxycarbonylamino) hexanoie acid, was synthesized with main materials of phenol,trichloromethyl carbonochloridate, and 6-aminohexanoic acid; Hapten 3,4-((2-isopropoxyphenoxy) carbonylamino) butanoic acid, was synthesized with mainmaterials of 2-isopropoxyphenol, trichloromethyl carbonochloridate, and 4-aminobutanoicacid; Hapten 4, 4-(m-tolyloxy) butanoic acid, was synthesized with main materials ofm-cresol and ethyl 4-bromobutanoate; the compound, 3-(3-hydroxyphenyl) propanoic acid,was directly used as Hapten 5. Structures of here synthesized haptens were verified by massspectra and (or) nuclear magnetic resonance.
     These five haptens (Hapten 1-5) were conjugated with carrier protein BSA or OVA withactive ether method, and antigens of metolcarb were prepared. Polyclonal antibodies,named MpAb01 and MpAb02 were prepared against BSA-Hapten 1, while OVA-Hapten1-5 were used as coating antigens. It was determined and compared that ten combinationsof antibody/antigen for affinity, six combinations for sensitivity, and three combinations forspecificity. The data showed a combination of MpAb01/ OVA-Hapten 4 with high sensitivity (I_(50)=0.11;μg/mL) and strong specificity (CRs with seven tested pesticides, suchas dimethacarb and so on, were all 0), but low affinity, were revealed. There were littledifference for sensitivity and specificity of the combinations of Hapten 2 and Hapten 1 usedas coating hapten. The heterologous ELISA system of Hapten 2 showed certain extent ofCRs with six tested pesticides such as dimethacarb, propoxur, and so on, while thehomologous ELISA system of Hapten 1 showed only CR with dimethacarb (30%).Considering structure of haptens and analytes, the results here implyed that:1) Whenstructural difference between the analyte and an immunizing hapten is less than thatbetween a coating hapten and the immunizing hapten, a high sensitive ELISA in theheterologous system may stand a good chance to be developed; 2) The moiety of an analyte,which is the same as the moiety near/on the immunizing spacer-arm hapten attachment site,contributes greatly to the interaction of antibody and hapten.
     According to the analysis of combinations of immunizing and coating haptens formetolcarb, the combination of MpAb01/OVA-Hapten 1 was selected for further study. Afteroptimization of the ELISA conditions such as ionic strengths, organic solvents, pH values,blocking agents and so on, the proper parameters of ELISA procedure were determined,and an assay protoleal for the N-methylcarbamate insecticide metolcarb was established.Based on statistical analysis, the dynamic range of determination was from 1 ng/mL to10000ng/mL, I_(50) was 40.738 ng/mL, LOD was 0.014~0.018ng/mL, intra-assay coefficientof variation (CV) reached 4.0%, and inter-assay CV reached 11.4%. The recoveriesobtained by standard metolcarb addition to the different samples as rice seed, water and soilwere 80%, 93%and 107%respectively. These results indicate that the ELISA here could bea convenient and satisfied analytical tool for monitoring metolcarb residues inenvironmental and agricultural samples.
     An interaction model of hapten-antibody was expressed, containing: 1) The relationshipbetween structure of immunizing hapten and reactive characteristic of antibody wascorresponding one by one. And there is the most stable spacer form for the complexityformed from a hapten with certain spacer-arm attachment site and its correspondingantibody. 2) In the most stable spacer form of hapten-antibody, the moiety which is on ornear the spacer-arm attachment site of immunizing hapten is close to and matched with the"active center" of the corresponding antibody. 3) Compared with the structure ofimmunizing hapten, the moiety of an analyte, which is the same as the moiety near/on theimmunizing spacer-ann hapten attachment site, contributes greatly to the interaction of antibody and hapten. And then, some exemplifications about interaction of the antibodies offenthion with some reactive haptens and the antibody of metolcarb with some other reactivehaptens were described. Finally, limitations and prospects about the interaction model ofhapten-antibody were discussed.
     According to the above, these studies provided not only the new immunoassayprotolcols for chemical pesticides fenthion and metolcarb, but also some theory of haptendesign for immunoassay researches of small molecular chemicals.
引文
1. Abad A., Moreno M. J., Montoya A. (1998). Hapten Synthesis and Production of Monoclonal Antibodies to the N-Methylcarbamate Pesticide Methiocarb. J Agric. Food Chem. 46: 2417-2426
    2. Ahn K. C., Watanabet T., J. Gee S. J., Hammock B. D. (2004). Hapten and antibody production for a sensitive immunoassay determining a human urinary metabolite of the pyrethroid insecticide permethrin, J. Agric. Food Chem. 52:4583-4594
    3. Beasely H.L., McAdam D.P., Larkin K.A., Ferguson B.S., Bushway R.J., Skerritt J.H. (1997). Laboratory and field enzyme-immunoassays for diazinon and their application to residue analysis in lanolin, water, anti fruit juice. Bull. Environ. Contain. Toxicol. 59:375-382
    4. Blake D.A., Jones R.M., Blake II R.C., Pavlov A.R., Darwish I.A., Yu H. (2001). Antibody-based sensors for heavy metal ions. Biosensors & Bioelectronics. 16:799-809
    5. Bocher M., Giersch T., Schmid R.D. (1992). Dextran, a Hapten Carrier in Immunoassays for s-Triazines-a Comparison with ELISAs Based on Hapten-Protein Conjugates. J. Immunol. Methods. 151: 1-8
    6. Buiting A.M.J., Van Rooijen N., Claassen E. (1992). Liposomes as Antigen Carder and Adjuvants in vivo', 44th Forum in Immunology. 541-548
    7. Centeno E.R., Johnson W.J., Sehon A.H. (1970). Antibodies to two common pesticides, DDT and malathion, Int. Arch. Allergy. 37:1-13
    8. Dankwardt A. (1995). Immunoehemical assays in pesticide analysis. Pesticides. 1-27
    9. Ercegovich C.D., Vallejo R.P., Gettig R.R., Woods L., Bogus E.R., Mumma R.O. (1981). Development of a radioimmunoassay for parathion. J. Agrie. Food Chem. 29:559-563
    10. Franek M., Diblikova I., Cemoch I., Vass M., Hruska K. (2006). Broad-specificity immunoassays for sulfonamide detection: immunochemical strategy for generic antibodies and competitors. Anal. Chem. 78:1559-1567
    11. Galve R., Camps F., Sanchez-Baeza F., Marco M.P. (2000). Development of an immunochemical technique for the analysis of trichlorophenols using theoretical models. Anal. Chem. 72:2237-3346
    12. Galve R., Sanchez-Baeza F., Camps F., Marco M.P. (2002). Indirect competitive immunoassay for trichlorophenol determination.Rational evaluation of the competitor heterology effect. Anal Chimica Acta. 452:191-206
    13. Habeeb, A.F.S.A. (1966). Determination of free amino groups in proteins by trinitrobenzenesulfonic acid. Anal Biochem. 14:328-336
    14. Hennion M.-C., Barcelo D. (1998). Strengths and Limitations of Immunoassays for Effective and Efficient Use for Pesticide Analysis in Water Samples: A Review. Anal Chim. Acta. 362:3-34
    15. Johnson, J.C., Van Emon, J.M., Pullman, D.R., Keeper, K.R., (1998). Development and evaluation of antisera for detection of the O,O-diethyl phosphorothionate and phosphorothionothiolate organophosphorus pesticides by immunoassay. J. Agrie. Food Chem. 46, 3116
    16. Kim Y.J., Cho Y.A., Lee H.S., Lee Y.T., Gee S.J., and Hammock B.D. (2003a). Synthesis of haptens for immunoassay of organophosphorus pesticides and effect of heterology in hapten spacer arm length on immunoassay sensitivity. Anal, Chim. Acta. 475:85-96
    17. Lee J.K., Ahn K.C., Stoutarnire D.W., Gee S.J., and Hammock B.D. (2003). Development of an enzyme-linked immunosorbent assay for the detection of the organophosphorus insecticide acephate. J. Agric. Food Chem., 51:3695-3703
    18. Lee, N., McAdam, D.P., and Skerritt, J.H., (1998). Development of Immunoassays for Type Ⅱ Synthetic Pyrethroids. 1. Hapten Design and Application to Heterologous and Homologous Assays. J. Agric. Food Chem. 46, 520
    19. Mak S.K., Shah G., Lee H.J., Watanabe T., Stoutamire D.W., Gee SJ., Hammock B.D. (2005). Development of a class selective immunoassay for the type Ⅱ pyrethroid insecticides. 534:109-120
    20. Manclus J.J., Montoya A. (1995). Development of immunoassays for the analysis of chlorpyrifos and its major metabolite 3,5,6-trichloro-2-pyridinol in the aquatic environment. Anal, Chim. Aata. 311:341-348
    21. McAdam D.P., Hill A.S., Beasley H.L., Skerritt J.H. (1992). Mono-and polyelonal antibodies to the organophosphate fenitrothion. 1. Approaches to hapten-protein conjugation. J. Agric. Food Chem. 40:1466-1470
    22. Moreno M.J., Abad A., Montoya A. (2001). Production of Monoelonal Antibodies to the N-Methylcarbamate Pesticide Propoxur. J. Agric. Food Chem.49:72-78
    23. Morozova V.S., Levashova A.I., Ermin S.A. (2005). Determination of Pesticides by Enzyme Immunoassay. Journal of Analytical Chemistry. 60(3): 202-217. Translated from Zhurnal Analiticheskoi Khimii. 60(3): 230-246
    24. Nichkova M., Galve R., Marco M.P. (2002). Biological monitoring of 2,4,5-Trichlorophenol (Ⅰ): preparation of antibodies and development of an immunoassay using theoretical models.Chem. Res. Toxical. 15:1360-1370
    25. Schneider P, Hammock B D. (1992). Influence of the ELISA formatand the hapten-enzyme conjugate on the sensitivity of animmunoassay for S-triazine herbicides using monoclonalantibodies. J Agric. Food Chem. 40(3): 525-530
    26. Shah G., Leemart W.R, Stoutamire D.W., Gee S.J., Chang D.P.Y., Hammock B.D. (2000). Enzyme-linked immunosorbent assay for the pyrithroid permethrin. J. Agric. Food Chem. 48: 4032-4040
    27. Shah G., Stoutamire D.W., Wengatz I., Gee S.J., Hammock B.D. (1999). Development of an immunoassay for the pyrithroid insecticide esfenvalerate. J Agric. Food Chem. 47:2145-2155
    28. Watanabe T, Shah G, Stoutamire D.W., Gee S.J., Hammock B.D. (2001). Development of a class-specific immunoassay for the type I pyrethroid insecticides. Anal Chim. Acta. 444: 119-129
    29. Wengatz I., Schmid R. D., Kreiβig S., Wittmarm C., Hock B., Ingendoh A., Hillenkamp F. (1992). Determination of the hapten density of immunoconjugates by matrixassisted UV laser desorption/ionization mass spectrometry. Anal. Lett. 25: 1983-1997
    30. Wittmann C, Hock B. (1989). Sensitive s-triazine enzyme immunoas-say for water samples in polystyrene tubes. FoodAgric. Immunol. 1: 211-224
    31. Wust S, Hock B. (1992). A sensitive enzyme immunoassay for thedetection of atrazine based upon sheep antibodies. Anal. Lett. 25: 1025-1037
    32.张曙明,陈建民,王重庆,谢云陆.(1996).酶免疫分析在农药分析中应用的进展.农业环境与发展.47(1):13-17
    33.刘曙照,钱传范.(1998,).九十年代农药残留分析新技术.农药.37(6):11-13
    34.刘凤权,许志刚,王金生.(1998),.定量测定甲胺磷残留的间接竞争ELISA的建立和初步应用.农业生物技术学报,6(2):140-146
    35.陈新建.(1998).免疫学技术在植物科学中的应用.北京:中国农业出版社
    36.赵肃清,孙远明,乐学义,黄晓钰.(2002).农药人工抗原合成的研究进展.农药.41(3):9-11
    37.孙远明,赵肃清,张春艳,黄晓钰,雷红涛.(2002).甲胺磷人工抗原的合成和鉴定.免疫学杂志.18(3):163-166
    38.赵肃清,孙远明,张春艳,黄晓钰,雷红涛.(2002).用多聚赖氨酸作载体制备抗甲胺磷抗体的研究.中国免疫学杂志.18:380
    39.吴颂如,万寅生.(1989).植物小分子的免疫测定技术.植物生理通讯.5:68-72
    40.帕克CW.(1981).生物活性化合物的放射免疫测定法.北京:科学出版社,165
    1. Abad A., Montoya A. (1994). Production of Monoclonal Antibodies for Carbaryl from a Hapten Preserving the Carbamate Group. J. Agric. Food Chem. 42: 1818-1823
    2. Abaci A., Moreno M. J., Montoya A. (1998). Hapten Synthesis and Production of Monoclonal Antibodies to the N-Methylcarbamate Pesticide Methiocarb. J. Agric. Food Chem. 46: 2417-2426
    3. Ahn K.C., Watanabe T., Gee S. J. and Hammock B.D. (2004). Hapten and antibody production for a sensitive immunoassay determinining a human urinary metabolite of the pyrethroid insecticide permethrin. J. Agric. Food Chem. 52: 4583-4594
    4. Alcocer M. J., Doyen C., Lee H. A., Morgan M. R. (2000). Functional scFv antibody sequences against the organophosphorus pesticide chlorpyrifos. J Agric Food Chem. 48:335-337
    5. Binz H.K., Pluckthun A. (2005). Engineered proteins as specific binding reagents. Curr. Opini. Biotechnol. 16:459-469
    6. Blake D.A., Pavlov A.R., Yu H., Kohsraviani M., Ensley H.E., Blake Ⅱ R.C. (2001). Antibodies and antibody-based assays for hexavalent uranium. Anal. Chim. Acta. 444:3-11
    7. Bless N.M., Smith D., Charlton J., Czermak B.J., Schmal H., Friedl H.P., Ward P.A. (1997). Protective effects of an aptamer inhibitor of neutrophil elastase in lung inflammatory injury. Current Biology. 7(11): 877-880
    8. Brimfield A.A., Lenz D.E., Graham C., Hunter K.W.J. (1985). Mouse monoclonal antibodies against paraoxon: potential reagents for immunoassay with constant immunochemical characteristics. 33(6): 1237-1242
    9. Bucknall S., Silvedight J., Coldham N., Thorne L., Jackman R. (2003). Antibodies to the quinolones and fluoroquinolones for the development of generic and specific immunoassays for detection of these residues in animal products. Food Additives and Contaminants. 20(3): 221-228
    10. Centeno E.R., Johnson W.J., Sehon A.H. (1970). Antibodies to two common pesticides, DDT and malathion, Int. Arch. Allergy. 37:1-13
    11. Charlton K.A., Moyle S., Porter A.J.R., Harris W.J. (2000). Analysis of the diversity of a sheep antibody repertoire as revealed from a bacteriophage display library. J Immunol.164:6221-6229
    12. Chiu Y.W., Chen R., Li Q.X., Karu A.E. (2000). Derivation and properties of recombinant Fab antibodies to coplanar polyehlorinated biphenyls. J Agric Food Chem. 48(6): 2614-2624
    13. Clark S.L., Remcbo V.T. (2002). Aptamers as analytical reagents. Electrophoresis. 23:1335-1340
    14. Dankwardt A. (1995). Immunochemical assays in pesticide analysis. Pesticides. 1-27
    15. Ellinglon A.D., Szostak J.W. (1990). In vitro selection of RNA molecules that bind specific ligands. Nature. 346:818-822
    16. Ferrer I., Lanza F., Tolokan A., Horvath V., Sellergren B., Horvai G., Barcelo D. (2000). Selective trace enrichment of chlorotriazine pesticides from natural waters and sediment samples using terbuthylazine molecularly imprinted polymers. Anal Chem. 72(16): 3934-3941
    17. Ferrieres L., Francez-Charlot A., Gouzy J., Rouille S., Kahn D. (2004). FixJregulated genes evolved through promoter duplication in Sinorhizobium meliloti. Microbiology. 150 (7): 2335-2345
    18. Franek M., Diblikova I., Cernoch I., Vass M., Hruska K. (2006). Broad-Specificity Immunoassays for Sulfonamide Detection: Immunochemical Strategy for Generic Antibodies and Competitors. Anal.Chem. 78:1559-1567
    19. Garrett S.D., Appleford D.J.A., Wyatt G.M., Lee H.A., Morgan M.R.A. (1997). Production of recombinant anti-parathion antibody (scFv); Stability in methanolic food extracts and comparison to an anti-parathion monoclonal antibody. J. Agri. Food Chem. 45:4183-4189
    20. Gerdes M., Meusel M., Spener F. (1997). Development of a displacement immunoassay by exploiting cross-reactivity of a monoclonal antibody. Anal Biochem. 252:198-204.
    21. Glass T.R., Ohmura N., Morita K., Sasaki K., Saiki H., Takagi Y., Kataoka C., Ando A. (2006). Improving an immunoassay response to related polychlorinated biphenyl analytes by mixing antibodies. Anal. Chem. 78:7240-7247
    22. Graham B.M., Porter A.J., Harris W.J. (1995). Cloning, expression and characterization of a single-chain antibody fragment to the herbicide paraquat, J Chem Technol Biotechnol. 63(3): 279-289
    23. Grant R.A., Lin T.C., Webster R.E., Konigsberg W. (1981). Structure of filamentous bacteriophage: isolation, characterization, and localization of the minor coat proteins and orientation of the DNA. Prog Clin Biol Res. 64:413-428
    24. Haupt K., Dzgoev A., Mosbach K. (1998). Assay system for the herbicide 2,4-dichlorophenoxyaectic acid using a molecularly imprinted polymer as an artificial recognition element. Anal. Chem. 70:628-631
    25. Haupt K., Mayes A.G., Mosbach K. (1998). Assay using an imprinted polymer based system analogous to competitive fluoroimmonoassays. Anal. Chem. 70:3936-3939
    26. He C., Long Y., Pan J., Li K. and Liu F. (2007). Application of molecularly imprinted polymers to solid-phase extraction of analytes from real samples. J. Biochem. and Biophysical Methods. 70(2): 133-150
    27. Jang M.S., Lee S.J., Xue X., Kwon H.-M., Ra C.S., Lee Y.T., Chung T. (2002). Production and characterization of monoclonal antibodies to a generic hapten for class-specific determination of organophosphorus pesticides. Bull. Korean Chem. Soc. 23(8): 1116-1120
    28. Jayasena S. (1999). Aptamers: an emerging class of molecules that rival antibodies in diagnostics. Clin. Chem. 45:1628-1650
    29. Jenkins A.L., Yin R., Jensen J.L. (2001). Molecularly imprinted polymer sensors for pesticide and insecticide detection in water. Analyst. 126:798-802
    30. Jourdan S.W., Scutellaro A.M., Fleeker J.R., Herzog D.P., Rubio F.M. (1995). Determination of Carbofuran in Water and Soil by a Rapid Magnetic Particle-based ELISA. J. Agric. Food Chem. 43: 2784-2788
    31. Kobayashi T., Wang H.Y., Fujii N. (1998). Synthesis of castasterone selective polymers prepared by molecularly imprinting. Anal. Chim. Acta. 365:81-88
    32. Kohler G., Milstein C. (1975). Continuous culture of fused cells secreting antibody of predefined specificity. Nature. 256:495-497
    33. Korndorfer I.P., Schlehuber S. Skerra A. (2003). Structural mechanism of specific ligand recognition by a lipoealin tailored for the complexation of digoxigenin. J. Mol. Biol. 330:385-396
    34. Kramer K. (2002). Synthesis of a group-selective antibody library against haptens. J. Immuno. Methods. 266:209-220
    35. Kreissig S.B., Ward V.K., Hammock B.D., Choudary P.V. (1995). 'Sequence analysis of individual chains of antibodies to triazine herbicides.' in Immunoanalysis of Agrochemicals: Emerging Technologies (Nelson J.O., Karu A.E., Wong R.B. eds), ACS Symposium Series 586
    36. Krizan P. (2003). Recent progress in ring imaging Cherenkov counters with vacuum-based photon detectors. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 502(1): 28-35
    37. Lee H-J., Shan G., Ahn K., Park E.-K., Watanabe T., Gee S.J. and Hammock B.D. (2004). Development of an enzyme-linked immunosorbent assay for the pyrethroid cypermethrin. J. Agric. Food Chem. 52:1039-1043
    38. Lee H.-J., Shan G., Watanabe T., Stoutamire D.W., Gee S.J. and Hammock B.D. (2002). Enzyme-linked immunosorbent assay for the pyrethroid deltamethrin. J. Agric. Food Chem. 50: 5526-5532
    39. Li T., Zhang Q., Liu Y., Chen D., Hu B., Blake D.A., Liu F. (2006). Production of recombinant scfv antibodies against methamidophos from a phage-display library of a hyperimmunized mouse. J. Agric. Food Chem. 54:9085-9091
    40. Li Y., Cockburn W., Kilpatrick J., Whitelam G.C. (1999). Selection of rabbit single-chain Fv fragment against the herbicide atrazine using a new phage display system. Food Agric Immunol. 11: 5-17
    41. Longstaff M., Newell C.A., Boonstra B., Strachan G., Learmonth D., Harris W.J., et al. (1998). Expression and characterization of single-chain antibody fragments produced in transgenic plants against the organic herbicides atrazine and paraquat. Biochim Biophys Acta. 1381(2): 147-160
    42. Luzi E., Minunni M., Tombelli S., Mascini M. (2003). New trends in affinity sensing: aptamers for ligand binding. Trends Anal. Chem. 22:810-818
    43. Mahony J.O., Nolan K., Smyth M.R., Mizaikoff B. (2005). Molecularly imprinted polymers—potential and challenges in analytical chemistry. Anal. Chim. Acta. 534:31-39
    44. Mak S.K., Shan G., Lee H.J., Watanabe T., Stoutamire D.W., Gee S.J., Hammock B.D. (2005). Development of a class selective immunoassay for the type Ⅱ pyrethroid insecticides. 534:109-120
    45. Manunza B., Deiana S., Pintore M., Gessa C. (1998). A molecular modeling study of the interaction between beta-cyclodextrin and the organophosphorothioate pesticide parathion. Glycoconj J. 15(3): 293-296
    46. Minunni M., Tombelli S., Mascini M., Bilia A.R., Bergonzi M.C., Vincieri F.F. (2005). An optical DNA-based biosensor for the analysis of bioactive constituents with application in drug and herbal drug screening. Talanta. 65:578-585
    47. Moreno M.J., Abad A., Montoya A. (2001). Production of Monoclonal Antibodies to the N-Methylcarbarnate Pesticide Propoxur. J. Agric. Food Chem.49:72-78
    48. Morozova V.S., Levashova A.I., Ermin S.A. (2005). Determination of Pesticides by Enzyme Immunoassay. Journal of Analytical Chemistry. 60(3): 202-217. Translated from Zhurnal Analiticheskoi Khimii. 60(3): 230-246
    49. Patel D.J., Suri A.K. (2000). Structure, recognition and discrimination in RNA aptamer complexes with cofaetors, amino acids, drugs and aminoglyeoside antibiotics. Rev. Mol. Biotechnol. 74:39-60
    50. Persson H., Johan Lantto J., Ohlin M. (2006). A Focused Antibody Library for Improved Hapten Recognition. J. Mol. Biol. 357:607-620
    51. Prasada Rao T., Kala R. and Daniel S. (2006). Metal ion-imprinted polymers—Novel materials for selective recognition of inorganics. Anal. Chim. Acta. 578(2): 105-116
    52. Rau D., Kramer K., Hock B. (2002). Cloning, functional expression and kinetic characterization of pesticide-selective Fab fragment variants derived by molecular evolution of variable antibody genes. Anal Bioanal Chem. 372(2): 261-267
    53. Schlehuber S., Beste G., Skerra A. (2000). A novel type of receptor protein, based on the lipoealin scaffold, with specificity for digoxigenin. J. Mol. Biol. 297:1105-1120
    54. Shan G., Leeman W.R., Stoutarnire D.W., Gee S.J., Chang D.P.Y. and Hammock B.D. (2000). Enzyme-linked immunosorbent assay for the pyrethroid permethrin. J. Agric. Food Chem. 48(9): 4032-4040
    55. Shan G., Stoutamire D.W., Wengatz I., Gee S.J. and Hammock B.D. (1999). Development of an immunoassay for the pyrethroid insecticide esfenvalerate. J. Agric. Food Chem. 47(5): 2145-2155
    56. Strachan G., Grant S.D., Learmonth D., Longstaff M., Porter A.J., Harris W.J. (1998). Binding characterization of anti-atrazine monoclonal antibodies and their fragments synthesised in bacteria and plants. Biosens Bioelectron. 13:665-673
    57. Takeuchi T., Fukuma D., Matsui J. (1999). Combinatorial molecular imprinting: An. approach to synthetic polymer receptors. Anal. Chem. 71:285-290
    58. Tout N.L., Yau K.Y.F., Trevors J.T., Lee H., Hall J.C. (2001). Synthesis of ligand-speeific phage-display scFv against the herbicide picloram by direct cloning from hyperimmunized mouse. J Agric Food Chem. 49(8): 3628-3637
    59. Tuerk C., Gold L. (1990). Systematic evolution of ligands by exponential enrichment. Science. 249(4968): 505-510
    60. Turner A.P.F. (2000). Biosensors sense and sensitivity. Science. 290(5495): 1315-1317
    61. Ulbricht M. (2004). Membrane separations using molecularly imprinted polymers. J. Chromatography B. 804(1): 113-125
    62. Vuyisich M., Beal P.A. (2002). Controlling Protein Activity with Ligand-Regulated RNA Aptamers. Chemistry & Biology. 9(8): 907-913
    63. Weiss G.A., Lowman H.B. (2000). Anticalins versus antibodies: made-to-order binding proteins for small molecules. Chemistry & Biology. 7:177-184
    64. Wengatz I., Stoutamire D.W, Gee S.J., and Hammock B.D. (1998). Development of an enzyme-linked immunosorbent assay for the detection of the pyrethroid insecticide fenpropathrin. J. Agric. Food Chem. 46(6): 2211-2221
    65. Yau K.Y.F., Groves M.A.T., Li S., Sheedy C., Lee H., Tanha J., MacKenzie C.R., Jermutus L., Hall J.C. (2003). Selection of hapten-specific single-domain antibodies from a non-immunized llama ribosome display library. J. Immuno. Methods. 281: 161-175
    66. Yau K.Y.F., Tout N.L., Lee H., Trevors J.T., Hall J.C. (1998). Bacterial expression and characterization of a picloram-speeific recombinant Fab fragment for residue analysis. J Agric Food Chem. 46(10): 4457-4463
    67. You K.M., Lee S.H., Im A., Lee S.B. (2003). Aptamers as functional nucleic acids: in vitro selection and biotechnological applications. Biotechnol. Bioprocess. Eng. 8:64-75
    68. Zhu Q.Z., Haupt K., Knopp D., Niessner R. (2002). Molecularly imprinted polymer for metsulfuron methyl and its binding charaterictics for sulfonylurea herbicides. Anal, Chim. Acta. 468:217-227
    69.杜念兴.(2000).兽医免疫学.北京:中国农业出版社
    70.郭利军,王晶,申元英,王涛.(2004).三种免疫血清制备方法的比较.大理学院学报.3(5):7-8
    71.谢忠平,崔萍芳,宋霞,李华,龙润乡,洪超,熊秋霞,李文忠,李琦涵.(2005).利用HCV多表位复合抗原制备高效价抗体.中国生物制品学杂志.18(4):313-315
    72.郑继平,刘向昕,王令春,李淑琴,方门忠,张兆山.(2004).产肠毒素大肠杆菌混合载体疫苗的免疫原性评价.现代免疫学.24(6):482-485
    73.罗坤,金宁一,吴丛梅,郭志儒,秦云龙,郭焱,夏志平,安汝国,殷震(2001).重组鸡痘病毒与核酸疫苗联合免疫提高机体免疫功能研究.中国肿瘤生物治疗杂志.8(1):37-40
    74.甄永苏.(1996).大鼠单克隆抗体的制备、鉴定、基因克隆、抗原分析以及药物偶联物的抗肿 瘤作用研究.中国协和医科大学:博士学位论文
    75.蔡宁.(2004).抗Vitronectin兔单克隆抗体的制备与初步鉴定.浙江大学:硕士学位论文
    76.彭涛,杜小燕,李俊锁.(2001).分子印迹技术及其在痕量分析中的应用.农药学学报.3(4):1-14
    77.米歇尔·霍迪,肖恩·霍华德.(2006).免疫分析的发展趋势.检验医学.21(增刊):59-64
    1. Abad A., Moreno M.J., Pelegry, R., Martynez M. I., Saez A., Gamon M., and Montoya A. (1999). Determination of carbaryl, carbofuran and methiocarb in cucumbers and strawberries by monoclonal enzyme immunoassays and high-performance liquid chromatography with fluorescence detection: An analytical comparison. J.. Chromatogr. A. 833:3-12
    2. Aheme G. W., Hardcastle A., Saleem P., England N. (1990). 'Enhanced Chemilumineseent Immunoassays for Environmental Monitoring', in Bioluminescence and Chemiluminescence, Current Status, eds. P. E. Stanley, L. J. Kricka, John Wiley and Sons, New York, 91-98
    3. Alfredsson G., Branzell C., Granelli K., Lundstrom A. (2005). Simple and rapid screening and confirmation of tetracyclines in honey and egg by a dipstick test and LC-MS/MS. Anal Chim. Acta. 529: 47-51
    4. Barbara S., Delmulle, Sarah M.D., De Saeger G., Liberty Sibanda, Ildiko Baran-Vetro, Carlos H., van Peteghem. (2005). Development of an immunoassay-based lateral flow dipstick for the rapid detection of atlatoxin B_1 in pig Feed. J. Agric. Food Chem. 53:3364-3368
    5. Belleville E,, Dufva M., Aamand J., Bruun L., Clausen L., Christensen C.B.V. (2004). Quantitative rnicroarray pesticide analysis. J. Immuno. Methods. 286: 219-229
    6. Millipore. (1999). A short guide developing immunochromatographic test strips, 2ed edition. Millipire Corparation, Bedford, MA, p. 2.
    7. de Wildt R.M., Mundy C.R., Gorick B.D., Tomlinson I.M. (2000). Antibody arrays for high-throughput screening of antibody-antigen interactions. Nat. Bioteehnol. 18:989-994
    8. Frens G. (1973). Controlled nudeation of the regulation of the particle size monodisperse gold suspensions. Nature. 241(1): 20-22
    9. Galve R., Nichkova M., Camps F., Sanehez-Baeza F., and Marco M.-P. (2002). Development and evaluation of an Immunoassay for biological monitoring chlorophenols in urine as potential indicators of occupational exposure. Anal. Chem. 74:468-478
    10. Huang R.P. (2001). Detection of multiple proteins in an antibody-based protein microarray system. J. Immunol. Methods. 255:1-13
    11. Kuruvilla F.G., Shamji A.F., Sternson S.M., Hergenrother P.J., Schreiber S.L. (2002). Dissecting glucose signalling with diversity-oriented synthesis and small-molecule rnicroarrays. Nature. 416: 653-657
    12. Lee H-J., Shah G., Aim K., Park E.-K., Watanabe T., Gee S.J. and Hammock B.D. (2004). Development of an enzyme-linked immunosorbent assay for the pyrethroid cypermethrin. J. Agric. Food Chem. 52:1039-1043
    13. Liu G., Riechers S.L., Timchalk C., Yuehe Lin Y. (2005). Sequential injection/electrochemical immunoassay for quantifying the pesticide metabolite 3,5,6-trichloro-2-pyddinol. Electrochem. Communi. 7:1463-1470
    14. Lucking A., Horn M., Eickhof H., Bussow K., Lehrach H., Walter G. (1999). Protein rnicroarrays for gene expression and antibody screening. Anal. Biochem. 270:103-111
    15. Luppa P.B., Sokoll LJ., Chart D.W. (2001). Immtmnsensors-principles and applications to clinical chemistry. Clinica Chimica Acta. 314:1-26
    16. Martin Dufva M. , Jesper Petersen J., Michael Stoltenborg M., Henrik Birgens H., Claus B.V. Christensen C.B.V. (2006). Detection of mutations using rnicroarrays of poly(C)10-poly(T)10 modiWed DNA probes immobilized on agarose Wlms. Anal. Biochem. 352:188-197
    17. Morozova V.S., Levashova A.I., Ermin S.A. (2005). Determination of Pesticides by Enzyme Immunoassay. Journal of Analytical Chemistry. 60(3): 202-217. Translated from Zhurnal Analiticheskoi Khimii. 60(3): 230—246
    18. Nichkova M., Feng J., Sanchez-Baeza F., Marco M.-P., Hammock B.D., Kennedy I.M. (2003). Competitive quenching fluorescence immunoassay for chlorophenols based on laser-induced fluorescence detection in microdroplets. Anal Chem. 75:83-90
    19. Pang S., Smith J., Onley D. Reeve J., Walker M., Foy C. (2005). A comparability study of the emerging protein array platforms with established ELISA procedures. J. Immunol. Methods. 302: 1-12
    20. Putalun W., Morinaga O., Tanaka H., Shoyama Y. (2004). Development of a one-step immunochromatographic strip test for the detection of sennosides A and B. Phytochem. Anal. 15(2): 112-116
    21. Putalun W. Tanaka H., Shoyama Y. (2005). Rapid detection of glyeyrrhizin by immunochromatographic assay. Phytochem. Anal. 16:370-374
    22. Rodriguez-Mozaz S., Lopez de Aid M.J., Marco M.-P., Damia Bareelo D. (2005). Biosensors for environmental monitoring: A global perspective. Talanta. 65: 291-297
    23. Shovman O., Gilburd B., Zandman-Goddard, Yehiely A., Langevitz P., Shoenfeld Y. (2005). Multiplexed AtheNa multi-lyte immunoassay for ANA screening in autoimmune diseases. Autoimmunity. 38: 105-109
    24. Sun X.L., Zhao X.L., Tang J., Jun Z., Chu F.S. (2005). Preparation of gold-labeled antibody probe and its use in immunoehromatography assay for detection of aflatoxin B1. International Journal of Food Microbiology. 99:185-194
    25. Verheijen R., Osswald I.K., Dietrich R., Haasnoot W. (2000). Development of a one step strip test for the detection of (Dihydro)streptomycin residues in raw milk. Food and Agri. Immunol. 12: 31-40
    26. Wang S., Hill A.S., and Kennedy I.R. (2002). Rapid on-site immunoassay for diflubenzuron in grains. Anal Chim. Acta. 468(2): 209-215
    27. Weetal H.W. and Rogers K.G. (2002). A simple assay for 2,4-dichlorophenoxyacetic acid using coated test-strips. Anal Lett. 35(8): 1341-1348
    28. Wing K.D.; Hammock B.D. and Wustner D.A. (1978). Development of an S-bioallethrin specific antibody. J. Agric. Food Chem. 26:1328-1333
    29. Wing K.D. and Hammock B.D. (1979). Stereoselectivity of a radioimmunoassay for the insecticide S-bioallethrin. Experientia. 35:1619-1620
    30. Zhang G.P., Wang X.N., Yang J.F., Yang Y.Y., Xing G.X., Li Q.M., Zhao D., Chai S.J., Guo J.Q. (2006). Development of an immunochromatographic lateral flow test strip for detection of β-adrenergic agonist Clenbuterol residues. J. Immunol. Methods. 312:27-33
    31. Zhu Y., He W., Liang Y., Xu M., Yu C., Hua W., Chao G. (2002). Development of a rapid, simple dipstick dye inmmunoassay for schistosomiasis diagnosis. J. Immunol. Methods. 266(1-2): 1-5
    32.刘曙照,钱传范.(1998).九十年代农药残留分析新技术.农药.37(6):11-13
    33.王玉梅,许秉权,李岩.(2006).化学发光免疫分析与免疫放射分析检测血清TSH方法比较.中国地方病防治杂志.21(6):359-360.
    34.米歇尔·霍迪,肖恩·霍华德.(2006).免疫分析的发展趋势.检验医学.21(增刊):59-64
    35.张曙明,陈建明,王重庆,谢云陆.(1996).酶免疫分析在农药分析中应用的进展.农业环境与发展.47(1):13-17
    36.高志贤,王艳,房彦军,周焕英,王涛,王红勇,王升启,戴树桂.(2005).小分子阿特拉津和罂粟碱检测的免疫芯片技术研究.分析化学.33(4):455-458
    37.张庆峰,高志贤,王升启.(2004).用于雌二醇检测的免疫芯片技术.中国生物工程杂志.24(9): 86-88
    38.黄芬,叶绍辉,龚振明.(2006).免唼层新快速诊断试纸条的制备及其应用.当代畜牧.(8): 20-22
    39.吴海波,邵军军,常惠芸.(2005).免疫层析快速诊断试纸条在动物疾病诊断中的应用.中国动物检疫.22(8):43-45
    40.彭运潮,刘金明,孙安国,柴春彦,石耀军,李浩,陆珂,刘增再,李海辉,胡述光,林矫矫.(2006).快速诊断家畜日本血吸虫病免疫层析试纸条的研制与初步应用.中国血吸虫病防治杂志.18(3):197-200
    41.刘景梅,刘兆军.(2006).金标试纸条对测定生化指标的影响.现代检验医学杂志.21(2):7
    42.羿国香,赵静,李刚,何素平,刘威,邓艾兴,南铁贵,李召虎,何钟佩,王保民.(2006).氯嘧磺隆胶体金免疫检测试纸条的制备与应用.分析化学.34(12):1679-1682
    1. Brun E. M., Marta G. -G., Rosa P., Angel M. (2004). Enzyme-linked immunosorbent assay for the organophosphorus insecticide fenthion. Influence of hapten structure. Journal of Immunological Methods, 295:21-35
    2. Chouhan R. S., Vivek Babu K., Kumar M. A., Neeta N. S., Thakur M. S., Amitha Rani B. E., Akmal P., Karanth N. G. K., Karanth N. G. (2006). Detection of methyl parathion using immuno-chemiluminescence based image analysis using charge coupled device. Biosensors and Bioelectronics, 21: 1264-1271
    3. Cho Y. A., Kim Y. A., Hammock B. D., Lee Y. T., and Lee H. S. (2003). Development of a microtiter plate ELISA for the determination of the organophosphorus insecticide fenthion. J. Agric. Food Chem., 51:7854-7860
    4. Cho Y. A., Lee H-S, Park E. Y., Lee Y. T., Hammock B. D., Ahn K. C., and Lee J. K. (2002). Development of an ELISA for the Organophosphorus Insecticide Chlorpyrifos. Bull. Korean Chem. Soc., 23(3): 481-487
    5. Cho Y. A., Seok J-A, Lee H-S, Kim Y. J., Park Y. C., Lee Y. T. (2004). Synthesis of haptens of organophosphorus pesticides and development of immunoassays for fenitrothion. Anal. Chim. Acta., 522:215-222
    6. Jang M. S., Lee S. J., Xue X., Kwon H-M, Ra C. S., Lee Y. T., and Chung T. (2002). Production and Characterization of Monoclonal Antibodies to a Generic Hapten for Class-Specific Determination of Organophosphorus Pesticides, Bull. Korean Chem. Soc. 23(8): 1116-1120
    7. Kim M.J., Lee H-S, Chung D.H., Lee Y.T. (2003). Synthesis of haptens of organophosphorus pesticides and development of enzyme-linked immunosorbent assays for parathion-methyl. Anal. Chim. Acta., 493:47-62
    8. Kim Y.J., Cho Y.A., Lee H.S., Lee Y.T., Gee S.J. and Hammock B.D. (2003a). Synthesis of haptens for immunoassay of organophosphorus pesticides and effect of heterology in hapten spacer arm length on immunoassay sensitivity. Anal. Chim. Acta., 475:85-96
    9. Kim Y.J., Cho Y.A., Lee H-S., Lee Y.T. (2003b). Investigation of the effect of hapten heterology on immunoassay sensitivity and development of an enzyme-linked immunosorbent assay for the organophosphorus insecticide fenthion. Anal. Chim. Acta., 494:29-40
    10. Kumar M.A., Chouhan R.S., Thakur M.S., Amita Rani B.E., Bo Mattiasson, Karanth N.G. (2006). Automated flow enzyme-linked immunosorbent assay (ELISA) system for analysis of methyl parathion. Anal. Chim. Acta., 560:30-34
    11. Langone, J.J., van Vunakis, H. (1982). Radioimmunoassay of nicotine, cotidine and gamma-(3-pyridyl)-gamma-oxo-Nmethylbutyramide. Methods Enzymol. 84, 628.
    12. Lee E.K., Kim Y.J., Park W.C., Chung T., Lee Y.T. (2005). Monoelonal antibody-based enzyme-linked immunosorbent assays for the detection of the organophosphorus insecticide diazinon. Anal. Chim. Acta., 530:143-153
    13. Lee J.K., Ahn K.C., Stoutamire D.W., Gee S.J., and Hammock B.D. (2003). Development of an enzyme-linked immunosorbent assay for the detection of the organophosphorus insecticide acephate. J. Agric. Food Chem., 51:3695-3703
    14. Lee W.Y., Lee E.K., Kim Y.J., Park W.C., Chung T., Lee Y.T. (2006). Monoclonal antibody-based enzyme-linked immunosorbent assays for the detection of the organophosphorus insecticide isofenphos. Anal Chim. Acta., 557:169-178
    15. Manclus J.J., Montoya A. (1995). Development of immunoassays for the analysis of chlorpyrifos and its major metabolite 3,5,6-trichloro-2-pyridinol in the aquatic environment. Anal. Chim. Acta., 311 : 341-348
    16. McAdam D.P., Hill A.S., Beasley H.L., Skerfitt J.H. (1992). Mono-and polyclonal antibodies to the organophosphate fenitrothion: 1. Approaches to hapten-protein conjugatign. J. Agric. Food Chem., 40: 1466-1470.
    17. Park J.H., Park W.C., Kim Y.J., and Lee Y.T. (2002). Development of an Enzyme-Linked Immunosorbent Assay for the Organophosphorus Insecticide Cyanophos. Bull. Korean Chem. Soc., 23(4): 605-609
    18. Wing, K.D., Hammock B.D. and Wustner D.A. (1978). Development of an S-bioallethrin specific antibody, J. Agric. Food Chem. 26(6): 1328-1333.
    19. Wing, K. D. and Hammock B.D. (1979). Stereoselectivity of a radioimmunoassay for the insecticide S-bioallethrin. Experientia. 35:1619-1620
    20. Zhang Q., Li T.J., Zhu X.X., Xu L.N., Liu F.Q., Hu B.S., Jiang Y. H.; Cao B. (2006). The Determination of N-methylcarbamatelnsectieide Metolcarb by Enzyme-linked Immunosorbent Assay. Chinese J. of Anal. Chem. 34, 178-182
    21.赵善欢主编(2000).植物化学保护.中国农业出版社,北京
    22.韩熹莱主编(1995).农药概论.北京农业大学出版社,北京
    23.刘曙照,王莲,韦林洪(2005).三唑磷的免疫分析技术研究.分析化学,33(12):1697-1700
    24.陈梁,于有海,毛华平,卢晓峰,张万金,危岩(2004).氨基封端苯胺五聚体的合成及紫外光谱研究.高等学校化学学报,25(9):1768-1770
    1. Brun E.M., Marta Garces-Garcia, Rosa Puchades, Angel Maquieira (2004). Enzyme-linked immunosorbent assay for the organophosphorus insecticide fenthion. Influence of hapten structure. Journal of Immunological Methods, 295:21-35
    2. Ercegovich, C.D., Vallejo, R.P., Getting, R.R., Woods, L., Bogus, E.R., and Mumma, R.O., (1981). Development of a Radioimmunoassay for Parathion. J. Agric. Food Chem. 29, 559
    3. Johnson, J.C., Van Emon, J.M., Pullman, D.R., Keeper, K.R., (1998). Development and evaluation of antisera for detection of the O,O-diethyl phosphorothionate and phosphorothionothiolate organophosphorus pesticides by immunoassay. J. Agric. Food Chem. 46, 3116
    4. Kim Y.J., Cho Y.A., Lee H.S., Lee Y.T., Gee S.J. and Hammock B.D. (2003a). Synthesis of haptens for immunoassay of organophosphorus pesticides and effect of heterology in hapten spacer arm length on immunoassay sensitivity. Anal. Chim. Acta., 475:85-96
    5. Kim Y.J., Cho Y.A., Lee H-S., Lee Y.T. (2003b). Investigation of the effect of hapten heterology on immunoassay sensitivity and development of an enzyme-linked immunosorbent assay for the organophosphorus insecticide fenthion. Anal. Chim. Acta., 494:29-40
    6. Lee, N., McAdam, D.P., and Skerritt, J.H., (1998). Development of Immunoassays for Type Ⅱ Synthetic Pyrethroids. 1. Hapten Design and Application to Heterologous and Homologous Assays. J. Agric. Food Chem. 46, 520
    7. Lee, W.Y., Lee, E.K., Kim, Y.J., Park, W.C., Chung, T., Lee, Y.T., (2006). Monoelonal antibody-based enzyme-linked immunosorbent assays for the detection of the organophosphorus insecticide isofenphos. Anal. Chim. Acta. 557:159
    8. McAdam, D.P., Hill, A.S., Beasley, H.L., Skerritt, J.H., (1992). Mono-and polyclonal antibodies to the organophosphate fenitrothion: 1. Approaches to hapten-protein conjugation. J. Agric. Food Chem. 40, 1466
    9. Mikaela N., Roger G., Pilar M. (2002). Biological monitoring of 2,4,5-Trichlorophenol (Ⅰ): preparation of antibodies and development of an immunoassay using theoretical models.Chem Res Toxical. 15:1360-1370
    10. Zhang Q., Li T.J., Zhu X.X., Xu L.N., Liu F.Q., Hu B.S., Jiang Y.H.; Cao B. (2006). The Determination of N-methylcarbarnatelnsecticide Metolcarb by Enzyme-linked Immunosorbent Assay. Chinese J. of Anal. Chem. 34, 178-182
    11.刘凤权,许志刚,王金生.(1998).定量测定甲胺磷残留的间接竞争ELISA的建立和初步应用.农业生物技术学报,6(2):140-146
    1. Brun E.M., Marta Garces-Garcia, Rosa Puchades, Angel Maquieira (2004). Enzyme-linked immunosorbent assay for the organophosphorus insecticide fenthion. Influence of hapten structure. Journal of Immunological Methods. 295: 21-35.
    2. Kim Y.J., Cho Y.A., Lee H-S., Lee Y.T. (2003). Investigation of the effect ofhapten heterology on immunoassay sensitivity and development of an enzyme-linked immunosorbent assay for the organophosphorus insecticide fenthion. Anal. Chim. Acta., 494: 29-40.
    3. Langone, J.J., van Vunakis, H. (1982). Radioimmunoassay of nicotine, cotidine and gamma-(3-pyridyl)-gamma-oxo-N methylbutyramide. Methods Enzymol. 84: 628-640.
    4. Wing, K.D., B.D. Hammock and D.A. Wustner. (1978). Development of an S-bioallethrin specific antibody. J. Agric. Food Chem. 26(6): 1328-1333.
    5. Wing, K.D. and B.D. Hammock. (1979). Stereoselectivity of a radioimmunoassay for the insecticide S-bioallethrin. Experientia. 35:1619-1620.
    6. Zhang Q., Li T.J., Zhu X.X., Xu L.N., Liu F.Q., Hu B.S., Jiang Y.H.; Cao B. (2006). The Determination of N-methylcarbamateInsectieide Metolearb by Enzyme-linked Immunosorbent Assay. Chinese J. of Anal. Chem. 34, 178-182
    7.钟辉,王跃进,郭智慧,王建华.(2000).河北省328份蔬菜农药残留监测报告.中华食品卫生杂志,12(5):28—30
    8.山西省太行农网.(2007年3月11日).2006年农产品质量安全例行监测结果分析.http://www.thnw.gov.cn/asp/detail.asp?id=34822
    9.毕刚.(2001).倍硫磷的气相色谱/红外光谱检测.分析科学学报.17(1):88
    10.孙芳.(2001).反相高效液相色谱法测定杀虫剂中倍硫磷含量.理化检验-化学分册.37(5):228
    11.孙涛,周晓龙,王建梅.(2006).气相色谱法测定牛初乳中甲胺磷、马拉硫磷、倍硫磷的残留.现代科学仪器.(1):74-75
    12.刘凤权,许志刚,王金生.(1998).定量测定甲胺磷残留的间接竞争ELISA的建立和初步应用.农业生物技术学报,6(2):140-146
    1. Abad A., Montoya A. (1994). Production of Monoclonal Antibodies for Carbaryl from a Hapten Preserving the Carbamate Group. J. Agric. Food Chem. 42:1818-1823
    2. Abad A., Moreno M.J., Montoya A. (1998). Hapten Synthesis and Production of Monoclonal Antibodies to the N-Methylcarbamate Pesticide Methiocarb. J. Agric. Food Chem. 46:2417-2426
    3. Brady J.F., Fleeker J.R., Wilson R.A., Mumma R.O. (1989). 'Enzyme-immunoassay for Aldicarb', in Biological Monitoring of pesticide Exposure, Measurement, Estimation and Risk Reduction, eds. Wang R.G.M., Franklin C.A., Honeycut R.C., Reinhert J.C., ACS Symposium Series382, American Chemical Society, Washtionton, DC, 262-284
    4. Jourdan S.W., Scutellaro A.M., Fleeker J.R., Herzog D.E, Rubio EM. (1995). Determination of Carbofuran in Water and Soil by a Rapid Magnetic Particle-based ELISA. J. Agric. Food Chem. 43: 2784-2788
    5. Marco M.P., Gee S.J., Cheng H.M., Liang Z.Y., Hammock B.D. (1993). Development of an ELISA for Carbaryl. J. Agric. Food Chem. 41: 423-430
    6. Moreno M.J., Abad A., Montoya A. (2001). Production of Monoclonal Antibodies to the N-Methylcarbamate Pesticide Propoxur. J. Agric. Food Chem. 49:72-78
    7. Zhang Q., Li T.J., Zhu X.X., Xu L.N., Liu F.Q., Hu B.S., Jiang Y.H.; Cao B. (2006). The Determination of N-methylcarbamatelnsecticide Metolcarb by Enzyme-linked Immunosorbent Assay. Chinese J. of Anal. Chem. 34, 178-182
    8. Zhang Q., Li T.J., Zhu X.X., Xu L.N., Liu F.Q., Hu B.S., Jiang Y.H.; Cao B. (2006). The Determination of N-methylcarbarnateInsecticide Metolcarb by Enzyme-linked Immunosorbent Assay. Agri. Sci. in China. 6(2): 175-179
    9.刘曙照,冯大和,陈美娟,钱传范.(2000).对克百威具高度特异性的免疫分析技术研究.分析科学学报.16(5):373-378
    10.刘曙照,冯大和,钱传范.(1999).甲萘威酶联免疫吸附分析技术研究.农药学学报.1(1):62-68
    1. Abad A., Moreno M.J., Montoya A. (1998). Hapten Synthesis and Production of Monoclonal Antibodies to the N-Methylcarbamate Pesticide Methiocarb. J. Agric. Food Chem. 46:2417-2426
    2. Brun E.M., Marta Garces-Garcia, Rosa Puchades, Angel Maquieira (2004). Enzyme-linked immunosorbent assay for the organophosphorus insecticide fenthion. Influence of hapten structure. Journal of Immunological Methods, 295: 21-35
    3. Kim Y. J., Cho Y. A., Lee H. S., Lee Y.T., Gee S.J., Hammock B.D. (2003a). Synthesis of haptens for immunoassay of organophosphorus pesticides and effect of heterology in hapten spacer arm length on immunoassay sensitivity. Anal. Chim. Acta., 475: 85-96
    4. Kim Y. J., Cho Y. A., Lee H-S., Lee Y. T. (2003b). Investigation of the effect of hapten heterology on immunoassay sensitivity and development of an enzyme-linked immunosorbent assay for the organophosphorus insecticide fenthion. Anal. Chim. Acta., 494: 29-40
    5. Lee H. J., Shan G., Watanabe T., Stoutamire D.W., Gee S. J., Hammock B.D. (2002). Enzyme-Linked Immunosorbent Assay for the Pyrethroid Deltamethrin. J. Agric. Food Chem. 50: 5526-5532
    6. Moreno M. J., Abad A., Montoya A. (2001). Production of Monoclonal Antibodies to the N-Methylcarbarnate Pesticide Propoxur. J. Agric. Food Chem. 49: 72-78
    7. Morozova V.S., Levashova A. I., Ermin S. A. (2005). Determination of Pesticides by Enzyme Immunoassay. Journal of Analytical Chemistry. 60(3): 202-217. Translated from Zhurnal Analiticheskoi Khimii. 60(3): 230-246
    1. Abad A., Montoya A. (1994). Production of Monoclonal Antibodies for Carbaryl from a Hapten Preserving the Carbamate Group. J. Agric. Food Chem. 42: 1818-1823
    2. Abad A., Moreno M.J., Montoya A. (1998). Hapten Synthesis and Production of Monoclonal Antibodies to the N-Methylearbamate Pesticide Methiocarb. J. Agric. Food Chem. 46:2417-2426
    3. Brady J.F., Fleeker J.R., Wilson R.A., Mumma R.O. (1989). Enzyme-immunoassay for Aldicarb, in Biological Monitoring of pesticide Exposure, Measurement, Estimation and Risk Reduction, eds. Wang R.G.M., Franklin C.A., Honeyeut R.C., Reinhert J,C. ACS Symposium Series382, American Chemical Society, Washtionton, DC, 262-284
    4. Hennion M.C., Barcelo D. (1998). Strengths and Limitations of Immunoassays for Effective and Efficient Use for Pesticide Analysis in Water samples: A Review. Anal. Chim. Acta. 362:3-34
    5. Jourdan S.W., Scutellaro A.M., Fleeker J.R., Herzog D.P., Rubio F.M. (1995). Determination of Carbofuran in Water and Soil by a Rapid Magnetic Particle-based ELISA. J. Agric. Food Chem. 43: 2784-2788
    6. Lopez-Avila V., Charan C., Van Emon J. (1996). Supercritical Fluid Extraction-Enzyme-linked Immunosorbent Assay Applications for Determination of Pesticides in Soil and Food, in Immunoassays for Residue Analysis: Food Safety, eds. Beier R.C., Stanker L.H., ACS Symposium Series 621, American Chemical Society, Washtionton, DC, 439-449
    7. Marco M.P., Gee S.J., Cheng H.M., Liang Z.Y., Hammock B.D. (1993). Development of an ELISA for Carbaryl. J.. Agric. Food Chem.41:423-430
    8. Moreno M.J., Abad A., Montoya A. (2001). Production of Monoclonal Antibodies to the N-Methylcarbamate Pesticide Propoxur. J. Agric. Food Chem.49:72-78
    9.林维宣,田苗,李继业,曹冬梅.(2003).双柱固相萃取.高效液相色谱法测定大米中氨基甲酸酯农药残留量的研究.中国粮油学报.18(2):79-84
    10.方菊芬,王高升,方路.(1997).三元复配农药(速灭威、异丙威、噻嗪酮)的气相色谱分析方法研究.浙江化工.1997.04
    11.刘曙照,冯大和,陈美娟,钱传范.(2000).对克百威具高度特异性的免疫分析技术研究.分析科学学报.16(5):373-378
    12.刘曙照,冯大和,钱传范.(1999).甲萘威酶联免疫吸附分析技术研究.农药学学报.1(1):62-68
    13.刘凤权,许志刚,王金生.(1998).定量测定甲胺磷残留的间接竞争ELISA的建立和初步应用.农业生物技术学报,6(2):140-146
    1. Abad A., Moreno M. J., Montoya A. (1998). Hapten Synthesis and Production of Monoclonal Antibodies to the N-Methylcarbamate Pesticide Methiocarb. J. Agric. Food Chem. 46: 2417-2426
    2. Beasely H. L., McAdam D.P., Larkin K.A., Ferguson B.S., Bushway R.J., Skerritt J.H. (1997). Laboratory and field enzyme-immunoassays for diazinon and their application to residue analysis in lanolin, water, and fruit juice. Bull. Environ. Contain. Toxicol. 59: 375-382
    3. Centeno E. R., Johnson W. J., Sehon A.H. (1970). Antibodies to two common pesticides, DDT and malathion. Int. Arch. Allergy. 37: 1-13
    4. Ercegovich, C. D., Vallejo, R. P., Getting, R. R., Woods, L., Bogus, E.R., and Mumma, R.O., (1981). Development of a Radioimmunoassay for Parathion. J. Agric. Food Chem. 29, 559
    5. Galve R., Camps F., Sanchez-Baeza F., Marco M. P. (2000). Development of an immunochemical technique for the analysis of trichlorophenols using theoretical models. Anal. Chem. 72: 2237-3346
    6. Galve R., Sanchez-Baeza F., Camps F., Marco M. P. (2002). Indirect competitive immunoassay for trichlorophenol determination. Rational evaluation of the competitor heterology effect. Anal Chimica Acta. 452: 191-206
    7. Kim Y.J., Cho Y.A., Lee H.S., Lee Y.T., Gee S.J. and Hammock B.D. (2003a). Synthesis of haptens for immunoassay of organophosphorus pesticides and effect of heterology in hapten spacer arm length on immunoassay sensitivity. Anal. Chim. Acta., 475: 85-96
    8. Langone J. J., Van Vanukis H. (1975). Radioimmunoassay for dieldrin and dldrin. Res. Commun. Chem. Pathol, Pharmacol. 10:163-171
    9. Lee N., McAdam D.P., Skerritt J.H. (1998). Development of immunoassays for type Ⅱ synthetic pyrethroids. 1. Hapten design and application to heterologous and homologous assays. J. Agric. Food Chem. 46: 520-534
    10. Levitt T. (1977). Radio-immunoassay for paraquat. Lancet. Ⅱ: 358
    11. Manelus J.J., Montoya A. (1995). Development of immunoassays for the analysis of ehlorpyrifos and its major metabolite 3,5,6-trichloro-2-pyridinol in the aquatic environment. Analytica Chimica Acta. 311 (3): 341-348
    12. Newman D.J, Price C.P. (1996). Molecular aspects of design of immunoassays for drugs. Therapeutic drug monitoring. 18: 493-497
    13. Nichkova M., Galve R., Marco M.P. (2002). Biological monitoring of 2,4,5-Triehlorophenol (Ⅰ): preparation of antibodies and development of an immunoassay using theoretical models. Chem. Res. Toxical. 15: 1360-1370
    14. Shan G., Stoutamire D.W., Wengatz I., Gee S. J., and Hammock B.D. (1999). Development of an immunoassay for the pyrethroid insecticide esfenvalerate. J. Agric. Food Chem. 47: 2145-2155
    15. Spinks C. A. (2000). Broad specificity immunoassay of low molecular weight food contaminants new paths to utopia. Trends in Food Sci. and Tech. 11: 210-217
    16. Wang T. (2007). Flexible docking by molecular dynamics simulation. Computers and Applied Chemistry. 24(1): 91-93
    17.杨汉春(主编).(2003).动物免疫学.中国农业大学出版社,北京
    18.王镜岩,朱圣庚,徐长法.(2002).生物化学.高等教育出版社,北京
    19.李春华,马晓慧,陈慰祖,王存新.(2006).蛋白质-蛋白质分子对接方法研究进展.生物化学与生物物理进展.33(7):616-621

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700