用户名: 密码: 验证码:
氢键及配位键作用下表面超分子自组装膜的制备及STM表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于物理吸附的表面超分子自组装是在表面获得分子级可控结构的有效方法。利用超分子化学对非共价键的认识可以在表面构筑多组分、结构可控的、具有一定热稳定性的超分子自组装单层膜,而这些修饰了超分子自组装单层膜的表面在化学及生物传感、分子识别以及纳米电子学上有潜在的应用。本论文利用扫描隧道显微镜(STM)系统地研究了不同强度分子间非共价键作用下的超分子自组装,通过对比深入探讨了在不同强度侧向作用力下,吸附物-基底作用力对自组装膜结构的影响,并同时建立了一种简单有效的新方法来构建在气/固界面下具有一定热稳定性的超分子自组装膜。主要研究内容和结果如下:
     1、系统地研究了液/固界面下不同链长的伯醇分子(从癸醇到三十醇)在Au(111)表面和Au(100)表面的自组装,STM结果显示所有伯醇分子都平躺吸附在表面形成与基底结构匹配的自组装膜。伯醇分子自组装膜的结构呈现奇偶效应,奇数链长的伯醇分子形成垂直结构,而短链偶数链长的伯醇分子形成鱼骨状的‘V’形结构,在长链的偶数链长伯醇分子自组装膜中可以同时观察到鱼骨状结构与倾斜结构。与烷烃分子的自组装不同,由于伯醇分子间形成氢键带来的额外稳定性使得伯醇分子可以在非重构的Au(111)表面形成有序自组装膜。
     2、建立了一种新的方法构建气/固界面下具有较高热稳定性的三氰酸密胺自组装单层膜,成功地在重构的Au(111)表面以及重构的Au(100)表面构建了大范围结构均一的三氰酸密胺的自组装单层膜。同时分别对三聚氰胺以及三聚氰酸分子在Au(111)表面的自组装进行了研究。在三聚氰胺以及三聚氰酸的自组装膜中观察到分子的手性排列。通过一系列的高分辨STM图并结合理论化学计算分别构建了三聚氰胺、三聚氰酸以及三氰酸密胺自组装膜的结构模型,并讨论了吸附物-基底作用力对三氰酸密胺自组装膜结构的影响。研究表明尽管在三氰酸密胺自组装膜中,分子间的作用力三倍于分子-基底间的作用力,基底结构仍然可以微调自组装膜的结构。
     3、建立了一种在表面构建金属-有机配位聚合物(MOCP)单层膜的方法,利用该方法成功地实现了DHBQ-Cu体系以及Bpy-Cu体系在Au(111)表面的自组装。STM结果表明当分子间作用力为金属-有机配位键时,自组装膜的结构主要由分子间作用力决定,这时,吸附物-基底作用力对自组装膜结构的影响很弱,表面的作用主要是提供二维平台以供金属-有机配位聚合物的形成和生长。
For nanotechnology to find wide practical use, we need to develop methods for controlled mass fabrication of nanosystems and nanodevices. Supramolecular self-assembly provides such a basic“bottom-up”technique to create SAMs with a controlled and repeatable manner. These functional surfaces fabricated by supramolecular SAMs have potential applications in fields of sensors, molecular recognition and nanoelectronics. In this paper, we systematically investigated a series of supramolecular SAMs directed by lateral non-covalent bonds with different strength. A new kind of method has been developed for fabrication of supramolecular SAMs with high thermal stability at air/substrate interface. The role of the adsorbate-substrate interactions has been discussed in the supramolecular SAMs directed by weak and strong lateral molecule-molecule interactions. Our research contents and main conclusions are:
     1) The self-assembled monolayers (SAMs) of alkanols (1-CNH2N+1OH) with varying carbon chain length (N=10-30) at the interfaces between alkanol solutions (or liquids) and the Au (111) surfaces have been systematically studied by means of scanning tunneling microscopy (STM). The carbon skeletons were found to lie flat on the surfaces. The odd-even effect known in the alkane SAMs also appears in the alkanol SAMs. Thus the odd N alkanols adopt the perpendicular lamellar structures owing to the favorable interactions of the methyl terminals as in the case of the odd alkanes. The herringbone-like structures were found dominant in the alkanol SAMs for even N<18, whereas the tilted structures and herringbone-like structures coexist in the SAMs of long chain alkanols for even N>18. In contrast to alkanes on the Au (111) surfaces, where no SAMs on the unreconstructed gold substrate were observable, alkanols can form SAMs on either the reconstructed or the unreconstructed gold surfaces.
     2) A new method was established for construction of CA·M SAMs with high thermal stability at air/substrate interface. The CA·M SAMs with long range and uniform structures were successfully constructed on reconstructed Au(111) and Au(100) surfaces. In addition to the self-assembly of CA·M, the self-assembly of melamine molecules and cyanuric acid molecules have been investigated in Au(111) surfaces. The structural model of the SAMs of melamine molecules, cyanuric acid molecules and CA·M complex were established based on the high resolution STM images. Combined with density functional theoretical (DFT) calculations, the role of the adsorbate-adsorbate and the adsorbate-substrate interactions were discussed. Our results suggest that the substrates are able to adjust the final structures of the CA·M SAMs even when the strength of the adsorbate-adsorbate interactions is three times larger than that of the adsorbate-substrate interactions.
     3) A simple one-step procedure has been developed for the preparation of the SAMs of metal-organic coordination polymers (MOCPs). The MOCPs of DHBQ-Cu system and Bpy-Cu system were directly synthesized on the preheated Au (111) surfaces from aqueous solutions. Incommensurate structures were found in the SAMs of MOCPs, which suggest that the adsorbate-adsorbate interactions dominate the self-assembly of MOCPs on Au (111) surfaces.
引文
[1] Lehn, J. M., Angewandte Chemie-International Edition 1988, 27, 89.
    [2] Steed, J. W.; Atwood, J. L., Supramolecular Chemistry. John Wiley & Sons, Ltd: 2000.
    [3] Lehn, J. M., Supramolecular chemistry: concept and perspectives. VCH: Weinheim, 1995.
    [4] Leininger, S.; Olenyuk, B.; Stang, P. J., Self-assembly of discrete cyclic nanostructures mediated by transition metals. Chemical Reviews 2000, 100, (3), 853-907.
    [5] Beer, P. D.; Gale, P. A., Anion recognition and sensing: The state of the art and future perspectives. Angewandte Chemie-International Edition 2001, 40, (3), 486-516.
    [6] Moulton, B.; Zaworotko, M. J., From molecules to crystal engineering: Supramolecular isomerism and polymorphism in network solids. Chemical Reviews 2001, 101, (6), 1629-1658.
    [7] deSilva, A. P.; Gunaratne, H. Q. N.; Gunnlaugsson, T.; Huxley, A. J. M.; McCoy, C. P.; Rademacher, J. T.; Rice, T. E., Signaling recognition events with fluorescent sensors and switches. Chemical Reviews 1997, 97, (5), 1515-1566.
    [8] Lehn, J. M., Toward complex matter: Supramolecular chemistry and self-organization. Proceedings of the National Academy of Sciences of the United States of America 2002, 99, (8), 4763-4768.
    [9] Lehn, J. M., Toward self-organization and complex matter. Science 2002, 295, (5564), 2400-2403.
    [10] Pedersen, C. J., J. Am. Chem. Soc. 1967, 89, 7017.
    [11] Lehn, J. M., Struct. Bonding 1973, 16, 1.
    [12] Wald, G., Sci. Am. 1954, 191, 44.
    [13] Fujita, M., Molecular self-assembly organic versus inorganic approaches. Springer: New York, 2000.
    [14] Sukhishvili, S. A.; Granick, S., Layered, erasable polymer multilayers formed by hydrogen-bonded sequential self-assembly. Macromolecules 2002, 35, (1), 301-310.
    [15] MacGillivray, L. R.; Atwood, J. L., A chiral spherical molecular assembly held togetherby 60 hydrogen bonds. Nature 1997, 389, (6650), 469-472.
    [16] Zeng, H.; Li, J.; Liu, J. P.; Wang, Z. L.; Sun, S. H., Exchange-coupled nanocomposite magnets by nanoparticle self-assembly. Nature 2002, 420, (6914), 395-398.
    [17] Li, M.; Schnablegger, H.; Mann, S., Coupled synthesis and self-assembly of nanoparticles to give structures with controlled organization. Nature 1999, 402, (6760), 393-395.
    [18] Puntes, V. F.; Krishnan, K. M.; Alivisatos, P., Synthesis, self-assembly, and magnetic behavior of a two-dimensional superlattice of single-crystal epsilon-Co nanoparticles. Applied Physics Letters 2001, 78, (15), 2187-2189.
    [19] Puntes, V. F.; Krishnan, K. M.; Alivisatos, A. P., Colloidal nanocrystal shape and size control: The case of cobalt. Science 2001, 291, (5511), 2115-2117.
    [20] Tripp, S. L.; Pusztay, S. V.; Ribbe, A. E.; Wei, A., Self-assembly of cobalt nanoparticle rings. Journal of the American Chemical Society 2002, 124, (27), 7914-7915.
    [21] Bowles, S. E.; Wu, W.; Kowalewski, T.; Schalnat, M. C.; Davis, R. J.; Pemberton, J. E.; Shim, I.; Korth, B. D.; Pyun, J., Magnetic Assembly and Pyrolysis of Functional Ferromagnetic Colloids into One-Dimensional Carbon Nanostructures. J. Am. Chem. Soc. 2007.
    [22] Binning, G.; Rohrer, H.; Gerber, C.; Weibel, E., Surface Studies by Scanning Tunneling Microscopy. Physical Review Letters 1982, 49, (1), 57.
    [23] De Feyter, S.; De Schryver, F. C., Two-dimensional supramolecular self-assembly probed by scanning tunneling microscopy. Chemical Society Reviews 2003, 32, (3), 139-150.
    [24] Ulman, A., Formation and structure of self-assembled monolayers. Chemical Reviews 1996, 96, 1533-1554.
    [25] Schessler, H. M.; Karpovich, D. S.; Blanchard, G. J., Quantitating the Balance between Enthalpic and Entropic Forces in Alkanethiol/Gold Monolayer Self Assembly. J. Am. Chem. Soc. 1996, 118, (40), 9645-9651.
    [26] Wetterer, S. M.; Lavrich, D. J.; Cummings, T.; Bernasek, S. L.; Scoles, G., Energetics and kinetics of the physisorption of hydrocarbons on Au(111). Journal of Physical Chemistry B 1998, 102, (46), 9266-9275.
    [27] De Feyter, S.; De Schryver, F. C., Self-assembly at the liquid/solid interface: STM reveals. Journal of Physical Chemistry B 2005, 109, (10), 4290-4302.
    [28] Giancarlo, L. C.; Flynn, G. W., Scanning tunneling and atomic force microscopy probes of self-assembled, physisorbed monolayers: Peeking at the peaks. Annual Review of Physical Chemistry 1998, 49, 297-336.
    [29] Wan, L. J., Fabricating and controlling molecular self-organization at solid surfaces: Studies by scanning tunneling microscopy. Accounts of Chemical Research 2006, 39, (5), 334-342.
    [30] Qiu, X. H.; Wang, C.; Zeng, Q. D.; Xu, B.; Yin, S. X.; Wang, H. N.; Xu, S. D.; Bai, C. L., Alkane-assisted adsorption and assembly of phthalocyanines and porphyrins. Journal of the American Chemical Society 2000, 122, (23), 5550-5556.
    [31] Zhang, H. M.; Xie, Z. X.; Mao, B. W.; Xu, X., Self-assembly of normal alkanes on the Au(111) surfaces. Chemistry-A European Journal 2004, 10, (6), 1415-1422.
    [32] Rabe, J. P.; Buchholz, S., Science 1991, 253, 424-427.
    [33] Smith, D. P. E.; Horber, H.; Gerber, C.; Binning, G., Science 1989, 245, 43-45.
    [34] McGonigal, G. C.; Bernhardt, R. H.; Thomson, D. J., Imaging alkane layers at the liquid/graphite interface with the scanning tunneling microscope. Applied Physics Letters 1990, 57, (1), 28-30.
    [35] Uosaki, K.; Yamada, R., Formation of Two-Dimensional Crystals of Alkanes on the Au(111) Surface in Neat Liquid. J. Am. Chem. Soc. 1999, 121, 4090-4091.
    [36] Groszek, A. J., Nature 1964, 204, 680-681.
    [37] Giancarlo, L. C.; Fang, H. B.; Rubin, S. M.; Bront, A. A.; Flynn, G. W., Influence of the substrate on order and image contrast for physisorbed, self-assembled molecular monolayers: STM studies of functionalized hydrocarbons on graphite and MoS2. Journal of Physical Chemistry B 1998, 102, (50), 10255-10263.
    [38] Cincotti, S.; Rabe, J. P., Self-assembled alkane monolayers on MoSe[sub 2] and MoS[sub 2]. Applied Physics Letters 1993, 62, (26), 3531-3533.
    [39] Lu, X.; Hipps, K. W.; Wang, X. D.; Mazur, U., Scanning Tunneling Microscopy of Metal Phthalocyanines: d7 and d9 Cases. J. Am. Chem. Soc. 1996, 118, (30), 7197-7202.
    [40] Yin, S. X.; Wang, C.; Xu, B.; Bai, C. L., Studies of CuPc adsorption on graphite surface and alkane adlayer. Journal of Physical Chemistry B 2002, 106, (35), 9044-9047.
    [41] Samori, P.; Severin, N.; Simpson, C. D.; Mullen, K.; Rabe, J. P., Epitaxial compositelayers of electron donors and acceptors from very large polycyclic aromatic hydrocarbons. Journal of the American Chemical Society 2002, 124, (32), 9454-9457.
    [42] Florio, G. M.; Werblowsky, T. L.; Muller, T.; Berne, B. J.; Flynn, G. W., Self-assembly of small polycyclic aromatic hydrocarbons on graphite: A combined scanning tunneling microscopy and theoretical approach. Journal of Physical Chemistry B 2005, 109, (10), 4520-4532.
    [43] Zhang, H. X.; Chen, Q.; Wen, R.; Hu, J. S.; Wan, L. J., Effect of polycyclic aromatic hydrocarbons on detection sensitivity of ultratrace nitroaromatic compounds. Analytical Chemistry 2007, 79, (5), 2179-2183.
    [44] Yokoyama, T.; Yokoyama, S.; Kamikado, T.; Okuno, Y.; Mashiko, S., Selective assembly on a surface of supramolecular aggregates with controlled size and shape. Nature 2001, 413, (6856), 619-621.
    [45] Keeling, D. L.; Oxtoby, N. S.; Wilson, C.; Humphry, M. J.; Champness, N. R.; Beton, P. H., Assembly and processing of hydrogen bond induced supramolecular nanostructures. Nano Letters 2003, 3, (1), 9-12.
    [46] Barth, J. V.; Weckesser, J.; Cai, C. Z.; Gunter, P.; Burgi, L.; Jeandupeux, O.; Kern, K., Building supramolecular nanostructures at surfaces by hydrogen bonding. Angewandte Chemie-International Edition 2000, 39, (7), 1230-1234.
    [47] Stepanow, S.; Lin, N.; Vidal, F.; Landa, A.; Ruben, M.; Barth, J. V.; Kern, K., Programming supramolecular assembly and chirality in two-dimensional dicarboxylate networks on a Cu(100) surface. Nano Letters 2005, 5, (5), 901-904.
    [48] Weckesser, J.; De Vita, A.; Barth, J. V.; Cai, C.; Kern, K., Mesoscopic correlation of supramolecular chirality in one-dimensional hydrogen-bonded assemblies. Physical Review Letters 2001, 8709, (9), art. no.-096101.
    [49] Vidal, F.; Delvigne, E.; Stepanow, S.; Lin, N.; Barth, J. V.; Kern, K., Chiral phase transition in two-dimensional supramolecular assemblies of prochiral molecules. Journal of the American Chemical Society 2005, 127, (28), 10101-10106.
    [50] Ruben, M.; Rojo, J.; Romero-Salguero, F. J.; Uppadine, L. H.; Lehn, J. M., Grid-type metal ion architectures: Functional metallosupramolecular arrays. Angewandte Chemie-International Edition 2004, 43, (28), 3644-3662.
    [51] Semenov, A.; Spatz, J. P.; Moller, M.; Lehn, J. M.; Sell, B.; Schubert, D.; Weidl, C. H.; Schubert, U. S., Controlled arrangement of supramolecular metal coordination arrays on surfaces. Angewandte Chemie-International Edition 1999, 38, (17), 2547-2550.
    [52] Gong, J. R.; Wan, L. J.; Yuan, Q. H.; Bai, C. L.; Jude, H.; Stang, P. J., Mesoscopic self-organization of a self-assembled supramolecular rectangle on highly oriented pyrolytic graphite and Au(111) surfaces. Proceedings of the National Academy of Sciences of the United States of America 2005, 102, (4), 971-974.
    [53] Yuan, Q. H.; Wan, L. J., Structural comparison of self-organized adlayers of ligands and their metal-coordinated complexes on a Au(III) surface: An STM study. Chemistry-A European Journal 2006, 12, (10), 2808-2814.
    [54] Yuan, Q. H.; Wan, L. J.; Jude, H.; Stang, P. J., Self-organization of a self-assembled supramolecular rectangle, square, and three-dimensional cage on Au(111) surfaces. Journal of the American Chemical Society 2005, 127, (46), 16279-16286.
    [55] Dmitriev, A.; Spillmann, H.; Lin, N.; Barth, J. V.; Kern, K., Modular assembly of two-dimensional metal-organic coordination networks at a metal surface. Angewandte Chemie-International Edition 2003, 42, (23), 2670-2673.
    [56] Spillmann, H.; Dmitriev, A.; Lin, N.; Messina, P.; Barth, J. V.; Kern, K., Hierarchical assembly of two-dimensional homochiral nanocavity arrays. Journal of the American Chemical Society 2003, 125, (35), 10725-10728.
    [57] Lingenfelder, M. A.; Spillmann, H.; Dmitriev, A.; Stepanow, S.; Lin, N.; Barth, J. V.; Kern, K., Towards surface-supported supramolecular architectures: tailored coordination assembly of 1,4-benzenedicarboxylate and Fe on Cu(100). Chemistry-A European Journal 2004, 10, (8), 1913-1919.
    [58] Stepanow, S.; Lingenfelder, M.; Dmitriev, A.; Spillmann, H.; Delvigne, E.; Lin, N.; Deng, X. B.; Cai, C. Z.; Barth, J. V.; Kern, K., Steering molecular organization and host-guest interactions using two-dimensional nanoporous coordination systems. Nature Materials 2004, 3, (4), 229-233.
    [59] Ruben, M., Squaring the interface: "Surface-assisted" coordination chemistry. Angewandte Chemie-International Edition 2005, 44, (11), 1594-1596.
    [60] Surin, M.; Samori, P.; Jouaiti, A.; Kyritsakas, N.; Hosseini, M. W., Molecular tectonics onsurfaces: Bottom-up fabrication of 1D coordination networks that form 1D and 2D arrays on graphite. Angewandte Chemie-International Edition 2007, 46, (1-2), 245-249.
    [61] Stepanow, S.; Lin, N.; Payer, D.; Schlickum, U.; Klappenberger, F.; Zoppellaro, G.; Ruben, M.; Brune, H.; Barth, J. V.; Kern, K., Surface-assisted assembly of 2D metal-organic networks that exhibit unusual threefold coordination symmetry. Angewandte Chemie-International Edition 2007, 46, (5), 710-713.
    [62] Yoshimoto, S.; Tsutsumi, E.; Narita, R.; Murata, Y.; Murata, M.; Fujiwara, K.; Komatsu, K.; Ito, O.; Itaya, K., Epitaxial supramolecular assembly of fullerenes formed by using a coronene template on a Au(111) surface in solution. Journal of the American Chemical Society 2007, 129, (14), 4366-4376.
    [63] Yoshimoto, S.; Higa, N.; Itaya, K., Two-dimensional supramolecular organization of copper octaethylporphyrin and cobalt phthalocyanine on Au(III): Molecular assembly control at an electrochemical interface. Journal of the American Chemical Society 2004, 126, (27), 8540-8545.
    [64] Otero, R.; Schock, M.; Molina, L. M.; Laegsgaard, E.; Stensgaard, I.; Hammer, B.; Besenbacher, F., Guanine quartet networks stabilized by cooperative hydrogen bonds. Angewandte Chemie-International Edition 2005, 44, (15), 2270-2275.
    [65] Xu, S. L.; Dong, M. D.; Rauls, E.; Otero, R.; Linderoth, T. R.; Besenbacher, F., Coadsorption of guanine and cytosine on graphite: Ordered structure based on GC pairing. Nano Letters 2006, 6, (7), 1434-1438.
    [66] Xu, S. M.; Szymanski, G.; Lipkowski, J., Self-assembly of phospholipid molecules at a Au(111) electrode surface. Journal of the American Chemical Society 2004, 126, (39), 12276-12277.
    [67] Humblot, V.; Barlow, S. M.; Raval, R., Two-dimensional organisational chirality through supramolecular assembly of molecules at metal surfaces. Progress In Surface Science 2004, 76, (1-2), 1-19.
    [68] Barlow, S. M.; Raval, R., Complex organic molecules at metal surfaces: bonding, organisation and chirality. Surface Science Reports 2003, 50, (6-8), 201-341.
    [69] Lopinski, G. P.; Moffatt, D. J.; Wayner, D. D.; Wolkow, R. A., Determination of the absolute chirality of individual adsorbed molecules using the scanning tunnellingmicroscope. Nature 1998, 392, (6679), 909-911.
    [70] Kuhnle, A.; Linderoth, T. R.; Hammer, B.; Besenbacher, F., Chiral recognition in dimerization of adsorbed cysteine observed by scanning tunnelling microscopy. Nature 2002, 415, (6874), 891-893.
    [71] Fasel, R.; Parschau, M.; Ernst, K. H., Amplification of chirality in two-dimensional enantiomorphous lattices. Nature 2006, 439, (7075), 449-452.
    [72] Bohringer, M.; Morgenstern, K.; Schneider, W. D.; Berndt, R., Separation of a racemic mixture of two-dimensional molecular clusters by scanning tunneling microscopy. Angewandte Chemie-International Edition 1999, 38, (6), 821-823.
    [73] Humblot, V.; Raval, R., Chiral metal surfaces from the adsorption of chiral and achiral molecules. Applied Surface Science 2005, 241, (1-2), 150-156.
    [74] De Feyter, S.; Grim, P. C. M.; Rucker, M.; Vanoppen, P.; Meiners, C.; Sieffert, M.; Valiyaveettil, S.; Mullen, K.; De Schryver, F. C., Expression of chirality by achiral coadsorbed molecules in chiral monolayers observed by STM. Angewandte Chemie-International Edition 1998, 37, (9), 1223-1226.
    [75] Yoshimoto, S.; Suto, K.; Tada, A.; Kobayashi, N.; Itaya, K., Effect of adlayer structure on the host-guest recognition between calcium and crown-ether-slubstituted phthalocyanine arrays on Au single-crystal surfaces. Journal of the American Chemical Society 2004, 126, (25), 8020-8027.
    [1] J. Clavilier, J. Electroanal. Chem., 1980, 107, 211
    [2] 颜佳伟,博士学位论文,2001
    
    [1] Rabe, J. P.; Buchholz, S., Science 1991, 253, 424-427.
    [2] Foster, J. S.; Frommer, J. E., Nature 1988, 333, 542.
    [3] De Feyter, S.; De Schryver, F. C., Two-dimensional supramolecular self-assembly probed by scanning tunneling microscopy. Chemical Society Reviews 2003, 32, (3), 139-150.
    [4] Griessl, S.; Lackinger, M.; Edelwirth, M.; Hietschold, M.; Heckl, W. M., Self-assembled two-dimensional molecular host-guest architectures from trimesic acid. Single Molecules 2002, 3, (1), 25-31.
    [5] Shinohara, H., Endohedral metallofullerenes. Reports On Progress In Physics 2000, 63, (6), 843-892.
    [6] Durig, U.; Zuger, O.; Michel, B.; Haussling, L.; Ringsdorf, H., Electronic and mechanical characterization of self-assembled alkanethiol monolayers by scanning tunneling microscopy combined with interaction-force-gradient sensing. Physical Review B 1993, 48, (3), 1711.
    [7] Lu, X.; Hipps, K. W.; Wang, X. D.; Mazur, U., Scanning Tunneling Microscopy of Metal Phthalocyanines: d7 and d9 Cases. J. Am. Chem. Soc. 1996, 118, (30), 7197-7202.
    [8] Yoshimoto, S.; Tsutsumi, E.; Narita, R.; Murata, Y.; Murata, M.; Fujiwara, K.; Komatsu, K.; Ito, O.; Itaya, K., Epitaxial supramolecular assembly of fullerenes formed by using a coronene template on a Au(111) surface in solution. Journal Of The American Chemical Society 2007, 129, (14), 4366-4376.
    [9] Liu, G. Y.; Xu, S.; Qian, Y. L., Nanofabrication of self-assembled monolayers using scanning probe lithography. Accounts Of Chemical Research 2000, 33, (7), 457-466.
    [10] Giancarlo, L. C.; Flynn, G. W., Scanning tunneling and atomic force microscopy probes of self-assembled, physisorbed monolayers: Peeking at the peaks. Annual Review Of Physical Chemistry 1998, 49, 297-336.
    [11] Barth, J. V.; Weckesser, J.; Cai, C. Z.; Gunter, P.; Burgi, L.; Jeandupeux, O.; Kern, K., Building supramolecular nanostructures at surfaces by hydrogen bonding. Angewandte Chemie-International Edition 2000, 39, (7), 1230-1234.
    [12] De Feyter, S.; Gesquiere, A.; Abdel-Mottaleb, M. M.; Grim, P. C. M.; De Schryver, F. C.;Meiners, C.; Sieffert, M.; Valiyaveettil, S.; Mullen, K., Scanning tunneling microscopy: A unique tool in the study of chirality, dynamics, and reactivity in physisorbed organic monolayers. Accounts Of Chemical Research 2000, 33, (8), 520-531.
    [13] De Feyter, S.; Gesquiere, A.; Klapper, M.; Mullen, K.; De Schryver, F. C., Toward two-dimensional supramolecular control of hydrogen-bonded arrays: The case of isophthalic acids. Nano Letters 2003, 3, (11), 1485-1488.
    [14] Ishikawa, Y.; Ohira, A.; Sakata, M.; Hirayama, C.; Kunitake, M., A two-dimensional molecular network structure of trimesic acid prepared by adsorption-induced self-organization. Chemical Communications 2002, (22), 2652-2653.
    [15] Yokoyama, T.; Yokoyama, S.; Kamikado, T.; Okuno, Y.; Mashiko, S., Selective assembly on a surface of supramolecular aggregates with controlled size and shape. Nature 2001, 413, (6856), 619-621.
    [16] Theobald, J. A.; Oxtoby, N. S.; Phillips, M. A.; Champness, N. R.; Beton, P. H., Controlling molecular deposition and layer structure with supramolecular surface assemblies. Nature 2003, 424, (6952), 1029-1031.
    [17] Cincotti, S.; Rabe, J. P., Self-assembled alkane monolayers on MoSe[sub 2] and MoS[sub 2]. Applied Physics Letters 1993, 62, (26), 3531-3533.
    [18] Ikai, A., Surface Science Reports 1996, 26, 263.
    [19] Uosaki, K.; Yamada, R., Formation of Two-Dimensional Crystals of Alkanes on the Au(111) Surface in Neat Liquid. J. Am. Chem. Soc. 1999, 121, 4090-4091.
    [20] He, Y. F.; Ye, T.; Borguet, E., The role of hydrophobic chains in self-assembly at electrified interfaces: Observation of potential-induced transformations of two-dimensional crystals of hexadecane by in-situ scanning tunneling microscopy. Journal Of Physical Chemistry B 2002, 106, (43), 11264-11271.
    [21] Xie, Z. X.; Xu, X.; Tang, J.; Mao, B. W., Reconstruction-dependent self-assembly of n-alkanes on Au(111) surfaces. Journal Of Physical Chemistry B 2000, 104, (49), 11719-11722.
    [22] Zhang, H. M.; Xie, Z. X.; Mao, B. W.; Xu, X., Self-assembly of normal alkanes on the Au(111) surfaces. Chemistry-A European Journal 2004, 10, (6), 1415-1422.
    [23] Buchholz, S.; Rabe, J. P., Angewandte Chemie-International Edition 1992, 31, 189.
    [24] Venkataraman, B.; Breen, J. J.; Flynn, G. W., Scanning Tunneling Microscopy Studies of Solvent Effects on the Adsorption and Mobility of Triacontane/Triacontanol Molecules Adsorbed on Graphite. J. Phys. Chem. 1995, 99, (17), 6608-6619.
    [25] Claypool, C. L.; Faglioni, F.; Goddard, W. A.; Gray, H. B.; Lewis, N. S.; Marcus, R. A., Source of Image Contrast in STM Images of Functionalized Alkanes on Graphite: A Systematic Functional Group Approach. J. Phys. Chem. B 1997, 101, (31), 5978-5995.
    [26] Yeo, Y. H.; McGonigal, G. C.; Yackoboski, K.; Guo, C. X.; Thomson, D. J., Scanning tunneling microscopy of self-assembled n-decanol monolayers at the liquid/gold(111) interface. J. Phys. Chem. 1992, 96, (15), 6110-6111.
    [27] Yin, S. X.; Wang, C.; Lei, S. B.; Bo, X.; Bai, C. L., Dianzi Xianwei Xuebao 2001, 20, 565.
    [28] Giancarlo, L. C.; Fang, H. B.; Rubin, S. M.; Bront, A. A.; Flynn, G. W., Influence of the substrate on order and image contrast for physisorbed, self-assembled molecular monolayers: STM studies of functionalized hydrocarbons on graphite and MoS2. Journal Of Physical Chemistry B 1998, 102, (50), 10255-10263.
    [29] Findenegg, G. H., J. Chem. Soc., Faraday Trans. 1973, 69, 1069.
    [30] Kolb, D. M., Progress In Surface Science 1996, 51, 109.
    [31] Kolb, D. M., Electrochemical surface science. Angewandte Chemie-International Edition 2001, 40, (7), 1162-1181.
    [32] Fedak, D. G.; Gjostein, N. A., Structure and Stability of the (100) Surface of Gold. Physical Review Letters 1966, 16, (5), 171.
    [33] Binning, G.; Rohrer, H.; Gerber, C.; Stoll, E., Surface Science 1984, 144, 321.
    [34] Yamada, R.; Uosaki, K., In Situ Observation of the Two-Dimensional Crystals of Alkanes on a Reconstructed Au(100) Surface in Neat Liquid by Scanning Tunneling Microscopy. Langmuir 2000, 16, (10), 4413-4415.
    [1] Lehn, J. M., Supramolecular chemistry, concepts and perspectives. VCH: Weinheim, 1995.
    [2] Steed, J. W.; Atwood, J. L., Supramolecular chemistry. Wiley: Chichester, 2000.
    [3] Blake, A. J.; Champness, N. R.; Hubberstey, P.; Li, W. S.; Withersby, M. A.; Schroder, M., Inorganic crystal engineering using self-assembly of tailored building-blocks. Coordination Chemistry Reviews 1999, 183, 117-138.
    [4] Holliday, B. J.; Mirkin, C. A., Strategies for the construction of supramolecular compounds through coordination chemistry. Angewandte Chemie-International Edition 2001, 40, (11), 2022-2043.
    [5] Swiegers, G. F.; Malefetse, T. J., New self-assembled structural motifs in coordination chemistry. Chemical Reviews 2000, 100, (9), 3483-3537.
    [6] Zeng, F. W.; Zimmerman, S. C., Dendrimers in supramolecular chemistry: From molecular recognition to self-assembly. Chemical Reviews 1997, 97, (5), 1681-1712.
    [7] Barth, J. V.; Costantini, G.; Kern, K., Engineering atomic and molecular nanostructures at surfaces. Nature 2005, 437, (7059), 671-679.
    [8] De Feyter, S.; De Schryver, F. C., Two-dimensional supramolecular self-assembly probed by scanning tunneling microscopy. Chemical Society Reviews 2003, 32, (3), 139-150.
    [9] De Feyter, S.; De Schryver, F. C., Self-assembly at the liquid/solid interface: STM reveals. Journal of Physical Chemistry B 2005, 109, (10), 4290-4302.
    [10] Furukawa, S.; Tahara, K.; De Schryver, F. C.; Van der Auweraer, M.; Tobe, Y.; De Feyter, S., Structural transformation of a two-dimensional molecular network in response to selective guest inclusion. Angewandte Chemie-International Edition 2007, 46, (16), 2831-2834.
    [11] Gooding, J. J.; Mearns, F.; Yang, W. R.; Liu, J. Q., Self-assembled monolayers into the 21(st) century: Recent advances and applications. Electroanalysis 2003, 15, (2), 81-96.
    [12] Yoshimoto, S.; Suto, K.; Tada, A.; Kobayashi, N.; Itaya, K., Effect of adlayer structure on the host-guest recognition between calcium and crown-ether-slubstituted phthalocyaninearrays on Au single-crystal surfaces. Journal of the American Chemical Society 2004, 126, (25), 8020-8027.
    [13] Stepanow, S.; Lin, N.; Payer, D.; Schlickum, U.; Klappenberger, F.; Zoppellaro, G.; Ruben, M.; Brune, H.; Barth, J. V.; Kern, K., Surface-assisted assembly of 2D metal-organic networks that exhibit unusual threefold coordination symmetry. Angewandte Chemie-International Edition 2007, 46, (5), 710-713.
    [14] Surin, M.; Samori, P., Multicomponent monolayer architectures at the solid-liquid interface: Towards controlled space-confined properties and reactivity of functional building blocks. Small 2007, 3, (2), 190-194.
    [15] Surin, M.; Samori, P.; Jouaiti, A.; Kyritsakas, N.; Hosseini, M. W., Molecular tectonics on surfaces: Bottom-up fabrication of 1D coordination networks that form 1D and 2D arrays on graphite. Angewandte Chemie-International Edition 2007, 46, (1-2), 245-249.
    [16] Tao, F.; Bernasek, S. L., Two-dimensional self-assembly of a two-component molecular system: Formation of an ordered and homogeneous molecular mesh. Journal of the American Chemical Society 2005, 127, (37), 12750-12751.
    [17] Theobald, J. A.; Oxtoby, N. S.; Phillips, M. A.; Champness, N. R.; Beton, P. H., Controlling molecular deposition and layer structure with supramolecular surface assemblies. Nature 2003, 424, (6952), 1029-1031.
    [18] Xu, S. L.; Dong, M. D.; Rauls, E.; Otero, R.; Linderoth, T. R.; Besenbacher, F., Coadsorption of guanine and cytosine on graphite: Ordered structure based on GC pairing. Nano Letters 2006, 6, (7), 1434-1438.
    [19] Canas-Ventura, M. E.; Xiao, W.; Wasserfallen, D.; Mullen, K.; Brune, H.; Barth, J. V.; Fasel, R., Self-assembly of periodic bicomponent wires and ribbons. Angewandte Chemie-International Edition 2007, 46, (11), 1814-1818.
    [20] Seto, C. T.; Whitesides, G. M., Self-assembly based on the cyanuric acid-melamine lattice. Journal of the American Chemical Society 1990, 112, 6409-6411.
    [21] Whitesides, G. M.; Simanek, E. E.; Mathias, J. P.; Seto, C. T.; Chin, D. N.; Mammen, M.; Gordon, D. M., Noncovalent synthesis: using physical-organic chemistry to make aggregates. Accounts of Chemical Research 1995, 28, 37-44.
    [22] Ranganathan, A.; Pedireddi, V. R.; Rao, C. N. R., Hydrothermal synthesis of organicchannel structures: 1: 1 hydrogen-bonded adducts of melamine with cyanuric and trithiocyanuric acids. Journal of the American Chemical Society 1999, 121, (8), 1752-1753.
    [23] Schonherr, H.; Paraschiv, V.; Zapotoczny, S.; Crego-Calama, M.; Timmerman, P.; Frank, C. W.; Vancso, G. J.; Reinhoudt, D. N., Unraveling the nanostructure of supramolecular assemblies of hydrogen-bonded rosettes on graphite: An atomic force microscopy study. Proceedings of the National Academy of Sciences of the United States of America 2002, 99, (8), 5024-5027.
    [24] Perdigao, L. M. A.; Perkins, E. W.; Ma, J.; Staniec, P. A.; Rogers, B. L.; Champness, N. R.; Beton, P. H., Bimolecular networks and supramolecular traps on Au(111). Journal of Physical Chemistry B 2006, 110, (25), 12539-12542.
    [25] Staniec, P. A.; Perdigao, L. M. A.; Rogers, B. L.; Champness, N. R.; Beton, P. H., Honeycomb networks and chiral superstructures formed by cyanuric acid and melamine on Au(111). Journal of Physical Chemistry C 2007, 111, (2), 886-893.
    [26] Griessl, S.; Lackinger, M.; Edelwirth, M.; Hietschold, M.; Heckl, W. M., Self-assembled two-dimensional molecular host-guest architectures from trimesic acid. Single Molecules 2002, 3, (1), 25-31.
    [27] Xie, Z. X.; Charlier, J.; Cousty, J., Molecular structure of self-assembled pyrrolidone monolayers on the Au (111) surface: formation of hydrogen bond-stabilized hexamers. Surface Science 2000, 448, (2-3), 201-211.
    [28] Humblot, V.; Barlow, S. M.; Raval, R., Two-dimensional organisational chirality through supramolecular assembly of molecules at metal surfaces. Progress In Surface Science 2004, 76, (1-2), 1-19.
    [29] Xu, B.; Tao, C. G.; Cullen, W. G.; Reutt-Robey, J. E.; Williams, E. D., Chiral symmetry breaking in two-dimensional C-60-ACA intermixed systems. Nano Letters 2005, 5, (11), 2207-2211.
    [30] Weckesser, J.; De Vita, A.; Barth, J. V.; Cai, C.; Kern, K., Mesoscopic correlation of supramolecular chirality in one-dimensional hydrogen-bonded assemblies. Physical Review Letters 2001, 8709, (9), art. no.-096101.
    [31] Zhang, H. M.; Xie, Z. X.; Mao, B. W.; Xu, X., Self-assembly of normal alkanes on theAu(111) surfaces. Chemistry-A European Journal 2004, 10, (6), 1415-1422.
    [32] Schock, M.; Otero, R.; Stojkovic, S.; Hummelink, F.; Gourdon, A.; Laegsgaard, E.; Stensgaard, I.; Joachim, C.; Besenbacher, F., Chiral close-packing of achiral star-shaped molecules on solid surfaces. Journal of Physical Chemistry B 2006, 110, (26), 12835-12838.
    [33] Giancarlo, L. C.; Flynn, G. W., Scanning tunneling and atomic force microscopy probes of self-assembled, physisorbed monolayers: Peeking at the peaks. Annual Review of Physical Chemistry 1998, 49, 297-336.
    [34] Zhang, H. M.; Yan, J. W.; Xie, Z. X.; Mao, B. W.; Xu, X., Self-assembly of alkanols on Au(111) surfaces. Chemistry-A European Journal 2006, 12, (15), 4006-4013.
    [35] Zhang, H. M.; Zhao, W.; Xie, Z. X.; long, L. S.; Mao, B. W.; xu, X.; Zheng, L. S., One step fabrication of metal-organic coordination monolayers on Au(111) surfaces. Journal of Physical Chemistry C 2007, 111, (21), 7570-7573.
    [36] Leininger, S.; Olenyuk, B.; Stang, P. J., Self-assembly of discrete cyclic nanostructures mediated by transition metals. Chemical Reviews 2000, 100, (3), 853-907.
    [37] Otero, R.; Schock, M.; Molina, L. M.; Laegsgaard, E.; Stensgaard, I.; Hammer, B.; Besenbacher, F., Guanine quartet networks stabilized by cooperative hydrogen bonds. Angewandte Chemie-International Edition 2005, 44, (15), 2270-2275.
    [38] Zhao, Y.; Truhlar, D. G., Benchmark databases for nonbonded interactions and their use to test density functional theory. Journal of Chemical Theory and Computation 2005, 1, (3), 415-432.
    [1] Barth, J. V.; Costantini, G.; Kern, K., Engineering atomic and molecular nanostructures at surfaces. Nature 2005, 437, (7059), 671-679.
    [2] Giancarlo, L. C.; Flynn, G. W., Scanning tunneling and atomic force microscopy probes of self-assembled, physisorbed monolayers: Peeking at the peaks. Annual Review of Physical Chemistry 1998, 49, 297-336.
    [3] De Feyter, S.; De Schryver, F. C., Self-assembly at the liquid/solid interface: STM reveals. Journal of Physical Chemistry B 2005, 109, (10), 4290-4302.
    [4] Theobald, J. A.; Oxtoby, N. S.; Phillips, M. A.; Champness, N. R.; Beton, P. H., Controlling molecular deposition and layer structure with supramolecular surface assemblies. Nature 2003, 424, (6952), 1029-1031.
    [5] Tao, F.; Bernasek, S. L., Two-dimensional self-assembly of a two-component molecular system: Formation of an ordered and homogeneous molecular mesh. Journal of the American Chemical Society 2005, 127, (37), 12750-12751.
    [6] Barth, J. V.; Weckesser, J.; Cai, C. Z.; Gunter, P.; Burgi, L.; Jeandupeux, O.; Kern, K., Building supramolecular nanostructures at surfaces by hydrogen bonding. Angewandte Chemie-International Edition 2000, 39, (7), 1230-1234.
    [7] Griessl, S.; Lackinger, M.; Edelwirth, M.; Hietschold, M.; Heckl, W. M., Self-assembled two-dimensional molecular host-guest architectures from trimesic acid. Single Molecules 2002, 3, (1), 25-31.
    [8] Lehn, J. M., Toward complex matter: Supramolecular chemistry and self-organization. Proceedings of the National Academy of Sciences of the United States of America 2002, 99, (8), 4763-4768.
    [9] Lehn, J. M., Toward self-organization and complex matter. Science 2002, 295, (5564), 2400-2403.
    [10] Ruben, M., Squaring the interface: "Surface-assisted" coordination chemistry. Angewandte Chemie-International Edition 2005, 44, (11), 1594-1596.
    [11] Dmitriev, A.; Spillmann, H.; Lin, N.; Barth, J. V.; Kern, K., Modular assembly oftwo-dimensional metal-organic coordination networks at a metal surface. Angewandte Chemie-International Edition 2003, 42, (23), 2670-2673.
    [12] Spillmann, H.; Dmitriev, A.; Lin, N.; Messina, P.; Barth, J. V.; Kern, K., Hierarchical assembly of two-dimensional homochiral nanocavity arrays. Journal of the American Chemical Society 2003, 125, (35), 10725-10728.
    [13] Stepanow, S.; Lin, N.; Payer, D.; Schlickum, U.; Klappenberger, F.; Zoppellaro, G.; Ruben, M.; Brune, H.; Barth, J. V.; Kern, K., Surface-assisted assembly of 2D metal-organic networks that exhibit unusual threefold coordination symmetry. Angewandte Chemie-International Edition 2007, 46, (5), 710-713.
    [14] Stepanow, S.; Lingenfelder, M.; Dmitriev, A.; Spillmann, H.; Delvigne, E.; Lin, N.; Deng, X. B.; Cai, C. Z.; Barth, J. V.; Kern, K., Steering molecular organization and host-guest interactions using two-dimensional nanoporous coordination systems. Nature Materials 2004, 3, (4), 229-233.
    [15] Ruben, M.; Rojo, J.; Romero-Salguero, F. J.; Uppadine, L. H.; Lehn, J. M., Grid-type metal ion architectures: Functional metallosupramolecular arrays. Angewandte Chemie-International Edition 2004, 43, (28), 3644-3662.
    [16] Semenov, A.; Spatz, J. P.; Moller, M.; Lehn, J. M.; Sell, B.; Schubert, D.; Weidl, C. H.; Schubert, U. S., Controlled arrangement of supramolecular metal coordination arrays on surfaces. Angewandte Chemie-International Edition 1999, 38, (17), 2547-2550.
    [17] Surin, M.; Samori, P.; Jouaiti, A.; Kyritsakas, N.; Hosseini, M. W., Molecular tectonics on surfaces: Bottom-up fabrication of 1D coordination networks that form 1D and 2D arrays on graphite. Angewandte Chemie-International Edition 2007, 46, (1-2), 245-249.
    [18] Kitagawa, S.; Kawata, S., Coordination compounds of 1,4-dihydroxybenzoquinone and its homologues. Structures and properties. Coordination Chemistry Reviews 2002, 224, (1-2), 11-34.
    [19] Verdaguer, M.; Michalowicz, A.; Girerd, J. J.; Alberding, N.; Kahn, O., Inorganic Chemistry 1980, 19, 3271.
    [20] Kanda, S., Bull. Chem. Soc. Jpn., Pure Chem. Sect. 1960, 81, 1347.
    [21] Zhang, H. M.; Xie, Z. X.; Mao, B. W.; Xu, X., Self-assembly of normal alkanes on the Au (111) surfaces. Chemistry-A European Journal 2004, 10, (6), 1415-1422.
    [22] Zhang, H. M.; Yan, J. W.; Xie, Z. X.; Mao, B. W.; Xu, X., Self-assembly of alkanols on Au(111) surfaces. Chemistry-A European Journal 2006, 12, (15), 4006-4013.
    [23] Xu, B.; Yin, S.; Wang, C.; Qiu, X.; Zeng, Q.; Bai, C., Stabilization Effect of Alkane Buffer Layer on Formation of Nanometer-Sized Metal Phthalocyanine Domains. Journal of Physical Chemistry B 2000, 104, (45), 10502-10505.
    [24] Uosaki, K.; Yamada, R., Formation of Two-Dimensional Crystals of Alkanes on the Au (111) Surface in Neat Liquid. Journal of the American Chemical Society 1999, 121, 4090-4091.
    [25] Qiu, X. H.; Wang, C.; Zeng, Q. D.; Xu, B.; Yin, S. X.; Wang, H. N.; Xu, S. D.; Bai, C. L., Alkane-assisted adsorption and assembly of phthalocyanines and porphyrins. Journal of the American Chemical Society 2000, 122, (23), 5550-5556.
    [26] Biradha, K.; Sarkar, M.; Rajput, L., Crystal engineering of coordination polymers using 4,4'-bipyridine as a bond between transition metal atoms. Chemical Communications 2006, (40), 4169-4179.
    [27] Kitagawa, S.; Kitaura, R.; Noro, S., Functional porous coordination polymers. Angewandte Chemie-International Edition 2004, 43, (18), 2334-2375.
    [28] Noro, S.; Kitaura, R.; Kondo, M.; Kitagawa, S.; Ishii, T.; Matsuzaka, H.; Yamashita, M., Framework engineering by anions and porous functionalities of Cu(II)/4,4 '-bpy coordination polymers. Journal of the American Chemical Society 2002, 124, (11), 2568-2583.
    [29] Tong, M. L.; Ye, B. H.; Cai, J. W.; Chen, X. M.; Ng, S. W., Clathration of two-dimensional coordination polymers: Synthesis and structures of [M(4,4 '-bpy)2(H2O)2](ClO4)2·(2,4 '-bpy)2· H2O and [Cu(4,4 '-bpy)2(H2O)2](ClO4)4·(4,4 '-H2Bpy) (M = CdII, ZnII and bpy = bipyridine). Inorganic Chemistry 1998, 37, (11), 2645-2650.
    [30] Hagrman, D.; Hammond, R. P.; Haushalter, R.; Zubieta, J., Organic/inorganic composite materials: Hydrothermal syntheses and structures of the one-, two-, and three-dimensional copper(II) sulfate organodiamine phases [Cu(H2O)3(4,4'-bipyridine)(SO4)]·2H2O, [Cu(bpe)2][Cu(bpe)(H2O)2(SO4)2] · 2H2O, and [Cu(bpe)(H2O)(SO4)](bpe = trans-1,2-bis (4-pyridyl) ethylene). Chemistry of Materials 1998, 10, (8), 2091-2100.
    [31] Classen, T.; Fratesi, G.; Costantini, G.; Fabris, S.; Stadler, F. L.; Kim, C.; de Gironcoli, S.;Baroni, S.; Kern, K., Templated growth of metal-organic coordination chains at surfaces. Angewandte Chemie-International Edition 2005, 44, (38), 6142-6145.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700