用户名: 密码: 验证码:
华南二叠纪—三叠纪之交深水相古生产力的演化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海洋表层生态系统中初级生产者是联系大气和海洋系统的关键。对初级生产力的研究可以帮助了解大气的气候条件,海水的环境以及海洋和大气碳的转换情况。二叠世-三叠世之交生物大绝灭是地球历史上最严重的一次大绝灭。人们对该时期的剖面进行了大量详细的研究,尤其对浅海海相地层层序、生物群的演化及地质事件的研究非常深入。以前的工作大部分是集中大化石的研究,对海洋的初级产生力(尤其是深水剖面的初级生产力)的研究比较缺乏,但对大绝灭的过渡时期的初级生产力的研究可以更好地理解整个生态系统在绝灭期间的演化。
     华南出露了许多保存完好的二叠世-三叠世剖面,但前人的工作主要是集中在浅水剖面,深水剖面很少涉及。最近研究发现华南浅水剖面和全球其他地方的剖面在二叠世-三叠世之交存在很大的不同;华南浅水剖面的初级生产力在二叠世-三叠世之交是降低的,这和其他地方存在很大的不同。而且华南深水相的剖面在二叠世-三叠世之交沉积多层火山灰。这也是全球其他的剖面所没有的。所以华南二叠世-三叠世之交深水相的研究可以更好的理解二叠世-三叠世之交的生态系统的演化。
     本文通过对华南2个深水剖面(东攀剖面和新民剖面)的地球化学和古生物学详细研究发现:
     (1)华南深水相晚二叠世到早三叠世初级生产力是降低的,生产力的降低常常伴随火山物质的大量注入,这和华南的浅水剖面的变化相似,而与全球其他的剖面呈相反的变化趋势。
     (2)各种不同的地球化学指标受氧化还原的影响很大。对各种氧化还原敏感元素(U、V、Mo)和Ce异常的综合分析对比发现,东攀剖面U、V、Mo均不富集,Ce异常均小于1说明水体总体呈氧化环境,火山层位的氧化还原敏感元素富集和Ce异常正偏说明海水在火山层位出现短暂的还原。新民剖面晚二叠纪U、V的富集,在部分层段出现Mo的富集,Ce异常在1附近波动。说明新民剖面晚二叠总体是还原环境,Mo在火上层位的富集指示水体在火山事件附近更加还原,甚至出现硫化的环境。早三叠纪由于物源物质的大量输入,导致陆源成分对氧化还原地化指标的稀释作用,而不能准确地指示氧化还原的情况。但火山层位仍出现短暂的还原环境(表现为氧化还原指标的显著波动)。
     (3)不同的生产力地球化学指标受水体的氧化还原的影响很大,水体氧化还原的确定有利于我们选择合适的地球化学指标来指示生产力的变化。东攀剖面整体是氧化环境,可以选取Ba来指示其生产力的变化;生物Ba在二叠世-三叠世过渡时期的量整体很低(平均266ppm),而且是逐渐降低,最后突然减少。新民剖面晚二叠世出现还原水体,使得我们可以选Cu和Zn来指示它的生产力的演化,生物Cu和生物Zn的相关性很高(R2=0.64,n=94),而且TOC和生物Cu的相关性也很高(R2=0.50,n=94)。新民剖面不同生产力指标高的相关性说明Cu很Zn等指标可以来指示其生产力的演化。分别用现在海洋的定量模型来计算2个剖面各自的生产力(东攀剖面用Ba,新民剖面用Cu和Zn),但由于沉积速率的不确定性,定量计算的结果和现在海洋不具有对比性,但定量计算的结果和生产力其他指标的的演化趋势是一致的。
     (4)首次尝试在远洋深海的的剖面上用占主导地位的微古动物(放射虫)来指示生产力的变化;在东攀剖面生物硅主要以放射虫和海绵骨针的形式存在,而放射虫又在总量中占绝对的优势,放射虫的丰度和生物硅、生物Ba的相关性很大(分别是R2=0.65,R2=0.32),尤其是泡沫虫和生物硅和生物Ba的相关性更高(R2=0.72,R2=0.48)。生物硅(放射虫)和生物Ba的高的相关性(R2=0.69)说明,放射虫和生物Ba都可以指示生产力的变化,高的相关性是其有利的佐证。
     (5)本文的深水相出露的良好的火山凝灰岩层以及各种地化、矿物指标指示华南二叠世-三叠世之交存在大量的火山作用,这种区域性的火山作用可能在二叠世-三叠世之交对华南有着重要的影响,火山作用导致海水环境从底层向上逐渐还原(放射虫的深水的属种比浅水属种提前绝灭),陆地化学风化作用加强(CIA大量输入、粘土矿物成分的转变),陆地输入海洋的物质剧增(MS、REE、孢粉和粘土矿物大量增加等)。晚二叠世华南火山作用促使海洋环境的不断恶化,直到最后生物的大灭绝。早三叠的华南区域火山活动导致华南南盘江盆地水体的长期恶化,使得早三叠海洋不利于海洋生物的生长。使得华南在二叠世-三叠世之交华南的初级生产力和全球其他的地区呈现相反的趋势。
Primary producer in surface ocean is a key factors to connect the atmosphere system and the ocean system. The researches of primary productivity can help us to know more about climate change in atmosphere, the conditions of ocean water and the carbon transition from atmosphere system to ocean system. Permian-Triassic extinction is the most severely ones in history of earth. Many sections, especially shallow-water section, have been worked around the world. But, researches were focus more on big fossils, less on primary producers, especially in deep-water faces. The researches on primary productivity may play an important role in understanding the evolution of the whole ecosystem during the Permian-Triassic transition.
     Many Permian-Triassic boundary sections, both shallow-water and deep-water, have been well preserved in South China. Lots of shallow-water sections have been studied carefully; many deep-water sections in South China are still underestimated. Recently, many works show South China is a unique area from other areas across the Permian-Triassic boundary:First, the primary productivitys are decrease in shallow-water sections of South China, different from other areas (primary productivity are increase) from late Permian to early Triassic. Besides, many volcanic ashfall beds are exhibited well in deep-water sections in South China, this is also rare in other sections around the world. Focuses on South China, especially deep-water sections are significant to understand the Permian-Triassic boundary extinction.
     We learn more from the detailed research of geochemistry and paleontology from two deep-water sections (Dongpan section and Xinmin section):
     Firstly, primary productivity in deep-water sections is decreasing gradually and more severely closer to the Permian-Triassic boundary. Inputting of lots of volcanic materials into ocean are always accompany with the decrease of primary productivity. This trend is like the shallow-water in South China but opposite to other sections around the world.
     Secondly, Redox condition is a key factor to the geochemistry indexes of productivity; we integrate different redox proxies (U, V, Mo, Ce anomalies) to indicate the redox condition of Dongpan and Xinmin setions:in Dongpan section, the absence of U, V, Mo and the value of Ce anomalies are less than 1 show the suboxic condition in Dongpan section. We assume the late Permian in Xinmin section anoxic condition by the enrichment of U and V. The values of Ce anomalies are around 1 also indicate the anoxic water, what's more, enrichment of Mo in some bed may indicate euxinic condition. Abundant of terrigenous materials were inputted into ealiest Triassic ocean in Xinmin section, dilute the signal of redox proxies, we cannot distinguish the redox condition carefully.
     Thirdly, many productivity proxies are influenced large by redox condition in water column. The redox condition is a precondition to the choies of productivity proxies. Dongpan section is suboxic; we choose bio-Ba to indicate the change of productivity. Bio-Ba is low (average 266ppm) and decrease gradually from late Permian to early Triassic. We choose Cu and Zn as productivity proxies as the anoxic conditions in Xinmin section, bio-Cu and bio-Zn have high relativity (R2=0.64), Besides, TOC and bio-Cu also have high relative coefficient (R2=0.5). The high relative coefficient between different productivity proxies indicates the veracity of the productivity indicators. What's more, we calculate the primary productivity quantificational by using geochemistry proxy's models which are available in modern ocean (Ba in Dongpan section, Cu and Zn in Xinmin section). Although the quantitative result can not compare to modern ocean as the uncertain of the liner sedimentary rate, the trend of the calculate values are similar to the other conventional productivity proxies.
     Fourthly, the first try to indicate paleo-productivity using radiolarian have been carried out, radiolarian and spicules are the main form of bio-silica, at the same time, the number of radiolarian is larger than spicules. The abundance of radiolarian and bio-silica, bio-Ba have high relative coefficient (R2=0.65 and 0.32 respectively), especially, the abundance of Spumellaria and bio-silica, bio-Ba have higher relativity (R2=0.72 and 0.48 respectively). The high relative coefficient between bio-silica (radiolarian) and bio-Ba indicate the available of both radiolarian and bio-Ba as paleo-productivity proxies.
     Finally, the outlets of numerous volcanic ashfall beds in deep-water section indicate abundance volcanic events in South China. The regional volcanic events may play an important role to South China during the Permian-Triassic boundary. Volcanic may induce the redox condition from deep-water to shallow-water (extinction of deep-water species earlier than shallow-water species of radiolarian), Strengthen chemistry weathering of land (CIA and the change of clay mineral); also enlarge terrigenous input to ocean (MS, REE, spore and pollen). Numerous volcanic outputs may the cause of the decrease of primary productivity in South China, different to other areas.
引文
1 Erwin, D.H., Bowring, S.A., Jin, Y.G.,2002. End-Permian mass-extinctions:A review. In:Koeberl, C., MacLeod, K.G. (Eds.), Catastrophic events and mass extinctions:Impacts and beyond. Geol. Soc. Am. Spec. Paper 356, pp.353-383.
    2 Jin, Y.G., Wang, Y., Wang, W., et al.,2000. Pattern of marine mass extinction near the Permian-Triassic boundary in South China. Science 289,432-436.
    3 Kamo, S.L., Czamanske, GK., Amelin, Y., et al.,2003. Rapid eruption of Siberian flood-volcanic rocks and evidence for coincidence with the Permian-Triassic boundary and mass extinction at 251 Ma. Earth and Planetary Science Letters 214,75-91.
    4 Xie, S.C., Pancost, R.D., Yin. H.F., et al.,2005. Two episodes of microbial change coupled with Permo/Triassic faunal mass extinction. Nature 434,494-497.
    5 Reichow, M.K., Pringle, M.S., Al'Mukhamedov, A.I., et al.,2009. The timing and extent of the eruption of the Siberian Traps large igneous province:Implications for the end-Permian environmental crisis. Earth and Planetary Science Letters 277,9-20.
    6 Algeo, T.J., Twitchett, R.J.,2010. Anomalous Early Triassic sediment fluxes due to elevated weathering rates and their biological consequences. Geology 38,1023-1026.
    7 Yin, H.F., Zhang, K.X., Tong, J.N., et al.,2001. The global stratotype section and point (GSSP) of the Permian-Triassic boundary. Episodes 24,102-114.
    8 Xie, S.C., Pancost, R.D., Wang, Y.B.,2010. Cyanobacterial blooms tied to volcanism during the 5 m.y. Permo-Triassic biotic crisis. Geology 38,447-450.
    9 Algeo, T.J., Hinnov, L., Moser, J., et al.,2010a. Changes in productivity and redox conditions in the Panthalassic Ocean during the latest Permian. Geology 38,187-190.
    10 Erwin, D.H.,1994. The Permo-Triassic extinction. Nature 367,231-236.
    11 Schopf, T.J.M.,1974. Permo-Triassic extinction:relation to sea-floor spreading. J. Geol.82,129-143.
    12 Xu, D.Y., Ma, S.L., Chai, Z.F., et al.,1985. Abundance variation of iridium and trace elements at the Permian/Triassic boundary at Shangsi in China. Nature 314,154-156.
    13 Kajiwara, Y., Yamakita, S., Ishida, K., et al.,1994. Development of a largely anoxic stratified ocean and its temporary massive mixing at the Permian/Triassic boundary supported by the sulfur isotopic record. Palaeogeography Palaeoclimatology Palaeoecology 111,367-379.
    14 Dypvik, H., Jansa, L.F.,2003. Sedimentary signatures and processes during marine bolide impact:a review. Sedimentary Geology 161,309-337.
    15 Basu, A.R., Petaev, M.I., Poreda, R.J., et al.,2003. Chondritic meteorite fragments associated with the Permian-Triassic boundary in Antarctica. Science 302,1388-1392.
    16 Becker, L., Poreda, R.J., Hunt, A.G.,2001. Impact event at the Permian-Triassic boundary:evidence from extraterrestrial noble gases in fullerenes. Science 291,1530-1533.
    17 Stanley, S.M.,1988. Paleozoic mass extinction, shared patterns suggest global cooling as a common cause. Am.J.Sc.288,334-352.
    18 Wignall, P.B., Hallam. A.,1992. Anoxic as a cause of the Permian/Triassic mass extinction:Facies evidence from norther Italy and the western United States. Palaeogeogr. Palaeoclimato. Palaeoecol.93,21-46.
    19 Isozaki, Y.,1997. Permo-Triassic boundary superanoxia and stratified superocean:records from lost deep sea. Science 276,235-238.
    20 Kump, L.R., Pavlov, A., Arthur, M.A.,2005. Massive release of hydrogen sulfide to the surface ocean and atmosphere during intervals of oceanic anoxia. Geology 33,397-400.
    21 Algeo, T.J., Hannigan, R., Rowe, H., et al.,2007. Sequencing events across the Permian-Triassic boundary, Guryul Ravine (Kashmir, India). Palaeogeography Palaeoclimatology Palaeoecology 252,328-346.
    22 Kamo, S.L., Czamanske, G.K., Amelin, Y., et al.,2003. Rapid eruption of Siberian flood-volcanic rocks and evidence for coincidence with the Permian-Triassic boundary and mass extinction at 251 Ma. Earth and Planetary Science Letters 214,75-91.
    23 Reichow, M.K., Pringle, M.S.. Al'Mukhamedov, A.I., et al.,2009. The timing and extent of the eruption of the Siberian Traps large igneous province:Implications for the end-Permian environmental crisis. Earth and Planetary Science Letters 277,9-20.
    24 Algeo, T.J., Henderson, C., Ellwood. B.. et al., in review. Elevated sediment fluxes in the Sverdrup Basin prior to the end-Permian mass extinction:A link to Siberian Traps volcanism? Submitted to Geological Society of America Bulletin.
    25 Knoll, A.H., Bamback, R.K., Canfield. D.E, et al.,1996. Comparative Earth history and Later Permian mass extinction. Science 273,452-457.
    26 Knoll, A.H., Bambach, R.K.. Payne, J.L., et al.,2007. Paleophysiology and end-Permian mass extinction. Earth and Planetary Science Letters 256,295-313.
    27 Yin. H.F., Feng, Q.L., Lai, X.L., et al.,2007. The protracted Permo-Triassic crisis and multi-episode extinction around the Permian-Triassic boundary. Global and Planetary Change 55,1-20.
    28 Algeo, T.J., Henderson, C.M., Tong, J., et al., in review. Plankton and productivity during the Permian-Triassic boundary crisis:An analysis of organic carbon fluxes. Submitted to Global and Planetary Change.
    29 Algeo, T.J., Ellwood, B.B., Nguyen, T.K.T., et al.,2007. The Permian-Triassic boundary at Nhi Tao, Vietnam: Evidence for recurrent influx of sulfidic watermasses to a shallow-marine carbonate platform. Palaeogeography Palaeoclimatology Palaeoecology 252,304-327.
    30 Algeo, T.J., Henderson, C.M., Ellwood, B.B., et al., in review. Evidence for a diachronous Late Permian marine crisis from the Canadian Arctic region. Submitted to Geological Society of America Bulletin.
    31 Algeo, T.J., Kuwahara, K., Sano, H., Bates, S., et al.,2010. Spatial variation in sediment fluxes, redox conditions, and productivity in the Permian-Triassic Panthalassic Ocean. Palaeogeography Palaeoclimatology, Palaeoecology doi:10.1016/j.palaeo.2010.07.007.
    32 Suzuki, N., Ishida, K., Shinomiya, Y., et al.,1998. High productivity in the earlist Triassic ocean:black shales, South Japan. Palaeogeography, Palaeoclimatology, Palaeoecology 141,53-65.
    33 Horacek, M., Brandner, R., Abart, R.,2007. Carbon isotope record of the P/T boundary and the Lower Triassic in the Southern Alps:Evidence for rapid changes in storage of organic carbon. Palaeogeography, Palaeoclimatology, Palaeoecology 252,347-354.
    34 Eshet, Y.. Rampino, M.R., Visscher. H.,1995. Fungal event and palynological record of ecological crisis and recovery across the Permian-Triassic boundary Geology 23,967-970.
    35 Twitchett. R.J.. Looy, C.V., Morante. R.,2001. Rapid and synchronous collapse of marine and terrestrial ecosystems during the end-Permian biotic crisis. Geology 29,351-354.
    36 Isozaki. Y., Shimizu, N., Yao, J., et al.,2007. End-Permian extinction and volcanism-induced environmental stress:Permian-Triassic boundary interval of a lower-slope facies at Chaotian, South China. Palaeogeography Palaeoclimatology Palaeoecology 252,218-238.
    37 Faraabegoli, E., Perri, M.C., Posenato. R.,2007. Environmental and biotic change across the Permian-Triassic boundary in western Tethys:The Bulla parastratotype, Italy. Global and Planetary Change 55,109-135.
    38 Mu, X., Kershaw, S., Li, Y., et al.,2009. High-resolution carbon isotope changes in the Permian-Triassic boundary interval, Chongqing, South China; implication for control and growth of earliest Triassic microbialites. Journal of Asian Earth Sciences 36,434-441.
    39 Fio. K., Spangenberg, J.E., Vlhovil, I., et al.,2010. Stable isotope and trace element stratigraphy across the Permian-Triassic transition:A redefinition of the boundary in the Velebit Mountain, Coatia. Chemical Geology 278.38-57.
    40 Korte, C., Pande, P., Kalia, P., et al.,2010. Massive volcanism at the Permian-Triassic boundary and its impact on the isotope composition of the ocean and atmosphere. Journal of Asian Earth Sciences 37,293-311.
    41 Luo, GM., Wang, Y.B, Yang, H., et al.,2011. Stepwise and large-magnitude negative shift in δ13Ccarb preceded the main marine mass extinction of the Permian-Triassic crisis interval. Palaeogeography Palaeoclimatology Palaeoecology 299,70-82.
    42 Wang, Y.B., Meng, Z., Liao, W., et al.,2010. Shallow marine ecosystem feedback to the Permian/Triassic mass extinction. Front. Earth Sci. China. DOI 10.1007/s11707-011-0164-3.
    43 Wang, K., Geldsetzer, H.H.J., Krouse, H.R.,1994. Permian-Triassic extinction:Organic 13C evidencr from British Columbia, Canada, Geology 22,580-584.
    44 Beauchamp, B., Baud, A.,2002. Growth and demise of Permian biogenic chert along northwest Pangea: evidence for end-Permian collapse of thermohaline ciculation, Palaeogeography Palaeoclimatology Palaeoecology 184,37-63.
    45 Krystyn, L., Richoz, S., Baud, A., et al.,2003. A unique Permian-Triassic boundary section from the Neotethyan Hawasina Basin, Central Oman Mountains. Palaeogeography Palaeoclimatology Palaeoecology 191,329-344.
    46 Schwab, V., and Spangenberg, J.E.,2004. Organic geochemistry across the Permian-Triassic transition at the Idrijca Vally, Western Slovenia, Applied Geochemistry 19,55-72.
    47 Grice, K., Cao, C.Q., Love, GD., et al.,2005. Photic zone euxinia during the Permian-Triassic superanoxic event. Science 307,706-709.
    48 Takahashi, S., Yamakita, Satoshi., Suzuli, N., et al.,2009. High organic carbon content and a decrease in radiolarians at the end of the Permian in a newly discovered continuous pelagic section:A coincidence? Palaeogeography Palaeoclimatology Palaeoecology 271,1-12.
    49 Isozaki, Y.,2009, Intergrated "plume winter" scenario for the double-phased extinction during the Paleozoic-Mesozoic transition:The G-LB and P-TB events from a Panthalassan perspective. Journal of Asian Earth Sciences 36,459-480.
    50 Takahashi, S., Kaiho, K., Oba, M., et al.,2010, A smooth negative shift of organic carbon isotope ratios at an end-Permian mass extinction horizon in central pelagic Panthalassa. Palaeogeography Palaeoclimatology Palaeoecology 292,532-539.
    51 He, W.H., Shi, GR., Feng, Q.L., et al.,2007. Brachiopod miniaturization and its possible causes during the Permian-Triassic crisis in deep water environments. South China. Palaeogeography, Palaeoclimatology, Paleoecology 252,145-163.
    52 Feng, Q.L., He, W.H., Gu, S.Z., Meng, Y.Y., Jin, Y.X., Zhang, F.,2007. Radiolarian evolution during the latest Permian in South China. Global and Planetary Change 55,177-192.
    53 Luo, GM., Lai, X.L., Feng, Q.L., et al.,2008. End-Permian conodont fauna from Dongpan section: Correlation between the deep- and shallow-water facies. Science in China Series D:Earth Science 51, 1611-1622.
    54彭兴芳2009.广西东攀二叠纪-三叠纪界线剖面旋回地层研究.中国地质大学博士论文.
    55蒙有言2005.桂西南地区古—中生代之交深水相区古环境、古气候演变及其地质意义.中国地质大学博士论文.
    56马翠丽2009.广西扶绥东攀地区大隆组微古植物演化及其控制因素研究.中国地质大学本科论文.
    57张凡2006.广西柳桥深水相区东攀剖面二叠纪—三叠纪之交隐管虫目分类学与放射虫演化研究.中国地质大学博士论文.
    58 Ragueneau, O., Treguer, P., Leynaert, A.,2000. A review of the Si cycle in the modern ocean:recent progress and missing gaps in the application of biogenic opal as a paleoproductivity proxy. Global and Planetary Change 26,317-365.
    59 Zhang, Y., He, W.H., Feng, Q.L.,2007. A preliminary biogeochemistry-based quantification of primary productivity of end-Permian deep-water basin in Dongpan Section, Guangxi, South China. Frontiers of Earth Science in China,1,405-411.
    60 Ma, Z. W., Hu, C.Y., Yan, J. X.,2008. Biogeochemical Records at Shangsi Section, Northeast Sichuan in China:The Permian Paleoproductivity proxies. Journal of China University of Geosciences 19,461-470.
    61 Tribovillard, N., Algeo, T.J., Lyons, T.,2006. Trace metals as paleoredox and paleoproductivity proxies:An update. Chemical Geology 232,12-32.
    62 Ramanampisoa, L., Disnar, J.R.,1994. Primary control of paleoproduction of organic matter preservation and accumulation in the Kimmerides rocks of Yorkshire (UK). Organic Geochemistry 21,1153-1167.
    63 Henderson, GM.,2002. New oceanic proxies for paleoclimate. Earth and Planetary Science Letters 203,1-13.
    64 Brumsack, H.J.,2006. The trace metal content of recent organic carbon-rich sediments:Implications for Cretaceous black shale formation. Palaeogeography, palaeoclimatology, Palaeoecology232,334-361.
    65 Adachi, M., Yamamoto, K., Sugisaki, R.,1986. Hydrothermal chert and associated siliceous rocks from the Northern Pacific, their geological significance as indication of ocean ridge activity. Sedimentary Geology 47, 125-148.
    66 Saito, C., Noriki, S., Tsunogai, S.,1992. Particulate flux of Al, a component of land origin, in the western North Pacific. Deep-Sea Research 39,1315-1327
    67 Morel, F.M., Price, N.M.,2003. The biogeochemical cycles of trace metals in the oceans. Science 300, 944-947.
    68 Howarth, R.W.,1988. Nutrient limitation of net primary production in marine ecosystems. An Review of Ecology and systematics 19,89-110.
    69 Delaney, ML.,1997. Anderson, L.D., Phosphorus geochemistry in Ceara Rise sediments. Proc. ODP science. Res.154,475-482.
    70 Trappe, J.,1998. Phanerozoic phosphorite depositional systems. Lecture Notes in Earth Sciences 76,316.
    71 Tyrrell, T.,1999. The relative influences of nitrogen and phosphorus on oceanic primary production. Nature, 400,525-531.
    72李天义,何生,杨智.2008.海相优质烃源岩形成环境及其控制因素分析.地质科技情报27,63-70.
    73 Slomp, C.P., Thomson, J., Lange, G.J.,2002. Enhanced regeneration of phosphorus during formation of the most recent eastern Mediterranean sapropel. Geochim. Cosmochim. Acta 66,1171-1181.
    74陈践发,张水昌,孙省利.2006.海相碳酸盐岩优质烃源岩发育的主要影响因素.地质学报80,467-472.
    75 Schenau, S.J., Reichart, G.J., De, LangeG,J.,2005. Phosphorus burial as a function of paleoproductivity and redox conditions in Arabian Sea sediments. Geochimica et Cosmochimica Acta 69,919-931.
    76 Redfield, A.C., Ketchum, B.H., Richards, F.A.,1963. The influence of organisms on the composition of sea-water. The Composition of Seawater pp.26-77.
    77 Reimers, C.E., Kastner, M., Garrison, R.E.,1990. The role of bacterial mats in phosphate mineralization with particular reference to the Monterey Formation. New York:Cambridge University Press pp.300-311.
    78 Schenau, S.J., De, Lange G.J.,2001. Phosphorus regeneration vs. burial in sediments of the Arabian Sea. Marine Chemistry 75,201-217.
    79 Schenau. S.J., De, LangeG,J.,2000. A novel chemical method to quantify fish debris in marine sediments. Limnology and Oceanography 45,963-971.
    80 Dymond, J., Erwin, S., Mitch, L.,1992. Barium in deep-sea sediment:A geochemical proxy for paleoproductivity. Paleoceanography 7,163-181.
    81 Goldberg, E.D., Arrhenius, G.O.S.,1958. Chemistry of Pacific pelagic sediments. Geochimica et Cosmochimica Acta 13,153-212.
    82 Dehairs, F., Chesselet, R., Jedwab, J.,1980. Discrete suspended particles of barite and the barium cycle in the open ocean. Earth and Planetary Science Letters 49,528-550.
    83 Schmitz, B.,1987. Barium, equatorial high productivity and the northward wandering of the Indian continent. Paleoceanography 2,63-77.
    84 Francois, R., Honjo, S., Manganini, S.J,,1995. Biogenic barium fluxes to the deep sea:implications for paleoproductivity reconstruction. Global Biogeochemical Cycle 9,289-303.
    85腾格尔,刘文汇,徐永昌.2006.高演化海相碳酸盐烃源岩地球化学综合判别----以鄂尔多斯盆地为例.中国科学:D辑36,167-176.
    86 Bishop, J.K.B.,1988. The barite-opal-organic carbon association in ocean particulate matter. Nature 332, 341-343.
    87 Dymond, J., Collier, R., McManus, J.,1997. Can the aluminum and titanium contents of ocean sediments be used to determine the paleoproductivity of the ocean?. Paleoceanography 12,586-593.
    88 Francois, R., Honjo, S., Manganini, S.J.,1995. Biogenic barium fluxes to the deep sea:implications for paleoproductivity reconstruction. Global Biogeochemical Cycle 9,289-303.
    89 Nurnberg, C.C., Bohrmannn, G., Schulter, M.,1997. Bariun accumulation in the Atlantic sector of the Southern Ocean:results from 190000 year records. Paleoceanography 12,594-603.
    90 Sarnthein, M., Winn, K., Duplessy, J.C.,1988. Global variations of surface ocean productivity in low and mid latitudes:influence on CO2 reservoirs of the deep ocean and atmosphere during the last 21000 years. Paleoceanography 3,361-399.
    91田正隆,陈绍勇,龙爱民.2005.以Ba为指标反演海洋古生产力的研究进展.热带海洋学报23,78-86.
    92 Bonn, W.J., Gingele, F.X., Grobe, H.,1998. Paleoproductivity at the Antarctic continental marine:opal and barium records for the last 400 ka. Palaeogeography, Palaeoclimatology, Palaeoecology 139,195-211.
    93倪建宇,姚旭莹.2004.古海洋生产力的研究方法.海洋地质动态20,30-39.
    94 Calvent. S.E., Pedersen, T.F.,1993. Geochemistry of recent oxic and anoxic sediments:implications for the geological record. Marine Geology 113,67-88.
    95 Algeo, T.J., Maynard, J.B.,2004. Trace-element behavior and redox facies in core shales of Upper Pennsylvanian Kansas-type cyclothems. Chemical Geology 206,289-318.
    96 Fernex, F., Fevrier. G., Benaim, J.,1992. Copper, lead and zinc trapping in Mediterranean deep-sea sediments: probable coprecipitation with manganese and iron. Chemical Geology 98,293-308.
    97 Huerta-Diaz, M.A., Morse, J.W.,1990. A quantitative method for determination of trace metal concentrations in sedimentary pyrite. Marine Chemistry 29,119-144.
    98 Huerta-Diaz, M.A., Morse, J. W.,1992. Pyritisation of trace metals in anoxic marine sediments. Geochim. Cosmochim. Acta 56,2681-2702.
    99 Morse, J.W., Luther, G. W.,1999. Chemical influences on trace metal-sulfide interactions in anoxic sediments. Geochim. Cosmochim. Acta 63,3373-3378.
    100 Piper, D.Z., Perkins, R.B.,2004. A modern vs. Permian black shale-the hydrography,primary productivity,and water-column chemistry of deposition. Chemical Geoology 206,177-197.
    101雷勇,冯庆来,桂碧雯.2009.有机质富集的地球生物学模式—以巢湖平顶山剖面为例.古地理学报12,202-211.
    102 Leynaert, A., Treguer, P., Lancelot, C.,2001. Silicon limitation of biogenic silica production in the Equatorial Pacific. Deep-Sea Research Ⅰ 48,639-660
    103 Krause, J.W.,Nelson, D.M., Brzezinski, M.A.,2010. Biogenic silica production and the diatom contribution to primary production and nitrate uptake in the eastern equatorial Pacific Ocean. Deep-Sea Rasearch Ⅱ doi:10.1016/j.dsr2.2010.08.010
    104 Dennett, M.R., Caron, D.A., Michaels, A.F., et al.,2002. Video plankton recorder reveals high abundances of colonial Radiolaria in surface waters of the central North Pacific. Journal of Plankton Research 24, 797-805.
    105 Angel, D.L.,1991. Carbon flow within the colonial radiolarian microcosm. Symbiosis 10,195-217.
    106 Swanberg, N.R., Caron, D.A.,1991. Patterns of sarcodine feeding in epipelagic oceanic plankton. Journal of Plankton Research 13,287-312.
    107 Ishitani, Y, Takahashi, K., Okazaki, Y., et al.,2008. Vertical and geographic distribution of selected radiolarian species in the North Pacific. Micropaleontology 54,27-39.
    108 Kozur, H. W.,1993. Upper Permian radiolarians from the Sosio Valley Area, western Sicily (Italy) and from the uppermost Lamar Limestone of West Texas. Jahrbuch der Geologischen Bundesanstalt Wien 136, 99-123.
    109 Caron, D.A., Michaels, A.F., Swanberg, N.R., et al.,1995. Primary productivity by symbiont-bearing planktonic sarcodines (Acantharia. Radiolaria, Foraminifera) in surface waters near Bermuda. Journal of Plankton Resesrch 17,103-129.
    110 Kiehl, J.T., Shields, C.A.,2005. Climate simulation of the latest Permian:Implications for mass extinction. Geology 33,757-760.
    111 Winguth, A.M.E., Maier-Reimer, E.,2005. Causes of marine productivity and oxygen changes associated with the Permian-Triassic boundary:A reevalution with ocean general circulation models. Marine Geology 217,283-304.
    112 Brennecka, GA., Herrmann, A.D., Algeo, T.J., et al., in review. Timing and extent of global ocean anoxia at the end-Permian extinction. Submitted to Nature Geoscience.
    113林治家,陈多福,刘芋,2008.海相沉积氧化还原环境的地球化学识别指标.矿物岩石地球化学通报27.72-79.
    114 Zheng, Y., Anderson, R.F., van Geen, A., et al.,2002. Remobilization of authigenic uranium in marine sediments by bioturbation. Geochim. Cosmochim. Acta 66,1759-1772.
    115 Kiinkhammer, GP., Palmer, M.R.,1991. Uranium in the oceans:where it goes and why. Geochim. Cosmochim. Acta 55,1799-1806.
    116 Jone, B., Manning, D.A.C.,1994. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones. Chemical Geology 111,111-129.
    117 Pattan, J.N., Pearce, N.J.G, Mislankar, P.G.,2005. Constraints in using Cerium-anomaly of bulk sediments as an indicator of paleobottom water redox environment:A case study from the Central Indian Ocean Basin. Chemical Geology 221,260-278.
    118 Morford, J.L., Emerson, S.,1999. The geochemistry of redox sensitive trace metals in sediments. Geochim. Cosmochim. Acta 63,1735-1750.
    119 Piper, D.Z.,1994. Seawater as the source of minor elements in black shales, phosphorites and other sedimentary rocks. Chemical Geology 117,95-114.
    120 Arnold, GL., Anbar, A.D,, Barling, J., et al.,2004. Molybdenum isotope evidence for widespread anoxia in Mid-Proterozoic oceans. Science 304,87-90.
    121 Kato, Y., Nakao, K., Isozaki, Y.,2002. Geochemistry of Late Permian to Early Triassic pelagic cherts from southwest Japan:implications for an oceanic redox change. Chemical Geology 182,15-34.
    122 Nozaki, Y., Alibo, D.S.,2003. Importance of vertical geochemical processes in controlling the oceanic profiles of dissolved rare earth elements in the northeastern Indian Ocean, Earth and Planetary Science Letters 205,155-172.
    123 Tayor, S.R., Mclennan, S.M.,1985. The Continental Crust:Its Composition and Evolution. Blackwell, Oxford, pp.10-125.
    124 Algeo, T.J., and Tribovillard, T.J.,2009. Environmental analysis of paleoceanographic systems based on molybedenum-uranium covariation. Chemical Geology 268,211-225.
    125张木宏,黄良民,涂霞等.1999,南海放射虫与初级生产力的古海洋学转换关系.科学通报44,327-333.
    126 Lalli, C.M., Parsons, T.R.,1997. Biological Oceanography:An Introduction (2nd ed.). Butterworth-Heinemann Oxford, pp.1-314.
    127 Yang, Z.Y., Wu, S.B., Yin, H.F., et al.,1991. Permo-Triassic events of South China:Geological Publishing House, Beijing,64 pp.
    128 Payne, J., Van de, Schootbrugge. B.,2007. Life in Triassic oceans:links between benthic and planktonic recover) and radiation. In:Falkowski. P.G, Knoll, A.H. (Eds.), The Evolution of Primary Producers in the Sea. Academic Press, New York. pp.165-189.
    129 Elderfield. H., Greaves, M.J.,1982. The rare earth elements in seawater. Nature 296,214-219.
    130 Sholkovitz. E.R.. Landing, W.M., Lewis, B.L.,1994. Ocean particle chemistry:The fractionation of rare earth elements between suspended particles and seawater. Geochimica et Cosmochimica Acta 58. 1567-1579.
    131 Zhou, M.F., Robinson, P.T., Lesher, C.M., et al.,2005. Geochemistry, petrogenesis and metallogenesis of the Panzhihua Gabbroic Layered Intrusion and associated Fe-Ti-V oxide deposits, Sichuan Province, SW China. Journal of Petrology 46.2253-2280.
    132 Price. J.R., Velbel, M.A.2003. Chemical weathering indices applied to weathering profiles developed on heterogeneous felsic metamorphic parent rocks. Chemical Geology 202,397-416.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700