用户名: 密码: 验证码:
废旧镍镉电池的生物沥滤处理及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人类对于干电池的大量使用带来了严重的环境污染与资源浪费问题,尽管目前无毒害环保型电池代替旧的含有危险重金属电池的条件日趋成熟,但已经回收的和尚在使用中的各种危险电池如含汞电池、镍镉电池等仍未得到妥善处理。而现有的火法冶金、湿法冶金等回收处理技术又存在能耗高、潜在污染较大等缺陷。为寻求一种高效、经济、环境友好的废旧干电池处理方法,本论文基于生物湿法冶金原理,提出了生物沥滤法处理废旧干电池,即利用污泥中的土著硫杆菌为菌种来源和培养基的主要组成,添加基质,进行生物制酸,制酸产物用于沥滤电池中的重金属。该方法能同时使污泥中含有的重金属得到高效去除,污泥达到农用标准。生物法处理废旧干电池是近年来提出的新思路,目前相关研究很少,利用污泥沥滤作用处理废旧干电池则未见报道。
     论文以废旧镍镉电池作为研究对象,首先通过XRD、热重分析、ICP-MS等手段对其化学和物理特性进行研究。结果表明,废旧镍镉电池中存在的相有金属Ni0、Ni(OH)2、γ-NiOOH、Cd与Cd(OH)2以及电解液KOH成分。阴极材料中Ni元素含量为41.7%,Co元素含量为5.1%,阳极粉末Cd元素含量为64.8%。阳极材料Cd(OH)2含量约为62.2%,阴极材料Ni(OH)2(包括少部分Co(OH)2)的含量约为57.7%。
     采用城市污水厂污泥制取酸化培养物,同时其自身重金属得到滤出。在20~25g L-1污泥固体浓度范围内,金属Cd、Mn、Cu、Zn、Mg和Al的滤除效率高达98~100%,Ca和Cr也分别达到90%和76.36%。Pb的去除率最低,20~50%。
     所制得的生物酸液与0.2mol L-1的硫酸(化学酸)在同条件下浸取电池阴阳极材料。结果表明对于易溶态物质金属Cd,生物酸与硫酸沥滤效果相当。对于难溶态金属相,则生物酸效果较好。且小试试验同时发现电池电极材料中含有一部分不溶于强酸的残留物。
     为实现连续制酸和废旧镍镉电池的连续生物沥滤,本研究建立了一套连续运行二阶段批处理工艺。即污泥连续进入酸化池中,制酸产物经过沉淀处理后,上清液流入沥滤池,电池电极材料中含有的重金属在沥滤池中被沥滤溶出。工艺运行参数优化试验表明:酸化池污泥停留时间SRT为4d最适,酸化池pH可稳定在1.86以下,硫杆菌数量为2.8×107 cfu mL-1;沥滤池水力停留时间HRT则选择1~3d较为合适;沥滤池中pH从初始的5.0可在30~40d的沥滤过程中降至与入流液相同;HRT为1d时,Ni、Cd、Co三种金属的完全滤出需要的时间分别为25, 18和30d;三种金属的沥滤行为不同,Cd与Co在开始6、7d内pH为3.0~4.5时即大部分被滤出,而金属Ni的沥滤分为2个阶段,在第6d与第15d时分别达到沥滤高峰,对应pH值分别为3.0~4.0和2.5左右,前者为Ni的氢氧化物的溶解,后者为金属态Ni的溶出;硫酸亚铁(FeSO4?7H2O)作为基质时,终pH(2.0~2.3)不如单质硫(S0)作为基质(<1.0)低,但所产酸液具有一定的抗碱性冲击能力;对于电极材料的处理负荷,在进酸液量1L d-1的条件下完全滤出8节电池中的Ni、Cd、Co需30~40d。
     本工艺中,微生物的生长活性和酸化效率是提高电池沥滤效率的关键因素。为探讨微生物生长制酸的最佳工艺条件,论文通过摇床试验对污泥酸化的影响因子进行了研究。结果表明:嗜酸性硫杆菌具有广泛的环境适应性,初沉泥、二沉泥和混合浓缩污泥三种污泥在适当条件下均可达到良好的酸化效果,在12d内pH降至1.0左右;基质的添加量应与污泥固体浓度结合考虑,通常污泥生物沥滤较适合浓度为20~25g L-1,相应S0添加量选取1~1.5%(w/v),FeSO4?7H2O添加量选择4~6g L-1。
     论文同时对污泥混合物与纯培养硫杆菌在不同条件下的酸化效果进行了对比。结果表明:初始pH高达10.0时,污泥中硫杆菌仍可经历7d的停滞期后开始生长,而硫杆菌在纯培养基中的生长则被完全抑制;高温(50℃)、低温(10、20℃)条件下,污泥均比纯培养基有更高的pH降低和SO42-产生速率;提高硫颗粒的分散程度以及生物细胞附着程度可大大缩短纯培养基中硫杆菌生长停滞期;有机碳源葡萄糖添加使pH在前2d内由中性下降至3.0~3.5,但此过程中无硫被氧化;葡萄糖添加量为300mmol L-1以上时,污泥酸化完全停止,几乎无SO42-的产生,添加量100mmol L-1以下时,污泥酸化不受影响,纯培养基中则受到50%的抑制;对于小分子酸和氯化物及硝酸盐,硫杆菌在污泥中耐受浓度比纯培养基中高2倍左右。
     对酸化池与沥滤池中所涉及到的化学、生物机理进行分析。GC-MS方法从酸化污泥中只检测到个别长链和带苯环结构的有机酸,未检测到短链的有机酸。沥滤池中尽管重金属浓度较高,但仍有大量活性硫杆菌。其中HRT为6d时硫杆菌数量最高,达6.2×106 cfu mL-1。从中分离了一株可使pH快速下降的硫杆菌株,经16S rDNA系统发育分析,自分离的菌株与Acidithiobacillus ferrooxidans strain Tf-49在系统发育地位上几乎相同,相似性达到100.0%,判断其为一株氧化亚铁硫杆菌。
     重金属沥滤液的回收采用沉淀法制取复合铁氧体。通过优化工艺条件,经沉淀后的上清液金属离子浓度完全可以达标排放,形成的铁氧体粗制品具有一定的磁性。本研究中经优化后条件如下:最适pH范围为11~11.5,Fe与Cd投料比为Fe/Cd=16(摩尔比),30%H2O2加入量为0.3%(v/v),温度常温或略微加热即可。
The vast use of batteries by human now leads to severe environmental problems and resource waste. Although people are trying to find nontoxic substitute to replace the batteries containing hazardous heavy metals, the already reclaimed batteries and many still in use ones such as Hg-containing batteries and Ni-Cd batteries have not been well disposed. The existing treatment methods are mainly pyrometallurgical and hydrometallurgical processes which have some limitations including high energy-consuming and secondary pollution, etc. In order to seek an effective, economical and environmentally friendly method to treat spent batteries, this paper introduced a biohydrometallurgical method which combined the sludge metal bioleaching and batteries treatment. The indigenous acidophilic thiobacilli in sewage sludge can grow and produce bio-sulphuric acid through the addition of energy source and the acid was used to leach the heavy metals in spent batteries. The metals in sludge were removed simultaneously to satisfy land application.
     The paper studied the chemical and physical characterization of spent Ni-Cd batteries through XRD, TGA and ICP-MS, etc. The results showed that the presence of diffraction lines corresponding to metallic nickel (Nio), Ni(OH)2 andγ-NiOOH in the cathode, and metallic cadmium (Cdo), Cd(OH)2 in the anode as well as some KOH. The content of Ni and Co in cathode was 41.7% and 5.1% respectively. The content of Cd in anode was 64.8%. The estimated Cd(OH)2 accounted for 62.2% in anode and Ni(OH)2 binding with minor Co(OH)2 accounted for 57.7% in cathode.
     The biological acid culture was obtained through the acidification of sewage sludge. The metals in sludge were leached simultaneously with microbial production of sulphuric acid. At the sludge solid concentration of 20~25g L-1, the solubilization efficiency of Cd, Mn, Cu, Zn, Mg, and Al was highest at 98~100%, and that of Ca was higher at about 90%, Cr 76.36%. As for Pb, the solubilization efficiency was lowest at 20~50%.
     The battery electrode materials were leached using the biological acid and ordinary 0.2mol L-1 H2SO4 respectively under the same conditions. The results showed that as for the dissoluble metal Cd, the leaching efficiency by biological acid and chemical acid was similar. But for the acid-insoluble materials, the biological acid seems better. Moreover, the flasks test showed that there are some residues are very difficult to dissolve even in strong acid.
     A continuous flow two-step batch leaching system consisting of an acidifying reactor and a leaching reactor was set up to achieve the continuous acid production and bioleaching of batteries. The acid supernatant produced in the acidifying reactor by the microorganisms was conducted into the leaching reactor to dissolve electrode materials.
     The optimizing test of process parameters showed that the optimum sludge retention time (SRT) in acidifying reactor was 4d and hydraulic retention time (HRT) in leaching reactor was 1~3d. The pH in acidifying reactor was below 1.86 and the population of thiobacilli was 2.8×10-7cfu mL-1. The pH in leaching reactor decreased from the initial 5.0 to equal to influent during the 30~40d leaching. The complete leaching of Ni, Cd and Co cost about 25, 18 and 30d respectively with HRT=1d. The leaching behavior of the metals Ni, Cd and Co was different. Cd and Co can be leached mostly in the begin 6 or 7d with pH 3.0~4.5. The leaching of Ni showed two stages. The maximum dissolution of Ni reached at the 6th day and the 15th day with the pH 3.0~4.0 and 2.5 respectively. The former was the dissolution of Ni(OH)2 and the latter was the dissolution of metallic Ni. When FeSO4·7H2O was the substrate, it was difficult to decrease the final pH to lower than 2.2, while with substrate S0 the final pH was below 1.0. But the iron-oxidizing system has a stronger buffering capacity of pH than the sulphur-oxidizing system. As for the process load, the complete leaching of metals Ni, Cd and Co in 8 spent Ni-Cd batteries required 30~40d with 1L d-1 acid.
     In this process, the activity of microorganisms and acidification rate were the key to increase metals leaching efficiency. Factors affecting the sludge acidification rate were studied through flasks experiments and the results showed that acidophilic thiobacilli have wide adaptability of environment and the favourable acidification can be obtained under appropriate conditions in each kind of sludge including primary settling tank sludge, secondary sedimentation tank sludge and mixed sludge. The amount of substrate addition depended on the sludge solid concentration. In general, the moderate sludge solid concentration for bioleaching was 20~25g L-1 and the corresponding S0 or FeSO4·7H2O addition was 1~1.5% (w/v) or 4~6g L-1 respectively. The growth lag phase was affected by surface area of sulfur particles and attachment of microorganisms.
     Comparison of acid production by sulfur-oxidizing bacteria in sewage sludge and pure culture was conducted. The results showed that sludge has a better ability to acclimatize itself to the change of ambient environment than a pure culture. The more disadvantageous the ambient environment is to the sulfur-oxidizing bacteria, the more obvious advantage of the sludge than pure culture. Even though the initial pH was 10.0, the sulfur-oxidizing bacteria began to grow after 7d lag phase while in pure culture it was inhibited completely. At low (10, 20℃) and high (50℃) temperature, the rate of pH decrease and SO42- production was higher in sludge than in pure culture. The addition of glucose made pH reduce from neutral pH to pH 3.0~3.5 in the first 2d but no sulfur was oxidized. The sludge acidification stopped and almost no SO42- produced when glucose addition was 300mmol L-1. But when it was 100mmol L-1, there was no effect on sludge and 50% inhibition on pure culture. The tolerance concentration of small molecules acids, chloride and nitrate was double in sludge than pure culture.
     The chemical and biological mechanisms involved in the acidifying reactor and the leaching reactor were analyzed. Only some benzene ring containing and long chain organic acids are found and short carbon chain ones can not be found from acidified sludge by GC-MS. It can be observed from the scaning electron microscopy of acidified sludge that the thiobacillus in it attached on the impurities. In the leaching reactor, there are great populations of live thiobacillus although the heavy metals concentration was high. When the HRT was 6d, the amount of thiobacillus was 6.2×106 cfu mL-1. Meanwhile, a strain accounting for the fast reduction of pH in the leaching reactor was isolated and sequenced. It was identified to be 100% similar to Acidithiobacillus ferrooxidans strain Tf-49 based on 16S rDNA sequence analysis. The relevant phylogenetic tree constructed indicates that the strain should be classified into genus Acidithiobacillus ferrooxidans.
     The recovery of heavy metals solution was achieved by producing ferrite through coprecipitation. The conditions were optimized and the results showed that under the conditions of normal or little higher temperature, pH=11~11.5, Fe/Cd (mol/mol)=16, 0.3% (v/v) of H2O2 (30%) added, the ferrite product had a preferable magnetism and the heavy metals concentration in effluent could be decreased to below the drainage standard.
引文
[1]王保士.国外废干电池的回收利用及其管理.再生资源研究. 2002, (2): 36–39.
    [2]李晓清.废旧电池回收路漫漫.人民日报. 2007年4月17日,第009版.
    [3]郭宇.蓄电池两大展会同台竞技显现投资热点.中国工业报. 2007年7月3日,第B03版.
    [4] Shapek, R.A., Dry–cell battery health and environmental hazards and disposal options. Journal of Solid Waste Technology and Management 1996, 23(1): 53–64.
    [5] http://www.greentian.org,首页信息, 2003年, 1月22日.
    [6] Chang, L.W., Cockerham, L.G., Toxic metals in the environment. In: L.G. Cockerham, B.S. Shane, eds. Basic Environmental Toxicology. Boca Raton-Ann Arbor-London-Tokyo: CRC Press, 1994: 127–128.
    [7] Foulkes, E.C., Biological effects of heavy metals. Vol.Ⅱ. Metals Carcinogenesis. Boston: CRC Press, 1990. 26–42.
    [8]李哲.废旧干电池对环境的污染及人体健康的危害.甘肃冶金. 2004, 26(1): 60–61.
    [9]鲁洪娟,倪吾钟,叶正钱,杨肖娥.土壤中汞的存在形态及过量汞对生物的不良影响.土壤通报. 2007, 38(3): 597–600.
    [10]涂小华,仇满珍,王翠芳.废干电池资源化进展.江西化工. 2006, (3): 21–23.
    [11]孟紫强.环境毒理学.北京:中国环境科学出版社. 2003: 128–134.
    [12]孟紫强.环境毒理学.北京:中国环境科学出版社. 2003: 136–137.
    [13]史凤梅.废镍镉电池中隔的回收及资源化研究[硕士论文].青岛:青岛大学. 2004.
    [14] Sekhar, K.C., Chary, N.S., Kamala, C.T., Vairamani, M., Anjaneyulu, Y., Balaram, V., Sorlie, J.E., Environmental risk assessment studies of heavy metal contamination in the industrial area of Kattedan, India-A case study. Human and Ecological Risk Assessment 2006, 12(2): 408–422.
    [15] Lee, J.Y., Choi, J.C., Lee, K.K., Variations in heavy metal contamination of stream water and groundwater affected by an abandoned lead–zinc mine in Korea. Environ. Geochem. Health 2005, 27: 237–257.
    [16] Onianwa, P.C., Fakayode, S.O., Lead contamination of topsoil and vegetation in the vicinity of a battery factory in Nigeria. Environ. Geochem. Health. 2000, 22: 211–218.
    [17] Panero, S., Romoli, C., Achilli, M., Cardarelli, E., Scrosati, B., Impact of household batteries inlandfills. J. Power Sources. 1995, 57: 9–12.
    [18]夏越青,李国建.废干电池对环境的污染及其资源化.重庆环境科学. 2000, 22(2): 60–62.
    [19]张翠玲,郝火凡.废旧锌锰电池中锰的回收方法研究.兰州交通大学学报(自然科学版). 2007, 26(1): 98–100.
    [20]唐艳芬,高虹.国内外废旧电池回收处理现状研究.有色矿冶. 2007, 23(4): 50–52.
    [21]王占华.我国废旧电池资源化处理现状及对策.能源与环境. 2005 (1): 63–64.
    [22] Zhang, P.W., Yokoyama, T., Itabashi, O., Wakui, Y., Suzuki, T.M., Inoue, K., Recovery of metal values from spent nickel–metal hydride rechargeable batteries. J. Power Sources. 1999, 77: 116–122.
    [23] David, J., Nickel-cadmium battery recycling evolution in Europe. J. Power Sources. 1995, 57: 71–73.
    [24]王红芬,赵晓梅.废旧电池资源化技术的研究分析.中国环境管理干部学院学报. 2005, 15(4): 76–78.
    [25] Bernardes, A.M., Espinosa, D.C.R., Tenório, J.A.S., Collection and recycling of portable batteries: a worldwide overview compared to the Brazilian situation. J. Power Sources. 2003, 124: 586–592
    [26]夏越青.废电池管理和回收处理技术研究[博士论文].上海:同济大学. 2001.
    [27]杨慧芬,张强.固体废物资源化.北京:化学工业出版社(环境科学与工程出版中心). 2004: 362–365.
    [28]孙英杰,赵由才.危险废物处理技术.北京:化学工业出版社(教材出版中心). 2006: 88–90.
    [29]张凤玲.冶金方法处理废旧镍镉电池的研究进展.中国资源综合利用. 2007, 25(6): 14–16.
    [30]赵东江,马松艳,田喜强,白晓波.废旧锌锰电池回收利用的研究现状.中国资源综合利用. 2006, 24(3): 14–19.
    [31]尤宏,姚杰,孙丽欣,刘洋.废旧镍-镉电池中镍镉的回收方法.环境污染与防治. 2002, 24(3): 187–189.
    [32] Yang, C.C., Recovery of heavy metals from spent Ni–Cd batteries by a potentiostatic electrodeposition technique. J. Power Sources. 2003, 115: 352–359.
    [33] Reddy, B.R., Priya, D.N., Park, K.H., Separation and recovery of cadmium(II), cobalt(II) and nickel(II) from sulphate leach liquors of spent Ni–Cd batteries using phosphorus based extractants. Sep. purif. technol. 2006, 50(2): 161–166.
    [34] Freitas, M.B.J.G., Penha, T.R., Sirtoli, S., Chemical and electrochemical recycling of the negative electrodes from spent Ni–Cd batteries, J. Power Sources 163 (2007) 1114–1119.
    [35]席国喜,杨理,路迈西.废镉镍电池再资源化研究新进展.再生资源研究. 2005 (3): 27–31.
    [36] Freitas, M.B.J.G., Rosal′em, S.F., Electrochemical recovery of cadmium from spent Ni–Cd batteries. J. Power Sources. 2005, 139: 366–370.
    [37] Nogueira, C.A., Delmas, F., New flowsheet for the recovery of cadmium, cobalt and nickel from spent Ni–Cd batteries by solvent extraction. Hydrometallurgy 1999, 52: 267–287.
    [38] Reddy, B.R., Priya, D.N., Rao, S.V., Radhika, P., Solvent extraction and separation of Cd(II), Ni(II) and Co(II) from chloride leach liquors of spent Ni–Cd batteries using commercial organo-phosphorus extractants. Hydrometallurgy 2005, 77(3): 253–261.
    [39] Galan, B., Roman, F.S., Irabien, A., Ortiz, I., Viability of the separation of Cd from highly concentrated Ni-Cd mixtures by non-dispersive solvent extraction. Chem. Eng. J. 1998, 70: 273–243.
    [40]于秀兰,杨家玲.镍镉电池废渣处理技术.化学工业与工程. 1992, 9 (2): 35–38.
    [41] Bartolozzi, M., Bracci, G., Bonvini, S., Marconi, P.F., Hydrometallurgical recovery process for nickel-cadmium spent batteries. J. Power Sources. 1995, 55: 247–250.
    [42] Avraamides, J., Senanayake, G., Clegg, R., Sulfur dioxide leaching of spent zinc–carbon battery scrap. J. Power Sources. 2006, 159: 1488–1493.
    [43] Lupi, C., Pasquali, M., DellEra, A., Nickel and cobalt recycling from lithium-ion batteries by electrochemical processes. Waste Manage. 2005, 25: 215–220.
    [44] Shin, S.M., Kim, N.H., Sohn, J.S., Development of a metal recovery process from Li-ion battery wastes. Hydrometallurgy 2005, 79: 172–181.
    [45]金玉健,梅光军,李树元.盐析法从锂离子电池正极浸出液中回收钴盐的研究.环境科学学报. 2006, 26 (7): 1122–1125.
    [46]童东革,赖琼钰,吉晓洋.废旧锂离子电池正极材料钴酸锂的回收.化工学报. 2005, 56(10): 1967–1970.
    [47] Veloso, L.R.S., Rodrigues, L.E.O.C., Development of a hydrometallurgical route for the recovery of zinc and manganese from spent alkaline batteries. J. Power Sources. 2005, 152: 295–302.
    [48] Qing, X.Y., Li, G.J., The BATINTREC process for reclaiming used batteries. Waste Manage. 2004, 24:359–363.
    [49] Cerruti, C., Curutchet, G., Donati, E., Bio-dissolution of spent nickel-cadmium batteries using Thiobacillus ferrooxidan. J. Biotechnol. 1998, 62: 209–219.
    [50] Mishra, D., Kim, D.J., Ralph, D.E., Ahn, J.G., Rhee, Y.H., Bioleaching of metals from spent lithium ion secondary batteries using Acidithiobacillus ferrooxidans. Waste Manage. 2008, 28:333–338.
    [51]辛宝平,朱庆荣,李是珅,李丽,吴锋.生物淋滤溶出废旧锂离子电池中钴的研究.北京理工大学学报. 2007, 27(6): 551–555.
    [52] Weijma, J., Hoop, K., Bosma, W., Dijkman, H., Biological conversion of anglesite (PbSO4) and lead waste from spent car batteries to galena (PbS). Biotechnol. Prog. 2002, 18: 770–775.
    [53]周吉奎,钮因健.硫化矿生物冶金研究进展.金属矿山. 2005, 346: 24–30.
    [54] Kodali, B., Rao, M.B., Narasu, M.L., Pogaku. R., Effect of biochemical reactions in enhancement of rate of leaching. Chem. Eng. Sci. 2004, 59: 5069–5073.
    [55] Seidel, H., L?ser, C., Zehnsdorf, A., Hoffmann, P., Schmerold, R., Bioremediation process for sediments contaminated by heavy metals: feasibility study on a pilot scale. Environ. Sci. Technol. 2004, 38: 1582–1588.
    [56] Go?mez, C., Bosecker, K., Leaching heavy metals from contaminated soil by using Thiobacillus ferrooxidans or Thiobacillus thiooxidans. Geomicrobiol. J. 1999, 16(3): 233–244.
    [57] Chandraprabha, M.N., Modak, J.M., Natarajan, K.A., Raichur, A.M., Modeling and analysis of biooxidation of gold bearing pyrite-arsenopyrite concentrates by Thiobacillus ferrooxidans. Biotechnol. Prog. 2003, 19: 1244–?1254.
    [58] Nemati, M., Harrison, S.T.L., Effect of solid loading on thermophilic bioleaching of sulfide minerals. J. Chem. Technol. Biotechnol. 2000, 75: 526–532.
    [59] Sampson, M.I., Phillips, C.V., Blake, R.C., Influence of the attachment of acidophilic bacteria during the oxidation of mineral sulfides. Miner. Eng. 2000, 13(4): 373–389.
    [60] Kim, S.D., Bae, J.E., Park, H.S., Cha, D.K., Bioleaching of cadmium and nickel from synthetic sediments by Acidithiobacillus ferrooxidans. Environ. Geochem. Health 27 (2005) 229–235.
    [61] Schippers, A., Sand, W., Bacterial leaching of metal sulfides proceeds by two indirect mechanisms via thiosulfate or via polysulfides and sulfur. Appl Environ Microbiol. 1999, 65: 319–321.
    [62]李秀艳,周建民,魏德洲,郑龙熙.金属硫化物矿物生物浸出过程中Fe3+的作用.东北大学学报(自然科学版). 2001, 22(3): 291–294.
    [63] Rohwerder, T., Gehrke, T., Kinzler, K., Sand, W., Bioleaching review part A: Progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation. Appl Microbiol Biotechnol. 2003, 63: 239–248.
    [64] Schippers, A., Sand, W., Bacterial leaching of metal sulfides proceeds by two indirect mechanisms via thiosulfate or via polysulfides and sulfur. Appl Environ Microbiol. 1999, 65:319–321.
    [65] Rawlings, D.E., Tributsch, H., Hansford, G.S., Reasons why‘Leptospirillum’-like speciesrather than Thiobacillus ferrooxidans are the dominant iron-oxidizing bacteria in many commol L-1ercial processes for the biooxidation of pyrite and related ores. Microbiology 1999, 145: 5–13.
    [66] Berry, V.K., Murr, L.E., Hiskey, J.B., Galvanic interaction between chalcopyrite and pyrite during bacterial leaching of low grade waste. Hydrometallurgy 1978, 3: 309–326.
    [67] Suzuki, I., Microbial leaching of metals from sulfide minerals. Biotechnol. Adv. 2001, 19: 119–132.
    [68]李宏煦,王淀佐,阮仁满.硫化矿细菌浸出过程的电化学及其研究进展.有色金属. 2003, 55(1): 81–85.
    [69] Kinnunen, P.H.M., Puhakka, J.A., High-rate ferric sulfate generation by a Leptospirillum ferriphilum-dominated biofilm and the role of jarosite in biomass retainment in a fluidized-bed reactor. Biotechnol Bioeng. 2004, 85: 697–705.
    [70] Edwards, K.J., Gihring, T.M., Banfield, J.F., Seasonal variations in microbial populations and environmental conditions in an extreme acid mine drainage environment. Appl. Environ. Microbiol. 1999, 65(8): 3627–3632.
    [71] Baker, B.J., Banfield, J.F., Microbial commol L-1unities in acid mine drainage. FEMS Microbiol. Ecol. 2003, 44: 139–152.
    [72] Brunet, F.B., Clarens, M., d’Hugues, P., Godon, J.J., Foucher, S., Morin, D., Monitoring of a pyrite-oxidising bacterial population using DNA single-strand conformation polymorphism and microscopic techniques. Appl Microbiol Biotechnol. 2002, 60: 206–211.
    [73] Coram, N.J., Rawlings, D.E., Molecular relationship between two groups of Leptospirillum and the finding that Leptospirillum ferriphilum sp. nov. dominates South African commol L-1ercial biooxidation tanks which operate at 40°C. Appl Environ Microbiol. 2002, 68: 838–845.
    [74] Shi, S.Y., Fang, Z.H., Bioleaching of marmatite flotation concentrate by Acidithiobacillus ferrooxidans and Leptospirillum ferrooxidans. Trans. NonfeFrous Met. Soc. China. 2004, 14(3): 569–575.
    [75] Okibe, N., Gericke, M., Hallberg, K.B., Johnson, D.B., Enumeration and characterization of acidophilic microorganisms isolated from a pilot plant stirred-tank bioleaching operation. Appl Environ Microbiol. 2003, 69: 1936–1043.
    [76] Olson, G.J., Brierley, J.A., Brierley, C.L., Bioleaching review part B: Progress in bioleaching: applications of microbial processes by the minerals industries. Appl Microbiol Biotechnol. 2003, 63: 249–257.
    [77]华玉妹.污泥中Cu、Pb和Zn的生物沥滤研究[博士论文].杭州:浙江大学. 2005.
    [78] Blais, J.F., Meunier, N., Tyagi, R.D., Simultaneous sewage sludge digestion and metal leachingat controlled pH. Environ. Technol. 1997, 18(5): 499–508.
    [79] Laishley, E.J., Rae, K., Dillman, A.M., Bryant, R.D., Characterization of a new less acidophilic Thiobacillus isolate (Thiobacillus capsulatus). Can. J. Microbiol. 1988, 34(8): 960–966.
    [80] Blais, J.K., Tyagi, R.D., Auclair, J.C., Bioleaching of metals from sewage sludge by sulfur-oxidizing bacteria. J. Environ. Eng. 1992, 118(5): 690–707.
    [81] Tuovinen, O.H., Kelly, D.P., Studies on the growth of Thiobacillus ferrooxidans. I. Use of membrane filters and ferrous iron agar to determine viable numbers, and comparison with 14CO2-fixation and iron oxidation as measures of growth. Arch Mikrobiol. 1973, 88(4): 285–98.
    [82]姜国芳,刘亚洁,乐长高.氧化硫硫杆菌的研究进展.生物学杂志. 2005, 22(1): 11–14.
    [83] Quatrini, R., Jedlicki, E., Holmes, D.S., Genomic insights into the iron uptake mechanisms of the biomining microorganism Acidithiobacillus ferrooxidans. J Ind Microbiol Biotechnol. 2005, 32: 606–614.
    [84] Bergamo, R.F., Novo, M.T.M., Veríssimo, R.V., Paulino, L.C., Stoppe, N.C., Sato, M.I.Z., Manfio, G.P., Prado, P.I., Jr, O.G., Ottoboni, L.M.M., Differentiation of Acidithiobacillus ferrooxidans and A. thiooxidans strains based on 16S–23S rDNA spacer polymorphism analysis. Res. Microbiol. 2004, 155: 559–567.
    [85]田克立,林建群,张长铠,颜望明.氧化亚铁硫杆菌铁氧化系统分子生物学研究进展.微生物学通报. 2002, 29(1): 85–88.
    [86] Sugio, T., Iwahori, K., Takai, M., Takeuchi, F., Kamimura, K., Molecular diversity of cytochrome oxidase among Acidithiobacillus ferrooxidans strains resistant to molybdenum, mercury, sulfite and 2,4-dinitrophenol. Hydrometallurgy 2003, 71: 159–164.
    [87] Appia-Ayme, C., Guiliani, N., Ratouchniak, J., Bonnefoy, V., Characterization of an operon encoding two c-type cytochromes an aa3-type cytochrome oxidase, and rusticyanin in Acidithiobcillus ferrooxidans ATCC33020. Appl. Environ. Microbiol. 1999, 65(11): 4781–4787.
    [88] Rawlings, D.E., Johnson, D.B., The microbiology of biomining: development and optimization of mineral-oxidizing microbial consortia. Microbiology 2007, 153: 315–324.
    [89] Suzuki, I., Oxidation of inorganic sulfur compounds: Chemical and enzymatic reactions. Can. J. Microbiol. 1999, 45(2): 97–105.
    [90] Ramírez, P., Guiliani, N., Valenzuela, L., Beard, S., Jerez, C.A., Differential protein expression during growth of Acidithiobacillus ferrooxidans on ferrous iron, sulfur compounds, or metal sulfides. Appl. Environ. Microbiol. 2004, 70(8): 4491–4498. [9 1 ] Nogueiraa, C.A., Margarido, F., Leaching behaviour of electrode materials of spentnickel–cadmium batteries in sulphuric acid media. Hydrometallurgy 2004, 72: 111–118.
    [92]黄雅曦,李季,李国学,黄妍.污泥资源化处理与利用中控制重金属污染的研究进展.中国生态农业学报. 2006, 14(1): 156–158.
    [93] Babel, S., Dacera, D.M., Heavy metal removal from contaminated sludge for land application: A review. Waste Manage. 2006, 26: 988–1004.
    [94]邹绍文,张树清,王玉军,刘秀梅,何绪生.中国城市污泥的性质和处置方式及土地利用前景.中国农学通报. 21(1): 198–282.
    [95] Lombardi, A.T., Garcia, O.J., Menezes, W.A.N., The effects of bacterial leaching on metal partitioning in sewage sludge. World J. Microbiol. Biotechnol. 2006, 22:1013–1019.
    [96]董琪,韩恩山,闫艳波,袁利海.二次电池中氢氧化镍的物理和电化学性质.电池工业. 2005, 10(3): 173–176.
    [97]武占耀.镉电极材料综述.电池工业. 2001, 6(3): 129–132.
    [98] Nogueira, C.A., Margarido, F., Chemical and physical characterization of electrode materials of spent sealed Ni–Cd batteries. Waste Manage. 2007, 27: 1570–1579.
    [99]尤宏,姚杰,孙丽欣,刘洋.废旧镍镉电池中镍镉的回收方法.环境污染与防治.2002, 24(3): 187–189.
    [100] Chen, Y.X., Hua, Y.M., Zhang, S.H., Tian, G.M., Transformation of heavy metal forms during sewage sludge bioleaching. J. Hazard. Mater. 2005, B123: 196–202.
    [101] Blais, J.F., Auclair, J.C., Tyagi, R.D., Cooperation between two Thiobacillus strains for heavy-metal removal from municipal sludge. Can. J. Microbiol. 1992, 38: 181–187.
    [102] Liu, H.L., Chiu, C.W., Cheng, Y.C., The Effects of metabolites from the indigenous Acidithiobacillus thiooxidans and temperature on the bioleaching of cadmium from soil. Biotechnol. Bioeng. 2003, 83(6): 638–645.
    [103] Lin, J.G., Chen, S.Y., The relationship between adsorption of heavy metals and organic matter in river sediments. Environ Int. 1998, 24(3): 345–352.
    [104]郑冠宇,王世梅,周立祥.污泥生物沥浸处理对病原物的杀灭效果影响.环境科学. 2007, 28(7): 1539–1542.
    [105] Yang, S.R., Xie, J.Y., Qiu, G.Z., Hu, Y.H., Research and application of bioleaching and biooxidation technologies in China. Miner. Eng. 2002, 15: 361–363.
    [106] Couillard, D., Mercier, G., Optimum residence time in CSTR and airlift reactor for bacterial leaching of metals from anaerobic sewage sludge. Water Research. 1991, 25(2): 211–218.
    [107] Zagury, G.J., Narasiah, K.S., Tyagi, R.D., Bioleaching of metal-contaminated soil in semicontinuous reactor. J. Environ. Eng. 2001, 127(9): 812–817.
    [108] Tyagi, R.D., Sreekrishnan, T.R., Blais, J.F., Surampalli, R.Y., Campbell, P.G.C., Effect ofdissolved oxygen on sludge acidification during the SSDML-process. Water, Air, Soil Pollut. 1998, 102: 139–155.
    [109] Wong, J.W.C., Xiang, L., Chan, L.C., pH requirement for the bioleaching of heavy metals from anaerobically digested wastewater sludge. Water Air Soil Poll. 2002, 138: 25–35.
    [110] Brandl, H., Bosshard, R., Wegmann, M., Computer-munching microbes: Metal leaching from electronic scrap by bacteria and fungi. Hydrometallurgy 2001(59): 319–326.
    [111] Meknassi, Y.F., Tyagi, R.D., Narasiah, K.S., Simultaneous sewage sludge digestion and metal leaching: Effect of aeration. Process Biochem. 2000, 36: 263–273.
    [112] Tsai, L.J., Chung, Y.K., Fen, C.S., Effect of temperature on removal of heavy metals from contaminated river sediments via bioleaching. Water Res. 2003, 37: 2449–2457.
    [113] Rohwerder, T., Gehrke, T., Kinzler, K., Sand, W., Bioleaching review part A: Progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation. Appl Microbiol Biotechnol. 2003, 63: 239–248.
    [114] Liu, H.L., Chen, B.Y., Lan, Y.W., Cheng. Y.C., SEM and AFM images of pyrite surfaces after bioleaching by the indigenous Thiobacillus thiooxidans. Appl Microbiol Biotechnol. 2003, 62: 414–420.
    [115] Li, Y.Q., Guo, X.X., The dissolution mechanism of cathodic active materials of spent Zn–Mn batteries in HCl. J. Hazard. Mater. 2005, B127: 244–248.
    [116] Nogueiraa, C.A., Margarido, F., Leaching behaviour of electrode materials of spent nickel–cadmium batteries in sulphuric acid media. Hydrometallurgy 2004, 72: 111–118.
    [117] Nemati, M., Lowenadler, J., Harrison, S.T.L., Particle size effects in bioleaching of pyrite by acidophilic thermophile Sulfolobus metallicus. Appl Microbiol Biotechnol. 2000, 53: 173–179.
    [118] Cerruti, C., Curutchet, G., Donati, E., Bio-dissolution of spent nickel–cadmium batteries using Thiobacillus ferrooxidans. J. Biotechnology 1998, 62: 209–219.
    [119] Shen, Y.C., Lin, J.G., Effect of substrate concentration on bioleaching of metal-contaminated sediment. J. Hazard. Mater. 2001, B82: 77–89.
    [120] Wong, J.W.C., Xiang, L., Gu, X.Y., Zhou, L.X., Bioleaching of heavy metals from anaerobically digested sewage sludge using FeS2 as an energy source. Chemosphere 2004, 55: 101–107.
    [121] Lombardi, A.T., Garcia, O.J., Menezes, W.A.N., The effects of bacterial leaching on metal partitioning in sewage sludge. World J. Microbiol. Biotechnol. 2006, 22: 1013–1019.
    [122] Wen, Z.N., Hua, Z.L., Jie, L.C., Recycling of spent nickel–cadmium batteries based on bioleaching process. Waste Manage. 2003, 23: 703–708.
    [123] Mousavi, S.M., Yaghmaei, S., Salimi, F., Jafari, A., Influence of process variables on biooxidation of ferrous sulfate by an indigenous Acidithiobacillus ferrooxidans. Part I: Flaskexperiments. Fuel 2006, 85: 2555–2560.
    [124] Blais, J.F., Tyagi, R.D., Auclair, J.C., Metals removal from sewage sludge by indigenous iron-oxidizing bacteria. J. Environ. Sci. 1993, 28: 443–467.
    [125] Xiang, L., Chan, L.C., Wong, J.W.C., Removal of heavy metals from anaerobically digested sewage sludge by isolated indigenous iron-oxidizing bacteria. Chemosphere 2000, 41: 283–287.
    [126] Cerruti, C., Curutchet, G., Donati, E., Bio-dissolution of spent nickel–cadmium batteries using Thiobacillus ferrooxidans. J. Biotechnol. 1998, 62: 209–219.
    [127] Mehta, A.P., Murr, L.E., Fundamental studies of the contribution of galvanic interaction to acid-bacterial leaching of mixed metal sulfides. Hydrometallurgy 1983, 9: 235–256.
    [128] Natarajan, K.A., Iwasaki, I., Role of galvanic interactions in the bioleaching of Duluth gabbro copper-nickel sulfides. Separ. Sci. Technol. 1983, 18: 1095–1111.
    [129] Chen, Y.C., Recovery of heavy metals from spent Ni–Cd batteries by a potentiostatic electrodeposition technique. J. Power Sources 2003, 115: 352–359.
    [130] Pietrelli, L., Bellomo, B., Fontana, D., Montereali, M., Characterization and leaching of NiCd and NiMH spent batteries for the recovery of metals. Waste Manage. 2005, 25: 221–226.
    [131] Tributsch, H., Chapana, J.A.R., Metal sulfide semiconductor electrochemical mechanisms induced by bacterial activity. Electrochemistry 2000, 45: 4705–4716.
    [132] L?ser, C., Zehnsdorf, A., G?rsch, K., Seidel, H., Bioleaching of heavy metal polluted sediment: Influence of temperature and oxygen (Part 1). Eng. Life Sci. 2006, 6(4): 355–363.
    [133] Kim, S.D., Bae, J.E., Park, H.S., Cha, D.K., Bioleaching of cadmium and nickel from synthetic sediments by Acidithiobacillus ferrooxidans. Environ. Geochem. Health 2005, 27: 229-235.
    [134] Kim, I.S., Lee, J.U., Jang, A., Bioleaching of heavy metals from dewatered sludge by Acidithiobacillus ferrooxidans. J. Chem. Technol. Biotechnol. 2005, 80: 1339–1348.
    [135] Chartier, M., Couillard, D., Biological processes: the effects of initial ph, percentage inoculum and nutrient enrichment on the solubilization of sediment bound metals. Water, Air, and Soil Pollution. 1997, 96: 249–267.
    [136] Tsai, L.J., Yua, K.C., Chen, S.F., Kung, P.Y., Effect of temperature on removal of heavy metals from contaminated river sediments via bioleaching. Water Res. 2003, 37: 2449–2457.
    [137]朱南文,蔡春光,吴志超,道路,张乐华,高廷耀.污泥中重金属的生物沥滤及其机理分析.上海交通大学学报. 2003, 37(5): 801–804.
    [138] Blais, J.F., Tyagi, R.D., Auclair, J.C., Lavoie, M.C., Indicator bacteria reduction in sewage sludge by a metal bioleaching process. Wat Res. 1992, 26(4): 487–495.
    [139] Gu, X.Y., Wong, J.W.C., Characterization of an indigenous iron-oxidizing bacterium and its effectiveness in bioleaching heavy metals from anaerobically digested sewage sludge. Environ. Technol. 2004, 25(8): 889–897.
    [140] Tsai, L.J., Yu, K.C., Chen, S.F., Kung, P.Y., Chang, C.Y., Lin, C.H., Partitioning variation of heavy metals in contaminated river sediment via bioleaching: effect of sulfur added to total solids ratio. Wat Res. 2003, 37: 4623–4630.
    [141] Shen, S.B., Tyagi, R.D., Blais, J.F., Surampalli, R.Y., Bacterial leaching of metals from tannery sludge by indigenous sulphur-oxidizing bacteria-effect of sludge solids concentration. J. Environ. Eng. 2003, 129(6): 513–519.
    [142] Tyagi, R.D., Blais, J.F., Meunier, N., Benmoussa, H., Simultaneous sewage sludge digestion and metal leaching—effect of sludge solids concentration. Water Res. 1997, 31(1): 105–118.
    [143] Lizama, H.M., Zielinski, P.A., Kerby, L.D., Abraham, C.C., Comparison of biooxidation with carbon dioxide assimilation during bacterial growth on ferrous ion or elemental sulfur. Biotechnol. Bioeng. 2002, 77(1): 111–117.
    [144] L?ser, C., Zehnsdorf, A., Hoffmann, P., Seidel, H., Bioleaching of heavy metal polluted sediment: Influence of sediment properties (Part 2). Eng. Life Sci. 2006, 6(4): 364–371.
    [145] Chen, S.Y., Lin, J.G., Influence of solid content on bioleaching of heavy metals from contaminated sediment by Thiobacillus spp. J Chem Technol Biotechnol. 2000, 75: 649–656.
    [146]汪靓,施凌峻,黄弋,程洁红,朱南文.污泥酸化速率影响因子的探讨.环境污染与防治. 2006, 28(3): 176–179.
    [147] Shen, S.B., Vidyarthi, A.S., Tyagi, R.D., Blais, J.F., Surampalli, R.Y., Effect of sulphur concentration on bioleaching of Cr(III) and other metals from tannery sludge by indigenous sulphur-oxidizing bacteria. Prac. Period. Hazard., Toxic, Radioact. Waste Manage. 2002, 6: 244–249.
    [148] Tsai, L.J., Yu, K.C., Chen, S.F., Kung, P.Y., Chang, C.Y., Lin, C.H., Partitioning variation of heavy metals in contaminated river sediment via bioleaching: effect of sulfur added to total solids ratio. Water Research. 2003, 37: 4623–4630.
    [149] Das, T., Ayyappan, S., Chaudhury, G.R., Factors affecting bioleaching kinetics of sulfide ores using acidophilic microorganisms. BioMetals 1999, 12: 1–10.
    [150] Rawlings, D.E., Characteristics and adaptability of iron- and sulfur-oxidizing microorganisms used for the recovery of metals from minerals and their concentrates. Microb. Cell Fact. 2005, 4: 13–28.
    [151] Meruane, G., Vargas, T., Bacterial oxidation of ferrous iron by Acidithiobacillus ferrooxidans in the pH range 2.5–7.0. Hydrometallurgy 2003, 71: 149–158.
    [152] Chan, L.C., Gu, X.Y., Wong, J.W.C., Comparison of bioleaching of heavy metals from sewage sludge using iron- and sulfur-oxidizing bacteria. Adv. Environ. Res. 2003, 7: 603–607.
    [153]陈仕安.细菌浸出在我国铀矿采冶领域中的应用及前景.铀矿冶. 1999, 18(4): 67–71.
    [154] Chartier, M., Couillard, D., Biological processes: the effects of initial pH, percentage inoculum and nutrient enrichment on the solubilization of sediment bound metals. Water, Air, Soil Pollut. 1997, 96: 249–267.
    [155] Gericke, M., Pinches, A., Rooyen, J.V.V., Bioleaching of a chalcopyrite concentrate using an extremely thermophilic culture. Int. J. Miner. Process. 2001, 62: 243–255.
    [156] Choi, M.S., Cho, K.S., Kim, D.S., Ryu, H.W., Bioleaching of uranium from low grade black schists by Acidithiobacillus ferrooxidans. World J. Microbiol. Biotechnol. 2005, 21: 377–380.
    [157]华玉妹,陈英旭,田光明,吴伟祥.初始pH值对污泥中重金属生物沥滤的影响.农业环境科学学报. 2006, 25(1): 128–131. [ 1 58] Blais, J.F., Tyagi, R.D., Auclair, J.C., Bioleaching of metals from sewage sludge: Microorganisms and growth kinetics. Wat Res. 1993, 27(1): 101–110.
    [159]周顺桂,周立祥,黄焕忠.生物淋滤技术在去除污泥中重金属的应用.生态学报. 2002, 22(1): 125–133.
    [160]沈镭,张太平,贾晓珊.利用氧化亚铁硫杆菌和氧化硫硫杆菌去除污泥中重金属的研究.中山大学学报(自然科学版). 2005, 144(12): 111–115.
    [161] R.N. Kumar, R. Nagendran. Influence of initial pH on bioleaching of heavy metals from contaminated soil employing indigenous Acidithiobacillus thiooxidans. Chemosphere 2007, 66: 1775–1781.
    [162] Matlakowska, R., Skudlarska, E., Sk?odowska, A., The growth, ferrous iron oxidation and ultrastructure of Acidithiobacillus ferrooxidans in the presence of dibutyl phthalate. Pol. J. Chem. 2006, 55(3): 203–210.
    [163] Matlakowska, R., Sklodowska, A., Adaptive changes of chemolithoautotrophic acidophilic sulfur-oxidizing bacteria during growth in sewage sludge. Can. J. Microbiol. 2006, 52(12): 1189–1198.
    [164]邹平,窦明民,杜强,周德林.应用氧化亚铁硫杆菌去除湿法炼锌浸出液中铁的研究.湿法冶. 2000, 19(1): 21–26.
    [165] Konishi, Y., Asai, S., Yoshida, N., Growth kinetics of Thiobacillus thiooxidans on the surface of elemental sulfur. Appl. Environ. Microbiol.1995, 61(10): 3617–3622.
    [166] Seidel, H., Wennrich, R., Hoffmann, P., L?ser, C., Effect of different types of elemental sulfur on bioleaching of heavy metals from contaminated sediments. Chemosphere 2006, 62: 1444–1453.
    [167] Tuovinen, O.H., Niemela, S.I., Gyllenberg, H.G., Effect of mineral nutrients and organic substances on the development of Thiobacillus ferrooxidans. Biotechnol. Bioeng. 2004, 13(4): 517–527.
    [168] Read, D.L., Matin, A., Two-dimensional gel resolution of polypeptides specific for autotrophic growth in Thiobacillus versutus. J. Appl. Bacteriol. 1987, 63: 469–472.
    [169] Maeda, T., Negishi, A., Oshima, Y., Nogami, Y., Kamimura, K., Sugio, T., Isolation of a sulfur-oxidizing bacterium that can grow under alkaline pH, from corroded concrete. Biosci. Biotechnol. Biochem. 1998, 62(6): 1087–1092.
    [170] Léveillé, S.A., Leduc, L.G., Ferroni, G.D., Telang, A.J., Voordouw, G., Monitoring of bacteria in acid mine environments by reverse sample genome probing. Can. J. Microbiol. 2001, 47(5): 431–442.
    [171] Frattini, C.J., Leduc, L.G., Ferroni, G.D., Strain variability and the effects of organic compounds on the growth of the chemolithotrophic bacterium Thiobacillus ferrooxidans. Antonie van Leeuwenhoek 2000, 77: 57–64.
    [172] Fang, D., Zhou, L.X., Effect of sludge dissolved organic matter on oxidation of ferrous iron and sulfur by Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans. Water, Air, Soil Pollut. 2006, 171: 81–94.
    [173] Vogler, K.G., Lepage, G.A., Umbreit, W.W., The respiration of Thiobacillus thiooxidans on sulfur. J. Gen. Physiol. 1942, 26: 89–102.
    [174] Rowe, O.F., Espa?a, J.S., Hallberg, K.B., Johnson, D.B., Microbial commol L-1unities and geochemical dynamics in an extremely acidic, metal-rich stream at an abandoned sulfide mine (Huelva, Spain) underpinned by two functional primary production systems. Environ. Microbiol. 2007, 9(7): 1761–1771.
    [175] Tian, K.L., Lin, J.Q., Liu, X.M., Liu, Y., Zhang, C.K., Yan, W.M., Conversion of an obligate autotrophic bacteria to heterotrophic growth: Expression of a heterogeneous phosphofructokinase gene in the chemolithotroph Acidithiobacillus thiooxidans. Biotechnol. Lett. 2003, 25(10): 749–754.
    [176] Sreekrishnan, T.R., Tyagi, R.D., Blais, J.F., Meunier, N., Campbell, P.G.C., Effect of sulfur concentration on sludge acidification during the SSDML process. Water Res. 1996, 30: 2728–2738.
    [177] Wang, S.M., Zhou, L.X., Huang, F.Y., Fang, D., Isolation of heterotrophic microorganism and its role in bioleaching of heavy metals from tannery sludge. Environ. Sci. 2004, 25: 153–157.
    [178] Gu, X.Y., Wong, J.W.C., Degradation of inhibitory substances by heterotrophic microorganisms during bioleaching of heavy metals from anaerobically digested sewagesludge. Chemosphere 2007, 69: 311–318.
    [179] Johnson, D.B., Roberto, F.F., Heterotrophic acidophiles and their role in the bioleaching of sulfide minerals. In: D.E. Rawlings, Editor, Biomining: Theory, microbes and industrial processes, Springer-Verlag/Landes Bioscience, Georgetown, Texas. 1997, 259–279.
    [180] Crescenzi, F., Crisari, A., D’Angeli, E., Nardella, A., Control of acidity development on solid sulfur due to bacterial action. Environ. Sci. Technol. 2006, 40: 6782–6786.
    [181] Gu, X.Y., Wong, J.W.C., Identification of inhibitory substances affecting bioleaching of heavy metals from anaerobically digested sewage sludge. Environ. Sci. Technol. 2004, 38: 2934–2939.
    [182] Liu, H.L., Chiu, C.W., Cheng, Y.C., The effects of metabolites from the indigenous Acidithiobacillus thiooxidans and temperature on the bioleaching of cadmium from soil. Biotechnol. Bioeng. 2003, 83(6): 638–645.
    [183] Edwards, K.J., Bond, P.L., Banfield, J.F., Characteristics of attachment and growth of Thiobacillus caldus on sulphide minerals: A chemotactic response to sulphur minerals? Environ. Microbiol. 2000, 2(3): 324–332.
    [184] Kevin, B., Hallberg, D., Barrie, J., Novel acidophiles isolated from moderately acidic mine drainage waters. Hydrometallurgy 2003, 71: 139–148.
    [185]高平平,赵立平.可用于微生物群落分子生态学研究的活性污泥总DNA提取方法研究.生态学报. 2002, 22(11): 2015–2019.
    [186] Xia, Y., Min, H., Lu, Z.M., Ye, Y.F., Characterization and phylogenetic analysis of a phenanthrene-degrading strain isolated from oil-contamination soil. Journal of Environmental Sciences 2004, 16(4): 589–593.
    [187] Bouchez, T., Jacob, P., d’Hugues, P., Durand, A., Acidophilic microbial commol L-1unities catalyzing sludge bioleaching monitored by fluorescent in situ hybridization. Antonie van Leeuwenhoek 2006, 89: 435–442.
    [188] Mahmoud, K.K., Leduc, L.G., Ferroni, G.D., Detection of Acidithiobacillus ferrooxidans in acid mine drainage environments using fluorescent in situ hybridization (FISH). J. Microbiol. Methods. 2005, 61: 33– 45.
    [189] Bond, P.L., Banfield, J.F., Design and performance of rRNA targeted oligonucleotide probes for in situ detection and phylogenetic identification of microorganisms inhabiting acid mine drainage environments. Microb. Ecol. 2001, 41: 149–161.
    [190] Olson, G.J., Brierley, J.A., Brierley, C.L., Bioleaching review part B: Progress in bioleaching: applications of microbial processes by the minerals industries. Appl Microbiol Biotechnol. 2003, 63: 249–257.
    [191] Visser, J.M., Stefess, G.C., Robertson, L.A., Thiobacillus sp. W5, the dominant autotroph oxidizing sulfide to sulfur in a reactor for aerobic treatment of sulfidic wastes. Antonie van Leeuwenhoek, 1997, 72: 127–134.
    [192]汪靓.废旧镍镉电池的生物法沥滤处理[硕士论文].上海:上海交通大学. 2006.
    [193] Igarashi, T., Yoshida, T., Asakura, K., Miyamae, H., Lyatomi, N., Hashimoto, K., Ferrite formation using precipitate in the treatment of acid mine drainage for reducing its volume. In: Proceedings of the 5th International Congress on Environmental Geotechnics. Cardiff, Wales, UK. 2006, 909–916.
    [194]赵如金,吴春笃.常温铁氧体法处理重金属离子废水研究.化工环保. 2005, 25(4): 263–266.
    [195]李军.铁氧体沉淀法处理重金属废水.电镀与环保. 1999, 19(1): 30–31.
    [196]贾金平,冯雪,杨骥.电镀重金属污泥的处理及其铁氧体化综合利用.上海化工. 1999, 24: 28–30.
    [197]卢莲英,邹光中,叶宋娣.铁氧体与镉共沉淀的试验研究.化学与生物工程. 2004(6): 44–45.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700