用户名: 密码: 验证码:
土壤腐殖酸与酶蛋白相互作用的机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蛋白质是环境中重要的活性组分,主要通过动植物和微生物的分泌、残体遗骸的分解释放、人类的活动等进入土壤和水体环境中。这些蛋白质既包含具有催化作用的脲酶、酸性磷酸酶等,也包含一些对环境存在潜在危害性的朊病毒、禽流感病毒等。当它们进入环境中,很少以游离态存在,常与有机物、矿物、微生物等结合在一起。腐殖酸作为环境中重要的组分,广泛存在于土壤、水体等环境中,可以在静电、疏水、化学键等的驱使下以吸附、共聚或者包埋等作用机制与蛋白质发生作用。本文主要以腐殖酸和溶菌酶为研究对象,从胶体性质的角度出发,在了解两者表面电荷性质的基础上,通过研究pH值、离子强度、复合物质量比、腐殖酸类型等对两者作用过程中电化学性质以及对酶活性、结构的影响,进一步揭示两者的主要作用机制。主要结果如下:
     1.阐明了胶体表面绝对电荷量的测定方法,在酸碱滴定和Stat-pH滴定的基础上,通过测定曲线上某一点处的绝对电荷量,经过平移最终得到了不同离子强度下腐殖酸表面绝对电荷量随pH值变化的曲线。绝对电荷的测定方法需要根据样品的性质来选择,本文对采用聚电解质滴定法和采用改变样品溶液pH值和离子强度计算质子解离量来测定腐殖酸表面绝对电荷量的两种方法进行了比较,结果发现对于胡敏酸而言,聚电解质滴定法测得的结果大于酸碱滴定的结果;富里酸不适合采用聚电解质滴定法进行测定,测定结果偏低。
     2.采用颗粒电荷滴定仪测定了腐殖酸滴定溶菌酶的过程中电势(mV)以及pH值的变化。根据电势的变化计算达到复合物等电点时腐殖酸与溶菌酶的电中性质量比(mHS/mLSZ)IEp,结果表明腐殖酸与溶菌酶之间具有较高的分子亲和力,电中性质量比(mHS/mLSZ)IEP随离子强度的增加而增加,随pH值的升高而下降。并与理论得到的电荷补偿质量比(mHS/mLSZ)CCP进行了比较,结果发现(mHS/mLSZ) IEP>(mHS/mLSZ) ccp,这是因为K+参与复合物的形成,且其参与量随着离子强度的增加而增加,随着pH值的升高而下降。此外,K+的参与量还与腐殖酸的类型有关,在JGFA与溶菌酶复合物中的参与量最大,而在PAHA与溶菌酶复合物中的参与量最小。
     3.观察了不同质量比的腐殖酸与溶菌酶复合物随时间变化的絮凝现象,结果表明腐殖酸与溶菌酶的复合物在等电点处的絮凝现象最明显,较短的时间内出现了大量的絮凝物。对于胡敏酸与溶菌酶的复合物而言,较大的质量比不易于絮凝物的产生,带负电荷的复合物分子之间存在的静电排斥力促进了复合物解聚的发生,抑制了絮凝物的产生。
     4.腐殖酸与蛋白质的作用过程中,通过测定复合物中酶活性的变化来反映溶液pH值、离子强度、复合质量比对复合物形成、电荷性质、结构等方面的影响,从而进一步揭示两者的作用机制。结果表明静电作用力在腐殖酸与蛋白质之间起着重要的作用。在静电引力的驱动下,溶菌酶被腐殖酸包被在其分子结构中,底物接触活性位点受阻导致活性降低。在两者的作用过程中,复合物的质量比起着重要的作用,决定了复合物表面所带的电荷量以及复合物分子的结构。此外,离子强度对腐殖酸和溶菌酶之间的静电屏蔽作用与质量比有关,在等电点前后其对酶活的作用相反,进一步表明静电作用在两者之间的重要性。富里酸分子量低、结构简单,对溶菌酶包被的程度以及对酶活性的抑制程度均小于胡敏酸。腐殖酸与两性分子脲酶的静电作用受溶液pH值的影响:pH值大于脲酶等电点时,两者之间存在静电排斥作用;pH值小于脲酶等电点时,两者之间主要以静电引力为主。离子强度对腐殖酸和脲酶之间的静电作用力同样具有屏蔽作用。腐殖酸降低了溶菌酶的稳定性,且在电中性质量比处稳定性最低。相反,腐殖酸的加入减弱了脲酶分子之间的碰撞从而提高了脲酶的稳定性。
     5.采用荧光光谱法研究了腐殖酸与溶菌酶的作用对色氨酸微环境的改变,结果发现pH5及5mmol L-1KCl时,腐殖酸对溶菌酶在340nm处的荧光峰产生猝灭作用(激发波长为280nm)。随着复合物质量比的增加,荧光猝灭的程度增强,当质量比大于0.2时,溶菌酶在该处的荧光发射峰几乎消失;340nm处的荧光峰主要由色氨酸贡献,随着腐殖酸质量的增加,色氨酸的荧光发射峰逐渐发生红移,表明腐殖酸与溶菌酶的结合使得色氨酸残基附近的微环境发生了变化,极性增强,疏水性降低,蛋白质的结构变得疏松。
     6.采用圆二色谱法测定了在腐殖酸与溶菌酶复合过程中,蛋白质二级结构的变化,结果发现PAHA、JGHA与溶菌酶的复合物中,α螺旋、自由卷曲的含量均随着质量比的增加呈先下降后上升的趋势,在等电点处形成一个拐点,与复合物酶活性随质量比的变化趋势一致。β折叠的含量随质量比的增加呈先上升后下降的变化趋势,同样在等电点处形成一个拐点,拐点为胡敏酸对溶菌酶包被和解聚的一个转折点。对于JGFA来说,α螺旋、转角、自由卷曲的含量均随着复合物质量比的增加而增加,而β折叠则随着质量比的增加呈现下降的趋势,在电中性质量比f=0.6时均未出现拐点。
     7.采用衰减全反射红外光谱法研究了复合时间、质量比、pH值、离子强度等对复合物红外光谱的影响。当质量比f=(mHA/mLSZ)IEP时,腐殖酸对酶的包被程度达到最大,溶菌酶的红外吸收峰均受到了较大程度的抑制。随着pH值的升高,胡敏酸对溶菌酶的红外吸收峰产生最大屏蔽作用时对应的质量比降低,与复合物电中性质量比随pH值的升高而下降是一致的。当离子强度增加至50mmol L-1时,胡敏酸对溶菌酶的包被及解聚现象不明显,不同质量比复合物的红外光谱差异不大。质量比、pH值、离子强度对富里酸与溶菌酶复合物红外光谱的影响都不大。
Protein as a component of organic matter, can enter into the soil and water system through the secretion of animals, plants roots and microorganisms, the release from the residue and decomposition of these living things, and human's activities. Enzymes, e.g. phosphatase and urease, play important roles in the environment, especially for the geochemical cycle of elements such as phosphorus (P), nitrogen (N) etc. Another type of protein like prion causing transmissible spongiform encephalopathies, bacillus thuringiensis (Bt) protein, avian influenza virus, are potentially harmful factors in environment for human and animals. When these proteins are released into environment, they will combine with organic matter, minerals and microorganisms. Humic Substances (HS) are important components of organic matter and are widely distributed in the soil and water. Driven by the electrostatic interaction, hydrophobic force and chemical binding, proteins can be adsorbed onto or entrapped into HS, or can co-polymerize with HS.In this paper, we firstly investigated the colloidal properties of HS and lysozyme (LSZ), especially the surface charge of them. Then we studied the effect of HS on the activity, stability and structure of LSZ. Factors like pH, ionic strength, mass ratio HS/LSZ and types of humic acids were considered. Main results are below:
     1. We elucidated the method of getting the abosulte charge of colloids. On the basement of acid-base titration and Stat-pH titration, we tested the absolute charge of one point on△charge-pH curve and then moved them parallel using this point as reference. Finally we can obtain absolute charge of colloids as a function of pH at different KC1concentrations. For getting the absolute charge of HS, two methods were applied and compared. The first method was polyDADMAC titration and the absolute charge of HS was calculated according to the mass ratio polyDADMAC/HS at IEP of the complex and the charge of polyDADMAC (5.9mmol g-1); the second method was calculating the proton release by changing pH and ionic strength of protonated sample solutions. The results showed that the charge of JGHA obtained from the first method was larger than the second and for JGFA the first method was not suitable and made the result much lower.
     2. We monitored the change of potential (mV) and pH values when LSZ was titrated by HS. The mass ratio HS/LSZ at IEP of complex (mHS/mLSZ)IEP can be obtained with muitek particle charge detector. The results showed that the affinity of HS and LSZ was high and (mHS/mLSZ)IEP increased with increase of ionic strength and decrease of pH values. Moreover, we also calculated the mass ratio (mHS/mLSZ)CCP, which equals the charge density of LSZ divided by the charge density of HS. By comparison,(mHS/mLSZ)IEP>(mHS/mLSZ)CCP can be found, which is due to the participation of K+And the participation of K+increased with ionic strength and decreased with pH. Moreover, it was also related to the types of HS. The participation of K+reached the largest in JGFA-LSZ complexes and the lowest in PAHA-LSZ complexes.
     3. The flocculation of HS-LSZ complexes (with series of mass ratios) as a function of time was observed. The results showed that the aggregation of complex at IEP occurred the earliest and the amount of aggregation was the largest. For HA-LSZ complexes with larger mass ratio (f=1.0), the aggregation was inhibited. This was probably due to the electrostatic repulsion between negatively charged molecules.
     4. During HS interaction with LSZ, the enzyme activity in complexes was measured to reflect the effect of pH, ionic strength, mass ratio HS/enzyme on the formation, charge properties and structure of complexes, further indicating the mechanism of their interaction. Our results showed that electrostatic interaction plays an important role in the interaction of HS with LSZ. Driven by electrostatic attraction, LSZ was encapsulated into HS inner structure. As a result, the active sites of LSZ were shielded and substrate could not contact with them, leading the decrease of LSZ activity. Especially for two oppsitely charged particles, mass ratio was crucial because it determined the surface charge and structure of complexes; ionic strength screened the electrostatic interaction between HS and LSZ, which was also related to mass ratio. The effect of ionic strength on LSZ activity was opposite before and after IEP of the complex, indicating the importance of electrostatic interaction. Due to the smaller molecular weight and simpler structure of FA, the encapsulation of LSZ by FA was much weaker. The interaction of HS with amphoteric urease was also investigated. The electrostatic interaction was also important and was dependent on pH value of solution. When pH was larger than the PZC of urease, electrostatic repulsion hindered the encapsulation of urease by HS and maintained the high activity of urease; when pH was lower than the PZC of urease, electrostatic attraction improve the interaction of HS with urease, which was similar with LSZ-HS complex. The presence of HS decreased LSZ stability, and this inhibition reached maximum at the IEP of complexes due to the strongest aggregation of complexes at this point. However, the presence of HS improved the stability of urease. This was possibly because the collision among urease moleculars was decreased by HS and increased its stability.
     5. The fluorescence spectrum and synchronous excitation fluorescence spectrum (△λ,=60) of LSZ in the presence of HS at pH5and5mmol L-1KC1were conducted in order to investigate the change of microenvironment of LSZ. The results indicated that with excitation wave set at280nm, a progressive reduction in fluorescence intensity at340nm was caused by the increasing concentrations of HS. As mass ratio increased to0.2, the fluorescence intensity was nearly zero. Thus, the fluorescence of LSZ was strongly quenched and the red shift of λmax can be reasonably attributed to an increased polarity (or a decreased hydrophobicity) and loose structure of the region surrounding Trp site.
     6. The circular dichroism spectra of LSZ in the presence of HS were conducted and the secondary structure of LSZ in HS-LSZ complexes was calculated. Our results showed that the content of a-helix and random coils of HA-LSZ complexes firstly increased and then decreased with the increase of mass ratio HS/LSZ. For β-sheets, its content as a function of mass ratio HS/LSZ was opposite to a-helix and random coils. The turning points for the percentage of a-helix, random coils and β-sheets as a function of mass ratio HS/LSZ were formed at IEP of the complex, which was corresponding with the acticity of LSZ in complex as a function of mass ratio HS/LSZ. At this point, the complex of HS-LSZ started to disaggregate, accompanied with the change of secondard structure. For JGFA-LSZ complex, the content of a-helix, random coils and β-turns increased with increasing mass ratio while the content of β-sheets decreased.
     7. With ATR-FTIT spectrum, we investigated the effect of HS on the FTIR spectrum of LSZ at different conditions like incubation time, pH, ionic strength and mass ratio HS/LSZ. The results showed that the adsorption bands of LSZ were screened by HS most significantly around the IEP of HS-LSZ complex, Moreover, the mass ratio at which the screening was the most significant decreased with the increase of pH. This was corresponding to the decrease of (HS/LSZ)IEP with increasing pH. When ionic strength was increased to50mmol L-1, the similar results were not observed. As to JGFA-LSZ complex, factors like mass ratio, pH and ionic strength had little influence.
引文
1. 白国允.药物与蛋白质弱相互作用的NMR研究.[博士学位论文].武汉:中国科学院研究生院(武汉物理与数学研究所),2005
    2.曹慧,孙辉,杨浩,孙波,赵其国.土壤酶活性及其对土壤质量的指示研究进展.应用与环境生物学报,2003,9(1):105-109
    3.陈飞霞,魏沙平,魏世强.毒死蜱农药在中性紫色土腐殖酸上的吸附.中国环境科学,2007,27(2):217-220
    4. 陈夫山,谢来苏.用胶体滴定法测定聚合物的电荷.中国造纸,2000,19(2):30-34
    5. 陈艳,江明锋,叶煜辉,刘勇涛,李生伟.溶菌酶的研究进展.生物学杂志,2009,26(2):64-66
    6.陈盈,张满利,张威,何洪波,关连珠,颜丽.不同来源腐殖酸与Mn2+和Zn2+络合稳定常数的确定.辽宁工程技术大学学报(自然科学版),2008,27(3):478481
    7. 陈玉蕉,何北海.胶体滴定方法及其研究进展.造纸化学品,2000,1:13
    8.邓斌.几种小分子与血清白蛋白相互作用的研究.[硕士学位论文].辽宁:辽宁大学图书馆,2008
    9.邓乾春,黄庆德,黄凤洪,谢笔钧.蛋白质溶液构象的研究方法.生物物理学报,2009,25(4):237-246
    10.董莲华,覃召海,李宝珍,袁红莉.腐植物质结构鉴定研究方法进展.腐植酸,2007,3:1-10
    11.窦森.土壤有机质.北京:科学出版社,2010
    12.杜海涛,顾仁梅.一种新的造纸机湿部控制方法——粒子表面电荷测定法.中国造纸,1998,17(6):64-68
    13.付庆灵.Bt毒素在矿物和土壤胶体上的吸附和残留研究.[博士学位论文].武汉:华中农业大学图书馆,2009
    14.付庆灵,胡红青,陈守文,邓雅丽,黄丽.Bt蛋白在矿物表面吸附的光谱研究.中国科技论文在线.2007-08-29http://www.paper.edu.cn/releasepaper/content/200708-432
    15.高扬,夏军,汪亚峰.Cd,Pb单一及复合污染下土壤酶生态抑制效应及土壤健康修复基准研究.第四届全国农业环境科学学术研讨会论文集.2011
    16.郭建宇.拉曼光谱研究人血清白蛋白与药物的相互作用.[硕士学位论文].上海:华东师范大学图书馆,2004
    17.何文英.若干中草药活性组分与几种球状蛋白质相互作用的研究.[博士学位论文].兰州:兰州大学图书馆,2006
    18.贺婧,钟艳霞,颜丽.不同来源腐殖酸对土壤酶活性的影响.中国农学通报,2009,25(24):258-261
    19.李光林,魏世强,青长乐.腐殖酸与几种重金属离子的相互作用及影响因素研究.[博士学位论文].重庆:西南农业大学图书馆,2001
    20.李久虹.利用衰减全反射傅立叶变换红外光谱方法对乙二醇水溶液定量分析的研究.现代仪器,2007,13(3):63-65
    21.李克斌,刘维屏,许中坚,马云.灭草松在腐殖酸上的吸附及其机理.环境科学学报,2002,22(6):754-758
    22.李正,刘国顺,敬海霞,解昌盛,向永光,杨超,郑文冉,叶协锋.翻压绿肥对植烟土壤微生物量及酶活性的影响.草业学报,2011,20(3):225-232
    23.刘恩科,赵秉强,李秀英,姜瑞波,李燕婷,Hwat Bing So.长期施肥对土壤微生物量及土壤酶活性的影响.植物生态学报,2008,32(1):176-182
    24.刘善江,夏雪,陈桂梅,卯丹,车升国,李亚星.土壤酶的研究进展.中国农学通报,2011,27(21):1-7
    25.刘新超,李俊,谢丽,何小娟,栾富波,周琪.腐殖酸表征方法研究进展.净水技术,2009,28(3):6-9
    26.吕婧,蒋勇军,俞庆森,邹建卫.洋刀豆脲酶与抑制剂相互作用的分子对接和分子动力学研究.化学学报,2011,69(20):2427-2433
    27.马林,刘东群,杨华,童张法.正丙醇和异丙醇对水溶液中牛血清白蛋白的构象及其荧光光谱的影响.化学通报,2008,71(1):56-61
    28.乔学琴.土壤活性颗粒表面酸性磷酸酶的固定机理与特性.[硕士学位论文].武汉:华中农业大学图书馆,2007
    29.冉德焕.有机小分子与蛋白质相互作用的研究及其分析应用.[硕士学位论文].济南:山东大学图书馆,2007
    30.孙瑞莲,赵秉强,朱鲁生,徐晶,张夫道.长期定位施肥对土壤酶活性的影响及其调控土壤肥力的作用.植物营养与肥料学报,2003,9(4):406-410.
    31.孙宇,贾凌云,任军.蛋白质相互作用的研究方法.分析化学,2007,35(5):760-766
    32.唐江宏,连宁,张国华,赵德建.小分子物质与蛋白质相互作用研究方法的现状与进展.江苏技术师范学院学报,2010,16(12):1-7
    33.王安萍.几种天然药物黄酮类活性成分与蛋白质相互作用的研究.[硕士学位论文].南昌:南昌大学图书馆,2007
    34.王改珍,贺进田,冯美彦,夏箐.聚乙烯醇与牛血清白蛋白的相互作用及对其构 象的影响.高等学校化学学报,2009,30(1):68-71
    35.王改珍,贺进田,闫慧源,周志涛,周香莲,侯笑娜,崔艳.聚乙烯醇与溶菌酶的相互作用及其对溶菌酶构象的影响.化学学报,2008,66(9):1042-1046
    36.王树起,韩晓增,乔云发,王守宇.长期施肥对东北黑土酶活性的影响.应用生态学报,2008,19(3):551-556
    37.魏凌云.红壤不同活性颗粒对酸性磷酸酶吸附—解吸及活性的影响.[硕士学位论文].武汉:华中农业大学图书馆,2004
    38.吴立全,姜益娟,周连仁,刘颖.生物改良苏打草甸碱土对土壤酶活性的影响.黑龙江农业科学,2009,2009(1):4546
    39.吴应琴,陈慧,王永莉,雷天柱,夏燕青.腐殖酸对蒽的增溶作用及其影响因素.环境化学,2009,28(4):515-518
    40.吴宗华,陈少平.胶体滴定法测定阳离子淀粉的电荷密度.精细化工,2001,18(2):98-102
    41.吴宗华,陈少平,田中浩雄.流动电位/胶体滴定法测定聚电解质电荷密度的研究.分析科学学报,2001,17(3):207-210
    42.谢孟峡,刘媛.红外光谱酰胺Ⅲ带用于蛋白质二级结构的测定研究.高等学校化学学报,2003,24(2):226-231
    43.徐琳,王乃岩,霸书红,王云龙.傅里叶变换衰减全反射红外光谱法的应用与进展.光谱学与光谱分析,2004,24(3):317-319
    44.徐巍.药物与生物大分子相互作用的研究.[博士学位论文].济南:山东大学图书馆,2009
    45.薛永来,王帅,冯喜增.光谱法研究金属离子与肿瘤抑制蛋白p53的DNA结合结构域的相互作用.分析化学,2009,37(8):1131-1136
    46.叶锋,安英格,秦德志,杨林,佘岚,邢瑞敏.羟基磷灰石结晶对牛血清白蛋白二级结构影响的光谱研究.光谱学与光谱分析,2007,27(2):321-324
    47.尹燕霞,向本琼,佟丽.荧光光谱法在蛋白质研究中的应用.实验技术与管理,2010,27(2):33-36
    48.于兵川,吴洪特,周培疆,谢玲玲,陆光汉,宋丰,吴振斌.五氯苯酚与腐殖酸作用的荧光猝灭效应研究.环境化学,2006,25(2):164-167
    49.袁玲,杨邦俊,郑兰君,刘学成.长期施肥对土壤酶活性和氮磷养分的影响.植物营养与肥料学报,1997,3(4):300-306
    50.岳巧丽.三种蛋白质与小分子物质相互作用的分子光谱法研究.[博士学位论文].西安:西北大学图书馆,2008
    51.张朝红,邓丽娜,韩文明,沈曼莉,王君.苯基锡系列化合物与牛血清白蛋白相互作用的光谱研究.渤海大学学报(自然科学版),2008,29(2):97-104
    52.张小磊,安春华,马建华,符燕.长期施肥对城市边缘区不同作物土壤酶活性的影响.土壤通报,2007,38(4):667-671
    53.张咏梅,周国逸,吴宁.土壤酶学的研究进展.热带亚热带植物学报,2004,12(1): 83-90
    54.郑勇,高勇生,张丽梅,何园球,贺纪正.长期施肥对旱地红壤微生物和酶活性的影响.植物营养与肥料学报,2008,14(2):316-321
    55.周宏,陈昌云,谢安建.光谱法研究盐酸非那吡啶与牛血清白蛋白的结合作用.光谱学与光谱分析,2007,27(9):1830-1833
    56.周能,梁逸曾,王平,刘韶,王兵,曾茂茂.荷花碱与牛血清白蛋白的相互作用.分析化学,2008,36(8):1066-1070
    57.周文,陈新,邵正中.红外和拉曼光谱用于对丝蛋白构象的研究.化学进展,2006,18(11):1514-1522
    58. Abate G, Masini JC. Influence of pH and ionic strength on removal processes of a sedimentary humic acid in a suspension of vermiculite. Colloids Surf, A,2003,226(1): 25-34
    59. Aleixo L, Godinho O, Da Costa W. Potentiometric study of acid-base properties of humic acid using linear functions for treatment of titration data. Anal Chim Acta, 1992,257(1):35-39
    60. Avena MJ, Koopal LK, Van Riemsdijk WH. Proton binding to humic acids: Electrostatic and intrinsic interactions. J Colloid Interface Sci,1999b,217(1):37-48
    61. Avena MJ, Vermeer AWP, Koopal LK. Volume and structure of humic acids studied by viscometry:pH and electrolyte concentration effects. Colloids Surf, A,1999a, 151(1-2):213-224
    62. Ball A, Jones R. Conformational changes in adsorbed proteins. Langmuir,1995, 11(9):3542-3548
    63. Banerjee A, Basu K, Sengupta PK. Interaction of 7-hydroxyflavone with human serum albumin:A spectroscopic study. J Photoch Photobio B,2008,90(1):33-40
    64. Baron M, Revault M, Servagent-Noinville S, Abadie J, Quiquampoix H. Chymotrypsin adsorption on montmorillonite:Enzymatic activity and kinetic FTIR structural analysis. J Colloid Interface Sci,1999,214(2):319-332
    65. Beckett R, Jue Z, Giddings JC. Determination of molecular weight distributions of fulvic and humic acids using flow field-flow fractionation. Environ Sci Technol,1987, 21(3):289-295
    66. Biesheuvel PM, Van Der Veen M, Norde W. A modified Poisson-Boltzmann model including charge regulation for the adsorption of ionizable poly electrolytes to charged interfaces, applied to lysozyme adsorption on silica. JPhys Chem B,2005, 109(9):4172-4180
    67. Boasson E. On the bacteriolysis by lysozyme. J Immunol,1938,34(4):281-293
    68. Bratskaya S, Golikov A, Lutsenko T, Nesterova O, Dudarchik V. Charge characteristics of humic and fulvic acids:Comparative analysis by colloid titration and potentiometric titration with continuous pK-distribution function model. Chemosphere,2008,73(4):557-563
    69. Brigante M, Zanini G, Avena M. On the dissolution kinetics of humic acid particles: Effects of pH, temperature and Ca2+ concentration. Colloids Surrf A,2007,294(1): 64-70
    70. Burns R. Enzyme activity in soil:Location and a possible role in microbial ecology. Soil Biol Biochem,1982,14(5):423-427
    71. Butler J, Ladd J. Importance of the molecular weight of humic and fulvic acids in determining their effects on protease activity. Soil Biol Biochem,1971,3(3):249-257
    72. Cannan RK. The acid-base titration of proteins. Chem Rev,1942,30(3):395-412
    73. Chang KY, Carr CW. Studies on the structure and function of lysozyme:I. The effect of pH and cation concentration on lysozyme activity. BBA-Pro Structure,1971,229 (2):496-503
    74. Chen Y, Schnitzer M. Viscosity measurements on soil humic substances. Soil Sci Soc Am J,1976,40(6):866-872
    75. Chen Y, Senesi N, Schnitzer M. Information provided on humic substances by E4/E6 ratios. Soil Sci Soc Am J,1917,41(2):352-358
    76. Cheol Park S, Smith TJ, Bisesi MS. Activities of phosphomonoesterase and phosphodiesterase from Lumbricus terrestris. Soil Biol Biochem,1992,24(9): 873-876
    77. Chittur KK. FTIR/ATR for protein adsorption to biomaterial surfaces. Biomaterials; 1998,19(4-5):357-369
    78. Christl I, Kretzschmar R. Relating ion binding by fulvic and humic acids to chemical composition and molecular size.1. Proton binding. Environ Sci Technol,2001,35(12): 2505-2511
    79. Daeschel MA, Musafija-Jeknic T, Wu Y, Bizzarri D, Villa A. High-performance liquid chromatography analysis of lysozyme in wine. Am JEnol Vitic,2002,53(2): 154-157
    80. De Kruif CG, Weinbreck F, De Vries R. Complex coacervation of proteins and anionic polysaccharides. Curr Opin Colloid In,2004,9(5):340-349
    81. Dereppe JM, Moreaux C, Debyser Y. Investigation of marine and terrestrial humic substances by'H and 13C, nuclear magnetic resonance and infrared spectroscopy. Org Geochem,1980,2(3):117-124
    82. Diaz X, Abuin E, Lissi E. Quenching of BSA intrinsic fluorescence by alkylpyridinium cations:Its relationship to surfactant-protein association. JPhotoch Photobio A,2003,155(1):157-162
    83. Dixon NE, Riddles PW, Gazzola C, Blakeley RL, Zerner B. Jack bean urease (EC 3.5. 1.5). V. On the mechanism of action of urease on urea, formamide, acetamide, N-methylurea, and related compounds. Can JBiochem,1980,58(12):1335-1344
    84. Docoslis A, Rusinski LA, Giese RF, Van Oss CJ. Kinetics and interaction constants of protein adsorption onto mineral microparticles—measurement of the constants at the onset of hysteresis. Colloids Surf, B,2001,22(4):267-283
    85. Dong LH, Yang JS, Yuan HL, Wang ET, Chen WX. Chemical characteristics and influences of two fractions of Chinese lignite humic acids on urease. Eur J Soil Biol, 2008,44(2):166-171
    86. Drosos M, Jerzykiewicz M, Deligiannakis Y. H-binding groups in lignite vs. soil humic acids:NICA-Donnan and spectroscopic parameters. J Colloid Interface Sci, 2009,332(1):78-84
    87. Friebele E, Shimoyama A, Ponnamperuma C. Adsorption of protein and non-protein amino acids on a clay mineral:A possible role of selection in chemical evolution. J Mol Evol,1980,16(3-4):269-278
    88. Fu FN, Fuller MP, Singh BR. Use of fourier transform infrared/attenuated total reflectance spectroscopy for the study of surface adsorption of proteins. Appl Spectrosc,1993,47(1):98-102
    89. Fukushima M, Tanaka S, Nakamura H, Ito Saburo. Acid-base characterization of molecular weight fractionated humic acid. Talanta,1996,43(3):383-390
    90. Galazka VB, Ledward DA, Sumner IG, Dickinson E. Influence of high pressure on bovine serum albumin and its complex with dextran sulfate. J Agr Food Chem,1997, 45(9):3465-3471
    91. Galazka VB, Smith D, Ledward DA, Dickinson E. Complexes of bovine serum albumin with sulphated polysaccharides:Effects of pH, ionic strength and high pressure treatment. FoodChem,1999a,64(3):303-310
    92. Galazka V, Smith D, Ledward D, Dickinson E. Interactions of ovalbumin with sulphated polysaccharides:Effects of pH, ionic strength, heat and high pressure treatment. Food Hydrocolloid,1999b,13(2):81-88
    93. Ghosh K, Schnitzer M. Macromolecular structures of humic substances. Soil Sri, 1980,129(5):266-276
    94. Giacomelli CE, Norde W. The adsorption-desorption cycle reversibility of the BSA-silica system. J Colloid Interface Sci,2001,233(2):234-240
    95. Gondar D, Lopez R, Fiol S, Antelo JM, Arce F. Characterization and acid-base properties of fulvic and humic acids isolated from two horizons of an ombrotrophic peat bog. Geoderma,2005,126(3):367-374
    96. Goobes G, Goobes R, Shaw WJ, Gibson JM, Long JR, Raghunathan V, Schueler-Furman O, Popham JM, Baker D, Campbell CT, Stayton PS, Drobny GP. The structure, dynamics, and energetics of protein adsorption-lessons learned from adsorption of statherin to hydroxyapatite. Magn Reson Chem,2007,45(S1):S32-S47
    97. Gorinstein S, Goshev I, Moncheva S, Zemser M, Weisz M, Caspi A, Libman I, Lerner HT, Trakhtenberg S, Martin-Belloso O. Intrinsic tryptophan fluorescence of human serum proteins and related conformational changes. JProtein Chem,2000, 19(8):637-642
    98. Haynes CA, Sliwinsky E, Norde W. Structural and electrostatic properties of globular proteins at a polystyrene-water interface. J Colloid Interface Sci,1994,164(2): 394-409
    99. Helassa N, Quiquampoix H, Noinville S, Szponarski W, Staunton S. Adsorption and desorption of monomeric Bt (Bacillus thuringiensis) CrylAa toxin on montmorillonite and kaolinite. Soil Biol Biochem,2009,41(3):498-504
    100.Hong S, Elimelech M. Chemical and physical aspects of natural organic matter (NOM) fouling of nanofiltration membranes. J Membrane Sci,1997,132(2):159-181
    101.Hsu PH. Evidence for chemical binding of proteinaceous materials to humic acids as a means for their preservation in the environment (Ph D dissertation). Columbus:The Ohio State University,2004
    102.Hsu PH, Hatcher PG. New evidence for covalent coupling of peptides to humic acids based on 2D NMR spectroscopy:A means for preservation. Geochim Cosmochim Ac, 2005,69(18):4521-4533
    103.Hu H, Bhowmik P, Zhao B, Hamon MA, Itkis ME, Haddon RC. Determination of the acidic sites of purified single-walled carbon nanotubes by acid-base titration. Chem Phys Lett,2001,345(1-2):25-28
    104.1shiguro M., Tan W. F., Koopal L. K. Binding of cationic surfactants to humic substances. Colloids Surf, A,2007,306(1-3):29-39
    105.Janos P, Krizenecka S, Madronova L. Acid-base titration curves of solid humic acids. React Funct Polym,2008,68(1):242-247
    106.Jones KL, O'Melia CR. Protein and humic acid adsorption onto hydrophilic membrane surfaces:Effects of pH and ionic strength. J Membrane Sci,2000,165(1): 31-46
    107.Jones KL, O'Melia CR Ultrafiltration of protein and humic substances:Effect of solution chemistry on fouling and flux decline. J Membrane Sci,2001,193(2): 163-173
    108.Kam S, Gregory J. Charge determination of synthetic cationic poly electrolytes by colloid titration. Colloids Surf, A,1999,159(1):165-179
    109.Kamiya M, Kameyama K. Photochemical effects of humic substances on the degradation of organophosphorus pesticides. Chemosphere,1998,36(10):2337-2344
    110.Kandagal PB, Ashoka S, Seetharamappa J, Shaikh SMT, Jadegoud Y, Ljare OB. Study of the interaction of an anticancer drug with human and bovine serum albumin: Spectroscopic approach. JPharmaceut Biomed,2006,41(2):393-399
    111.Kang J, Liu Y, Xie MX. Interactions of human serum albumin with chlorogenic acid and ferulic acid. BBA-Gen Subjects,2004,1674(2):205-214
    112.Karplus PA, Pearson MA, Hausinger RP.70 Years of crystalline urease:what have we learned? Accounts Chem Res,1997,30(8):330-337
    113.Kawamura S, Hanna GP, Shumate KS. Application of colloid titration technique to flocculation control. J Am Water Works Ass,1967,59(8):1003-1013
    114.Kawamura S, Tanaka Y. Applying colloid titration techniques to coagulant dosage control. Water Sew Work,1966,113(9):348-357
    115.Kelleher BP, Willeford KO, Simpson AJ, Simpson MJ, Stout R, Rafferty A, Kingery WL. Acid phosphata.se interactions with organo-mineral complexes:influence on catalytic activity. Biogeochemistry,2004,71(3):285-297
    116.Kim JI, Buckau G, Li GH, Duschner H, Psarros N. Characterization of humic and fulvic acids from Gorleben groundwater. Fresenius'J Anal Chem,1990,338(3): 245-252
    117.Kipton H, Powell J, Town RM. Solubility and fractionation of humic acid; effect of pH and ionic medium. Anal Chim Acta,1992,267(1):47-54
    118.Kiss I. The invertase activity of earthworm casts and soils from ant hills. Agrokem Talajtan,1957,6:65-85
    119.Kondo A, Fukuda H. Effects of adsorption conditions on kinetics of protein adsorption and conformational changes at ultrafine silica particles. J Colloid Interface Sci,1998,198(1):34-41
    120.Kondo A, Oku S, Higashitani K. Structural changes in protein molecules adsorbed on ultrafine silica particles. J Colloid Interface Sci,1991,143(1):214-221
    121.Kozlov K. The role of soil fauna in the enrichment of soil with enzymes. Pedobiologia,1965,5:140-145
    122.Krajewska B. Ureases I. Functional, catalytic and kinetic properties:A review. JMol Catal B-Enzym,2009,59(1):9-21
    123.Kuramitsu S, Hamaguchi K. Analysis of the acid-base titration curve of hen lysozyme. JBiochem,1980,87(4):1215-1219
    124.Kuwatsuka S, Tsutsuki K, Kumada K. Chemical studies on soil humic acids:1. Elementary composition of humic acids. Soil Sci Plant Nutr,1978,24(3):337-347
    125.Ladd J, Butler J. Inhibition and simulation of proteolytic enzyme activities by soil humic acids. Soil Res,1969,7(3):253-261
    126.Langhals H, Abbt-Braun G, Frimmel F. Association of humic substances:Verification of Lambert-Beer Law. Acta Hydrochim Hydrobiol,2000,28(6):329-332
    127.Lenk TJ, Ratner BD, Gendreau RM, Chittur KK. IR spectral changes of bovine serum albumin upon surface adsorption. J Biomed Mater Res,1989,23(6):549-569
    128.Leprince F, Quiquampoix H. Extracellular enzyme activity in soil:Effect of pH and ionic strength on the interaction with montmorillonite of two acid phosphatases secreted by the ectomycorrhizal fungus Hebeloma cylindrosporum. Eur J Soil Sci, 1996,47(4),511-522
    129.Li Y, Tan WF, Wang MX, Liu F, Weng LP, Norde W, Koopal LK. Influence of lysozyme complexation with purified Aldrich humic acid on lysozyme activity. Eur J Soil Sci,2012,63(5):550-557
    130.Liu B, Hu R, Deng J. Studies on a potentiometric urea biosensor based on an ammonia electrode and urease, immobilized on a y-aluminum oxide matrix. Anal Chim Acta,1997,341(2):161-169
    131.Liu R, Yang J, Sun C, Wu X, Li L, Li Z. Resonance light-scattering method for the determination of BSA and HSA with sodium dodecyl benzene sulfonate or sodium lauryl sulfate. Anal Bioanal Chem,2003,377(2):375-379
    132.Lundqvist M, Sethson I, Jonsson BH. Protein adsorption onto silica nanoparticles: Conformational changes depend on the particles'curvature and the protein stability. Langmuir,2004,20(24):10639-10647
    133.Lvov Y, Caruso F. Biocolloids with ordered urease multilayer shells as enzymatic reactors. Anal Chem,2001,73(17):4212-4217
    134.Marzadori C, Francioso O, Ciavatta C, Gessa C. The influence of the content of heavy metals and molecular weight of humic acids fractions on the activity and stability of urease. Soil Biol Biochem,2000a,32(13):1893-1898
    135.Marzadori C, Francioso O, Ciavatta C, Gessa C. Activity and stability of jack bean urease in the presence of peat humic acids obtained using different extractants. Biol Fert Soils,2000b,32(5):415-420
    136.Mato M, Ohnedo M, Mendez J. Inhibition of indoleacetic acid-oxidase by soil humic acids fractionated on Sephadex. Soil Biol Biochem,1972,4(4):469-473
    137.Mayaudon J. The role of carbohydrates in the free enzymes in soil. In:Fuchsman CH ed., Peat and Water. New York:Elsevier,1986.263-309
    138.Meyer K, Hahnel E. The estimation of lysozyme by a viscosimetric method. J Biol Chem,1946,163(3):723-732
    139.Milne CJ, Kinniburgh, DG, Tipping E. Generic NICA-Donnan model parameters for proton binding by humic substances. Environ Sci Technol,2001,35(10):2049-2059
    140.Mobley HL, Cortesia MJ, Rosenthal LE, Jones BD. Characterization of urease from campylobacter pylori. JClin Microbiol,1988,26(5):831-836
    141.Moriyama Y, Ohta D, Hachiya K, Mitsui Y, Takeda K. Fluorescence behavior of tryptophan residues of bovine and human serum albumins in ionic surfactant solutions:A comparative study of the two and one tryptophan (s) of bovine and human albumins. J Protein Chem,1996,15(3):265-272
    142.Mornstam B, Wahlund KG, Jonsson B. Potentio metric acid-base titration of a colloidal solution. Anal Chem,1997,69(24):5037-5044
    143.Muller M, Rieser T, Dubin PL. Selective interaction between proteins and the outermost surface of poly electrolyte multilayers:Influence of the polyanion type, pH and salt. Macromol Rapid Comm,2001,22(6):390-395
    144.Nannipieri P, Ceccanti B, Cervelli S, Sequi P. Stability and kinetic properties of humus-urease complexes. Soil Biol Biochem,1978,10(2):143-147
    145.Nannipieri P, Grego S, Ceccanti B. Ecological significance of the biological activity in soil. In:Bollag JM, Stotzky G eds., Soil Biochemistry. New York:Marcel Dekker, 1990.293-355
    146.Nannipieri P, Sequi P, Fusi P. Humus and enzyme activity. In:Alessandro P ed., Humic Substances in Terrestrial Ecosystems. Amsterdam:Elsevier Science BV,1996. 293-328
    147.Natarajan KR. Kinetic study of the enzyme urease from dolichos biflorus. J Chem Educ,1995,72(6):556-557
    148.Nembri F, Bossi A, Ermakov S. Isoelectrically trapped enzymatic bioreactors in a multimembrane cell coupled to an electric field:Theoretical modeling and experimental validation with urease. Biotechnol Bioeng,1997,53(1):110-119
    149.Nguyen RT, Harvey HR. Preservation of protein in marine systems:Hydrophobic and other noncovalent associations as major stabilizing forces. Geochim Cosmochim Acta, 2001,65(9):1467-1480
    150.Ong J, Chittur K, Lucas L. Dissolution/reprecipitation and protein adsorption studies of calcium phosphate coatings by FT-IR/ATR techniques. J Biomed Mater Res, 1994,28(11):1337-1346
    151.Ono T, Miyata H, Toei K. Poly soap as a new titrant for the determination of sodium dodecylbenzenesulfonate by colloid titration. Bull Chem Soc Jpn,1979,52(2): 425-427
    152.Palacio L, Calvo JI, Pradanos P, Hernandez A, Vaisanen P, Nystrom M. Contact angles and external protein adsorption onto UF membranes. J Membrane Sci,1999, 152(2):189-201
    153.Plaza C, Brunetti G, Senesi N, Polo A. Proton binding to humic acids from organic amendments and amended soils by the NICA-Donnan model. Environ Sci Technol, 2005a,39(17):6692-6697
    154.Plaza C, Garcia-Gil, JC, Polo A, Senesi N, Brunetti G. Proton binding by humic and fulvic acids from pig slurry and amended soils. J Environ Qual,2005b,34(3): 1131-1137
    155.Plaza C, Senesi N, Garcia-Gil JC, Brunetti G, D'Orazio V, Polo A. Effects of pig slurry application on soils and soil humic acids. J Agr Food Chem,2002,50(17): 4867-4874
    156.Plaza C, Senesi N, Polo A, Brunetti G. Acid-base properties of humic and fulvic acids formed during composting. Environ Sci Technol,2005c,39(18):7141-7146
    157.Polano M, Anselmi C, Leita L, Negro A, De Nobili M. Organic polyanions act as complexants of prion protein in soil. Biochem Biophys Res Commun,2008,367(2): 323-329
    158.Pombo C, Prieto G, Del Rio JM, Sarmiento F, Jones MN. Conformational transition of insulin induced by n-alkyltrimethylammonium bromides in aqueous solution. Int J Biol Macromol,1996,18(1):55-60
    159.Prado AG, Airoldi C. Humic acid-divalent cation interactions. Thermochim acta, 2003,405(2):287-292
    160.Quiquampoix H, Burns RG. Interactions between proteins and soil mineral surfaces: Environmental and health consequences. Elements,2007,3(6):401-406
    161.Rao MA, Violante A, Gianfreda L. Interaction of acid phosphatase with clays, organic molecules and organo-mineral complexes:Kinetics and stability. Soil Biol Biochem,2000,32(7):1007-1014
    162.Ritchie JD, Perdue EM. Proton-binding study of standard and reference fulvic acids, humic acids, and natural organic matter. Geochim Cosmochim Acta,2003,67(1): 85-96
    163.Ruggiero P, Radogna V. Humic acids-tyrosinase interactions as a model of soil humic-enzyme complexes. Soil Biol Biochem,1988,20(3):353-359
    164.Recalde Ruiz DL, Carvhalo Torres AL, Anders Garcia E, Diaz Garcia ME. Fluorimetric flow-injection method for anionic surfactants based on protein-surfactant interactions. Analyst,1998,123(11):2257-2261
    165.Saito T, Nagasaki S, Tanaka S, Koopal LK. Electrostatic interaction models for ion binding to humic substances. Colloids Surf, A,2005,265(1):104-113
    166.Sakakibara R, Hamaguch K. Structure of lysozyme XVI. Acid-base titration of lysozyme. JBiochem,1968,64(5):613-618
    167.Salvato B, Ghiretti-Magaldi A, Ghiretti F. Acid-base titration of hemocyanin from Octopus vulgaris. Biochemistry,1974,13(23):4778-4783
    168.Sander M, Tomaszewski JE, Madliger M, Schwarzenbach RP. Adsorption of insecticidal CrylAb protein to humic substances.1. Experimental approach and mechanistic aspects. Environ Sci Technol,2012,46(18):9923-9931
    169.Santin C, Gonzalez-Perez M, Otero X, Vidal-Torrado P, Macias F, Alvarez MA. Characterization of humic substances in salt marsh soils under sea rush{Ju (Juncus maritimus). Estuar Coast Shelf S,2008,79(3):541-548
    170.Sarkar JM. Formation of [14C] cellulase-humic complexes and their stability in soil. Soil Biol Biochem,1986,18(3):251-254
    171.Sarkar J, Bollag JM. Inhibitory effect of humic and fulvic acids on oxidoreductases as measured by the coupling of 2,4-dichlorophenol to humic substances. Sci Total Envir, 1987,62:367-377
    172.Sarkar J, Burns R. Synthesis and properties of (3-d-glucosidasephenolic copolymers as analogues of soil humic-enzyme complexes. Soil Biol Biochem,1984,16(6): 619-625
    173.Scheele RB, Lauffer MA. Acid-base titrations of tobacco mosaic virus and tobacco mosaic virus protein. Biochemistry,1967,6(10):3076-3081
    174.Schmitt C, Sanchez C, Desobry-Banon S, Hardy J. Structure and techno functional properties of protein-polysaccharide complexes:A review. Crit Rev Food Sci Nutr, 1998,38(8):689-753
    175.Schnitzer M, Gupta UC. Determination of acidity in soil organic matter. SoilSci Soc AmJ ,1965,29(3):274-277
    176.Schulten HR. The three-dimensional structure of humic substances and soil organic matter studied by computational analytical chemistry. Fresenius'J Anal Chem,1995, 351(1):62-73
    177.Schulten HR, Schnitzer M. Chemical model structures for soil organic matter and soils. Soil Sci,1997,162(2):115-130
    178.Senesi N, D'orazio V, Ricca G. Humic acids in the first generation of Eurosoils. Geoderma,2003,116(3):325-344
    179.Senesi N, Miano T, Martin J. Elemental, functional infrared and free radical characterization of humic acid-type fungal polymers (melanins). Biol Fert Soils,1987, 5(2):120-125
    180.Senesi N, Sposito G, Martin J. Copper (II) and iron (III) complexation by soil humic acids:An IR and ESR study. Sci Total Envir,1986,55:351-362
    181.Servagent-Noinville S, Revault M, Quiquampoix H, Baron MH. Conformational changes of bovine serum albumin induced by adsorption on different clay surfaces: FUR analysis. J Colloid Interface Sci,2000,221(2):273-283
    182.Shaikh SMT, Seetharamappa J, Kandagal PB, Manjunatha DH. In vitro study on the binding of anti-coagulant vitamin to bovine serum albumin and the influence of toxic ions and common ions on binding. Int J Biol Macromol,2007,41(1):81-86
    183.Smolelis AN, Hartsell S. Factors affecting the lytic activity of lysozyme. JBacteriol, 1952,63(5):665-674
    184.Sparks DL, Page A, Helmke P, Loeppert R, Soltanpour P, Tabatabai M, Johnston C, Sumner M, Eds. Methods of soil analysis. Part 3-chemical methods,3rd ed. Madison: Soil Science Society of America Inc,1996
    185.Steelink C. Implications of elemental characteristics of humic substances. Humic substances in soil, sediment, and water:geochemistry, isolation, and characterization. New York:John Wiley and Sons,1985.457-476.
    186.Stevenson FJ. Humus chemistry:genesis, composition, reactions. Wiley,1994.
    187.Syers J, Sharpley A, Keeney D. Cycling of nitrogen by surface-casting earthworms in a pasture ecosystem. Soil Biol Biochem,1979,11(2):181-185
    188.Tan WF, Koopal LK, Norde W. Interaction between humic acid and lysozyme, studied by dynamic light scattering and isothermal titration calorimetry. Environ Sci Technol,2009,43(3):591-596
    189.Tan WF, Koopal LK, Weng LP. Humic acid protein complexation. Geochim Cosmochim Acta,2008,72(8):2090-2099
    190.Tan WF, Norde W, Koopal LK. Humic substance charge determination by titration with a flexible cationic polyelectrolyte. Geochim Cosmochim Acta,2011,75(19): 5749-5761
    191.Thompson R. Lysozyme and the antibacterial properties of tears. Arch Ophthalmol, 1941,25(3):491-509
    192.Tietjen T, Wetzel RG. Extracellular enzyme-clay mineral complexes:Enzyme adsorption, alteration of enzyme activity, and protection from photodegradation. Aquat Ecol,2003,37(4):331-339
    193.Tipping E. Humic ion-binding model Ⅵ:An improved description of the interactions of protons and metal ions with humic substances. Aquat geochem,1998,4 (1):3-47
    194.Tofani L, Feis A, Snoke RE, Berti D, Baglioni P, Smulevich G. Spectroscopic and interfacial properties of myoglobin/surfactant complexes. Biophys J,2004,87(2): 1186-1195.
    195.Tomaszewski JE, Madliger M, Pedersen JA, Schwarzenbach RP, Sander M. Adsorption of insecticidal Cry1Ab protein to humic substances.2. Influence of humic and fulvic acid charge and polarity characteristics. Environ Sci Technol,2012,46(18): 9932-9940
    196.Tomaszewski JE, Schwarzenbach RP, Sander M. Protein encapsulation by humic substances. Environ Sci Technol,2011,45(14):6003-6010
    197.Tombacz E, Dobos A, Szekeres M, Narres HD, Klumpp E, Dekany I. Effect of pH and ionic strength on the interaction of humic acid with aluminium oxide. Colloid Polym Sci,2000,278(4):337-345
    198.Turgeon S, Schmitt C, Sanchez C. Protein-polysaccharide complexes and coacervates. Curr Opin Colloid'Interface S,2007,12(4):166-178
    199.Turro NJ, Lei XG, Ananthapadmanabhan KP, Aronson M. Spectroscopic probe analysis of protein-surfactant interactions:The BSA/SDS system. Langmuir,1995, 11(7):2525-2533
    200.Ulrich P, Weller MG, Niessner R. Immunological determination of triazine pesticides bound to soil humic acids (bound residues). Fresenius'J Anal Chem,1996,354(3): 352-358
    201.Van Straaten J, Peppas NA. ATR-FTIR analysis of protein adsorption on polymeric surfaces. JBiomatSci-Polym E,1991,2(2):113-121
    202.Vasilescu M, Angelescu D, Almgren M, Valstar A. Interactions of globular proteins with surfactants studied with fluorescence probe methods. Langmuir,1999,15(8): 2635-2643
    203.Verma L, Martin J, Haider K. Decomposition of carbon-14-labeled proteins, peptides, and amino acids; free and complexed with humic polymers. Soil Sci Soc Am J,1975, 39(2):279-284
    204.Vermeer A. Interaction between humic acid and hematite and their effects upon metal speciation. (Ph D dissertation). Wageningen:Landbouwuniversiteit Wageningen, 1996
    205.Vermeer AWP, Van Riemsdijk WH, Koopal LK. Adsorption of humic acid to mineral particles.1. Specific and electrostatic interactions. Langmuir,1998,14(10): 2810-2819
    206.Voets IK, De Keizer A, Cohen Stuart MA. Complex coacervate core micelles. Advan Colloid Interface Sci,2009a,147:300-318
    207.Voets IK, De Keizer A, Leermakers FAM, Debuigne A, Jerome R, Detrembleur C, Cohen Stuart MA. Electrostatic hierarchical co-assembly in aqueous solutions of two oppositely charged double hydrophilic diblock copolymers. Eur Polym J,2009b, 45(10):2913-2925
    208.Wang X, Ruengruglikit C, Wang YW, Huang QR. Interfacial interactions of pectin with bovine serum albumin studied by quartz crystal microbalance with dissipation monitoring:Effect of ionic strength. J Agr Food Chem,2007,55(25):10425-10431
    209.Weetall HH. Immobilized enzymes. Analytical applications. Anal. Chem,1974,46(7): 602A-615a.
    210.Wilson AT. Urinary lysozyme:I. Identification and measurement. JPediatr,1950, 36(1):39-44
    211.Yang CM, Wang MC, Lu YF, Chang IF, Chou CH. Humic substances affect the activity of chlorophyllase. JChem Ecol,2004,30(5):1057-1065
    212.Zanette D, Lima CF, Ruzza AA, Belarmino ATN, Santos SDF, Frescura VLA, Marconi DMO, Froehner SJ. Interactions of anionic surfactants with poly (ethylene oxide) and bovine serum albumin polymers:Effect of the counterion hydrophobicity. Colloids Surf, A,1999,147(1):89-105
    213.Zang X, Van Heemst JDH, Dria KJ, Hatcher PG. Encapsulation of protein in humic acid from a histosol as an explanation for the occurrence of organic nitrogen in soil and sediment.Org Geochem,2000,31(7-8):679-695
    214.Zhou P, Yan H, Gu B. Competitive complexation of metal ions with humic substances. Chemosphere,2005,58(10):1327-1337

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700