用户名: 密码: 验证码:
谷胱甘肽合成相关酶在重金属污染生物修复中的分子机制及比较研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着社会经济和工业的发展,重金属污染成为全球范围内关注的环境问题。这种污染不仅会影响动植物生长发育、导致农产品质量下降,并且通过食物链直接威胁人类身体健康。因而,解决重金属污染问题迫在眉睫。生物修复(Bioremediation)技术由于其高效、经济、绿色、清洁、环保等特点,作为污染生态学的一个重要课题,在重金属污染治理中逐渐引起人们的关注。天然存在的具备重金属生物修复作用的微生物和超累积植物等往往由于它们在重金属逆境中的生长缓慢、生物量小等弊端,常常会影响生物修复的效率。本研究采用基因工程遗传转化、培养基模拟、转基因抗性微生物及植物筛选等技术手段,针对利用谷胱甘肽合成相关酶来提高大肠杆菌和能源甜菜生物修复重金属污染效果展开实验,系统地摸索了三种谷胱甘肽合成关键酶的重金属逆境中的响应机制,以及它们在转基因大肠杆菌、拟南芥和能源甜菜体内的表达特性;比较研究了三种基因型的重组大肠杆菌和转基因植物在重金属逆境下的表现型、生理生化差异及对重金属Cd、Zn、Cu的吸收规律;比较验证了这三种谷胱甘肽合成相关酶对提高大肠杆菌微生物、拟南芥、能源甜菜的重金属耐受性和重金属离子生物富集量的作用;初步探索了重组大肠杆菌和重金属耐性转基因植物在重金属生物修复方面的作用,从而为生物修复品种的开发提供了新思路。本研究的主要内容包括以下几方面:
     1.利用RT-PCR技术,本研究分别克隆了拟南芥(Arabidopsis thaliana L.)中编码谷胱甘肽合成酶的γ-GCS和GS的AtGCS (Genbank accession no. NM_118439)、AtGS (Genbank accession no. NM_122620)基因以及嗜热链球菌(Streptococcus thermophilus)中编码谷胱甘肽合成酶StECS-GS的StECS-GS (Genbank accession no. GQ848551)基因。这三个基因CDS全长分别为1569bp、1620bp、2265bp;所编码蛋白的分子量分别为58.56kDa、60.27kDa、85.12kDa;等电点分别为6.52、6.45和4.9;根据PSORT软件预测,三个蛋白在植物体内分别有56%、94%和45%的可能性位于过氧化物酶体、叶绿体膜以及细胞质中;同时在AtGCS和AtGS的5’非翻译区域存在着与干旱等环境逆境相关的顺式作用元件,说明它们可能与环境逆境之间存在着一定的应答关系。
     2.系统地比较研究了拟南芥AtGCS和AtGS基因在Cd、Zn、Cu重金属逆境下的转录表达特性。研究结果表明这两个基因均在转录水平上受到200μM Cd2+、Zn2+、Cu2+重金属逆境的诱导,并且与对照相比,它们在拟南芥地上部和地下部中表达量均有所增加。但在不同处理时间下受重金属逆境胁迫的影响,AtGCS和AtGS基因的表达量也出现了一定的变化和差异。在Cd逆境中,拟南芥地上部AtGS的诱导表达比较突出,而在地下部,AtGCS的诱导表达更明显一些;在Zn和Cu逆境下,AtGCS对前者的响应更加明显一些,AtGS则对后者更为敏感;在重金属方面,Cd对两个基因的诱导表达量的增幅最大,并且在Cd逆境下,两个基因在地上部的表达量要高于地下部,Zn和Cu逆境在这方面的差异不大。这说明拟南芥AtGCS和AtGS基因与重金属环境逆境之间存在着一定的应答关系,并且它们可能分别不同程度地参与到了拟南芥的抗重金属生理活动中。
     3.利用大肠杆菌外源蛋白重组技术,系统地比较了分别大量表达重组蛋白TrxA-AtGCS、TrxA-AtGS、TrxA-StECS-GS的重组大肠杆菌,在1mM CdCl2、ZnCl2、CuCl2重金属胁迫下的重金属耐受性和重金属离子富集能力。研究结果表明,过量表达TrxA的对照菌株在1mM重金属逆境下生长受到了严重的抑制,而过量表达TrxA-StECS-GS的E. coli对重金属逆境的耐受性最强,并且在提高细胞的存活率方面表现出StECS-GS>AtGCS> AtGS的趋势;同时,在重金属逆境下,重组菌的重金属富集能力也与对照相比具有明显的优势:过量表达TrxA-StECS-GS的E. coli对Cd、Zn、Cu的富集量分别是对照的15倍、8倍、9倍左右;TrxA-AtGCS过量表达细胞提高了10倍、5倍、7倍的大肠杆菌对重金属离子富集量;而过量表达TrxA-AtGS的大肠杆菌稍差一些,分别是对照的5、4、5倍左右。重组菌体内的GSH含量趋势(TrxA-StECS-GS>TrxA-AtGCS>TrxA-AtGS> TrxA)可以解释这种重金属高富集量的现象和差异。同时,研究将另外两种在重金属抗性机制中发挥重要作用的功能蛋白OsHSP90和OsCATb作为对比研究,结果发现过量表达GST-OsHSP90和GST-OsCATb的重组大肠杆菌尽管在生长势方面比过量表达GST的对照菌株高,并介于TrxA-AtGCS和TrxA-AtGS之间,但是它们的重金属富集能力和体内GSH含量却没有明显提升。这说明谷胱甘肽合成相关酶、分子伴侣和抗氧化酶在重金属抗性机制方面有所不同,并且在行使重金属污染生物修复功能方面,谷胱甘肽合成相关酶具有更加明显的优势。其中,StECS-GS的作用最为突出。
     4.利用转基因技术,将AtGCS、AtGS以及StECS-GS基因遗传转化到模式植物拟南芥中,以比较研究它们在植物体内的重金属耐受能力和在重金属生物修复中的潜力和分子机制。研究结果表明,在正常生长条件下,分别过量表达AtGCS、AtGS以及StECS-GS目的基因的转基因拟南芥株系(gcs2、gs2和ecs-gs4)和野生型(wt)在生长状态上没有明显差异;而随着CdCl2、ZnCl2、CuCl2的重金属浓度的增加,wt的生长受到了严重的抑制,并在根长及鲜重方面仅为ecs-gs4的1/4-1/3左右;过量表达AtGCS、AtGS以及StECS-GS的转基因拟南芥植株在Cd和Cu中均不同程度的提高了重金属耐受性,其中StECS-GS的作用最大;而在Zn逆境下,只有StECS-GS转基因植株表现出重金属耐受性的提高。在重金属离子富集量方面,总体表现出转基因植株地上部的重金属累积量高于地下部,转基因植株之间表现出StECS-GS基因型AtGCS、AtGS基因型>野生型累积趋势,并且ecs-gs4对Cd的富集量最高,是对照的4.5倍以上,Zn和Cu稍低一些。而在GSH和PC的含量上,总体趋势也同样呈现出类似的现象,并且随着逆境的施加,GSH在总体水平上下降,而PC含量上升。以上结果表明了三个谷胱甘肽合成关键酶在重金属逆境下是通过自身的过量表达解除相应的反馈抑制从而大量催化合成了GSH和PC,而GSH和PC可以大量螯合重金属离子,并具备抗氧化功能,因而使得转基因拟南芥可以表现出对重金属离子的高度富集和耐受性。而StECS-GS因其具备的双重谷胱甘肽合成酶功能,在抗重金属逆境方面的独特优势使其成为利用基因工程培育人工超累积植物的优势基因,在重金属植物修复中具有潜在的优势。
     5.以上述研究为基础,以可以生产生物燃料乙醇的能源甜菜为生物修复基础材料,通过模拟实验研究了StECS-GS基因在提高转基因甜菜对单一或复合重金属Cd、Zn、Cu污染的耐受性和生物富集量方面的作用,初步探讨了该基因在能源甜菜体内的重金属响应机制和规律。研究结果表明过量表达StECS-GS基因的转基因甜菜(s2、s4、s5),在不同浓度(50、100、200μM Cd、Zn、Cu)重金属逆境胁迫下,它们与对照植株wt相比均表现出明显的生长优势,并且在鲜重和根长方面得以具体体现;这种生长优势基本上与StECS-GS基因的表达量成正比。同时,在植株叶片叶绿素含量方面,重金属逆境下转基因植株体内的含量也比野生型植株有所提升,但转基因植株之间差异不大。在100μM重金属离子强度下,转基因植株s2、s4、s5地上部(Shoot)中的Cd、Zn、Cu的重金属累积量分别是对照甜菜的5倍至4倍左右,并且表现出s2>s4>s5>wt的趋势;在根中,转基因植株s2重金属的累积量要小于s4、s5,但却是对照植株2-3倍左右。总体来说,转基因植株地上部重金属离子的累积量是地下部的三倍以上,甚至更多。这说明在转基因甜菜体内对于重金属离子的累积主要集中在地上部。在正常生长条件下,转基因植株s2、s4和s5体内GSH的含量分别是wt对照甜菜的5倍、4倍和3.8倍左右,这说明StECS-GS的过量表达催化合成了大量的GSH;而在Cd、Zn、Cu胁迫下,s2、s4、s5和wt体内的GSH含量有所下降,PC含量上升,转基因植株体内的GSH和PC含量始终高于对照。因而,转基因植株所表现的高重金属耐受性和高重金属离子富集能力的现象基本可以解释为GSH一部分用于合成PC并与其一起螯合重金属离子,另一部分可能在抗重金属氧化胁迫中发挥重要作用。在双重Cd-Zn、Cd-Cu、Zn-Cu和多重Cd-Zn-Cu复合重金属胁迫条件下,转StECS-GS基因植株无论在表现型、生物量还是重金属富集能力方面,都比对照甜菜具有明显的优势,并且金属离子以加成的方式被富集在转基因甜菜体内。这说明过量表达StECS-GS基因的甜菜植株在重金属耐受性、生物量、重金属离子非特异性和富集量方面都具备了重金属污染植物修复的特质和潜力,具有极大的开发价值。
With development of social, economy and industry, heavy metal pollution becomes a worldwide environment problem. It not only affects the growth and development of plants and animals, the decline in the quality of agricultural products, but also threats to human health through the food chain. Thus, it is time to solve such problem. Because of being high efficiency, economy, green, clean and environment-friendly, bioremediation technology raises more concern in heavy metal pollution treatment, as an important topic in pollution ecology. Microorganisms and hyper-accumulated plants naturally occurring with heavy metal bioremediation roles grew slowly and were with low biomass in heavy metal stress conditions. These defects often affected the efficiency of bioremediation. In this study, by using methods with genetic engineering, genetic transformation, medium analog, screening of transgenic resistant microorganisms and plant, the experiments were carried out by using glutathione synthetase to enhance the heavy metal remediation effects of E. coli and energy sugar beet, and explored the heavy metal stress responsive mechanism in these glutathione synthetase broadly, and their expression characteristics in transgenic E. coli, Arabidopsis and energy sugar beet. The research also focused on the comparison of phenotype, physiological and biochemical differences and absorption of Cd, Zn and Cu in these different genotypes of recombinant E. coli and transgenic plants under heavy metal stresses, and the functions of these glutathione synthetase in enhancing the tolerance and accumulation of heavy metal ions of E. coli, Arabidopsis and energy sugar beet, and the roles of recombinant E. coli and transgenic plants with resistance of heavy metal in bioremediation. The results will provide new ideas to the variety of bioremediation. The main contents included the following aspects:
     1. The three genes of AtGCS (Genbank accession no. NM_118439), AtGS (Genbank accession no. NM_122620) and StECS-GS (Genbank accession no. GQ848551) were cloned by using RT-PCR, and they encoded three glutathione synthetase of Arabidopsis γ-GCS, GS and Streptococcus thermophilus StECS-GS separately. The CDS length of such three genes was1569bp,1620bp and2265bp, respectively; the molecular weight of protein was58.56kDa,60.27kDa and85.12kDa, respectively; the isoelectric point was6.52,6.45and4.9, respectively; according to PSORT prediction, such three enzymes were located in peroxisome, chloroplast membrane and cytoplasme with indentity of56%,94%and45%, respectively; meanwhile, there were cis-acting elements related to environmental stress such as drought in5' untranslated region of AtGCS and AtGS, there may be certain responsive relationship between these two genes and certain environmental stresses.
     2. This study compared the transcriptional expression characteristics of AtGCS and AtGS under Cd, Zn and Cu heavy metal stresses comprehensively. The results showed that the two genes were induced by200μM Cd2+, Zn2+and Cu2+stress in their transcriptional level. Compared with the control plants without any heavy metal treatment, the expression level of AtGCS and AtGS were increased in shoots and roots, and there were some differences and changes in genes'expression under different processing time of heavy metal stresses. In Cd treatment, the expression of AtGS was higher than AtGCS in Arabidopsis shoots, and they were opposite in roots; in Zn and Cu stresses, the response of AtGCS was more obvious in Zn stress, and AtGS was more sensitive to Cu; in such three heavy metal stresses, Cd could enhance the inductive expression of the two genes more evidently, and there was no difference in Zn and Cu. These results exhibited that AtGCS and AtGS were responsive to heavy metal stresses, and they might participate in physiological activity of Arabidopsis resistance to heavy metal stress in different degrees.
     3. By using exogenous protein recombinant technology in E. coli, this study compared the heavy metal tolerance and accumulation of E. coli over-expressing TrxA-AtGCS, TrxA-AtGS and TrxA-StECS-GS under1mM CdCl2, ZnCl2and CuCl2stress, respectively. The results showed that the growth of control cells over-expressing TrxA was damaged severely, while E. coli over-expressing TrxA-StECS-GS exhibited strongest heavy metal tolerance, and the survival rate of recombinant strains performed a trend of StECS-GS>AtGCS>AtGS. Meanwhile, in heavy metal stresses, there were obvious advantages in heavy metal accumulation ability of recombinant bacteria than control cells:the Cd, Zn and Cu accumulation of E. coli over-expressing TrxA-StECS-GS were about15,8and9-fold of control strains; cells over-expressing TrxA-AtGCS could accumulate Cd, Zn and Cu with10,5and7-fold of control cells; while Cd, Zn and Cu accumulation of stains over-expressing TrxA-AtGS was relatively low, and it was5,4and5-fold of control cells, respectively. The trend in GSH content of (TrxA-StECS-GS>TrxA-AtGCS>TrxA-AtGS>TrxA) could explain the phenomenon of high heavy metal ions accumulation in recombinant bacteria. Meanwhile, the functional proteins involving in heavy metal resistance mechanisms of OsHSP90and OsCATb were introduced as comparative experiments. It was showed that, although the growth of E. coli over-expressing GST-OsHSP90and GST-OsCATb was better than control cells over-expressing GST, and between cells over-expressing TrxA-AtGCS and TrxA-AtGS, their ability of heavy metal accumulation and GSH content were not improved significantly. These results indicated that there were differences among glutathione synthetase, molecular chaperone and antioxidant enzyme in heavy metal resistance mechanisms, and glutathione synthetase had more obvious advantages in exercising the functions of heavy metal bioremediation. The role of StECS-GS was more prominent.
     4. AtGCS, AtGS and StECS-GS genes were separatively transformed into model plants-- Arabidopsis thaliana by transgenic technology, and were analyzed their tolerance capacity of heavy metal stresses and the potential and the molecular mechanisms of heavy metal bioremediation comparatively. The results showed that, under normal growth conditions, there were almost no differences among transgenic Arabidopsis (gcs2, gs2and ecs-gs4) over-expressing AtGCS, AtGS and StECS-GS, and wild-type (wt). As increase of concentrations of CdCl2, ZnCl2and CuCl2stresses, the growth of wt received serious inhibition, and its root length and fresh weight were only1/4-1/3of ecs-gs4; the tolerance ability of transgenic Arabidopsis over-expressing AtGCS, AtGS and StECS-GS genes was enhanced in different degree under Cd and Cu stresses, and StECS-GS lines were most obviously. While in Zn stress, only StECS-GS transgenic plants exhibited improved heavy metal tolerance. In the aspect of heavy metal accumulation in transgenic plants, it was much higher in shoots than in roots, and it was showed the trend of StECS-GS genotype>AtGCS、AtGS genotypes>wt. The accumulation of Cd in ecs-gs4was highest, and the level was more than4.5-fold of control plants. ecs-gs4accumulated less Zn and Cu than Cd. GSH and PC contents exhibited the similar tendency, and with treatment of heavy metal stresses, the level of GSH was declined, while the PC content was increased. These results declared that the three glutathione synthetases released the feedback inhibition by their over-expression, and thus could produce more GSH and PC. GSH and PC could chelate heavy metal ions and functioned as antioxidant. These features made the transgenic Arabidopsis acquire a higher heavy metal accumulation and tolerance. The unique advantages of StECS-GS resistance to heavy metal stress made it a dominant gene in artificial hyper-accumulated plants by using genetic engineering, and it had a potential advantage in heavy metal phytoremediation.
     5. On the basis of the above study, and as the bioremediation basic materials of energy sugar beet which could produce bio-fuel ethanol, the experiment studied on functional role of StECS-GS in transgenic sugar beet tolerance and bio-accumulation under single or multiplex heavy metal stresses. The results showed that transgenic sugar beet over-expressing StECS-GS (s2, s4and s5) exhibited significant growth advantage on root length and fresh weight compared with control plants (wt) under different concentrations of50,100,200μM Cd, Zn and Cu. This advantage was proportional to the amount of StECS-GS expression. Meanwhile, the chlorophyll contents of transgenic sugar beet were higher than control plants, but the differences between the transgenic plants were slight. In100μM heavy metal stresses, the Cd, Zn and Cu accumulation concentrations in transgenic sugar beet s2, s4and s5shoots were5-4-fold of the control sugar beet with the trend of s2>s4>s5>wt. In roots, although heavy metal contents of s2were lower than s4and s5, they were about2-3-fold of control plants. In general, the heavy metal accumulations of shoots transgenic plants were more than3-fold of roots. These indicated that the accumulation of heavy metal in transgenic plant were mainly concentrated in shoots. Under normal growth conditions, GSH contents of s2, s4and s5were5,4and3.8-fold of wt, respectively, and it could be deduced that over-expression of StECS-GS catalyzed and formed large amount of GSH in transgenic sugar beet. Under Cd, Zn and Cu stresses, GSH concentrations decreased, and PC contents increased in s2, s4, s5and wt, but the GSH and PC level of transgenic plants were always higher than that of control. This phenomenon could be explained that some GSH was used for synthesis of PC to chelate heavy metal ions, and some GSH might play an important role in heavy metal anti-oxidative stress. Under double Cd-Zn, Cd-Cu and Zn-Cu and multiple Cd-Zn-Cu multiplex heavy metal stressful conditions, StECS-GS transgenic sugar beet exhibited obvious advantages on phenotype, biomass and heavy metal accumulation, compared with the control sugar beet, and these heavy metals were accumulated in transgenic plants as the manner of addition. It could be concluded that sugar beet over-expressing StECS-GS had characteristics of heavy metal tolerance, high biomass, non-specific accumulation of heavy metal ions, and potential of heavy metal pollution phytoremediation. There will be a great development value by using transgenic energy sugar beet in heavy metal pollution bioremediation.
引文
[1]Nies D.H. Microbial heavy metal resistance. Appl. Microbiol. Biotechnol.1999,51:730-750.
    [2]Mighall T.M., Grattan J.P., Timberlake S., Lees J.A., Forsyth S. An atmospheric pollution history for lead-zinc mining from the Ystwyth Valley, Dyfed, Mid-Wales, UK as recorded by an upland peat. Environ.2002,2 (2):175-184.
    [3]Malle K.G. Zink in der Umwelt. Acta Hydrochimica et Hydrobiologica.1992,20 (4):196-204.
    [4]Raab A., Fieldman J. Micobial transformation of metals and metalloids. Sci. Prog.2003, 86 (3):179-202.
    [5]Holleman A.F., Wiberg E. Lehrbuch der Anorganischen Chemie. Berlin, Walter de Gruyter.1985, p.868.
    [6]USEPA Cleaning up the nation's waste sites:Markets and Technology Trends. Washington, DC:Office of Solid Waste and Emergency Response.1997.
    [7]Harrison M.D., Jones C.E., Dameron C.T. Copper chaperones:function, structure and copper-binding properties. J. Biol. Inorg. Chem.1999,4 (2):145-153.
    [8]Broadley M., White P., Hammond J., Zelko I., Lux A. Zinc in plants. New Phytol.2007, 173 (4):677-702.
    [9]Cabonell A.A., Aarabi M.A., Delaune R.D., Gambrell R.P., Patrick Jr W.H. Arsenic in wetland vegetation:Availability, phytotoxicity, uptake and effects on plant growth and nutrition. Sci.Total Environ.1998,217 (3):189-199.
    [10]Coen N., Mothersill C, Kadhim M., Wright E.G. Heavy metals of relevance to human health induce genomic instability. J. Pathol.2001,195:293-299.
    [11]Biddi B., Oravecz A.R., Lehoczki E. Effect of cadmium on organization and photoreduction of protochlorophyllide in dark-grown leaves and etioplast inner membrane preparations of wheat. PhotoSynthetica.1995,31:411-420.
    [12]韩风祥,胡霭堂,秦怀英.不同土壤环境中镉的形态分配及活性研究[J].环境化学.1990,9(1):49-53
    [13]Koeppe D. The uptake, distribution, and effect of cadmium and lead in plants. Sci. Total Environ.1977,7:197-206.
    [14]Nriagu J., Pacyna J. Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature.1988,33(3):134-139
    [15]Gordon R.B., Bertram M., Graedel T.E. Metal stocks and sustainability. PNAS,2006, 103(5):1209-1214.
    [16]Zouboulis, A.I., Loukidou, M.X, Matis, K.A. Biosorption of toxic metals from aqueous solutions by bacteria strains isolated from metal-polluted soils. Process Biochem.2004,39: 909-916.
    [17]Merian, E. Metals and their compounds in the environment. Occurrence Analysis and Biological Relevance (eds). UCH, Weinheim-New York-Basel-Cambridge.1991, p.369-378.
    [18]Field, R.A., Lager, T.A. Urban runoff pollution control-state of-the-art. J. Environ. Engin. Division-ASCE 101 (EE-1).1975,107-125.
    [19]Preuss E., Kollmann H. Metallgehalte in Klarschlammen. Naturwissenschafter.1974,61: 270-274.
    [20]Rao J.D., Saxena A.B. Acute toxicity of mercury, zinc, lead, cadmium, manganese to the Chirnomus sp. Inter. J. Environ. Studies.1981,16:225-225.
    [21]A1-Weher S.M. Levels of heavy metal Cd, Cu and Zn in three fish species collected from the Northern Jordan Valley, Jordan. Jordan J. Biol. Sci.2008,1:41-46.
    [22]Yi Y.J., Zhang S.H. Heavy metal (Cd, Cr, Cu, Hg, Pb, Zn) concentrations in seven fish species in relation to fish size and location along the Yangtze River. Environ. Sci. Pollut. Res. Int.2012,19(9):3989-3996.
    [23]Jarup L. Hazards of heavy metal contamination. Br. Med. Bull.2003,68(1):167-182.
    [24]Raghunath R., Tripathi R.M., Kumar A.V., Sathe A.P., Khandekar R.N., Nambi K.S. Assessment of Pb, Cd, Cu and Zn exposure of 6 to 10-year-old Children in Mumbai. Environ. Res.1999,80:215-221.
    [25]Coombes A.J. Effect of copper on IAA-oxidase activity in root tissue of barley. Pfansenphysiol.1976,80:236-242.
    [26]Bonhomme C, Gladyszaczak-Kohler J., Cadou A., Ief D., Kadi Z. Mercury poisoning by vacuum-cleaner aerosol. Lancet.1996,347:115.
    [27]Fiedler N.I., Udasin M., Gochfeld G, Buckler K., Kelly-McNeil, Kipen H. Neuropsychological and stress evaluation of a residential mercury exposure. Environ. Health Persp.1999,107:343-347.
    [28]Orloff K.G., Ulirsch G, Wilder L., Block A., Fagliano J., Pasqualo J. Human exposure to elemental mercury in a contaminated residential building. Arch. Environ. Health.1997,52: 169-172.
    [29]Gadd G.M., Griffiths A.J. Microorganisms and heavy metal toxicity. Microb. Ecol.1977, 4(4):303-317.
    [30]Bosecker K. Microbial leaching in environmental clean-up programmes. Hydrometallurgy. 2001,59:245-248.
    [31]Valls M., de Lorenzo V. Exploiting the genetic and biochemical capacities of bacteria for the remediation of heavy metal pollution. FEMS Microbiol. Rev.2002,26:327-338.
    [32]Singh P., Cameotra S.S. Enhancement of metal bioremediation by use of microbial surfactants. Biochem. Biophy. Res. Commun.2004,319:291-297.
    [33]Nuhoglu Y., Oguz E. Removal of copper (Ⅱ) from aqueous solutions by biosorption on the conebiomass of Thuja orientalis. Proc. Biochem.2003,38:1627-1631.
    [34]Gupta R., Ahuja P., Khan S., Saxena R.K., Mohapatra H. Microbial biosorbents:Meeting challenges of heavy metal pollution in aqueous solutions. Curr. Sci.2000,78(8):967-973.
    [35]Barros L.M., Macedo GR., Duarte M.M., Silva E.P., Lobato K.C.L. Biosorption of cadmium using fungus Aspergillus nigerBrazilian. J. Chem. Eng.2003,20(3):ISSN 0104-6632.
    [36]Liu H.L., Chen B.Y., Lan Y.W., Chen Y.C. Biosorption of Zn(Ⅱ) and Cu(Ⅱ) by the indigenous Thiobacillus thiooxidans. Chem. Eng. J.2004,97:195-201.
    [37]Caccicatore D.A., Mcneil M.A. Principles of soil bioremediation. Biocyde.1995,36 (10): 61-64
    [38]Kapoor A., Viraraghavan T., Cullimore D.R. Removal of metals using the fungus Aspergillus niger. Biosour. Technol.1999,70:p.95.
    [39]Mckay G Use of adsorbents for the removal of pollutants from wastewaters. Boca Raton. 1995, FL:CRC Press.
    [40]Adhikari N., Sinha N., Saxena D.K. Effect of lead on Sertoli-germ cell co-culture of rat. Toxicol. Lett.2000,116:45-49.
    [41]Cao Z.H., Hu Z.Y. Copper contamination in paddy soils irrigated with waste-water. Chemosphere.2000,41:3-6.
    [42]Creason J.P., Hammer D.I., Colucci A.V., Priester L., Davis J. Blood trace metals in military recruits. South. Med. J.1976,69:289-293.
    [43]Scancar J., Milacic R., Strazar M., Burica O. Total metal concentrations and partitioning of Cd, Cr, Cu, Fe, Ni, and Zn in sewage sludge. Sci. Total Environ.2000,250:9-19.
    [44]Mielke H.W., Gonzales C.R., Smith M.K., Mielke P.W. The urban environment and children's health:soils as an integrator of lead, zinc, and cadmium in New Oreans, Louisiana, USA. Environ. Res.1999,81:117-129.
    [45]Larison J.R., Likens G.E., Fitz-patrick J.W., Croc J.G. Cadmium toxicity among wildlife in the Colorado Rocky Mountains. Nature.2000,406:181-183.
    [46]Llanos J., Capasso C, Parisi E., Prieur D., Jeanthon C. Susceptibility to heavy metals and cadmium accumulation in aerobic and anaerobic thermophilic microorganisms isolated from deep-sea hydrothermal vents. Curr. Microbiol.2000,41:201-205.
    [47]McEldowney S. The impact of surface attachment on cadmium accumulation by Pseudomonas fluorescens H2. FEMS Microbiol. Ecol.2000,33:121-128.
    [48]White C., Gadd GM. Biosorption of radionuclides by fungal biomass. J. Chem. Technol. Biotechnol.1990,49:331-343.
    [49]Puranik P.R., Paknikar K.M. Biosorption of lead, cadmium, and zinc by Citrobacterstrain MCMB-181:characterizaion studies. Biotechnol. Prog.1999,15:228-237.
    [50]Gadd G.M., White C. Microbial treatment of metal pollution—a working biotechnology? Trends Biotechnol.1993,11:353-359.
    [51]Veglio F., Beolchini F., Gasbarro, A. Biosorption of toxic heavy metals:an equilibrium study using free cells of Arthrobacter spp. Proc. Biochem.1997,32:99-105.
    [52]Kratochvil D., Volesky B. Advances in the biosorption of heavy metals. Trends Biotech. 1998,16:291-300.
    [53]Volesky B. Detoxification of metal-bearing effluents biosorption for the next century. Hydrometallurgy.2001,44:203-216.
    [54]Iqbal M., Edyvean R.G.J. Biosorption of lead, copper and zinc on loofa sponge immobilized biomass of Phanerochaete chrysosporium. Miner. Eng.2004,17:217-223.
    [55]Malik A. Metal bioremediation through growing cells. Environ, Int.2004,30:261-278.
    [56]Rajendran P., Muthukrishnan J., Gunasekaran P. Microbes in heavy metal remediation. Indian J. Exp. Biol.2003,41(9):935-944.
    [57]Lovley D.R., Coates J.D. Bioremediation of metal contamination. Curr. Opin. Biotechnol. 1997,8:285-289.
    [58]Terry P., Stone W. Biosorption of cadmium and copper contaminated water by Scenedesmus abundans. Chemosphere.2001,47:249-255.
    [59]Akhtar N., Iqbal J., Iqbal M. Removal of nickel (Ⅱ) from aqueous solution by loofa sponge-immobilized biomass of Chlorella sorokiniana:characterization studies. J. Hazard. Mater.2004, B108:85-94.
    [60]Oztiirk A., Artan T., Ayar A. Biosorption of nickel(Ⅱ) and copper(Ⅱ) ions from aqueous solution by Streptomyces coelicolor A3(2). Colloid and Surfaces B:Biointerfaces.2004, 34:105-111.
    [61]Domnez G, Aksu Z. Bioaccumulation of copper (Ⅱ) and nickel (Ⅱ) by the non-adapted and adapted growing Candida spp. Water Resour.2001,35:1425-1434.
    [62]Volesky B. Detoxification of metal-bearing effluents biosorption for the next century. Hydrometallurgy.2001,44:203-216.
    [63]Bains W. Biotechnology from A-Z.1 edition. Oxford University Press, Oxford.1993, p. 358.
    [64]Cavicchioli R., Thomas T. Extremophiles.2 Edition. Encyclopedia of Microbiology Volume 2, Academic Press, San Diego.2002, p.317-337.
    [65]Vasquez T.G.P., Botero A.E.C., Mesquita L.M.S. Biosorptive removal of Cd and Zn from liquid streams with a Rhodococcus opacus strain. Miner. Eng.2007,20:939-944.
    [66]Ziagova M., Dimitriadis G., Aslanidou D. Comparative study of Cd (Ⅱ) and Cr (Ⅵ) biosorption on Staphylococcus xylosus and Pseudomonas sp. in single and binary mixtures. Bioresour. Technol.2007,98:2859-2865.
    [67]Lu W., Shi J., Wang C., Chang J. Biosorption of lead, copper and cadium by an indigenous isolate Enterobacter sp. Jl possessing high heavy-metal resistance. J. Hazard. Mater.2006, 134:80-86.
    [68]USEPA Cleaning up the nation's waste sites:Markets and Technology Trends. Washington, DC:Office of Solid Waste and Emergency Response.1997.
    [69]Salt D.E., Smith R.D., Raskin I. Phytoremediation. Ann. Rev. Plant Physiol. Plant Mol. Biol.1998,49:643-668.
    [70]Lombi E., Zhao F.J., Dunham S.J., McGrath S.P. Phytoremediation of heavy metal contaminated soils:natural hyperaccumulation versus chemically enhanced phytoextraction. J. Environ. Qual.2001,30:1919-1926.
    [71]Blaylock M., Salt D., Dushenkov S. Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents. Environ. Sci. Tech.1997,31:860-865.
    [72]Turgut C, Pepe K.M., Cutright T.J. The effect of EDTA and citric acid on phytoremediation of Cd, Cr and Ni from soil using Helianthus annuus. Environ. Pollut. 2004,131:147-154.
    [73]Tollsten L., Muller P. Volatile organic compounds emitted from beech leaves. Phytochemistry.1996,43:759-762.
    [74]Davis L.C., Vanderhoof S., Dana J., Selk K. Smith K. Goplen B. Erickson L.E. Movement of chlorinated solvents and other volatile organics through plants monitored by Fourier transform infrared (FT-IR) spectrometry. J. Hazard. Substances Res.1998,1:4-1,4-26.
    [75]Rugh C.L., Wilde H.D., Stack N.M., Thompson D.M., Summers A.O., Meagher R.B. Mercuric ion reduction and resistance in transgenic Arabidopsis thaliana plants expressing. PNAS.1996,93:3182-3187.
    [76]Rugh C.L., Senecoff J.F., Meagher R.B., Merkle S.A. Development of transgenic yellow poplar for mercury phytoremediation. Nature Biotechnol.1998,16:925-928.
    [77]Neumann P.M., De-Souza M.P., Pickering I.J., Terry N. Rapid microalgal metabolism of selenate to volatile dimethylselenide. Plant Cell Environ.2003,26:897-905.
    [78]Song W.Y., Wang G.L., Chen L.L., Kin H.S., Pi L.Y., Holsten T., Gardner J., Wang B., Zhai W.X., Zhu L.H., Fauquet C., Ronald P. A receptor kinase like protein coded by the rice disease resistance gene, Xa21. Science.1995,270:1804-1806.
    [79]Ma J.F., Ryan P.R., Delhaize E. Aluminium tolerance in plants and complexing role of organic acids. Trends Plant Sci.2001,6:273-278.
    [80]Rugh C.L. Development of transgenic yellow poplar for murcury phytoremediation. Nature Biotechnol.1998,16:925-928.
    [81]Bizily S.P. Phytoremediation of methylmercury pollution:merB expression in Arbidopsis thaliana confers resistance to organomercurials. PNAS.1999,96:6808-6813.
    [82]Robinson C.L. A ferric-chelate reductase for iron uptake from soils. Nature.1999,397: 694-697.
    [83]Doelman P., Jansen E., Michels M., VanTil M. Effects of heavy metals in soil on microbial diversity and activity as shown by the sensitivity-resistance index, an ecologically relevant parameters. Biol. Fertilized Soil.1994,17,177-184.
    [84]Nies D.H., Silver S. Ion efflux systems involved in bacterial metal resistances. J. Ind. Microbiol.1995,14:186-199.
    [85]Bruins M.R., Kapil S., Oehme F.W. Microbial resistance to metals in the environment. Exocitol. Environ. Safety.2000,45:198-207.
    [86]Silver S. Bacterial resistances to toxic metal ions-a review. Gene.1996,179:9-19.
    [87]Spain A. Implications of microbial heavy metal tolerance in the environment. Rev. Undergraduate Res.2003,2:1-6.
    [88]Ehrlich H.L. Microbes and metals. Appl. Microbiol. Biotech.1997,48:687-692.
    [89]Cavicchioli R., Thomas T. Extremophiles.2 Edition. Encyclopedia of Microbiology Volume 2, Academic Press, San Diego.2002, p.317-337
    [90]Wagner-Dobler I., Liinsdorf H., Liibbehiisen T., Von Canstein H.F., Li Y. Structure and species composition of mercury-reducing biofilms. Appl. Environ. Microbiol.2000,66: 4559-4569.
    [91]Yoon K.P., Misra T.K., Silver S. Regulation of the cadA cadmium resistance determinant of Staphylococcus aureus. J. Bacteriol.1991,173:7643-7649.
    [92]Oden K.L., Gladysheva T.B. Rosen B.P. Arsenate reduction by the plasmid encoded ArsC protein is coupled to glutathione. Mol. Microbiol.1994,12:301-306.
    [93]Schmidt T. Schlegel H.G. Combined nickel-cobalt-cadmium resistance encoded by the Ncc locus of Alcaligenes xylosoxidans 31 A. J. Bacteriol.1994,176:7045-7054.
    [94]Andrews G.K. Regulation of metallothionein gene expression by oxidative stress and metal ions. Biochem. Phannacol.2000,59:95-104.
    [95]Ybarra G.R., Webb R. Differential responses of GROEL and metallothionein genes to divalent metal cations and the oxyanions of arsenic in the cyanobacterium Synecoccus sp. strain PCC 7942. Proceedings of 1998 Conference on Hazardous Waster Research.1998, 76-82.
    [96]Erbe J.L., Taylor K.B., Hall L.M. Metalloregulation of cyanobacterial smt locus: identification of smt-binding sites and direct interactions with metals. Nucleic Acids Res. 1995,23:2472-2478.
    [97]Daniels M.J., TurnerCarvet J.S., Selkirk R., Sun H.Z., Parkison J.A., Sadler P.J., Robison N.J. Coordination of Zn (and Cd) by prokaryotic metallothionein-involvement of His-imidazole. J. Biol. Chem.1998,273:22957-22961.
    [98}Chou A.Y., Archdeacon J., Kado, C.I. Agrobacterium transcriptional regulator Ros is a prokaryotic zinc finger protein that regulates plant oncogene ipt. PNAS.1998,95:5293-5298.
    [99]Lu Z.H., Copbine P., Dameron C.T., Solioz M. How cells handle copper:a view from microbes. J. Trace Elements Exp. Med.1999,12:347-360.
    [100]Liu C.Q., Chaoroechai P., Khunajakr N., Deng Y., Widodo N., Dunn W. Genetic and transcriptional analysis of a novel plasmid-encoded copper resistance operon from Lactococcus lactis. Gene.2002,297:241-247.
    [101]Cooksey D.A. Copper uptake and resistance in bacteria. Mol. Microbiol.1993,7:1-5.
    [102]Fong S.T., Camakaris J., Lee B.T. Molecular genetics of a chromosomal locus involved in copper tolerance in Escherichia coli K12. Mol. Microbiol.1995,15:1127-1137.
    [103]Gupta S.D., Lee B.T.O., Camakaris J., Wu H.C. Identification of cutC and cutF (nlpF) genes involved on copper tolerance in Escherichia coli. J. Bacteriol.1995,177:4207-4215.
    [104]Yadav S.K. Heavy metals toxicity in plants:An overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. South Afr. J. Bot.2010,76:167-179.
    [105]Mithofer A., Schulze B., Boland W. Biotic and heavy metal stress response in plants: evidence for common signals. FEBS Lett.2004,566:1-5.
    [106]Srivastava S., Tripathi R.D., Dwivedi U.N., Synthesis of phytochelatins and modulation of antioxidants in response to cadmium stress in Cuscuta reflexa—an angiospermic parasite. J. Plant Physiol.2004,161:665-674.
    [107]Qadir S., Qureshi M.I., Javed S., Abdin M.Z., Genotypic variation in phytoremediation potential of Brassica juncea cultivars exposed to Cd stress. Plant Sci.2004,167:1171-1181.
    [108]Dong J., Wu F.B., Zhang GP. Influence of cadmium on antioxidant capacity and four microelement concentrations in tomato seedlings (Lycopersicon esculentum). Chemosphere.2006,64:1659-1666.
    [109]Demiral T., Tiirkan I. Comparative lipid peroxidation, antioxidant defense systems and proline content in roots of two rice cultivars differing in salt tolerance. Environ. Exp. Bot. 2005,53:247-257.
    [110]Bricker T.J., Pichtel J., Brown H.J., Simmons M. Phytoextraction of Pb and Cd from superficial soil:effects of amendments and croppings. J. Environ. Sci. Health, Part A Toxic/Hazardous Substances and Environmental Engineering.2001,36:1597-1610.
    [111]Freeman J.L., Persans M.W., Nieman K., Albrecht C., Peer W., Pickering I.J., Salt D.E. Increased glutathione biosynthesis plays a role in nickel Pb and Cd from superficial soil: effects of amendments and croppings. Tolerance in Thlaspi nickel hyperaccumulators. Plant Cell.2004,16:2176-2191.
    [112]di Toppi L.S., Gabbrielli R. Response to cadmium in higher plants. Environ. Exp. Bot. 1999,41:105-130.
    [113]Dietz K.J., Bair M., Kramer U. Free radical and reactive oxygen species as mediators of heavy metal toxicity in plants in Heavy Metal Stress in Plants from Molecules to Ecosystems. M. N. V. Prasad and J. Hagemeyer, Eds., pp.73-79, Spinger-Verlag, Berlin, Germany,1999.
    [114]Schutzenubel A., Polle A. Plant responses to abiotic stresses:heavy metal-induced oxidative stress and protection by mycorrhization. J. Exp. Bot.2002,53(372):1351-1365.
    [115]Wildner G.F., Henkel J. The effect of divalent metalions on the activity of Mg2+ depleted ribulose-1,5-bisphosphate oxygenase. Planta.1979,146(2):223-228.
    [116]VanAssche F., Clijsters H. Inhibition of photosynthesis in Phaseolus vulgaris by treatment with toxic concentration of zinc:effect on ribulose-1,5-bisphosphate carboxylase/oxygenase. J. Plant Physiol.1986,125(3-4):355-360.
    [117]Rivetta A., Negrini N., Cocucci M. Involvement of Ca2+ -calmodulinin Cd2+toxicity during the early phases of radish(Raphanus sativus L.) seed germination. Plant Cell Environ.1997,20(5):600-608.
    [118]Meharg A.A. The role of plasmalemma in metal tolerance in angiosperm. Physiologia Plantarum.1993,88(1):191-198.
    [119]Salt D.E., Prince R.C., Pickering I.J., Raskin I., Mechanisms of cadmium mobility and accumulation in Indian mustard. Plant Physiol.1995,109:1427-1433.
    [120]Wojcik M., Tukiendorf A. Phytochelatin synthesis and cadmium localization in wild type of Arabidopsis thaliana. Plant Growth Reg.2004,44:71-80.
    [121]Mohanpuria P., Rana N.K., Yadav S.K. Cadmium induced oxidative stress influence on glutathione metabolic genes of Camelliasinensis (L.) O. Kuntze. Environ. Toxicol.2007, 22:368-374.
    [122]Ratkevicius N., Correa J.A., Moenne A. Copper accumulation, synthesis of ascorbate and activation of ascorbate peroxidase in Enteromorpha compressa (L.) Grev. (Chlorophyta) from heavy metal-enriched environments in northern Chile. Plant Cell Environ.2003, 26(10):1599-1608.
    [123]deVries W., Lofts S., Tipping E., Meili M., Groenenberg J.E., Schutze G. Impact of soil properties on critical concentrations of cadmium, lead, copper, zinc, and mercuryin soil and soil solution in view of ecotoxicological effects. Rev. Environ. Contamin. Toxicol. 2002,191:47-89.
    [124]Warne M.S., Heemsbergen D., Stevens D., McLaughlin M., Cozens G., Whatmuff M., Broos K., Barry G., Bell M., Nash D., Pritchard D., Penney N. Modeling the toxicity of copper and zinc salts to wheat in 14 soils. Environ. Toxicology Chem.2008,27:786-792.
    [125]Fontes R.L.S., Cox F.R. Zinc toxicity in soybean grown at high iron concentration in nutrient solution. J. Plant Nutri.1998,21:1723-1730.
    [126]Thomas F., Malick C., Endreszl E.C., Davies K.S. Distinct responses Ramos, J., Naya, L., Gay, M., Abian, J., Becana, M.,2008. Functional to copper stress in the halophyte, Mesembryan-themum crystallium. Physiologia Plantarum.1998,102:360-368.
    [127]Demirevska-kepova K., Simova-Stoilova L., Stoyanova Z., Holzer R., Feller U. Biochemical changes in barely plants after excessive supply of copper and manganese. Environ. Exp. Bot.2004,52:253-266.
    [128]DalCorso G., Farinati S., Maistri S., Furini A. How plants cope with cadmium:staking all on metabolism and gene expression. J. Integrat. Plant Biol.2008,50(10):1268-1280.
    [129]Hossain M.A., Hossain M.Z., Fujita M. Stress-induced changes of methylglyoxal level and glyoxalase I activity in pumpkin seedlings and cDNA cloning of glyoxalase I gene. Australian J. Crop Sci.2009,3(2):53-64.
    [130]Hossain M.A., Hasanuzzaman M., Fujita M. Up-regulation of antioxidant and glyoxalase systems by exogenous glycinebetaine and proline in mung bean confer tolerance to cadmium stress. Physiol. Mol. Biol. Plants.2010,16(3):259-272.
    [131]Rascio N., Navari-Izzo F. Heavy metal hyper accumulating plants:how and why do they do it? And what makes them so interesting? Plant Sci.2011,180(2):169-181.
    [132]Villiers F., Ducruix C, Hugouvieux V. et al. Investigating the plant response to cadmium exposure by proteomic and metabolomic approaches. Proteomics.2011,11(9):1650-1663.
    [133]Morsy A.A., Salama K.H.A., Kamel H.A. Mansour M.M.F. Effect of heavy metal on plasma membrane lipids and antioxidant enzymes of Zygophyllum species. Eurasia. J. Biosci.2012,6:1-10.
    [134]Ramesh, Cloning and characterization of metallothionein genes of ectomycorrhizal fungus Hebeloma cylindrosporum, Ph.D. thesis, Thapar University, Punjab, India,2008.
    [135]Sharma P., Dubey R.S. Involvement of oxidative stress and role of antioxidative defense system in growing rice seedlings exposed to toxic concentrations of aluminum. Plant Cell Rep.2007,26(11):2027-2038.
    [136]Sharma S.S., Dietz K.J. The relationship between metal toxicity and cellular redox imbalance. Trends Plant Sci.2009,14(1):43-50.
    [137]Hossain M.A., Fujita M. Purification of glyoxalase I from onion bulbs and molecular cloning of its cDNA. Biosci. Biotech. Biochem.2009,73(9):2007-2013.
    [138]Hossain M.A., Fujita M. Regulatory role of components of ascorbate-glutathione (AsA-GSH) pathway in plant tolerance to oxidative stress. Oxidative Stress in Plants:Causes, Consequences and Tolerance, N.A.Anjum, S.Umar, and A. Ahmed, Eds., IK International Publishing House Pvt. Ltd., NewDelhi, India,2011.
    [139]Hossain M.A., Hossain M.D., Rohman M.M., da Silva J.A.T., Fujita M. Onion major compounds (flavonoids, organosulfurs) and highly expressed glutathione-related enzymes: possible physiological interaction, gene cloning and abiotic stress response. Onion Consumption and Health, C.B. Aguirre and L.M. Jaramillo, Eds., NovaScience Publishers, New York, NY, USA,2012.
    [140]Tan Y.F., O'Toole N., Taylor N.L., Harvey Millar A. Divalent metal ions in plant mitochondria and their role in interactions with proteins and oxidative stress-induced damage to respiratory function. Plant Physiol.2010,152(2):747-761.
    [141]Dubey R.S. Metal toxicity, oxidative stress and antioxidative defense system in plants. Reactive Oxygen Species and Antioxidants in Higher Plants, S.D.Gupta, Ed., pp.177-203, CRC Press, BocaRaton, Fla, USA,2011.
    [142]Anjum N.A., Ahmad I., Mohmood I., Pacheco M., Duarte A.C., Pereira E., Umar S., Ahmad A., Khan N.A., Iqbal M., Prasad M.N.V. Modulation of glutathione and its related enzymes in plants'responses to toxic metals and metalloids-A review. Environ. Exp. Bot. 2012,75:307-324.
    [143]Yadav S.K., Singla-Pareek S.L., Ray M., Reddy M.K., Sopory S.K. Methylglyoxal levels in plants under salinity stress are dependent on glyoxalase I and glutathione. Biochem. Biophys. Res. Commun.2005,337(1):61-67.
    [144]Yadav S.K., Singla-Pareek S.L., Reddy M.K., Sopory S.K. Transgenic tobacco plants overexpressing glyoxalase enzymes resist an increase in methylglyoxal and maintain higher reduced glutathione levels under salinity stress. FEBS Lett.2005,579(27):6265-6271.
    [145]Singla-Pareek S.L., Yadav S.K., Pareek A., Reddy M.K., Sopory S.K. Transgenic tobacco overexpressing glyoxalase pathway enzymes grow and set viable seeds in zinc-spiked soils. Plant Physiol.2006,140(2):613-623.
    [146]Dalcorso G., Farinati S., Furini A. Regulatory networks of cadmium stress in plants. Plant Signal. Behavior.2010,5(6):1-5.
    [147]Leyval C., Turnau K., and Haselwandter K. Effect of heavy metal pollution on mycorrhizal colonization and function:physiological, ecological and applied aspects. Mycorrhiza.1997,7(3):139-153.
    [148]Cobbett C.S. Phytochelatins and their roles in heavy metal detoxification. Plant Physiol. 2000,123(3):825-832.
    [149]John R., Ahmad P., Gadgil K., Sharma S. Heavy metal toxicity:Effect on plant growth, biochemical parameters and metal accumulation by Brassica juncea L. Int. J. Plant Prod. 2009,3(3):65-76.
    [150]Yang X.E., Jin X.F., Feng Y., Islam E. Molecular mechanisms and genetic basis of heavy metal tolerance/hyperaccumulation in plants. J. Integr. Plant Biol.2005,47(9):1025-1035.
    [151]Clemens S. Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie.2006,88(11):1707-1719.
    [152]Tangahu B.V., Abdullah S.R.S, Basri H., Idris M., Anuar N., Mukhlisin M. A review on heavy metals (As, Pb and Hg) uptake by plants through phytoremediation. Int. J. Chem. Eng.2011,1-31.
    [153]Seth C.S., Remans T., Keunen E. et al. Phytoextraction of toxic metals:a central role for glutathione. Plant Cell Environ.2012,35(2):334-346.
    [154]Clemens S. Molecular mechanisms of plant metal tolerance and homeostasis. Planta. 2001,212 (4):475-486.
    [155]Dai L.F., Gao H., Xia J.R. Tolerance to heavy metal Cd and detoxifieation of Synechococcus cedrorum. Chin. J. Appi. Environ. Bio.1998,4(3):192-195.
    [156]Meharg A.A., Macnair M.R. Suppression of the high affinity phosphate uptake system: mechanism of arsenate tolerance in Holcus lanatus L. J. Exp. Bot.1992,43:524-529.
    [157]Brooks R.R. Plants that hyperaccumulate heavy metals. In ME Garago, ed, Plants and the Chemical Elements:Biochemistry, Uptake, Tolerance and Toxicity. VCH Verlagsgesellsschaft, Weinheim, Germany,1994, pp.88-105.
    [158]Foy C.D., Chaney R.L., White M.C. Physiology of metal toxicity in plants. Ann. Rev. Plant Physiol. Plant Mol. Biol.1978,29:511-566.
    [159]Sandalio L.M., Dalurzo H.C., Gomez M., Romero-Puertas M.C., Del Rio L.A. Cadmium-induced changes in the growth and oxidative metabolism of pea plants. J. Exp. Bot.2001,52(364):2115-2126.
    [160]Carrier P., Baryla A., Havaux M. Cadmium distribution and microlocalization in oilseed rape (Brassica napus) after long-term growth on cadmium-contaminated soil. Planta.2003, 216(6):939-950.
    [161]Gamalero E., Lingua G, Berta G, Glick B.R. Beneficial role of plant growth promoting bacteria and arbuscular mycorrhizal fungi on plant responses to heavy metal stress. Can. J. Microbiol.2009,55(5):501-514.
    [162]Fodor F. Physiological responses of vascular plants to heavy metals, in Physiology and Biochemistry of Metal Toxicity and Tolerance in Plants, M.N.V. Prasad and K.Strzalka, Eds., pp.149-177, Kluwer Academic, Dortrech, UK,2002.
    [163]Poschenrieder C., BarceloJ. Water relations in heavy metal stressed plants, in Heavy Metal Stress in Plants, M.N.V. Prasad, Ed., pp.249-270, Springer, Berlin, Germany,3rd edition,2004.
    [164]Benavides M.P., Gallego S.M., Tomaro M.L. Cadmium toxicity in plants. Braz. J. Plant Physiol.2005,17(1):21-34.
    [165]Hsu Y.T., Kao C.H. Cadmium toxicity is reduced by nitric oxide in rice leaves. Plant Growth Regul.2004,42(3):227-238.
    [166]Backor M., Vaczi P., Bartak M., Budova J., Dzubaj A. Uptake, photosynthetic characteristics and membrane lipid peroxidation levels in the lichen photobiont Trebouxia erici exposed to copper and cadmium. Bryologist.2007,110(1):100-107.
    [167]Perfus-Barbeoch L., Leonhardt N., Vavasseur A., Forestier C. Heavy metal toxicity: cadmium permeates through calcium channels and disturbs the plant water status.2002, Plant J.32(4):539-548.
    [168]Llamas A., Ullrich C.I., Sanz A. Cd2+ effects on transmembrane electrical potential difference, respiration and membrane permeability of rice (Oryza sativa L) roots.2000, Plant Soil.219(1-2):21-28.
    [169]Cho U.H., Seo N.H. Oxidative stress in Arabidopsis thaliana exposed to cadmium is due to hydrogen peroxide accumulation. Plant Sci.2005,168(1):113-120.
    [170]Galli U., Schuepp H., Brunold C. Thiols in cadmium-and copper-treated maize (Zea mays L.). Planta.1996,198:139-143.
    [171]Weckx J.E.J., Clijsters H.M.M. Oxidative damage and defense mechanisms in primary leaves of Phaseolus vulgaris as a result of root assimilation of toxic amounts of copper. Physiol Plant.1996,96:506-512.
    [172]Weckx J.E.J., Clijsters H.M.M. Zn phytotoxicity induces oxidative stress in primary leaves of Phaseolus vulgaris. Plant Physiol. Biochem.1997,35:405-410.
    [173]Cobbett C. Phytochelatins and metallothioneins:Roles in heavy metal detoxification and homeostasis. Ann. Rev. Plant Biol.2002,53:159-182.
    [174]Zhen Y, Qi J.L., Wang S.S., Su J., Xu G.H., Zhang M.S., Miao L., Peng X.X., Tian D., Yang Y.H. Comparative proteome analysis of differentially expressed proteins induced by Al toxicity in soybean. Physiol. Plantarum.2007,131(4):542-554.
    [175]Zhao L., Sun Y.L., Cui S.X. Cd-induced changes in leaf proteome of the hyperaccumulator plant Phytolacca Americana. Chemosphere.2011,85(1):56-66.
    [176]Hall J.L. Cellular mechanisms for heavy metal detoxification and tolerance. J. Exp. Bot. 2002,53(366):1-11.
    [177]Orzech K.A., Burke J.J. Heat shock and the protection against metal toxicity in wheat leaves. Plant Cell Environ.1988,11(8):711-714.
    [178]Heckathorn S.A., Mueller J.K., LaGuidice S., Zhu B., Barrett T., Blair B., Dong Y. Chloroplast small heat-shock proteins protect photosynthesis during heavy metal stress. Am. J. Bot.2004,91(9):1312-1318.
    [179]Foyer, C.H., Descourvieres P., Kunert K.J. Protection against oxygen radicals:An important defense mechanism studied in transgenic plants. Plant Cell Environ.1994,17: 507-523.
    [180]Bittsanszkya A., Kfmives T., Gullner G, Gyulai G, Kiss J., Heszky L., Foyer C.H., Noctor G. Redox homeostasis and antioxidant signaling:a metabolic interface between stress perception and physiological responses. Plant Cell.2005,17:1866-1875.
    [181]Foyer C.H. Redox homeostasis and antioxidant signaling:a metabolic interface between stress perception and physiological responses. Plant Cell 17,1866-1875.
    [182]Trachootham D., Lu W., Ogasawara M.A., Valle N.R.-D., Huang P. Redox regulation of cell survival. Antioxid. Redox Sign.2008,10(8):1343-1374.
    [183]Baloun J., Adam V., Trnkova L., Beklova M., Svobodova Z., Zeman L., Kizek R. Complexes of glutathione with heavy metal ions as a new biochemical marker of aquatic environment pollution. Environ. Toxicol. Chem.2010,29(3):497-500.
    [184]Freeman J.L., Persans M.W., Nieman K., Albrecht C., Peer W., Pickering I.J., Salt D.E. Increased glutathione biosynthesis plays a role in nickel tolerance in Thlaspi nickel hyperaccumulators. Plant Cell.2004,16:2176-2191.
    [185]Dixon D.P., Cummins L., Cole D.J., Edwards R. Glutathione-mediated detoxification systems in plants. Curr. Opin. Plant Biol.1998,1:258-266.
    [186]Vernoux T., Wilson R.C., Seeley K.A., Reichheld J.P., Muroy S., Brown S., Maughan S.C., Cobbett C.S., Montagu M.V., Inze D., May M.J., Sung Z.R. The rootmeristemssl/cadmium sensitve 2 gene defines a glutathione-dependent pathway involved in initiation and maintenance of cell division during postembryonic root development. Plant Cell.2000,12:97-110.
    [187]Ogawa K., Hatano-Iwasaki A., Yanagida M., Iwabuchi M. Level of glutathione is regulated by ATP-dependent ligation of glutamate and cysteine through photosynthesis in Arabidopsis thaliana:mechanism of strong interaction of light intensity with flowering. Plant Cell Physiol.2004,45:1-8.
    [188]Noctor G, Arisi A.C., Jouanin L., Foyer C.H. Manipulation of glutathione and amino acid biosynthesis in the chloroplast. Plant Physiol.1998,118:471-482.
    [189]Wachter A., Rausch T. Regulation of glutathione (GSH) synthesis in plants:novel insight from Arabidopsis. FAL Agr. Res.2005,283:149-155.
    [190]Mullineaux P., Rausch T. Glutathione, photosynthesis and the redox regulation of stress-responsive gene expression. Photosynth. Res.2005,86:459-474.
    [191]Millar A.H., Mittova V., Kiddle G., Heazlewood J.L., Bartoli C.G., Theodoulou F.L Foyer C.H. Control of ascorbate synthesis by respiration and its implications for stress responses. Plant Physiol.2003,133:443-447.
    [192]Foyer C.H., Noctor G. Redox homeostasis and antioxidant signaling:a metabolic interface between stress perception and physiological responses. Plant Cell.2005,17: 1866-1875.
    [193]Rausch T., Gromes R., Liedschulte V, Muller I., Bogs J., Galovic V., Wachter A. Novel insight into the regulation of GSH biosynthesis in higher plants. Plant Biol. (Stuttgart). 2007,9:565-572.
    [194]Shao H.B., Chu L.Y., Lu Z.H., Kang C.M. Primary antioxidant free radical scavenging and redox signaling pathways in higher plant cells. Int. J. Biol. Sci.2008,4:8-14.
    [195]Marrs K.A. The functions and regulation of glutathione S-transferases in plants. Ann. Rev. Plant Physiol. Plant Mol. Biol.1996,47:127-158.
    [196]Alfenito M.R., Souer E., Goodman C.D., Buell R., Mol J., Koes R., Walbot V. Functional complementation of anthocyanin sequestration in the vacuole by widely divergent glutathione-S-transferases. Plant Cell.1998,10:1135-1149.
    [197]Yazaki K. ABC transporters involved in the transport of plant secondary metabolites. FEBS Lett.2006,580:1183-1191.
    [198]Oqawa K., Iwabuchi M. A mechanism for promoting the germination of Zinnia elegans seeds by hydrogen peroxide. Plant Cell Physiol.2001,42:286-291.
    [199]Cairns N.G., Pasternak M., Wachter A., Cobbett C.S., Meyer A.J. Maturation of Arabidopsis seeds is dependent on glutathione biosynthesis within the embryo. Plant Physiol.2006,141:446-455.
    [200]Grill E., Winnacker E.L., Zenk M.H. Phytochelatins:the principal heavy-metal complexing peptides of plants. Science.1985,230:674-676.
    [201]Zhu Y.L., Pilon-Smits E.A.H., Jouanin L., Terry N. Overexpression of glutathione synthetase in Indian mustard enhances cadmium accumulation and tolerance. Plant Physiol. 1999a,119:73-79.
    [202]Zhu Y.L., Pilon-Smits E.A.H., Tarun A.S., Weber S.U., Jouanin L., Terry N. Cadmium tolerance and accumulation in Indian mustard is enhanced by overexpressing glutamylcysteine synthetase. Plant Physiol.1999b,121:1169-1177.
    [203]Howden R., Goldsbrough P.B., Anderson C.R., Cobbett C.S. Cadmiumsensitive, cadi mutants of Arabidopsis thaliana are phytochelatin deficient. Plant Physiol.1995,107: 1059-1066.
    [204]Cobbett C.S., May M.J., Howden R., Rolls B. The glutathione-deficient, cadmium-sensitive mutants, cad2-1, of Arabidopsis thaliana is deficient in-glutamylcysteine synthetase. Plant J.1998,16:73-78.
    [205]Xiang C., Werner B.L., Christensen E.M., Oliver D.J. The biological functions of glutathione revisited in Arabidopsis transgenic plants with altered glutathione levels. Plant Physiol.2001,126:564-574.
    [206]Noctor G, Arisi A.C., Jouanin L., Foyer C.H. Manipulation of glutathione and amino acid biosynthesis in the chloroplast. Plant Physiol.1998,118:471^82.
    [207]Mendoza-Cozatl D.G., Butko E., Springer F., Torpey J.W., Komives E.A., Kehr J., Schroeder J.I. Identification of high levels of phytoche-latins, glutathione and cadmium in the phloem sap of Brassica napus. A role for thiol-peptides in the long-distance transport of cadmium and the effect of cadmium on iron translocation. Plant J.2008,54:249-259.
    [208]Kim D.Y., Bovet L., Kushnir S., Noh E.W., Martinoia E., Lee Y. AtATM3 is involved in heavy metal resistance in Arabidopsis. Plant Physiol.2006,140:922-932.
    [209]Yadav S.K., Singla-Pareek S.L., Ray M., Reddy M.K., Sopory S.K. Methylglyoxal levels in plants under salinity stress are dependent on glyoxalase I and glutathione. Biochem. Biophy. Res. Commun.2005a,337:61-67.
    [210]Yadav S.K., Singla-Pareek S.L., Reddy M.K., Sopory S.K. Methyl-glyoxal detoxification by glyoxalase system:a survival strategy during environmental stresses. Physiol. Mol. Biol. Plants.2005b,11:1-11.
    [211]Yadav S.K., Singla-Pareek S.L., Reddy M.K., Sopory S.K. Transgenic tobacco plants overexpressing glyoxalase enzymes resist an increase in methylglyoxal and maintain higher reduced glutathione levels under salinity stress. FEBS Lett.2005c,579:6265-6271.
    [212]Singla-Pareek S.L., Yadav S.K., Pareek A., Reddy M.K., Sopory S.K. Transgenic tobacco overexpressing glyoxalase pathway enzymes grow and set viable seeds in zinc-spiked soils. Plant Physiol.2006,140:613-623.
    [213]Mendoza-Cozatl D., Loza-Tavera H., Hernandez-Navarro A., Moreno-Sanchez R. Sulfur assimilation and glutathione metabolism under cadmium stress in yeast, protists and plants. FEMS Microbiol. Rev.2005,29:653-671.
    [214]Wawrzynski A., Kopera E., Wawrzynska A., Kamifiska J., Bal W., Sirko A. Effects of simultaneous expression of heterologous genes involved in phytochelatin biosynthesis on thiol content and cadmium accumulation in tobacco plants. J. Exp. Bot.2006,57:2173-2182.
    [215]Li Y., Dankher O.P., Carreira L., Smith A.P., Meagher R.B. The shoot-specific expression of y-glutamylcysteine synthetase directs the long-distance transport of thiol-peptides to roots conferring tolerance to mercury and arsenic. Plant Physiol.2006,141:288-298.
    [216]Bricker T.J., Pichtel J., Brown H.J., Simmons M. Phytoextraction of Pb and Cd from superficial soil:effects of amendments and croppings. J. Environ. Sci. Health, Part A Toxic/Hazardous Substances and Environmental Engineering.2001,36:1597-1610.
    [217]Bennett L.E., Burkhead J.L., Hale K.L., Terry N., Pilon M., Pilon-Smits E.A.H. Analysis of transgenic Indian mustard plants for phytoremediation of metal-contaminated mine tailings. J. Environ. Qual.2003,32:432-440.
    [218]Van den Broeck K., Vendecasteele C., Geuns J.M.C. Speciation by liquid chromatography-inductively coupled plasma-mass spectrometry of arsenic in mung bean seedlings used as a bio-indicator for the arsenic contamination. Analytica Chimica Acta. 1998,361:101-111.
    [219]Gasic K., Korban S.S. Expression of Arabidopsis phytochelatin synthase in Indian mustard (Brassica juncea) plants enhances tolerance for Cd and Zn. Planta.2007a,225: 1277-1285.
    [220]Gasic K., Korban S.S. Transgenic Indian mustard (Brassica juncea) plants expressing an Arabidopsis phytochelatin synthase (AtPCS1)exhibit enhanced As and Cd tolerance. Plant Mol. Biol.2007b,64:361-369.
    [221]Guo J., Dai X., Xu W., Ma M. Overexpressing GSH1 and AsPCS1 simultaneously increases the tolerance and accumulation of cadmium and arsenic in Arabidopsis thaliana. Chemosphere.2008,72:1020-1026.
    [222]Lee S., Moon J.S., Ko T.S., Petros D., Goldsbrough P.B., Korban S.S. Overexpression of Arabidopsis phytochelatin synthase paradoxically leads to hypersensitivity to cadmium stress. Plant Physiol.2003,131:656-663.
    [223]Anderson M.E. Glutathione:an overview of biosynthesis and modulation. Chem. Biol. Interact.1998,111-112:1-14.
    [224]Janowiak B.E., Hayward M.A., Peterson F.C., Volkman B.F., Griffith O.W.γ-glutamylcysteine synthetase-glutathione synthetase:domain structure and identification of residues important in substrate and glutathione binding. Biochem.2006,45:10461-10473.
    [225]Janowiak B.E., Griffith O.W. Glutathione synthesis in Streptococcus agalactiae:one protein accounts for γ-glutamylcysteine synthetase and glutathione synthetase activities. J. Biol. Chem.2005,280:11829-11839.
    [226]Liedschulte V, Wachter A., An Z., Rausch T. Exploiting plants for glutathione (GSH) production:Uncoupling GSH synthesis from cellular controls results in unprecedented GSH accumulation. Plant Biotech. J.2010,8:807-820.
    [227]Sagardoy R., Morales F., Lopez-Millan, Abadia A., Abadia J. Effects of zinc toxicity on sugar beet (Beta vularis L.) plants grown in hydroponics. Plant Biol.2009,11:339-350.
    [228]Bazrgar A.B., Soltani A., Koocheki A., Zeinali E., Ghaemi A. Environmental emissions profile of different sugar beet cropping systems in East of Iran. Afr. J. Agr. Res.2011,6 (29):6246-6255.
    [229]金明亮,贾海伦.甜菜作为能源作物的优势极其发展前景.中国糖料.2011,1:58-66.
    [230]史淑芝,程大友,马凤鸣,崔杰.生物质能源作物---能源甜菜的开发利用.Chinese Agricultural Science Bulletin.2007,23 (11):416-419.
    [231]DeLeve L., Kaplowitz N. Glutathione metabolism and its role in hepatotoxicity. Pharmacol. Ther.1991,52:287-305.
    [232]Moinova H.R., Mulcahy R.T. An electrophile responsive element (EpRE) regulates β-naphthoflavone induction of the human y-glutamylcysteine synthetase regulatory subunit gene. J. Biol. Chem.1998,273:14683-14689.
    [233]Dormer U.H., Westwater J., McLaren N.F., Kent N.A., Mellor J., Jamieson D.J. Cadmium-inducible expression of the yeast GSH1 gene requires a functional sulfur-amino acid regulatory network. J. Biol. Chem.2000,275:32611-32616.
    [234]Shukla G.S., Chiu J.-F., Hart B.A. Enhanced expression of pulmonary y-glutamylcysteine synthetase heavy subunit in rats exposed to cadmium aerosols. Toxicol. Appl. Pharmacol. 2000a,163:249-259.
    [235]Shukla G.S., Chiu J-F., Hart B.A. Cadmium-induced elevations in the gene expression of the regulatory subunit of y-glutamylcysteine synthetase in rat lung and alveolar epithelial cells. Toxicol.2000b,151:45-54.
    [236]Keinanen S.I., Hassinen V.H., Karenlampi S.O., et al. Isolation of genes up-regulated by copper in a copper-tolerant birch(Betula pendula) clone. Tree Physiol.2007,27:1243-1252.
    [237]Schafer H.J., Haag-Kerwer A., Rausch T. cDNA cloning and expression analysis of genes encoding GSH synthesis in roots of the heavy-metal accumulator Brassica juncea L. evidence for Cd-induction of a putative mitochondrial g-glutamylcysteine synthetase isoform. Plant Mol. Biol.1998,37(1):87-97.
    [238]Wachter A., Wolf S., Steininger H., Bogs J., Rausch T. Differential targeting of GSH1 and GSH2 is achieved by multiple transcription initiation:implications for the compartmentation of glutathione biosynthesis in the Brassicaceae. The Plant J.2005,41(1): 15-30.
    [239]Sugiyama K., Izawa S., Inoue Y. The Yaplp-dependent induction of glutathione synthesis in heat shock response of Saccharomyces cerevisiae. J. Biol. Chem.2000,275:15535-15540.
    [240]Maughan S. Engineering and genetic approaches to modulating the glutathione network in plants. Physiol. Plantarum.2006,126:382-397.
    [241]Ball L., Accotto G.-P., Bechtold U., Creissen G., Funck D., Jimenez A., Kular B., Leyland N., Mejia-Carranza J., Reynolds H., Karpinski S., Mullineaux P.M. Mullineaux Evidence for a Direct Linkbetween Glutathione Biosynthesis and Stress Defense Gene Expression in Arabidopsis. Plant Cell.2004,16(9):2448-2462.
    [242]Sun Q., Ye Z.H., Wang X.R., Wong M.H. Cadmium hyperaccumulation leads to an increase of glutathione rather than phytochelatins in the cadmium hyperaccumulator Sedum alfredii. Plant Physiol.2007,164:1489-1498.
    [243]Chan H.M., Cherian M.G. Protective roles of metallothionein and glutathione in hepatotoxicity of cadmium. Toxicol.1992,72:281-290.
    [244]Helbig K., Grosse C, Nies D.H. Cadmium toxicity in glutathione mutants of Escherichia coll J. Bacteriol.2008,190:5439-5454.
    [245]Chaturvedi A.K., Mishra A., Tiwari V., Jha B. Cloning and transcript analysis of type 2 metallothionein gene (SbMT-2) from extreme halophyte Salicornia brachiata and its heterologous expression in E. coli. Gene.2012,499:280-287.
    [246]Sauge-Merle S., Lecomte-Pradines C., Carrier P., Cuine S., DuBow M. Heavy metal accumulation by recombinant mammalian metallothionein within Escherichia coli protects against elevated metal exposure. Chemosphere.2012,88:918-924.
    [247]Sousa C., Cebolla A., De Lorenzo V. Enhanced metalloadsorption of bacterial cells displaying poly-His peptides. Nat. Biotechnol.1996,14:1017-1020.
    [248]Pazirandeh M., Wells B.M., Ryan R.L. Development of bacterium-based heavy metal biosorbents:enhanced uptake of cadmium and mercury by Escherichia coli expressing a metal binding motif. Appl. Environ. Microbiol.1998,64 (10):4068-4072.
    [249]Deng X., Yi X.E., Liu G. Cadmium removal from aqueous solution by gene-modified Escherichia coli JM109. J. Hazard. Mater.2007,139:340-344.
    [250]Kuhn S.P., Pfister R.M. Adsorption of mixed metal and cadmium by calcium-alginate immobilized Zoogloea ramigera. Appl. Environ. Microbiol.1989,31 (5-6):613-618.
    [251]Butter T.J. The removal and recovery of cadmium from dilute aqueous solutions by biosorption and electrolysis at laboratory scale. Water Res.1998,32 (2):400-405.
    [252]Gupta S.D., Wu H.C., Rick P.D. A Salmonella typhimurium genetic locus which confers copper tolerance on copper-sensitive mutants of Escherichia coli. J Bacteriol.1997,179: 4977-4984.
    [253]Garbisu C, Ishii T., Leighton T., Buchanan B.B. Bacterial reduction of selenite to elemental selenium. Chem. Geol.1996,132:199-204.
    [254]Lemaire S., Keryer E., Stein M., Schepens I., Issakidis-Bourguet E., Gerard-Hirne C. Miginiac-Maslow M., Jacquot J.P. Heavy-metal regulation of thioredoxin gene expression in Chlamydomonas reinhardtii. Plant Physiol.1999,120 (3):773-778.
    [255]Helbig K., Bleuel C, Krauss G.J., Nies D.H. Glutathione and transition-metal homeostasis in Escherichia coli. J. Bacteriol.2008,190 (15):5431-5438.
    [256]An Z., Li C, Zu Y., Du Y., Wachter A., Gromes R., Rausch T. Expression of BjMT2, a metallothionein 2 from Brassica juncea, increases copper and cadmium tolerance in Escherichia coli and Arabidopsis thaliana, but inhibits root elongation in Arabidopsis thaliana seedlings. J Exp. Bot.2006,57 (14):3575-3582.
    [257]Liu D.L., Lu Z.Q., Mao Z.J., Liu S.K. Enhanced thermotolerance of E. coli by expressed OsHsp90 from rice (Oryza sativa L.). Curr. Microbiol.2009,58 (2):129-133.
    [258]Liu D.L., Lu Z.Q., Liu S.K. Characteristics of Recombined Protein GST-OsCATB Expressed in E. coli., Bull. Bot. Res. (BBR, Chinese Journal).2011,31(6):692-695.
    [259]Asada K., Takahashi M. Production and scavenging of Active Oxygen in photosynthesis in photo-inhibition. Elsevier Press.1987,227-287.
    [260]Willekens H., Chamnongpol S. Davey M, Schraudner M, Langebartels C, Van Montagu. Catalase is a sink for H2O2 and is indispensable for stress defence in C3 plants. EMBO J. 1997,16:4806-4816.
    [261]Moons A. Osgstu3 and Osgtu4, Encoding Tau Class Glutathione S-Transferases, are Heavy Metal and Hypoxic Stress induced and Differentially Salt Stress Responsive in Rice Roots. FEBS Lett.2003, (553):427-432.
    [262]Li Y., Dhankher O., Carreira L., Balish R., Meagher R. Engineered overexpression of y-glutamylcysteine synthetase in plants confers high level arsenic and mercury tolerance. Environ. Toxicol. Chem.2005,24:1376-1386.
    [263]Mehra R.K., Mulchandani P. Glutathione-mediated transfer of Cu (I) into phytochelatins. Biochem. J.1995,307:687-705.
    [264]Gonzalez-Mendoza D., Moreno A.Q., Zapata-Perez O. Coordinated responses of phytochelatin synthase and metallothionein genes in black mangrove, Avicennia germinans, exposed to cadmium and copper. Aquatic Toxicol.2007,83:306-314.
    [265]Mysliwa-Kurdziel B., Prasad M.N.V., Strzalka K. Heavy metal influence on the light phase of photosynthesis. In Physiology and Biochemistry of Metal Toxicity and Tolerance in Plants, M.N.V. Prasad and K. Strzatka eds (The Netherlands:Kluwer Academic Publishers).2002, pp.229-255.
    [266]Patsikka E., Kairavuo M., Sersen F., Aro E.M, Tyystjarvi E. Excess copper predisposes photosystem II to photoinhibition in vivo by outcompeting iron and causing decrease in leaf chlorophyll. Plant Physiol.2002,129:1359-1367.
    [267]Nishikawa K., Onodera A., Tominaga N. Phytochelatins do not correlate with the level of Cd accumulation in Chlamydomonas spp. Chemosphere.2006,63:1553-1559.
    [268]Baccio D.D., Kopriva S., Sebastiani L., et al. Does glutathione metabolism have a role in the defence of poplar against zinc excess? New Phytologist.2005,167 (2):73-80.
    [269]Noctor G, Strohm M., Jouanin L., Kunert K.J., Foyer C.H., Rennenberg H. Synthesis of glutathione in leaves of transgenic poplar(Populus tremula x P. alba) overexpressing g- glutamylcysteine synthetase. Plant Physiol.1996,112:1071-1078.
    [270]Dhankher O.P., Li Y, Rosen B.P., Shi J., Salt D., Senecoff J.F., Sashti N.A. Meagher R.B. Engineering tolerance and hyperaccumulation of arsenic in plants by combining arsenate reductase and y-glutamylcysteine synthetase expression. Nat Biotechnol.2002,20:1140-1145.
    [271]Strohm M., Jouanin L., Kunert K.-J., Pruvost C., Polle A., Foyer C.H., Rennenberg H. Regulation of glutathione synthesis in leaves of transformed poplar (Populus tremula×P. al ba) overexpressing glutathione synthetase. Plant J.1995,7:141-145.
    [272]De Knecht J.A., Van Dillen M., Koevoets P., Schat H., Verkleij J., Ernst W. Phytochelatins in cadmium-sensitive and cadmium-tolerant Silene vulgaris (chain length distribution and sulfide incorporation). Plant Physiol.1994,104:255-261.
    [273]Gisbert C., Ros R., De Haro A., Walker D.J., Pilar Bernal M., Serrano R., Navarro-Avino J. A plant genetically modified that accumulates Pb is especially promising for phytoremediation. Biochem. Biophys. Res. Commun.2003,303:440-445.
    [274]Wawrzynski A., Kopera E., Wawrzynska A., Kaminska J., Bal W., Sirko A. Effects of simultaneous expression of heterologous genes involved in phytochelatin biosynthesis on thiol content and cadmium accumulation in tobacco plants. J. Exp. Bot.2006,57:2173-2182.
    [275]Grill E., Loffler S., Winnacker E.L., Zenk M.H. Phytochelatins, the heavymetal-binding peptides of plants, are synthesized from glutathione by a specific gamma-glutamylcysteine dipeptidyl transpeptidase (phytochelatin synthase). PNAS.1989,86:6838-6842.
    [276]Pomponi M., Censi V., Di Girolamo V., De Paolis A., Di Toppi L.S., Aromolo R., Costantino P., Cardarelli M. Overexpression of Arabidopsis phytochelatin synthase in tobacco plants enhances Cd (2+) tolerance and accumulation but not translocation to the shoot. Planta.2006,223:180-190.
    [277]Chaoui A., Ghorbal M.H., Ferjani E.E. Effects of cadmium-zinc interactions on hydroponically grown bean (Phaseolus vulgaris L.). Plant Sci.1997,126:21-28.
    [278]Choluj D., Karwowska R., Agnieszka C, Marta J. Influence of long-term drought stress on osmolyte accumulation in sugar beet (Beta vulgaris L.) plants, Acta Physiol. Plantarum. 2008,30 (5):679-687.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700