用户名: 密码: 验证码:
西藏东南部第四纪冰川演化序列与宇宙成因核素测年研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
西藏东南部处于喜马拉雅山脉、念青唐古拉山脉和横断山脉的交汇部位。是我国海洋性冰川发育的主要地区之一,其在水分周转中周期短,强度大,变化幅度也较大,对气候波动的响应敏感,因此在冰期—间冰期旋回中雪线就会出现大范围的波动。同时海洋性冰川自身具有的积累量大、消融强、运动速度快、侵蚀搬运能力强等特点,使得本区保存了丰富、规模巨大、轮廓层次清晰的冰川遗迹,特别是末次冰期的冰川堆积出现多套。据此划分的古乡冰期和白玉冰期,是青藏高原迄今划分的第四纪冰期中,具有代表性的两个冰期,它们被广泛看作是高原及周边山地晚第四纪冰期划分的蓝本,但这两次冰川作用年代一直处于推测状态。对这些古冰川遗迹的精确定年,不仅可以建立起西藏东南部晚更新世以来冰川演化的时间序列,而且对研究处于中低纬度的青藏高原晚更新世冰川作用模式与全球变化的异同关系,进而探讨晚更新世亚洲季风和行星风系此消彼长的演变规律等,具有重要意义。
     在对本区的波堆藏布流域、易贡藏布流域和然乌地区第四纪冰川遗迹详细野外考察的基础上,运用宇宙成因核素~(10)Be、ESR、~(14)C测年技术对波堆藏布谷地的冰期序列进行了定年,运用AAR法确定了冰期时雪线的降低值,并进一步对当时的气温状况进行了推测;根据目前发表的文献资料对南北半球的冰进时代及青藏高原MIS-3阶段冰进原因做了分析,初步得到如下结论:
     1.古乡冰期冰碛垄上漂砾的宇宙成因~(10)Be暴露年代为112.9±16.7~136.5±5.8ka BP(n=4),代表了古乡冰期晚阶段冰川消退的时间,因此确认古乡冰期对应于MIS-6阶段,这也是本区迄今发现的最老冰期,当时冰川主干长度达100km,冰川规模为现代的6~10倍。
     2.晚白玉冰期冰碛垄上漂砾的宇宙成因~(10)Be暴露年代为11.1±1.9~18.5±2.2ka BP(n=8),代表了末次冰盛期之后冰川消退的时间,因此确认白玉冰期对应于MIS-2阶段,当时波堆藏布流域从关星冰川伸下的冰川长达80km,最盛时冰川规模为现代的4~7倍;另外冰碛丘陵的形成时间为12.3±1.2ka BP左右,应为Bolling或Allerod暖期的产物,冰川面积从林穷阶段的230km~2减小到育仁阶段的166km~2。
     3.初步推算古乡冰期时雪线高度约为3800m,比现代雪线降低了近800m,年平均气温比现在低约7.8℃。白玉冰期时雪线高度约为4000m,比现代雪线降低了近600m,温度比现在低6.6℃左右。而从白玉冰期冰退的林穷阶段至育仁阶段,雪线上升了400m,温度升高了将近2.4℃。
     4.对全球已发表的第四纪冰川遗迹的宇宙成因核素测年资料(37处地点的1168个数据)进行了统计分析,发现南北半球之间冰进时代是同步的,而中、高与低纬度之间的冰进时代存在明显差异。
     5.青藏高原地区有MIS-3阶段冰进数据的地点达到了25个,对MIS-3三个亚阶段的水热组合分析后,认为只有MIS-3b阶段的冷湿组合才具备冰进的条件,而其它两个亚阶段降水的增加弥补不了因温度的升高而导致的消融,因此不具备冰进的条件。
The southeastern Tibet, a part of the southeastern Qinghai-Tibetan Plateau, is situated in the junction area of the Nyainqentanglha (north), Hengduan (east) and Himalayas (west) Mountains, where numerous monsoonal maritime glaciers develop. In this region, because there is abundant precipitation for glacier development, glaciers are sensitive to temperature changes. Consequently, glacial extent changes most dramatically during the alternation of glacial and interglacial periods, such as the last glacial period. In addition, the glaciers in this region are characterized by high temperature, high accumulation, fast flow, and intensive erosion ability, so abundant, huge, typical and identifiable glacial sediments are remained, especially, multiple sets of moraines since the Last Glaication present. Guxiang and Baiyu Glaciations according to these glacial landforms and sediments are two previously recognized local glaciations of the Tibetan Plateau. They have been widely used as the reference standard for classifying Late Quaternary glaciations on the Tibetan Plateau and its surrounding mountains. However, the numerical chronologies of both glaciations have been lacking. If the glacial relics are determined, we will not only reconstruct the Quaternary glacial evolution sequence, but also study on the difference between the glacial evolutive model since late Pleistocene on the Qinghai-Tibetan Plateau and global climate change.
     Based on the field investigation of Quaternary glacial relics in Boduizangbu basin, Yigongzangbu basin and Ranwu area, we determined the Quaternary Glaciations sequence with cosmogenic ~(10)Be, ESR and ~(14)C technique, and caculated the depression value of ELA during glaciation with AAR methods, futher discussed on the implications climatic changes. In addition, according to published literatures, the author analyzed the timing of glaciations between the hemispheres and the reason of MIS-3 glacial advance on the Qinghai-Tibetan Plateau. The main conclusions are as follows:
     1. The surface boulders deposited by the glaciers of the Guxiang Glaciation have exposure ages of 112.9±16.7~136.5±15.8 ka BP, which are likely to represent the timing of glacier retreat during the later part of the Guxiang Glaciation, so Guxiang Glaciation should correspond to marine isotope stages 6, so far it is the oldest glaciation found in the southern Tibet. At that time, the paleo-glacier was 6~10 times larger than the present areas, extending more than 100 km long.
     2. The surface boulders deposited by the glaciers of the Late Baiyu Glaciation have exposure ages of 11.1±1.9~18.5±2.2 ka BP, which are likely to represent the timing of glacier retreat during the post-Last Glacial Maximum, so Late Baiyu Glaciation should correspond to marine isotope stages 2. At that time, the paleo-glacier was 4~7 times larger than the present areas, extending more than 80 km long. The hummocky moraines are dated to ESR 12.3±1.2 ka BP, so it likely correspond to the Boiling or Allerod warming event, the glacial area of 230 km~2 decreased to 166 km~2 from Linqiong Stage to Yuren Stage.
     3. We calculated that the snowlines for Guangxiang and Baiyu Glaciations should be 3800 m and 4000 m, 800 m and 600 m lower than present respectively, and evaluated that the annual air temperature during Guxiang and Baiyu Glaciation should be 6.6℃and 7.8℃below than present. While the snowline raised 400 m from Linqiong Stage and Yuren Stage, so the annual temperature rise should be close to 2.4℃.
     4. By summarizing and analysing cosmogenic nuclides dating data of Quaternary glacial relics in the global (37 sites, 1168 data), we found that glaciations were synchronous between the hemispheres, and were asynchronous between the high-middle and low latitude.
     5. It had been found that there were 25 sites of MIS-3 glacial advance on the Qinghai-Tibetan Plateau. Based on the hydro-thermal characteristic analysis of the sub-stages of MIS-3, the author considered that only the MIS-3b cold-humid climate could result in glacial advance, glaciers in MIS-3a, 3c hadn't possess the condition of glacial advace or held at their status quo position, as positive mass balance by rising precipitation could not offset the negative contribution by melting water under higher temperature.
引文
1.崔之久.关于中国西部第四纪冰川覆盖类型问题.地质学报,1964,44(2):229~245.
    2.崔之久,伍永秋,刘耕年.昆仑—黄河运动的发现及其性质.科学通报,1997,42(18):1986~1989.
    3.崔之久,伍永秋,刘耕年,等.关于“昆仑—黄河运动”.中国科学(D辑),1998,28(1):52~59.
    4.崔之久,伍永秋,葛道凯,等.昆仑山垭口地区第四纪环境演变.海洋地质与第四纪地质,1999a,19(1):53~62.
    5.崔之久,杨健夫,刘耕年,等.中国台湾高山第四纪冰川之确证.科学通报,1999b,44(20):2220~2224.
    6.崔之久,张威.末次冰期冰川规模与冰川“异时”、“同时”问题的讨论.冰川冻土,2003,25(5):510~516.
    7.戴加洗.青藏高原气候.北京:气象出版社,1990.
    8.邓晓峰,张文敬.唐古拉山各拉丹东峰东坡第四纪冰川与环境演变.冰川冻土,1992,14(2):153~160.
    9.丁林,钟大赉,潘裕生,等.东喜马拉雅构造结上新世以来快速抬升的裂变径迹证据.科学通报,1995,40(6):1497~1500.
    10.丁仲礼.米兰科维奇冰期旋回理论:挑战与机遇.第四纪研究,2006,26(5):710~717.
    11.段志明,李勇,李亚林,等.青藏高原唐古拉山口第四纪冰碛层划分及其地质环境意义.中国地质,2005,32(1):128~134.
    12.方小敏,陈富斌,施雅风,等.甘孜黄土与青藏高原冰冻圈演化.科学通报,1996,41(20):1865~1867.
    13.郭红伟,陈晔,李吉均.祁连山冷龙岭南麓冰川序列、黄土记录及阶地系列的初步研究.兰州大学学报(自然科学版),1995,31(1):102~110.
    14.韩同林.发现冰臼.北京:华夏出版社,2004.
    15.黄崇,叶天,陈克强,等.中华人民共和国1:250万地质图.北京:中国地图出版社,2004.
    16.黄麒,陈克造.七十三万年来柴达木盆地察尔汗盐湖古气候波动的形式.第四纪研究,1990,(3):205~212.
    17.焦克勤,岩田修二.昆仑山垭口、唐古拉山垭口和藏东南地区末次冰期以来的冰川变化.见:姚檀栋,上丰田主编.青藏高原冰川气候与环境.北京:科学出版社,1993,120~129.
    18.焦克勤,姚檀栋,李世杰.西昆仑山32ka来的冰川与环境演变.冰川冻土,2000,22(3): 250~256.
    19.焦克勤,Shuji Iwata,姚檀栋,等.3.2 ka BP以来念青唐古拉山东部则普冰川波动与环境变化.冰川冻土,2005,27(1):74~79.
    20.金性春,周祖翼,汪品先.大洋钻探与中国地球科学.上海:同济大学出版社,1995.
    21.康建成,朱俊杰,陈宏凯.祁连山冷龙岭南坡第四纪冰川演化序列.冰川冻土,1992,14(4):352~359.
    22.况明生,李吉均,赵瑜,等.云南东北部拱王山第四纪冰川遗迹研究.冰川冻土,1997,19(4):366~372.
    23.况明生,赵维城.云南大理点苍山地区更新世晚期沉积地层的ESR测年研究.云南地理环境研究,1997,9(1):49~57.
    24.李炳元,张青松,王富葆,等.西藏第四纪地质.北京:科学出版社,1983.89~109.
    25.李炳元,张青松,王富葆.喀喇昆仑山—西昆仑山地区的湖泊演化.第四纪研究,1991,(1):64~71.
    26.李炳元,李吉均.青藏高原第四纪冰川遗迹分布图.北京:科学出版社,1991.
    27.李吉均,徐叔鹰.巴基斯坦北部的地貌发育与第四纪冰期问题.地理学报,1983,33(1):11~24.
    28.李吉均,郑本兴,杨锡金,等.西藏冰川.北京:科学出版社,1956.
    29.李吉均,康建成.中国第四纪冰期、地文期和黄土记录.第四纪研究,1959,(3):197~204.
    30.李吉均.中国第四纪冰川研究的展望.第四届全国冰川冻土学术会议论文选集(冰川学),北京:科学出版社,1990,56~61.
    31.李吉均.青藏高原隆起及其对环境的影响.见:任美锷教授八十华诞地理论文集.南京:南京大学出版社,1993,57~63.
    32.李吉均,苏珍.横断山冰川.北京:科学出版社.1996.
    33.李吉均,方小敏,马海州,等.晚新生代黄河上游地貌演化与青藏高原隆起.中国科学(D辑),1996,26(4):316~322.
    34.李吉均,方小敏.青藏高原隆起与环境变化研究.科学通报,1998,43(15):1567~1574.
    35.李吉均.青藏高原的地貌演化与亚洲季风.海洋与第四纪地质,1999,19(1):1~11.
    36.李吉均,方小敏,潘保田,等.新生代晚期青藏高原强烈隆起及其对周边环境的影响.第四纪研究,2001,21(5):381~391.
    37.李吉均,舒强,周尚哲,等.中国第四纪冰川研究的回顾与展望.冰川冻土,2004,26(3):235~243.
    38.李世杰,焦克勤.3万年以来西昆仑山南坡的冰川变化.冰川冻土,1990,12(4):311~318.
    39.李世杰,李树德.青海可可西里地区第四纪冰川与环境演变.冰川冻土,1992,14(4):316~324.
    40.李四光.中国冰期之探讨.学术汇刊,1942,1(1).
    41.李四光.冰期之庐山.中央研究院地质研究所专刊(乙种).1947,2.
    42.李四光.天文、地质、古生物.北京:科学出版社,1972.
    43.李文华,周兴民.青藏高原生态系统及优化利用模式.广州:广东科技出版社,1998.
    44.李文漪,阎顺.柴窝堡盆地第四纪孢粉学研究.见:施雅风,文启忠主编.新疆柴窝堡盆地第四纪气候环境变迁和水文地质条件.北京:海洋出版社,1990,46~74.
    45.刘东生.黄土与环境.北京:科学出版社,1985.
    46.刘时银,上官冬辉,丁永键,等.20世纪以来青藏高原东南部岗日嘎布山的冰川变化.冰川冻土,2005,27(1):55~63.
    47.米德生,谢自楚,罗祥瑞,等.中国冰川目录—恒河Ⅺ、印度河水系Ⅻ.西安:西安地图出版社,2002.
    48.潘保田,李吉均,朱俊杰,等.兰州地区黄河阶地发育与地貌演化.见:中国第四纪冰川环境研究中心编.中国西部第四纪冰川与环境,1991,271~277.
    49.潘保田,李吉均,周尚哲.青藏高原倒数第二次冰期冰楔的发现及其意义.科学通报,1992,17:1599~1602.
    50.潘保田,陈发虎.青藏高原东北部15万年来的多年冻土演化.冰川冻土,1997,19(2):124~132.
    51.彭金兰,王苏民.云南鹤庆盆地15万年以来的介形类及环境变迁.湖泊科学,2003,15(1):1~10.
    52.山发寿,杜乃秋,孔昭宸,等.青海湖盆地35万年以来的植被演化及环境变迁.湖泊科学,1993,5(1):9~17.
    53.沈才明,唐领余,王苏民.若尔盖地区25万年以来植被与气候.微体古生物学报,1996,13(4):373~385.
    54.沈才明,唐领余,王苏民,等.若尔盖盆地RM孔孢粉记录及其年代序列.科学通报,2005,50(3):246~254.
    55.施雅风,杨宗辉,谢自楚,等.西藏古乡地区的冰川泥石流.科学通报,1964a,(6):542~544.
    56.施雅风,刘东生.希夏邦马地区科学考察初步报告.科学通报,1964b,10:928~938.
    57.施雅风,黄茂桓,任炳辉.中国冰川概论.北京:科学出版社,1988.
    58.施雅风,周尚哲.中国东部第四纪冰川研究的发展和争论.见:施雅风,崔之久,李吉均等编.中国东部第四纪冰川与环境问题.北京:科学出版社,1989,1~10.
    59.施雅风,文启忠.柴窝堡盆地第四纪时期的环境演化.见:施雅风,文启忠主编.新疆柴窝堡盆地第四纪气候环境变迁和水文地质条件.北京:海洋出版社,1990,147~157.
    60.施雅风,李吉均.80年代以来中国冰川学和第四纪冰川研究的新进展.冰川冻土,1994,16(1):1~14.
    61.施雅风,郑本兴,李世杰,等.青藏高原中东部最大冰期时代高度.冰川冻土,1995, 17(2):97~112.
    62.施雅风,郑本兴,姚檀栋.青藏高原末次冰期最盛时的冰川与环境.冰川东土,1997,19(2):97~113.
    63.施雅风.第四纪中期青藏高原冰冻圈的演化及其与全球变化的联系.冰川冻土,1998,20(3).197~208.
    64.施雅风,潘保田,姚檀栋.15万年来青藏高原气候与环境变化.见:施雅风,李吉均,李炳元主编.青藏高原晚新生代隆升与环境变化.广州:广东科技出版社,1998.417~446.
    65.施雅风,刘晓东,李炳元,等.距今40~30 ka青藏高原特强夏季风事件及其与岁差周期的关系.科学通报,1999,44(14):1475~1480.
    66.施雅风,黄茂桓,姚檀栋,等.中国冰川与环境—现在、过去和未来.北京:科学出版社,2000.
    67.施雅风,姚檀栋.中低纬度MIS3b(54~44 ka BP)冷期与冰川前进.冰川冻土,2002,24(1):1~9.
    68.施雅风.青藏高原大冰盖假说的提出与扬弃.第四纪研究,2004,24(1):10~18.
    69.施雅风,刘潮海,王宗太,等.简明中国冰川目录.上海:上海科学普及出版社,2006a,20.
    70.施雅风,郑本兴,苏珍.第四纪冰川、冰期间冰期旋回与环境变化.见施雅风,崔之久,苏珍编.中国第四纪冰川与环境变化.石家庄:河北科技出版社,2006b,65~133.
    71.史正涛,张世强,周尚哲,等.祁连山第四纪冰碛物的ESR测年研究.冰川冻土,2000,22(4):353~357.
    72.苏珍,施雅风.小冰期以来中国季风温冰川对全球变暖的相应.冰川冻土,2000,22(3):223~229.
    73.苏珍,施雅风,郑本兴.贡嘎山第四纪冰川遗迹及冰期划分.地球科学进展,2002,17(5):639~647.
    74.汤懋苍,白重瑗,刘晓东.高原近代气候变化的事实与分析.见:汤懋苍,程国栋,林振耀编.青藏高原近代气候变化及对环境影响.广州:广东科技出版社,1998,121~143.
    75.唐领余,汪世兰.青海共和盆地共和组孢粉植物群.古生物学报,1988,27(5):583~606.
    76.唐领余,沈才明.青藏高原晚新生代植被史及其气候特征.微体古生物学报,1996,13(4):321~337.
    77.唐领余,沈才明,寥淦标.末次盛冰期以来西藏东南部的气候变化.中国科学(D辑),2004,34(5):436~442.
    78.王建,黄巧华,柏春广,等.2.5Ma以来柴达木盆地的气候干湿变化特征及其原因.地理科学,2004,22(1):34~38.
    79.王建,Raisbcck G,徐孝彬,等.青藏高原东南部沙鲁里山南端第四纪冰川作用的~(10)Be年代学研究.中国科学(D辑),2006,36(8):706~712.
    80.王杰,周尚哲,唐述林,等.唐古拉山垭口地区第四纪冰川测年新研究.冰川冻土,2007,29(1),149~155.
    81.王靖泰.天山乌鲁木齐河源的古冰川.冰川冻土,1981,3(增刊):57~63.
    82.王靖泰.阿尼玛卿山气候地貌.冰川冻土,1988,10(2):161~171.
    83.王明龙,胡发德,李钟武,等.贡嘎山地区第四纪冰期探讨.见:高生淮和郑远昌编.横断山研究文集.成都:四川科技出版社,1989,50~58.
    84.王宁练,蒲建辰,刘时银,等.山谷冰川稳定态时积累区面积比率研究.冰川冻土,1997,19(2):167~172.
    85.王苏民,吉磊,薛滨,等.东南季风区及青藏高原东部湖泊沉积研究与古环境重建.第四纪研究,1995,3:243~248.
    86.王苏民,薛滨.中更新世以来若尔盖盆地环境演化与黄土高原比较研究.中国科学(D),1996,26(4):323~328.
    87.吴敬禄,王苏民,施雅风,等.若尔盖盆地200 ka以来氧同位素记录的古温度定量研究.中国科学(D辑),2000,30(1):73~80.
    88.吴正.塔克拉玛干沙漠成因探讨.地理学报,1981,36(3):280~291.
    89.吴中海,赵希涛,江万.念青唐古拉山东南麓更新世冰川沉积物年龄测定.冰川冻土,2003,25(3):272~274.
    90.伍永秋,崔之久,刘耕年,等.昆仑山垭口地区的冰期系列.冰川冻土,1999,21(1):71~76.
    91.徐道明,沈永平.青藏高原的泛冰盖遗迹与冰期.冰川冻土,1995,17(3):213~229.
    92.徐钦琦.青藏高原更新世冰期的天文气候学依据.冰川冻土,1993,15(3):435~441.
    93.徐叔鹰.青海高原东部冰缘楔形构造及其行程环境.见:第四届全国冰川冻土学术会议论文选集.北京:科学出版社,1990,17~24.
    94.许刘兵,周尚哲,李昌爱,等.甘孜绒坝岔古冰川演化与黄土古土壤对比研究.冰川冻土,2003,25(5):504~509.
    95.许刘兵,周尚哲,崔建新,等.稻城冰帽区更新世冰川测年研究.冰川冻土,2004,26(5):528~534.
    96.许刘兵,周尚哲,王杰.沙鲁里山更新世冰川作用及西南季风波动对末次冰期冰川作用的影响.第四纪研究,2005,25(5):620~629.
    97.许刘兵,周尚哲.宇宙成因核素测年方法及其在地球科学中的应用.冰川冻土,2006,28(4):577~585.
    98.杨逸畴,高登义,李渤生.雅鲁藏布江下游河谷水汽通道初探.中国科学(B辑),1987,(8):893~902.
    99.杨逸畴.雅鲁藏布江下游水汽通道与藏东南环境的变迁.见:中国第四纪冰川与环境研究中心编.中国西部第四纪冰川与环境,1991,278~284.
    100.姚檀栋,Tompson L G.施雅风,等.古里雅冰芯中末次间冰期以来气候变化记录研究.中国科学(D辑),1997,27(5):447~452.
    101.易朝路,焦克勤,刘克新,等.冰碛物ESR测年与天山乌鲁木齐河源末次冰期系列.冰川冻土,2001,23(4):389~393.
    102.易朝路,李孝泽,屈建军.青藏高原现代最大冰原区第四纪冰川作用.冰川冻土,2003,25(5):491~497.
    103.袁宝印.ⅩⅢ界INQUA大会地质考察纪实.第四纪研究,1992,(1):45~62.
    104.袁宝印,黄慰文,章典.藏北高原晚更新世人类活动的新证据.科学通报,2007,52(13):1567~1571.
    105.张彭熹,张保珍,洛温斯坦TK,等.古代异常钾盐蒸发岩的成因—以柴达木盆地察尔汗盐湖钾盐的形成为例.北京:科学出版社,1993.
    106.张威,崔之久.云南东川拱王山、轿子山地区末次冰期冰川演化序列.水土保持研究,2003,10(3):94~96.
    107.张信宝.湖泊沉积中的~(10)Be含量变化—有助于识别第四纪古冰川的有无.冰川冻土,2005,27(3):438~443.
    108.张振全.天山乌鲁木齐河源的雪线变化.冰川冻土,1981,3(增刊):106~113.
    109.张振栓.南迦巴瓦峰西北坡末次冰期以来的冰川变化.冰川冻土,1988,10(2):181~188.
    110.赵井东,周尚哲,史正涛,等.祁连山东段冷龙岭南麓白水河冰碛物ESR测年研究.兰州大学学报(自然科学版),2001a,37(4):116~117.
    111.赵井东,周尚哲,崔建新,等.摆浪河流域的ESR年代学与祁连山第四纪冰期新认识.山地学报,2001b,19(6):481~488.
    112.赵井东,周尚哲,崔建新,等.乌鲁木齐河源冰碛物的ESR测年研究.冰川冻土,2002,24(6):737~743.
    113.赵井东,刘时银,何元庆,等.天山托木尔峰南麓阿特奥依纳克河流域冰川沉积序列研究.地理学报,2006,61(5):491~500.
    114.赵井东,周尚哲,刘时银,等.中国西部山岳冰川MIS3b冰进的初步探讨.冰川冻土,2007,29(2):233~241.
    115.赵井东.天山托木尔峰地区第四纪冰川演化序列初步研究.中国科学院研究生院博士学位论文,2007.
    116.赵希涛,曲永新,李铁松.玉龙山东麓更新世冰川作用.冰川冻土,1999,21(3):242~248.
    117.赵希涛,吴中海,朱大岗,等.念青唐古拉山脉西段第四纪冰川作用.第四纪研究,2002,22(5):424~433.
    118.赵志忠,吴锡浩,Schtuchter C,等.青藏高原第四纪冰川的宇宙核素暴露年龄首次测定.地质力学学报,2002,8(4):306.
    119.郑本兴,施雅风.珠穆朗玛峰地区第四纪冰期探讨.见:中国科学院青藏高原综合科学考 察编.珠穆朗玛峰地区科学考察报告(1966~1968)—第四纪地质.北京:科学出版社,1976,29~62.
    120.郑本兴,焦克勤,李世杰,等.西昆仑山第四纪冰川与环境变化.见:中国第四纪冰川与境研究中心与中国第四纪研究委员会编,中国西部第四纪冰川与环境.北京:科学出版社,1991,15~23.
    121.郑本兴,马秋华.贡嘎山地区全新世冰川变化、气候变化与河谷阶地发育.地理学报,1994,49(6):500~508.
    122.郑本兴,王苏民.黄河源区的古冰川与古环境探讨.冰川冻土,1996,18(3):210~218.
    123.郑本兴.云南玉龙雪山第四纪冰期与冰川演化模式.冰川冻土,2000,22(1):53~61.
    124.郑绵平,刘俊英,齐文.从盐湖沉积探讨40 ka BP以来青藏高原古气候演替.见:郑绵平编.盐湖资源环境与全球变化.北京:地质出版社,1996,6~20.
    125.周尚哲,李吉均,李世杰.青藏高原更新世冰川再认识.见:中国第四纪冰川与环境研究中心与中国第四纪研究委员会编.中国西部第四纪冰川与环境.北京:科学出版社,1991,67~74.
    126.周尚哲.冰期天文理论研究中的几个问题.冰川冻土,1994,16(1):85~92.
    127.周尚哲.第四纪冰期与地球轨道偏心率之再研究.见:中国地理学会地貌与第四纪专业委员会编.地貌·环境·发展.北京:中国环境科学出版社,1999,105~109.
    128.周尚哲,李吉均.冰期之青藏高原新研究.地学前缘,2001,8(1):67~75.
    129.周尚哲,李吉均,张世强,等.祁连山摆浪河谷地的冰川地貌与冰期.冰川冻土,2001a,23(2):131~138.
    130.周尚哲,易朝路,施雅风,等.中国西部MIS12冰期研究.地质力学学报,2001b,7(4):321~327.
    131.周尚哲,焦克勤,赵井东等.乌鲁木齐河河谷地貌与天山第四纪抬升研究.中国科学(D辑),2002,32(2):157~162.
    132.周尚哲,李吉均.第四纪冰川测年研究新进展.冰川冻土,2003,25(6):660~666.
    133.周尚哲,许刘兵,崔建新,等.沙鲁里山第四纪地貌发育与环境演变.科学通报,2004,49(23):2480~2484.
    134.周尚哲.锅穴一定是第四纪冰川的标志吗?第四纪研究,2006,26(1):117~125.
    135. Abramowski U, Bergau A, Seebach D, et al. Pleistocene glaciations of Central Asia: results from ~(10)Be surface exposure ages of erratic boulders from the Pamir (Tajikistan), and the Alay-Turkestan range (Kyrgyzstan). Quaternary Science Reviews, 2006, 25(9-10): 1080~1096.
    136. Adhemar J. Revolutions de la Mer. Deluges Periodiques. Paris, 1842.
    137. Allkofer O C, Grieder P K F. Cosmic rays on earth. Physics Data, 25-1. Fachinformationszentrum, Karlsruhe, 1984.
    138. Arnold. Extent and Dynamics of the Scandinavian Ice Sheet during Oxygen Isotope Stage 3 (65,000-25,000 yr B.P.). Quateranry Research, 2002, 57: 38~48.
    139. Balco C, Stone J O H, Porter S C, et al. Cosmogenic-nuclide ages for New England coastal moraines, Martha's Vineyard and Cape Cod, Massachusetts, USA. Quaternary Science Reviews, 2002, 21: 2127~2135.
    140. Ballantyne C K, McCarroll D, Stone J O. Vertical dimensions and age of the Wicklow Mountains ice dome, Eastern Ireland, and implications for the extent of the last Irish Ice Sheet. Quaternary Science Reviews, 2006, 25: 2048~2058.
    141. Barbetti M, Flude K. Geomagnetic variation during the late Pleistocene period and changes in the radiocarbon time scale. Nature, 1979, 279: 202~205.
    142. Barnard P L, Owen L A, Finkel R C. Style and timing of glacial and paraglacial sedimentation in a monsoon-influenced high Himalayan environment, the upper Bhagirathi Valley, Garhwal Himalaya. Sedimentary Geology, 2004a, 165(3-4): 199~221.
    143. Barnard P L, Owen L A, Sharma M C, et al. Late Quaternary(Holocene)landscape evolution of a monsoon-influenced high Himalayan valley, Gori Ganga, Nanda Devi, NE Garhwal. Geomorphology, 2004b, 61(1-2): 91~110.
    144. Barnard P L, Owen L A, Finkel R C, et al. Landscape response to deglaciation in a high relief, monsoon-influenced alpine environment, Langtang Himal, Nepal. Quaternmy Science Reviews, 2006, 225(17-18): 2162~2176.
    145. Barrows T T, Stone J O, Fifield L K, et al. Late Pleistocene Glaciation of the Kosciuszko Massif, Snowy Mountains, Australia. Quaternary Research, 2001, 55: 179~159.
    146. Barrows T T, Stone J O, Fifield L K, et al. The timing of the Last Glacial Maximum in Australia. Quaternary Science Reviews, 2002, 21: 159~173.
    147. Barrows T T, Stone J O, Fifield L K. Exposure ages for Pleistocene periglacial deposits in Australia. Quaternary Science Reviews, 2004, 23: 697~708.
    148. Bell M, Walker M. Late Quaternary Environmental Changes: Physical and human perspectives. New York: Longman Scientific and Technical, 1992.
    149. Benn D I, Owen L A. The role of the Indian summer monsoon and the mid-latitude westerlies in Himalayan glaciation: review and speculative discussion. Journal of the Geological Society, 1998, 155: 353~363.
    150. Benson L, Madole R. Landis G, et al. New data for Late Pleistocene Pinedale alpine glaciation from southwestern Colorado. Quaternary Science Reviews, 2005, 24: 49~65.
    151. Berger A, Imbrie J, Hays J, et al. Understanding the response of orbital forcing. Milankovitch and Climate. Eds. Berger A, Imbrie J, et al. Dordrecht, Boston, Lancaster: D. Reidel Publishing Company, 1984.
    152. Berger A. Milankovitch theory and climate. Reviews of Geophyics, 1988, 26(4): 624~657.
    153. Berger A. The spectral characteristics of pre-Quaternary climatic records, an example of the relationship between the astronomical theory and geo-sciences. Climate and Geo-Sciences, a challenge for sciences and society in 21'st Century, Dordrecht, Holland: Kluwer, 1989, 47~76.
    
    154. Berger A, Loutre M F. Insolation values for the climate of the last of the last 10 million years.Quaternary Science Reviews, 1991,10(4): 297~317.
    
    155. Berger A. Astronomical theory of paleoclimates and the last glacial-interglacial cycle.Quaternary Science Reviews, 1992,11:571~581.
    
    156. Berger W H, Bickert T, Jansen E, et al. The central mystery of the Quaternary Ice Age.Oceanus, 1993, 36(4): 53~56.
    
    157. Bierman P, Gillespie A. Range fires: a significant factor in exposure-age determination and geomorphic surface evolution. Geology, 1991, 19: 641~644.
    
    158. Bierman P, Steig E J. Estimating rates of denudation using cosmogenic isotope abundances in sediment. Earth Surface Processes and Landforms, 1996,21: 125~ 139.
    
    159. Bierman P R, Marsella K A, Patterson C, et al. Mid-Pleistocene cosmogenic minimum-age limits for pre-Wisconsinan glacial surfaces in southwestern Minnesota and southern Baffin island: a multiple nuclide approach. Geomorphology, 1999,27(1-2): 25~39.
    
    160. Bierman P R, Caffee M W, Davis P T, et al. Rates and timing of earth surface processes from in-situ-produced cosmogenic Be-10. In: Grew, E.S. (Ed.), Beryllium: Mineralogy, Petrology,and Geochemistry, Reviews in Mineralogy, 2002. 50:147~196.
    
    161. Bowen D Q, Phillips F M, McCabe A M, et al. New data for the Last Glacial Maximum in Great Britain and Ireland. Quaternary Science Reviews, 2002,21: 89~101.
    
    162. Brassart J, Tric E, Valet J -P, et al. Absolute paleointensity between 60 and 40 ka from the Kohala Mountain (Hawaii). Earth and Planetary Science Letters, 1997,148: 141~156.
    
    163. Braucher R,Bourles D L, Colin F, et al. Brazilian laterite dynam ics using in situ-produced ~(10)Be. Earth and Planetary Science Letter, 1998, 163:197~ 205.
    
    164. Brigham-Grette J, Gualtieri L M, Glushkova O Y, et al. Chlorine-36 and ~(14)C chronology support a limited last glacial maximum across central chukotka, northeastern Siberia, and no Beringian ice sheet. Quaternary Research, 2003,59:386~398.
    
    165. Briner J P, Swanson T W, Caffe M. Late Pleistocene Cosmogenic ~(36)Cl Glacial Chronology of the Southwestern Ahklun Mountains, Alaska. Quaternary Research, 2001, 56: 148~154.
    
    166. Briner J P, Miller G H, Davis P T, et al. Last Glacial Maximum ice sheet dynamics in Arctic Canada inferred from young erratics perched on ancient tors. Quaternary Science Reviews,2003,22: 437~444.
    
    167. Brook E J, Kurz M D. Surface-exposure chronology using in situ ~3He in Antarctic quartz sandstone boulders. Quaternary Research, 1993, 39:1~10.
    
    168. Brown L, Klein J, Middleton R, et al. ~(10)Be in island-arc volcanoes, and implications for subduction. Nature, 1982,299: 718~720.
    
    169. Brown E T, Edmond J M, Raisbeck G M, et al. Examination of surface exposure ages of Antarctic moraines using in situ produced ~(10)Be and ~(26)Al. Geochimica et Cosmochimica Acta,1991,55:2269~2283.
    170. Brown E T, Brook E J, Raisbeck G M, et al. Effective attenuation lengths of cosmic rays producing ~(10)Be and ~(26)Al in quartz: Implications for surface exposure age dating. Geophysical Research Letters, 1992, 19: 369~372.
    171. Brown E T, Stallard R F, L arsen M C, et al. Denudation rates determined from the accumulation of in situ-produced ~(10)Be in the Luquilto Experimental Forest, Puerto Rico. Earth and Planetary Science Letters, 1995a, 129: 193~202.
    172. Brown E T, Bourles D L, Colin F, et al. Evidence for muon-induced in situ production of ~(10)Be in near-surface rocks from the Congo. Geophysical Research Letters, 1995b, 22: 703~706.
    173. Brown E T, Stallard R F, L arsen M C, et al. Determination of predevelopment denudation rates of an agriculturalw atershed (Cayaguas River, Puerto Rico) using in situ-produced ~(10)Be in river-borne quartz. Earth and Planetary Science Letters, 1998, 160: 723~728.
    174. Cerling T E, Craig H. Cosmogenic ~3He production rates from 39°N to 46°N latitude,, western USA and France. Geochimica et Cosmochimica Acta, 1994a, 58: 249~255.
    175. Cerling T E, Craig H. Geomorphology and in-situ cosmogenic isotopes. Annual Reviews of Earth and Planetary Sciences, 1994a, 22: 273~317.
    176. Chadwick O A, Hall R D, Phillips F M. Chronology of Pleistocene glacial advances in the central Rocky Mountains. Geological Society of America Bulletin, 1997, 109(11): 1443~1452.
    177. Channell J E T, Hodell D A, Lehman B. Relative geonmagnetic paleointensity and ~(18)O at ODP site 983(Gardar Drift, North At lantic)since 350 ka. Earth and Planetary Science Letters, 1997, 153: 103~118.
    178. Charalambus S. Nuclear transmutation by negative stopped muons and the activity induced by the cosmic-ray muons. Nuclear Physics A, 1971, 166: 145~161.
    179. Chauvin A, Duncan R A, Bonhommet N, et al. Paleointensity of the Earth's magnetic field and K-Ar dating of the Louchadiere volcanic flow(Central France): New evidence for the Laschamp Excursion. Geophysical Research Letters 1989, 16(10): 1189~1192.
    180. Chauvin A, Gillot P-Y, Bonhommet N. Paleointensity of the Earth's magnetic field recorded by two late Quaternary volcanic sequences at the Island of La Reunion (Indian Ocean). Journal of Geophysical Research, 1991, 96(B2): 1981~2006.
    181. Coe R S. Geomagnetic paleointensities from radiocarbondated lava flows on Hawaii and the question of the Paoific Nondipole Low. Journal of Geophysical Research, 1978, 83(B4): 1740~1756.
    182. Colgan P M, Munroe J S, Zhou S Z. Cosmogenic radionuclide evidence for the limited extent of last glacial maximum glaciers in the Tanggula Shan of the central Tibetan Plateau. Quaternary Research, 2006, 65(2): 336~339.
    183. Craig H, Poreda R J. Cosmogenic ~3He in terrestrial rocks: The summit lavas of Maui. Proceedings of the National Academy of Science U.S.A., 1986, 83: 1970~1974.
    184. Cramp A, O'Sallivan G Neogene Sap repels in the Mediterranean: A review. Marine Geology, 1999, 153(1-4): 11~28.
    
    185. Croll J. On the physical cause of the change of climate during geological epochs.Philosophical Magazine, 1864,28: 121~137.
    
    186. Croll J. On the changes in the obliquity of the ecliptic, its influence on the climate of the polar regions and on the level of the sea. Philosophical Magazine, 1867b, 33: 426~445.
    
    187. Croll J. On the eccentricity of the earth's orbit, and its physical relations to the glacial epochs.Philosophical Magazine, 1867a, 33:119~131.
    
    188. Cruz FW, Burns S J, Karmann I, et al. Insolation-driven changes in atmospheric circulation over the past 116,000 years in subtropical Brazil. Nature, 2005,434: 63~66.
    
    189. Dansgaard W, Johnsen S T, Clausen H B, et al. Evidence for general instability of past climate from a 250-kyr ice core record. Nature, 1993, 364: 21~8, 220.
    
    190. Davis R J, Schaeffer O A. Chlorine-36 in nature. Annals New York Academy of Science,1955,62:105~122.
    
    191. Davis P T, Briner J P, Coulthard R D, et al. Preservation of Arctic landscapes overridden by cold-based ice sheets. Quaternary Research, 2006,65: 156~163.
    
    192. Dep L, Elmore D, Sharma P, et al. Depth dependence of cosmogenic neutron-capture-produced ~(36)Cl in a terrestrial rock. Nuclear Instruments and Methods in Physics Research, 1994, B92: 301~307.
    
    193.Dep W H L. Cosmogenic radionuclide production in terrestrial rocks: Accelerator mass spectrometry measurements and Monte Carlo simulations. Ph.D. Thesis, Purdue University,West Lafayette, Indiana, 1995,155.
    
    194. Derbyshire E, Li J J, Perrott F A, et al. Quaternary glacial history of the Hunza Valley,Karakoram Mountains, Pakistan. In: Miller K (Edit). International Karakoram Project.Cambridge, Cambridge University Press, 1984,456~495.
    
    195. Ding Z L, Xiong S F, Sun JM et al. Pedostratigraphy and paleomagnetism of a ~7.0Ma eolian loess-red clay sequence at Lingtai, Loess Plateau, north-central China and the implications for paleomonsoon evolution. Palaeogeography, Palaeoclimatology,Palaeoecology, 1999,152(1-2): 49~66.
    
    196. Ding Z L, Yang S L, Sun J M et al. Iron geochemistry of loess and red clay deposits in the Chinese Loess Plateau and implications for long-term Asian monsoon evolution in the last 7.0 Ma. Earth and Planetary Science Letters, 2001,185(1-2): 99~109.
    
    197. Dunai T J. Scaling factors for production rates of in situ produced cosmogenic nuclides: a critical reevaluation. Earth and Planetary Science Letters, 2000,176: 157~169.
    
    198. Elmore D, Phillips F.M. Accelerator mass spectrometry for measurement of long-lived radioisotopes. Science, 1987,236: 543~550.
    
    199. EPICA community members. Eight glacial cycles from an Antarctic ice core. Nature, 2004,429:623~628.
    
    200. Everest J, Kubik P. The deglaciation of eastern Scotland, cosmogenic ~(10)Be evidence for a Lateglacial stillstand. Journal of Quaternary Science, 2006, 21(1): 95~104.
    201. Fabel D, Stroeven A P, Harbor J, et al. Landscape preservation under Fennoscandian ice sheets determined from in situ produced ~(10)Be and ~(26)Al. Earth and Planetary Science Letters, 2002, 201: 397~406.
    202. Fabel D, Fink D, Fredin O, et al. Exposure ages from relict lateral moraines overridden by the Fennoscandian ice sheet. Quaternary Research, 2006, 65: 136~146.
    203. Fabryka-Martin J T. Production of radionuclides in the earth and their hydrogeologic significance, with emphasis on chlorine-36 and iodine-129. Ph. D. Thesis, University of Arizona, Tucson, 1988, 400.
    204. Farber D L, Hancock G S, Finkel R C, et al. The age and extent of tropical alpine glaciation in the Cordillera Blanca, Peru. Journal of Quaternary Science, 2005, 20(7-8): 759~776.
    205. Finkel R C, Owen L A, Barnard P L, et al. Beryllium-10 dating of Mount Everest moraines indicates a strong monsoon influence and glacial synchroneity throughout the Himalaya. Geology, 2003, 31(6): 561~564.
    206. Gaisser T. Gamma rays and neutrinos as clues to the origin of high energy cosmic rays. Science, 1990, 247: 1049~1056.
    207. Gall R. The secular variation and the geomagnetic theory of cosmic radiation. Journal of Geophysical Research, 1960, 65(11): 3545~3558.
    208. Gillespie A, Molnar P. Asynchronous Maximum Advances of Mountain and continental glacials. Reviews of Geophysics, 1995, 33(3): 311~364.
    209. Glasser N F, Harrison S, Ivy-Ochs S, et al. Evidence from the Rio Bayo valley on the extent of the North Patagonian Icefield during the Late Pleistocene-Holocene transition. Quaternary Research, 2006, 65: 70~77.
    210. Gosse J C, Evenson E B, Klein J, et al. Precise cosmogenic ~(10)Be measurements in western North America: Support for a global Younger Dryas cooling event. Geology, 1995a, 23(10): 877~880.
    211. Gosse J C, Klein J, Evenson E B, et al. Beryllium-10 dating of the duration and retreat of the last Pinedale glacial sequence. Science, 1995b, 268(5215): 1329~1333.
    212. Gosse J C, Phillips F M. Terrestrial in situ cosmogenic nuclides: theory and application. Quaternary Sciences Reviews, 2001, 20: 1475~1560.
    213. Granger D E, Kirchner J W, Finkel. Spatially averaged long-term erosion rates measured from in situ-produced cosmogenic nuclides in alluvial sediment. Journal of Geology, 1996, 104: 249~257.
    214. Guyodo Y, Valet J P. Relative variations in geomagnetic intensity from sedimentary records: the past 200,000 years. Earth and Planetary Science Letters, 1996, 143: 23~36.
    215. Halicki B. La glaciation quaternaire du versant nord de la Tatra (in Polish with French summary). Spraw. Panstw. Inst. Geol., 1930, 5(2-4): 377-534.
    216. Hays J D, Imbrie J, Shacldeton N J. Variations in the Earth's Orbit: Pacemaker of the Ice Age. Science, 1976,194: 1121~1132
    
    217. Hedin S. Trans-Himalaya. New York: Macrrillan, 1909. 1~200.
    
    218. Heimsath A M ,Dietrich W E, Nishiizumi K, et al. Cosmogenic nuclides, topography, and the spat ial variat ion of soil depth. Geomorphology, 1999, 27: 151~ 172.
    
    219. Heisinger B, Niedermayer M, Hartmann J F, et al. In-situ production of radionuclides at great depths. Nuclear Instruments and Methods in Physics Research B, 1997, 123: 341~346.
    
    220. Hilgen F J, Langereis C G Periodicities of CaCO_3 cycles in the Mediterranean Pliocene:Discrepancies with the quasi-periods of the Earth's orbital cycles? Terra Nova, 1989, 1:409~415.
    
    221. Hilgen F J. Extension of the astronomically calibrated (polarity) time scale to the Miocene /Pliocene boundary. Earth and Planetary Science Letters, 1991,107(2): 349~368.
    
    222. Huntington E. Pangong: A glacial lake in Central Asia. Journal of Geology, 1906, 14:599~623.
    
    223. Ivy5-Ochs S, Kerschner H, Kubik P W, et al. Glacier response in the European Alps to Heinrich Event 1 cooling: the Gschnitz stadial. Journal of Quaternary Science, 2006, 21(2):115~130.
    
    224. Izett G A, Pierce K L, Naeser N D, et al. Isotopic dating of Lava Creek B tephra in terrace deposits along the Wind River, Wyoming—Implications for post 0.6 Ma uplift of the Yellowstone hotspot. Geological Society of America Abstracts with Programs, 1992,24: 7.
    
    225. James L R, Robert S A, Robert C F. Cosmogenic dating of fluvial terraces, Fremont River,Utah. Earth and Planetary Science Letters, 1997,152: 59~73.
    
    226. James L A, Harbor J, Fabel D, et al. Late Pleistocene Glaciations in the Northwestern Sierra Nevada, California Quaternary Research, 2002, 57:409~419.
    
    227. Jull A T J, Wilson A E, Donahue D J, et al. Measurements of cosmogenic ~(14)C produced by spallation in high-altitude rocks. Radiocarbon, 1992,34: 737~744.
    
    228. Kamp Jr U, Haserodt K and Shroder Jr J F. Quaternary landscape evolution in the eastern Hindu Kush, Pakistan. Geomorphology, 2004, 57:1~27.
    
    229. Kaplan M R, Douglass D C, Singer B S, et al. Cosmogenic nuclide chronology of pre-last glacial maximum moraines at Lago Buenos Aires, 46°S, Argentina. Quaternary Research,2005, 63: 301~315.
    
    230. Kaulback R. A journey in the Salween and Tsangpo Basins, South Eastern Tibet.Geographical Journal, 1938,91(2): 96~98
    
    231. Kelly M A, Kubik P W, Blanckenburg F V, et al. Surface exposure dating of the Great Aletsch Glacier Egesen moraine system, western Swiss Alps, using the cosmogenic nuclide ~(10)Be.Journal of Quaternary Science, 2004,19(5): 431~441.
    
    232. Kieman K, Fifield L K, Chappell J. Cosmogenic nuclide ages for Last Glacial Maximum moraine at Schnells Ridge, Southwest Tasmania. Quaternary Research, 2004, 61: 335~338.
    
    233. KimJ, Englert P A J, Finkel R, et al. Cosmic-ray-induced ~(10)Be and ~(26)Al in subsurface samples from Macraes Flat, East Otago, New Zealand. EOS, Transactions American Geophysical Union, 1999, 80 (17): F1166~F1167.
    234. Klein J, Middleton R, Tang H Q. Modifications of an FN Tandem for Quantitative Measurements of ~(10)Be. Nuclear Instruments and Methods, 1982, 193: 601~616.
    235. Klein J, Giegengack R, Middleton R, et al. Revealing histories of exposure using in situ produced ~(26)Al and ~(10)Be in Libyan Desert Glass. Radiocarbon, 1986, 28(2A): 547~555.
    236. Kohl H. Pleistocene glaciation in Austria. Quaternary Science Reviews, 1986, 5: 421~427.
    237. Kohl C P, Nishiizumi K. Chemical isolation of quartz for measurement of in situ-produced cosmogenic nuclides. Geochimica et Cosmochimica Acta, 1992, 56: 3583~3587.
    238. Kovacheva M. Summarized results of the archaeomagnetic investigation of the geomagnetic field variation for the last 8000 yr in south-eastern Europe. Geophysical Journal of the Royal Astronomical Society, 1980, 61: 57~64.
    239. Kovacheva M. Archaeomagnetic investigations of geomagnetic secular variations. Philosophical Transactions of the Royal Society of London A, 1992, 306: 79~86.
    240. Kuhle M. Subtropical Mountain and Highland Glaciation as ice age triggers and the wanning of the glacial periods in the Plcistocene. Geo-jounral, 1987, 13 (6): 1~29.
    241. Kurz M D. Cosmogenic helium in a terrestrial igneous rock. Nature, 1986, 320: 435~439.
    242. Kurz M, Colodner D, Trull T W, et al. Comic ray exposure dating with in situ produced cosmogenic ~3He: results from young Hawaiian lava flows. Earth and Planetary Science Letters, 1990, 97: 177~199.
    243. Lal D, Malhotra P K, Peters B. On the production of radioisotopes in the atmosphere by cosmic radiation and their application to meteorology. Journal of Atmospheric and Terrestrial Physics, 1958, 12: 306.
    244. Lal D. Investigations of nuclear interactions produced by cosmic rays. Ph. D. Thesis, Tata Institute of Fun damental Research, Bombay, 1958.
    245. Lal D, Arnold J R, Honda M. Cosmic-ray production rates of Be~7 in oxygen, and p~(32), p~(33), S~(35) in argon at mountain altitudes. Physics Reviews, 1960, 118: 1626.
    246. Lal D, Peters B. Comic ray produced radioactivity on Earth. Fluegge S, Sitte K. Engyclopedia of Physics, Cosmic Rays Ⅱ. Berlin:.Springer-Verlag, 1967. 551~612.
    247. Lal D. In situ-produced cosmogenic isotopes in terrestrial rocks. Annual Review of Earth and Planetary Sciences, 1988, 16: 355~388.
    248. Lal D. Cosmic ray labeling of erosion surfaces: in situ nuclide production rates and erosion rates. Earth and Planetary Science Letters, 1991, 104: 424~439.
    249. Lavielle B, Marti K, Jeannot J P, et al. The ~(36)Cl-~(36)Ar-~(40)K-~(41)K records and cosmic ray production rates in iron meteorites. Earth and Planetary Science Letters, 1999, 170: 93~104.
    250. Lehmkuhl F, Liu S J. A outline of physical geography, including glacial landforms of eastern Tibet. Geojournal, 1994, 3: 7~30.
    251. Lehmkuhl F. Extent and spatial distribution of Pleistocene glaciations in eastern Tibet. Quaternary International, 1998, 45-46: 123~134.
    
    252. Leland J, Reid M R, Burbank D W, et al. Incision and differential bedrock uplift along the Indus River near Nanga Parbat, Pakistan Himalaya, from ~(10)Be and ~(26)A 1 exposure age dating of bedrock straths. Earth and Planetary Science Letters, 1998, 154: 93-107.
    
    253. Lemaitre G, Vallarta M S. On Compton's latitude effect of cosmic radiation. Physical Review,1933,43(2): 87~91.
    
    254. Li J J. The environmental effects of the uplift of the Qinghai-Xizang Plateau. Quaternary Science Reviews, 1991,10:479~483.
    
    255. Libby F, Anderson E C, Arnold J R. Age determination by radiocarbon content: World-wide assay of natural radiocarbon. Science, 1949,109: 227~228.
    
    256. Linge H, Brook E J, Nesje A, et al. In situ ~(10)Be exposure ages from southeastern Norway:implications for the geometry of the Weichselian Scandinavian ice sheet. Quaternary Science Reviews, 2006,25:1097~1109.
    
    257. Liu B, Phillips F M, Fabryka-Martin J T, et al. Cosmogenic ~(36)Cl accumulation in unstable landforms, 1. Effects of the thermal neutron distribution. Water Resources Research, 1994, 30:3115~3125(31:1159).
    
    258. Liu T S, Ding Z L, Nat Rutter. Comparison of Milankovitch periods between continental loess and deep sea records over the last 2.5Ma. Quaternary Science Reviews, 1999, 18:1205-1212.
    
    259. Looosli H H. A dating method with argon-39. Earth and Planetary Science Letters, 1983, 63:51~62.
    
    260. Ma Q H. Geomorphology and Quaternary glaciation in Naimonayi Peak region. Shidei T. Pro.Sino Japanese Joint Sci. Symp. Tibetan Plateau, V. 2. Japan: Kyoto, 1989,41~59.
    
    261. Marchetti D W, Ceding T E, Lips E W. A glacial chronology for the Fish Creek drainage of Boulder Mountain, Utah, USA. Quaternary Research, 2005,64:263~271.
    
    262. Martinson D G, Pisias N G, Hays J D, et al. Age dating and the Orbital Theory of the Ice Ages:Development of a high-resolution 0 to 300000 year chronostratigraphy. Quaternary Research,1987,27: 1~29.
    
    263. Masarik J, Reedy R C. Terrestrial cosmogenic-nuclide production systematics calculated from numerical simulations. Earth and Planetary Science Letters, 1995,136: 381~395.
    
    264. Masarik J, Beer J. Simulation of particle flux and cosmogenic nuclide production in the Earth's atmosphere. Journal of Geophysical Research, 1999,104 (D10): 12099~12111.
    
    265. Mazaud A, Laj C, Bard E, et al. Geomagnetic field control of ~(14)C production over the last 80 ky: implications for the radiocarbon time-scale. Geophysical Research Letters, 1991, 18:1885~1888.
    
    266. McElhinny M W, Senanayake W E. Variations in the geomagnetic dipole 1: the past 50,000 years. Journal of Geomagnetism and Geoelectricity, 1982,34: 39~51.
    
    267. Meier M F. Proposed definitions for glacier mass budget terms. Journal of Glaciology, 1962, 4(3): 252~265.
    268. Meynadier L, Valet J-P, Weeks R, et al. Relative geomagnetic intensity of the field during the last 140 ka. Earth and Planetary Science Letters, 1992, 114: 39~57.
    269. Middleton R, Fink D, Klein J, et al. ~(41)Ca concentrations in modern bone and their implications for dating. Radiocarbon, 1989, 31(3): 305~309.
    270. Milankovitch M. Canon of Insolation and the lce Age Problem. Beograd, Koninglich Serbische Akademie, 1941. (English translation by Israel program for Scientific Translation and published for the U. S. Department of Commence and the National Science Foundation).
    271. Millikan R A, Neher H V. A precision world survey of sea-level cosmic-ray intensities. Physical Review, 1936, 50: 15~24.
    272. Nishiizumi K, Lal D, Klein J, et al. Production of ~(10)Be and ~(26)Al by cosmic rays in terrestrial quartz in situ and implications for erosion rates. Nature, 1986, 319: 134~135.
    273. Nishiizumi K, Winterer E L, Kohl C P, et al. Cosmic ray production rates of ~(10)Be and ~(26)Al in quartz from glacially polished rocks. Journal of Geophysical, Research, 1989, 94(B12): 17907~17915.
    274. Nishiizumi K, Kohl C P, Arnold J R, et al. Cosmic ray produced ~(10)Be and ~(26)Al in Antarctic rocks: exposure and erosion history. Earth and Planetary Science Letters, 1991, 104: 440~454.
    275. O'Brien K, Sandmeier H A, Hansen G E, et al. Cosmic-ray-induced neutron background sources and fluxes for geometries of air over water, ground, iron, and aluminum. Journal of Geophysical Reseach, 1975, 83: 114~120.
    276. Owen L A, Wishart M, Bailey R M, et al. Style and timing of glaciation in Lahul Himalaya, North India: a framework for reconstructing late Quaternary paleoclimtic change in the Western Himalayas. Journal of Quaternary Science,, 1997, 12: 83~110.
    277. Owen L A, Gualtieri L, Finkel R C, et al. Cosmogenic radionuclide dating of glacial landforms in the Lahul Himalaya, northern, India, definiag the timing of Late Quaternary glaciation. Journal of Quaternary Science, 2001, 16(6): 555~563.
    278. Owen L A, Finkel R C and Caffee M W. A note on the extent of glaciation throughout the Himalaya during the global Last Glacial Maximum. Quaternary Science Reviews, 2002a, 21: 147~157.
    279. Owen L A, Kamp U, Spencer J Q, et al. Timing and style of Late Quaternary glaciation in the eastern Hindu Kush, Chitral, northern Pakistan: a review and revision of the glacial chronology based on new optically stimulated luminescence dating. Quaternary International, 2002b, 97-98: 41~55.
    280. Owen L A, Finkel R C, Caffee M W, et al. Timingu of multiple late Quaternary glaciations in the Hunza Valley, Karakoram Mountains, northern Pakistan: Defined by cosmogenic radionuclide dating of moraines. Geological Society of America Bulletin, 2002c, 114(5): 593~604.
    281. Owen L A, Finkel R C, Ma Haizhou, et al. Timing and style of late Quaternary glaciation in northeastern Tibet. Geological Society of America Bulletin, 2003a, 115(11): 1356~1364.
    
    282. Owen L A, Spencer J Q, Ma H Z, et al. Timing of late Quaternary glaciation along the southwestern slops of the Qilian Shan, Tibet. Boreas, 2003b, 32: 281~291.
    
    283. Owen L A, Finkel R C, Barnard P L, et al. Climatic and topographic controls on the style and timing of Late Quaternary glaciation throughout Tibet and the Himalaya defined by ~(10)Be cosmogenic radionuclide surface exposure dating. Quaternary Science Reviews, 2005,24(12-13): 1391~1411.
    
    284. Owen L A, Caffee M, Bovard K, et al. Terrestrial cosmogenic nuclide surface exposure dating of the oldest glacial successions in the Himalayan orogen: Ladakh Range, Northern India. Geological Society of America Bulletin, 2006a, 118(3-4): 383~392.
    
    285. Owen L A, Finkel R C, Ma H Z, et al. Late Quaternary landscape evolution in the Kunlun Mountains and Qaidam Basin, Northern Tibet: A framework for examining the links between glaciation, lake level changes and alluvial fan formation. Quaternary International, 2006b,154-155:73~86.
    
    286. Pachur H J, Wunnemann B, Zhang H C. Lake evolution in the Tengger Desert, northwestern China during the last 40000 years. Quaternary Research, 1995,44:176~180.
    
    287. Penck A, Bruckner E. Die Alpen im Eis Zeitalter. Leipzig: Tauchnitz, 1909,1~199.
    
    288. Petit J R, Jouzel J, Raynaud D, et al. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature, 1999, 399: 429~436.
    
    289. Phillips F M, Leavy B D, Jannik N O, et al. The accumulation of cosmogenic Chlorine- in rocks: a method for surface exposure dating. Science, 1986,231:41~43.
    
    290. Phillips F M, Zreda M G, Smith S S, et al. Cosmogenic chlorine-36 chronology for glacial deposits at Bloody Canyon, eastern Sierra Nevada. Science, 1990,248:1529~1532.
    
    291. Phillips F M, Zreda M G, Smith S S, et al. Age and geomorphic history of Meteor Crater, Arizona, from cosmogenic ~(36)C1 and ~(14)C in varnish. Geochimica et Cosmochimica Acta, 1991,55:2695~2698.
    
    292. Phillips F M, Zreda M G, Elmore D, et al. A reevaluation of cosmogenic ~(36)Cl production rates in terrestrial rocks. Geophysical Research Letters, 1996a, 23(9): 949~952.
    
    293. Phillips F M, Zreda M G, Benson L V, et al. Chronology for fluctuations in late Pleistocene Sierra Nevada glaciers and lakes. Science, 1996b, 274 (5288): 749~751.
    
    294. Phillips W M, Sloan V F, Shroder J F, et al. Asynchronous glaciation at Nanga Parbat northwestern Himalaya Mountains, Pakistau. Geology, 2000, 28(5): 431-434.
    
    295. Pokras E M, Mix A C. Earthps p recession cycle and Quaternary climate change in trop ical Africa. Nature, 1987, 326: 486-487.
    
    296. Pomerantz M A. Cosmic Rays. New York: Van Nostrand Reinhold, 1971,168.
    
    297. Poreda R J, Cerling T E. Cosmogenic neon in recent lavas from the western United States.Geophysical Research Letters, 1992,19:1863~1866.
    298. Porter S C. Quaternary glacial record in the Swat Kohistan, West Pakistan. Geological Society of America Bulletin, 1976, 81: 1421~1446.
    299. Prell W L. Oxygen and carbon isotope stratigraphy for Quaternary of Hole 502B: Evidence for two modes of istopic variability. In: Prell W L, Crandner J V, et al. Init Repts DSDP, V68, 1982, 455~464.
    300. Principato S M, Geirsdottir A, Johannsdottir G E, et al. Late Quaternary glacial and deglacial history of eastern Vestfirdir, Iceland using cosmogenic isotope (~(36)Cl)exposure ages and marine cores. Journal of Quaternary Science, 2006, 21(3): 271~285.
    301. Putkonen J, Swanson T. Accuracy of cosmogenic ages for moraines. Quaternary Research, 2003, 59: 255~261.
    302. Quenby J J, Webber W R. Cosmic ray cut-off rigidities and the Earth's magnetic field. Philosphical Magazine 4, 1959, 90~113.
    303. Quenby J J, Wenk G J. Cosmic ray threshold rigidities and the Earth's magnetic field. Philosophical Transactions 7, 1962, 1457~1485.
    304. Quenby J J. The interaction of cosmic rays with the solar and terrestrial magnetic fields. 1966, 415~426.
    305. Reedy R C, Arnold J R, Lal D. Cosmic-ray record in solar system matter. Science, 1983, 219(4581): 127~134.
    306. Reedy R C, Nishiizumi K, Lal D, et al. Simulations of terrestrial in-situ cosmogenic-nuclide production. Nuclear Instruments and Methods in Physics Research B, 1994, 92: 297~300.
    307. Richards B W, Owen L A, Rhodes E J. Timing of late Quaternary glaciations in the Himalayas of northern Pakistan. Journal of Quaternary Science, 2000, 15: 283~297.
    308. Riebe C S, Kirchner J W, Granger D E, et al. Erosional equilibrium and disequilibrium in the Sierra Nevada, inferred from cosmogenic ~(26)Al and ~(10)Be in alluvial sediment. Geology, 2000, 28(9): 803~806.
    309. Roberts A P, Lehman B, Weeks R J, et al. Relative paleointensity of the geomagnetic field over the last 200,000 years from ODP sites 883 and 884, North Pacific Ocean. Earthand Planetary Science Letters, 1997, 152: 11~23.
    310. Rossi B R. Cosmic Rays. New York: McGraw Hill Book Company, 1964, 268.
    311. Rovey C W. Pre-illinoian till sequence in northern missouri and the global climate record. Geological Society of America Abstracts with Programs, 2005, 37(5): 91.
    312. Ruddiman W F. Earth's Climate: Past and Future. New York: Freeman&Co., 2001, 1~465
    313. Rutter N. Problematic ice sheets. Quaternary International, 1995, 38: 19~37.
    314. Schafer J M, Tschudi S, Zhan Z Z, et al. The limited influence of glaciations in Tibet on global climate over the past 170000 yr. Earth and Planetary Science Letters, 2002, 194: 287~297.
    315. Schaller M, Blankenburg F V, Hovius N, et al. Large-scale erosion rates from in situ-produced cosmogenic nuclides in European river sediments. Earth and Planetary Science Letters, 2001, 188: 441~458.
    
    316. Schneider D A, Mello G A. A high-resolution marine sedimentary record of geomagnetic intensity during the Brunhes Chron. Earth and Planetary Science Letters, 1996, 144:297~314.
    
    317. Scott CH. Contemporary sediment transfer in Himalayan glacial systems. Unpublished PhD thesis, University of Leicester, 1992, 352.
    
    318. Shackleton N, Opdyke N. Oxygen isotope and palaeomagnetic evidence for early Northern Hemisphere Glaciation. Nature, 1977,270:216~219.
    
    319. Shanahan T M, Zreda M. Chronology of Quaternary glaciations in East Africa. Earth and Planetary Science Letters, 2000,177:23~42.
    
    320. Shang Y J, Yang Z F, Li L H, et al. A super-large landslide in Tibet in 2000: background,occurrence, disaster, and origin. Geomorphology, 2003, 54(3-4): 225~243.
    
    321. Shea M A, Smart D F, Gentile L C. Estimating cosmic ray vertical cut-off rigidities as a function of the McIlwain L-parameter for different epochs of the geomagnetic field. Physics of the Earth and Planetary Interiors, 1987,48:200~205.
    
    322. Shi Y F, Liu S Y. Estimation on the response of glaciers in China to the global warming in the 21 st century. Chinese Science Bulletin, 2000,45(7): 668~672.
    
    323. Shulmeister J, Fink D, Augustinus P C. A cosmogenic nuclide chronology of the last glacial transition in North-West Nelson, New Zealand—new insights in Southern Hemisphere climate forcing during the last deglaciation [J]. Earth and Planetary Science Letters, 2005,233: 455~466.
    
    324. Sinitzin V M. On the Quaternary glaciation problem in High Asian Plateau. Geographical Translation, 1958, (1): 22~27.
    
    325. Small E E, Anderson R S, Hancock G S. Estimates of the rate of regolith product ion using ~(10)Be and ~(26)A1 from an alpine hillslope. Geomorphology, 1999,27:131~150.
    
    326. Small E E,Anderson R S, Repka J L, et al. Ero sion rates of alp ine bedrock summ it surfaces deduced from in situ ~(10)Be and~(26)A 1. Earth and Planetary Science Letters, 1997, 150: 413~425.
    
    327. Smith J A, Seltzer G O, Farber D L, et al. Early local glacial maximum in the tropical Andes.Science, 2005a, 678~681.
    
    328. Smith J A, Finkel R C, Farber D L, et al. Moraine preservation and boulder erosion in the tropical Andes: interpreting old surface exposure ages in glaciated valleys. Journal of Quaternary Science, 2005b, 20(7-8): 735-758.
    
    329. Spencer J Q, Owen L A. Optically stimulated luminescence dating of Late Quaternary glaciogenic sediments in the upper Hunza valley: validating the timing of glaciation and assessing dating methods. Quaternary Science Reviews, 2004,23:175~191.
    
    330. Staudacher T, Allegre C J. Cosmogenic Neon in ultramafic nodules from Asia and in quartzite from Antarctica. Earth and Planetary Science Letters, 1991,106:87~102.
    331. Stone J O H, Evans J M, Fifield L K, et al. Cosmogenic chlorine-36 production in calcite by muons. Geochimica et Cosmochimica Acta, 1998, 62 (3): 433~454.
    332. Stone J O. A consistent Be-10 production rate in quartz-muons and altitude sealing. AMS-8 Proceedings Abstract Volume, Vienna, Austria, 1999.
    333. Stone J O. Air pressure and comogenic isotope production. Journal of Geophysical Research, 2000, 105(B10): 23753~23759.
    334. Stone J O, Ballantyne C K. Dimensions and deglacial chronology of the Outer Hebrides Ice Cap, northwest Scotland: implications of cosmic ray exposure dating. Journal of Quaternary science, 2006, 21(1): 75~84.
    335. Stoner J S, Channell J E T, Hillaire-Marcel C. Late Pleistocene relative geomagnetic paleointensity from the deep Labrador Sea: Regional and global correlations. Earth and Planetary Science Letters, 1995, 134: 237~252.
    336. Stormer C. On the trajectories of electric particles in the field of a magnetic dipole with applications to the theory of cosmic radiation: third communication. Astrophysica Norvegica 1(1), 1934, 1~10.
    337. Templeton D H. Nuclear reactions induced by high energy particles. Annual review of nuclear science, 1953, 2: 93~104.
    338. Thompson L G, Yao T, Davis M E, et al. Tropical Climate in stability: The Last Glacial Cycles from a Qinghai Tibetan ice core. Science, 1997, 276: 1821~1825.
    339. Thompson L G, Mosley-Thompson E, Davis M E, et al. lce core evidence for asynchronous glaciation on the Tibetan Plateau. Quaternary International, 2006, 154-155: 3~10.
    340. Tric E, Valet J-P, Tucholka P, et al. Paleointensity of the geomagnetic field during the last 80,000 years. Journal of Geophysical Research, 1992, 97(B6): 9337~9351.
    341. Trinkler E. The ice age on the Tibetan Plateau and adjacent regions. Geographical Journal, 1930, 75: 225~232.
    342. Tschudi S, Schafer J M, Zhao Z Z, et al. Glacial advances in Tibet during the Younger Dryas? Evidence from cosmogenic ~(10)Be, ~(26)Al, and ~(21)Ne. Journal of Asian Earth Sciences, 2003, 22: 301-306.
    343. Van Andei T H. The Climate and Landscape of the Middle Part of the Weichselian Glaciation in Europe: The Stage 3 Project. Quaternary Research, 2002, 57: 2~8.
    344. Vance D, Bickle M, Ivy-Ochs S, et al. Erosion and exhumation in the Himalaya from cosmogenic isotope inventories of river sediments. Earth and Planetary Science Letters, 2003, 206: 273~288.
    345. Voelker A H L. Global distribution of centennial-scale records for Marine Isotope Stage (MIS3): a database. Quaternary Science Reviews, 2002, 21: 1185~1212.
    346. Ward F K. The glaciation of Chinese Tihet. Geographical Journal, 1922, 59: 363~369.
    347. Ward F K. The Himalaya East of the Tsangpo. Geograhical Journal, 1934, 84(5): 369~393.
    348. Ward F K. Botanical and Geographical explorations in Tibet. Geographical Journal, 1936, 88(5): 410-413.
    
    349. Wissmann H V. Die heutige Vergletscherung und Schneegrenze in Hochasien. Academie der Wissenschaften und der Literatur in Mainz, Mathe-matish Natur Wissenschaftlich Klasse 1 Abhandlungen, 1959, 14: 1103~1407.
    
    350. Yao T D. Abrupt climate changes on the Tibetan Plateau during the Last Ice Age —Comparative study of the Guliya ice core with the Greenland GRIP ice core. Science in China (Series D), 1999,42(4): 358~368.
    
    351. Yi C L, Liu K X, Cui Z J. AMS dating on glacial tills at the source area of the Urumqi River in the Tianshan mountains and its implications. Chinese Science Bulletin, 1998, 43(20):1749~1751.
    
    352. Yi C L, Liu K X, Cui Z J, et al. AMS radiocarbon dating of late Quaternary glacial landforms,source of the Urumqi River, Tien Shan—a pilot study of ~(14)C dating on inorganic carbon.Quaternary International, 2004, 121(1): 99~107.
    
    353. Yi C L, Zhu L, Seong Y B, et al. A lateglacial rock avalanche event, Tianchi Lake, Tien Shan,Xinjiang. Quaternary International, 2006,154-155: 26~31.
    
    354. Zech W, Glaser B, Abramowski U, et al. Reconstruction of the Late Quaternary Glaciation of the Macha Khola valley (Gorkha Himal, Nepal) using relative and absolute (~(14)C, ~(10)Be,dendrochronology) dating techniques. Quaternary Science Reviews, 2003, 22(21-22):2253~2265.
    
    355. Zech R, Abramowski U, Glaser B, et al. Late Quaternary glacial and climate history of the Pamir Mountains derived from cosmogenic ~(10)Be exposure ages. Quaternary Research, 2005,64:212~220.
    
    356. Zech R, Kull C, Veit H. Late Quaternary glacial history in the Encierro Valley, northern Chile (29°S), deduced from ~(10)Be surface exposure dating. Palaeogeography, Palaeoclimatology,Palaeoecology, 2006,234:277~286.
    
    357. Zheng B X. Controversy regarding the existence of a large ice sheet on the Qinghai-Xizang (Tibetan) Plateau during Quaternary period. Quaternary Reserch, 1989, 32: 121~123.
    
    358. Zheng B X, Xu Q Q, Shen Y P. The relationship between climate change and Quaternary glacial cycles on the Qinghai-Tibetan Plateau: review and speculation. Quaternary International, 2002,97-98: 93~101.
    
    359. Zhou S Z, Li J J. The sequence of Quaternary glaciation in the Bayan Har Mountains.Quaternary International, 1998,45-46: 135~142.
    
    360. Zreda M G, Phillips F M, Elmore D, et al. Cosmogenic ~(36)Cl production rates in terrestrial rocks. Earth and Planetary Science Letters, 1991,105:94~109.
    
    361. Zreda M G, Noller J S. Ages of prehistoric earthquakes revealed by cosmogenic chlorine-36 in a bedrock fault scarp at Hebgen Lake. Science, 1998,282: 1097~1099.
    
    362. Zreda M, England J, Phillips F, et al. Unblocking of the Nares Strait by Greenland and Ellesmere ice-sheet retreat 10,000 years ago. Nature, 1999, 398:139~142.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700